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Combining multispectral and
high-resolution 3D imaging for
leaf vein segmentation and
density measurement
Yi-Hong Liao* and Song Zhang

School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
Accurate leaf vein segmentation and vein density (VLA) measurement are crucial

for understanding plant physiology. Traditional 2D imaging techniques often

require labor-intensive and destructive processes, such as leaf flattening or

chemical clearing, thereby limiting their practicality for high-throughput

applications. In this study, we present a novel framework that integrates

multispectral and high-resolution 3D imaging to enhance leaf vein

segmentation and VLA measurement. By leveraging digital fringe projection,

our system captures grayscale, multispectral, and 3D topographical data within a

unified coordinate system. The integration of 3D information improves vein

detection, particularly in low-contrast regions, while also enabling direct and

accurate measurements of leaf area, vein length, and VLA. However, this

approach also introduces some false positives in vein segmentation due to

mesophyll surface variability. Despite these challenges, our high-resolution 3D

imaging method shows significant potential for non-invasive phenotyping and

trait assessment in complex, unstructured environments.
KEYWORDS

leaf vein segmentation, vein density, multispectral imaging, 3D imaging, structured
light, high throughput, precision agriculture
1 Introduction

Leaf veins play a critical role in plant physiology, offering valuable insights into the

structure and function of a plant’s vascular system. For example, sugar maple (Acer

saccharum) is economically significant for producing maple syrup and high-quality lumber,

as well as for its importance in the landscape and forestry industries. A substantial portion

of the sugar maple leaf’s hydraulic resistance resides within its major veins, directly

impacting photosynthesis (Sack et al., 2004). Greater vein length (VL) per unit leaf area

(VLA, also known as vein density) has been linked to improved sugar maple seedling

growth, emphasizing the importance of veins in supporting the species’ development

through enhanced hydraulic efficiency (Zhu et al., 2020b). Given its considerable economic
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value, understanding the venation system of sugar maple is vital for

optimizing growth and yield.

The health and productivity of sugar maple trees, like many

other plants, are closely tied to the efficiency of their venation

system, which serves several essential functions, such as

transporting water (Brodribb et al., 2010), nutrients (Zhang et al.,

2015), and sugars (Haritatos et al., 2000; Dinant and Le Hir, 2022),

in addition to providing mechanical support (Rolland-Lagan and

Prusinkiewicz, 2005; Peng et al., 2022) and enhancing resistance to

leaf damage (Choong, 1996). Traits derived from leaf veins

significantly influence leaf functionality. For example, VLA is

closely associated with water transport efficiency (Brodribb and

Feild, 2010; McKown et al., 2010; Sommerville et al., 2012),

hydraulic resilience (Scoffoni et al., 2011; Kawai and Okada,

2018), and photosynthetic capacity (Brodribb et al., 2007;

Schneider et al., 2017; Li et al., 2018; Sack and Scoffoni, 2013;

Price et al., 2014). The strategic arrangement and density of veins

optimize water transport and gas exchange, which are critical for

maintaining leaf water balance and maximizing CO2 assimilation.

Additionally, a higher VLA improves hydraulic resilience by

providing alternative water flow pathways in case of vein damage,

thus supporting consistent physiological function (Scoffoni

et al., 2011).

To measure VLA, leaf vein segmentation is essential. Over the

years, various methods for vein segmentation have been developed,

ranging from 2D image-based techniques to 3D geometry-based

approaches. 2D methods can be broadly classified into non-learning

and learning-based approaches. Nonlearning methods include

independent component analysis (ICA) (Li et al., 2006), grayscale

morphology combined with Otsu thresholding (Zheng and Wang,

2010), Gabor filters (Katyal and Aviral, 2012), Hessian matrix for

venation detection (Salima et al., 2015), and the object-oriented

classification (Zhu et al., 2020a). For better flexibility and

adaptability to dynamic environments and diverse datasets,

learning-based approaches, particularly deep learning, have

emerged as powerful alternatives, offering enhanced flexibility and

automation. For instance, convolutional neural networks (CNNs)

have been employed for leaf vein segmentation (Xu et al., 2021; Li

et al., 2022; Iwamasa and Noshita, 2023; Cai et al., 2024).

Both non-learning and learning-based methods have

demonstrated effectiveness in vein segmentation. However, they

encounter challenges, particularly in distinguishing veins from

mesophyll under poor lighting conditions or when vein and

background colors are similar. As a result, these methods often

depend on high-contrast images obtained through leaf flattening or

chemical clearing, which are labor-intensive and time-consuming

processes (Li et al., 2022). Leaf clearing alone can take several days

(Bruzzese and Hasan, 1983) or even weeks to months (Richardson

and Lichtman, 2015). These procedures, which involve handling

and flattening, risk damaging leaves and compromising

measurement accuracy (Vasco et al., 2014). Similarly, while X-ray

imaging can be effective, it requires specialized facilities, involves

lengthy measurement times, and may damage delicate structures

(Iwamasa and Noshita, 2023), with its accuracy being influenced by

leaf thickness and water content. Moreover, 2D image-based
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methods lack the topographical data needed for direct VLA

measurements. Traditional methods involve flattening and

scanning leaves using a flatbed scanner at a known dpi (Bühler

et al., 2015), which are not suitable for high-throughput

applications, as each leaf must be collected from the field,

flattened, and scanned individually. Furthermore, these methods

are prone to inaccuracies caused by leaf damage and incomplete

flattening, particularly when dealing with highly curved leaves.

These limitations underscore the need to explore 3D geometry-

based approaches.

3D geometry-based approaches offer an alternative by utilizing

spatial information to distinguish veins from the surrounding

mesophyll. For instance, Sun et al. (2011) employed laser

scanning for vein identification through curvature analysis, while

Zhang et al. (2018) used photometric stereo to reconstruct 3D

features. However, these methods are often time-consuming,

sensitive to noise, and dependent on assumptions regarding leaf

surface properties, which limits their scalability in high-throughput

applications. Li et al. (2021) and Balasubramaniam et al. (2023)

employed fringe projection to capture a 3D image of a spinach leaf,

segmenting the veins by applying a threshold to the gradient of the

depth image. However, this approach only achieved a rough

segmentation of the largest vein. Similarly, Wen et al. (2024a, b)

utilized 3D digitizers and scanners to obtain the point cloud of

maize leaves. However, their method only identified vein points by

selecting the middle vertices of each row in the leaf point cloud.

Despite these challenges, they have shown promising results on

relatively flat leaves with pronounced vein geometry variations.

Consequently, we hypothesize that integrating high-speed,

high-resolution 3D imaging with 2D techniques could improve

leaf vein segmentation, particularly under suboptimal imaging

conditions, while also enabling accurate , direct VLA

measurement. Unlike 2D methods that depend on idealized

setups, 3D imaging can provide additional topographical

information that may enhance vein detection efficiency and

robustness. Therefore, we propose a leaf vein segmentation

framework that integrates 2D grayscale and multispectral imaging

with high-resolution 3D imaging. By leveraging differences in

topographical properties between veins and mesophyll (Wang

et al., 2020; Li et al., 2023), our framework aims to achieve

accurate vein segmentation and VLA measurement without the

need for leaf flattening.

To test this hypothesis, we developed a multispectral and 3D

imaging system leveraging digital fringe projection to capture

grayscale, multispectral, and high-resolution 3D images within a

unified coordinate system. We employed existing 2D non-learning

and learning-based techniques on grayscale and multispectral

images, while also introducing a novel 3D vein segmentation

approach. As anticipated, the results demonstrated enhanced

segmentation performance, particularly in identifying veins within

lowcontrast regions. However, this improvement also led to an

increase in false positives due to unpredictable geometric variations

in the mesophyll. Despite this limitation, the high-resolution 3D

imaging facilitated direct trait measurements, allowing us to

calculate leaf area (LA), vein length, and VLA directly from the
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3D geometry. Validation against traditional 2D flatbed-scanned

measurements confirmed the accuracy of our approach,

underscoring the potential of 3D imaging for accurate VLA

assessment in complex, unstructured environments.
2 Materials and methods

The design of a multispectral and 3D imaging system capable of

capturing both multispectral images and high-resolution 3D point

clouds of the measurement surface is introduced. The digital fringe

projection (DFP) technique employed for high-resolution 3D

reconstruction is then detailed. A method for estimating the

spectral reflectance of leaves is subsequently presented. Next, a

leaf vein segmentation framework that integrates 3D geometry,

grayscale images, and multispectral data is described. Finally, a

method for directly calculating VLA using 3D geometry

is introduced.
2.1 Multispectral and 3D imaging system

To obtain both 2D and 3D information, a system that integrates

multispectral and 3D imaging is designed, as illustrated in Figure 1.

The system comprises a camera for capturing grayscale images,

multispectral images, and fringe patterns for 3D reconstruction,

along with a projector that both projects patterns for the 3D

reconstruction process and provides illumination for grayscale

imaging. The illumination source includes a point light source, a

plano-convex lens, and a diffuser to generate wide spectral band

diffuse illumination. A band-pass filter positioned in front of the
Frontiers in Plant Science 03
camera enables it to capture images at different wavelengths by

selectively filtering the incoming light.

For capturing multispectral images, various band-pass filters are

sequentially placed in front of the camera while the projector is

turned off. Conversely, when capturing grayscale images and fringe

patterns for 3D reconstruction, the band-pass filters are removed,

and the illumination source is switched off. The system’s design

ensures that the multispectral images, grayscale images, and 3D

point clouds are all captured within the same camera coordinate

system, thereby eliminating the need for coordinate alignment. This

is crucial, as even a small misalignment between the images could

result in inaccuracies in leaf vein segmentation.
2.2 Digital fringe projection technique

The digital fringe projection (DFP) technique is a type of

structured light 3D measurement method. As shown in Figure 1,

a structured light system is formed by combining a camera and a

projector. The projector casts fringe patterns onto the object, which

are then distorted by the object’s shape and captured by the camera

from a different viewpoint. This setup is analogous to a binocular

system, where the projector functions as an inverted camera (Zhang

and Huang, 2006). As a result, both the camera and the projector

can be described using the linear pinhole lens model:

g c½uc, vc, 1�T = K c½I, 0�½x, y, z, 1�T ,

g p½up, vp, 1�T = KpM½x, y, z, 1�T : (1)

Here, g denotes a scaling factor, [u,v] represent undistorted

pixel coordinates, K is the 3 × 3 intrinsic matrix, I is a 3 × 3 identity
FIGURE 1

Schematic diagram of the multispectral and 3D imaging system.
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matrix, and 0 is a 3 × 1 zero vector. M = ½Rjt�, where R is a 3 × 3

rotation matrix, t is a 3 × 1 translation vector, and [x,y,z,1]T

represents the world coordinates of a point. The superscripts c

and p denote parameters associated with the camera and projector,

respectively. The solution of Equation 1 considering the camera and

projector distortion can be expressed as Equation 2 proposed in

(Vargas et al., 2023):

z =
c0 + c1Fph(u, v)

1 + c2Fph(u, v)
,

x = c3z,

y = c4z, (2)

where (c0,c1,c2,c3,c4) are constant coefficients that can be

calibrated using the method proposed in (Vargas et al., 2023) and

Fph represents the absolute phase recovered from captured fringe

images using fringe analysis methods (Zhang, 2016).
2.3 Mutispectral reflectance estimation

The veins of the leaf often exhibit different reflectance spectra

compared to the leaf mesophyll. Therefore, we aim to estimate the

spectral reflectance of the leaf and utilize it for vein segmentation.

Due to the non-uniform intensity of lighting at different

wavelengths, a white reference calibration method (Yu et al.,

2014) is typically performed to calibrate the raw multispectral

images before further processing. However, white reference

calibration is limited by the fact that the estimated reflectance is

influenced by the distance and surface geometry of the leaf.

Consequently, in this research, we employ a multispectral

reflectance estimation method that utilizes the image formation

model from our previous work (Liao and Zhang, 2024).

An image formation model that estimates image intensity from

the surface geometry is derived as follows (Liao and Zhang, 2024):

Ĵ (p0) = Y cos4 a(p0)f · l(p) · n(p) : (3)

Here, p0 ∈ R2 represents the projection of surface point p ∈ R3

onto the image plane, and n(p) signifies the surface normal at point

p. Ĵ denotes the estimated image intensity. Y is a constant relating

surface radiance to the image intensity, and a is the angle between

the vector from the optical center of the camera to the point p and

the optical axis of the camera. l is the light source model defined in

the opposite direction of the light transmitted from the illumination

source to p. f represents the bidirectional reflectance distribution

function (BRDF). This image formation model (Equation 3) can be

calibrated at each wavelength using the iterative non-linear

parameter estimation technique (Liao and Zhang, 2024).

With the calibrated image formation model for each wavelength

and the 3D geometry of the leaf surface, estimate the captured

image intensity of the leaf at each wavelength as if the leaf has the

same reflectance as the white reference can be estimated.

Referencing the data provided by the manufacturer of the white
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reference, the estimated image intensity at each wavelength is

divided by the corresponding reflectance of the white reference.

This adjustment ensures that the estimated image intensity

corresponds to a surface with 100% reflectance. Consequently, the

reflectance of the leaf at each wavelength can be estimated using the

following equation (Equation 4):

R =
Jraw − Jblack

Ĵ 100%
, (4)

where R is the reflectance, Jraw is the original captured image,

Jblack is the black image caused by the dark current in the camera

sensors, and Ĵ 100% is the estimated image of a 100% reflectance

Lambertian surface.
2.4 Leaf vein segmentation

In this subsection, the proposed leaf vein segmentation

framework is introduced, as illustrated in Figure 2. The

framework is generally divided into two main components: 2D

and 3D segmentation.

For 2D segmentation, grayscale and multispectral images

captured at four wavelengths: 650 nm, 700 nm, 750 nm, and 800

nm are utilized. The grayscale image is used directly for

segmentation, while the multispectral images undergo

preprocessing. First, reflectance at each wavelength is estimated

using the method described in Section 2.3. Next, the normalized

difference vegetation index (NDVI) and red-edge NDVI (RNDVI)

are computed to enhance the contrast between veins and mesophyll,

as these indices respond differently in vein regions (Gao et al.,

2021). The indices are calculated using the following equations:

NDVI =
R800 − R650

R800 + R650
, (5)

RNDVI =
R750 − R700

R750 + R700
, (6)

where Rw represents the reflectance at wavelength w nm. The

computed NDVI and RNDVI values are then normalized to the

range of [0,255] to standardize the data. These indices, along with

the grayscale images, are used to segment leaf veins using two

existing 2D methods: the Hessian matrix approach (Salima et al.,

2015) and a CNN-based method (Xu et al., 2021). The segmentation

results from the NDVI and RNDVI images are combined using a

union operation to maximize coverage.

For the 3D segmentation, the high-resolution 3D geometry

acquired via the digital fringe projection (DFP) technique is utilized.

This method applies the proposed multi-scale principal curvature

derivative algorithm to detect ridge-like structures on the leaf

surface, capturing vein features based on their geometric

properties, as described in Section 2.4.3.

The final leaf vein segmentation result is obtained by taking the

union of the outputs from both 2D and 3D segmentation processes.

This integration leverages the complementary strengths of 2D

spectral information and 3D topographical data, aiming to
frontiersin.org

https://doi.org/10.3389/fpls.2025.1560220
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liao and Zhang 10.3389/fpls.2025.1560220
enhance the robustness and accuracy of vein detection, particularly

under varying environmental conditions.

2.4.1 2D Hessian matrix leaf vein
segmentation method

The 2D Hessian matrix leaf vein segmentation method is

proposed by Salima et al. (2015). Let J(x) denote the value of a 2-

dimensional data at coordinate x = [x1,x2]
T. The Hessian of J(x) at

scale s is represented by a 2 × 2 matrix, defined as:

Hij(x, s) = s2J(x)*
∂2

∂ xi ∂ xj
G(x, s) for i, j = 1, 2, (7)

Where

G(x, s) =
1

2ps2
e−

xT x
2s2 (8)

is the 2-variate Gaussian function, and ∗ denotes the

convolution operation. Selective enhancement of local structural

features, regardless of their orientation, is achieved by examining

the signs and magnitudes of the Hessian eigenvalues (Equations 7,

8). This approach relies on the shape and contrast between the

brightness of the structures and their background. In cases where

the data is not an image, the value’s magnitude represents the

structure’s brightness.

The eigenvalues ofH, l1 and l2, are obtained for each x through
eigenvalue decomposition. The eigenvalues are sorted by their

magnitudes: |l1| ≤ |l2|. Negative (positive) eigenvalues indicate a

bright (dark) structure on a dark (bright) background. The leaf

veins, which resemble tube-like structures, can be identified by the

condition |l2| ≫ |l1|. To address variations in shape and intensity

of the targeted structures, as well as image noise, the indicator
Frontiers in Plant Science 05
functions are approximated using the vesselness function V (Frangi

et al., 1998), which yields non-negative responses. When bright

structures on a dark background,

V =
0 if l2 > 0

exp  − R2
B

2b2

� �
1 − exp  − S2

2c2

� �� � ,

8<
: (9)

where RB = l1=l2, and S =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
1 + l2

2

p
. When dark structures on

a bright background, V = 0 if l2 < 0. The parameters b and c are

thresholds that control the sensitivity to RB and S, respectively. A

multi-scale filter response is subsequently obtained by maximizing

the given enhancement function at each point across a range of

scales, as follows:

F(x) = max
smin≤s≤smax

V ½eig H(x, s)�, (10)

where “eig” denotes the eigenvalue decomposition. The

parameters smax and smin represent the maximum and minimum

scales at which relevant structures are expected to be found. Finally,

a threshold is applied to the multi-scale filter response to create a

binary mask for leaf veins.
2.4.2 2D CNN leaf vein segmentation method
Xu et al. (2021) presented a deep learning-based approach

designed to accurately segment and analyze leaf venation

networks using convolutional neural networks (CNNs). The

technique leverages the U-Net architecture, which is widely

utilized in image segmentation tasks, to extract detailed vein

structures from high-resolution images.

The dataset consists of high-resolution scans of chemically

cleared and stained leaf samples captured using a compound
FIGURE 2

Proposed leaf vein segmentation framework.
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microscope. To enhance the visibility of fine vein structures,

contrast-limited adaptive histogram equalization (CLAHE) is

applied. This preprocessing step is particularly effective for leaves

with low inherent contrast, as it improves the differentiation

between veins and background tissue.

In this research, the trained model in the original research is

utilized. For training the CNN, a set of ground-truth (GT) images

was created by manually tracing vein networks within specific

regions of interest (ROIs) in each leaf image. To improve model

robustness, data augmentation techniques such as rotation,

translation, scaling, and reflection were applied to the training

dataset. The model was trained on ground-truth regions derived

from over 700 leaf samples representing 50 Southeast Asian plant

families, using a total of 38 CNNs trained on different subsets of

these data.

To enhance segmentation accuracy and robustness, an

ensemble approach was employed. Specifically, six independently

trained CNN models were combined to produce the final

segmentation output. Each model generated a probability map,

and the ensemble averaged these maps to reduce noise and improve

consistency. The resulting probability map was then thresholded to

create a binary mask representing the full-width vein network.

2.4.3 3D multi-scale principal curvature
derivative ridge detection

Leaf veins exhibit ridge or valley-like structures. In this section,

we propose a multi-scale 3D vein segmentation algorithm using

derivatives of the principal curvatures. This method is inspired by

the line drawings of 3D meshes (Judd et al., 2007), where lines are

drawn when the surface normal changes at a locally maximal rate.

In differential geometry, given a smooth surface, the shape operator,

also known as the Weingarten map, is defined as:

S(r) = −Drn, (11)

where Dr is the directional derivative along vector r in the

tangent plane, and n is the outward-facing unit normal at a point on

the surface. The shape operator S at a point on a surface is a linear

map that describes how the normal vector to the surface changes as

we move along the surface. The shape operator can be represented

in matrix form if we have a basis for the tangent plane of the surface

at the point of interest.

At every point on the surface, the minimum and maximum

curvatures, called the principal curvatures and denoted as k1 and k2,

are the eigenvalues of the shape operator S, with |k1| ≤ |k2|. The

corresponding eigenvectors e1 and e2 indicate the directions of the

minimum and maximum curvatures, the principal directions,

respectively. These curvatures quantify the amount the surface

bends in the principal directions at that specific point. Ridges and

valleys are the sets of points where the principal curvature reaches

an extremum along the principal direction. The extremum occurs

when De2k2 = 0, where ridges occur when k2 > 0 and valleys occur

when k2< 0. By taking the second-order derivative, ridges and

valleys are ensured when the derivatives are negative and positive,

respectively. Based on the above theory, the ridges caused by the

veins of the leaf are located through several steps.
Frontiers in Plant Science 06
Step 1: Calculate principal curvatures and directions

Compute the minimum and maximum curvature k1 and k2, and

their directions e1 and e2 using the shape operator obtained from

the Weingarten equations through eigenvalue decomposition.

Step 2: Estimate maximum curvature derivative

Estimate the maximum curvature derivative De2k2 using finite

differences. Since the DFP technique generates an organized point

cloud, to compute the curvature derivative at point p, we calculate

the maximum curvature at two virtual points p1 and p2 located in

the rows or columns adjacent to p in the direction e2. The maximum

curvature at p1 and p2 is obtained by linear interpolation between

their two nearest points. The differences in the maximum curvature

between p and the two points p1 and p2 (Figure 3A) are

then averaged.

Step 3: Flip maximum curvature directions

To maintain consistency, if we are detecting ridges, we flip the

maximum curvature directions e2 so that they point in the positive

derivative direction, where the maximum curvature is increasing.

Conversely, we flip the maximum curvature direction in the

negative derivative direction if we want to detect valleys.

Step 4: Find zero crossings of curvature derivative

Identify zero crossings of the curvature derivative where the

curvature derivative is an extremum. To determine if point p is at a

zero crossing, we check the maximum curvature direction of p1 and

p2. If the angle subtended by the two maximum curvature directions

is larger than 90 degrees, indicating they are pointing in different

directions, then p is at a zero crossing, and vice versa (Figure 3B).

Step 5: Identify maxima at zero crossings

Zero crossings include both local minima and maxima of the

second-order derivative of the maximum curvature. However, we

only want the points at the maximum. Therefore, if both the

curvature directions of p1 and p2 subtend angles less than 90

degrees with the vectors pointing from p1 and p2 to p, then the

zero crossing is a maximum. Otherwise, the zero crossings are

eliminated (Figure 3C).

Step 6: Threshold zero crossings

Since leaf veins have higher maximum curvature than other

areas of the leaf, and the veins have a tube-like structure, after

eliminating the minima at zero crossings, we threshold the zero

crossings so that only those with sufficiently high maximum

curvature and tube-like structure remain. Equation 9 is utilized by

substituting l1 and l2 with k1 and k2, and threshold the zero

crossings using the output of the vesselness function to segment the

leaf veins.

The above steps can locate the loci of points at which the

principal curvatures assume local maxima, in other words, the

ridgelines of the ridges. However, they cannot reflect the width

variation of the leaf veins. Therefore, we incorporate ridge detection

with the Gaussian pyramid. A Gaussian pyramid is a multi-scale

representation of a signal, created by repeatedly smoothing the

signal with a Gaussian filter and then downsampling it. To generate

a Gaussian pyramid in our case, start with the original point cloud,

apply a Gaussian blur, downsample to reduce the resolution by a

factor of two along each coordinate direction, and repeat this

process for each level of the pyramid. For each level of the
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Gaussian pyramid, the ridge detection is performed. The higher the

level in the pyramid where the vein is detected, the larger the width

of the vein. The vein segmentation results are then upsampled to the

original resolution using Gaussian smoothing followed by re-

thresholding to mitigate jagged edges. The final leaf vein

segmentation result is the union of all the vein segmentation

results from each level of the pyramid.
2.5 Leaf vein density calculation using
3D geometry

Using the leaf vein segmentation results, the VLA can be

computed, defined as the vein length per unit leaf area. Both vein

length and leaf area are directly calculated from the 3D geometry

obtained through our imaging system. As the grayscale image

captured by our multispectral and 3D imaging system is

inherently aligned with the corresponding 3D point cloud, each

pixel in the grayscale image corresponds directly to a point in

3D space.

To calculate the vein length, the segmented vein structures are

first skeletonized to extract the central vein lines. A breadth-first

search (BFS) algorithm is employed to traverse these skeletonized

vein points. The segment lengths between each point and its

neighbors are computed using the 3D Euclidean distance,

ensuring that the curvature of the leaf surface is accurately

accounted for. The vein length is obtained by summing the

lengths of all segments after completing the traversal.

For leaf area calculation, a binary leaf mask is generated through

intensity thresholding applied to the grayscale and spectral images.

The leaf surface area is then estimated using the 3D points

corresponding to the mask. The surface is approximated by
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dividing it into small triangular patches. The area of each triangle

is computed using the 3D coordinates of its vertices. The total leaf

area is derived by summing the areas of all triangles covering the

leaf surface.

Once both the vein length and leaf area are computed, the VLA

is determined using:

VLA =
Vein Length
Leaf Area

: (12)

This method allows for precise VLA measurement directly from

the 3D geometry, eliminating the need for leaf flattening or 2D

flatbed scanning, which can introduce artifacts or inaccuracies.
3 Results

3.1 Experimental setup and
parameter configuration

To validate the proposed methods, a multispectral and 3D

imaging system is designed, as shown in Figure 4A. The

illumination source consists of a halogen light bulb (OSRAM

64623 HLX), a plano-convex lens with a 60 mm focal length

(THORLABS LA1401), and a diffuser (THORLABS DG20-600).

The imaging system includes a camera (FLIR BFS-U3-28S5M-C)

with a 12 mm focal length lens (Computar M1214-MP2) and a

digital projector (Texas Instruments DLP 3010). The camera

captures images at a resolution of 1936 × 1464 pixels with a

frame rate of 120 Hz, while the projector has a resolution of 720

× 1280 pixels.

To capture multispectral images, we designed a fast-change

mount for band-pass filters (THORLABS FBH650-10, FBH700-10,
FIGURE 3

Detecting the maxima of the second-order derivative of the principal curvature. The black dots are the points of the organized point cloud. (A)
Estimating the derivative of the maximum curvature at point p from p1 and p2 along the direction e2; (B) identifying the zero crossings of the
curvature derivative by checking if the angle subtends by the maximum curvature direction of p1 and p2 is larger than 90 degrees; (C) identifying
maxima at the extremum by checking if angles subtended by p1 and p2, and the vectors pointing from p1 and p2 to p are less than 90 degrees.
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FBH750-10, FBH800-10) that allows for rapid switching. The

camera exposure time was set to 10 ms for capturing images at

wavelengths of 650 nm, 700 nm, 750 nm, and 800 nm. A PTFE

diffuse reflector sheet (THORLABS PMR10P1) was used as the

white reference (Figure 4B) for calibrating the multispectral

imaging system, with the reflectance values provided by the

manufacturer (THORLABS, accessed on 22 August 2024).

Grayscale images were captured using the projector as the

illumination source.

For the 2D Hessian matrix method, we set the scales to 1, 1.5,

and 2. The parameters b and c were set to 1 and half of the

maximum l2 at scale 1, respectively, for segmenting NDVI,

RNDVI, and grayscale images. The filter response threshold F

was set to 0.5. For the 2D CNN method, we selected 6 of the 38

independently trained models with the best performance. CLAHE

was applied with tile sizes of 20 and clip limits of 0.005 for grayscale

images and 0.05 for NDVI and RNDVI images. The segmentation

threshold was set to 20. Images were upscaled by 500% to ensure

that the minimum vein width was at least 5 pixels, as recommended

in the user manual.

For 3D reconstruction using the Digital Fringe Projection

(DFP) technique, we employed a 3-step phaseshifted fringe

pattern with multi-wavelength fringe unwrapping, utilizing a total

of 6 fringe patterns to achieve high-speed 3D reconstruction. The

system calibration followed the pixel-level calibration method by

Vargas et al. (2023). For 3D vein segmentation, the Gaussian

pyramid had 3 levels, with b set to 1 and c set to 0.4, 0.6, and 0.6

times the maximum l2 of level 1 for levels 1 through 3, respectively.

The vesselness filter threshold was set to 0.5.

All parameters for 2D and 3D segmentation were fine-tuned

using a reference healthy leaf that represents typical characteristics

of the dataset. This reference leaf was not included in subsequent

experiments. For noise reduction, a morphological closing

operation and small-area connected component removal were

applied to all vein segmentation results.

For leaf vein segmentation experiments, a total of 32 leaves of

varying sizes and shapes were collected from sugar maple trees

(Acer saccharum ‘Barrett Cole’) near the FLEX Lab at Purdue

University in August 2024. These leaves were immediately
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transferred to the lab for measurements. All imaging was

conducted near windows with ambient sunlight, while a sunshade

was used to block direct sunlight from the leaves. Figures 4C shows

the lower side of an example sugar maple leaf captured using a

cellphone camera.
3.2 Multispectral reflectance estimation

The multispectral images were first used to estimate the

reflectance of the leaf, following the method outlined in Sec. 2.3.

Figures 5A–D presents the captured multispectral images at 650

nm, 700 nm, 750 nm, and 800 nm, along with their corresponding

estimated reflectance in Figures 5E–H. Subsequently, the reflectance

values were used to calculate the NDVI and RNDVI indices using

Equations 5, 6. The spectral images at 650 nm and 700 nm appear

relatively dark due to the consistent camera exposure time applied

across all spectral bands, which was necessary to avoid the time-

consuming process of adjusting exposure settings for each frame,

thereby preserving the potential for high-speed measurements. To

further minimize the measurement duration, a shorter exposure

time was chosen. Additionally, the inherent properties of the leaves,

which exhibit lower reflectance at certain wavelengths, coupled with

the relatively low intensity of the illumination source and the non-

uniform camera response curve and lens transmittance at each

wavelength, contributed to the darker appearance of the images at

650 nm and 700 nm.
3.3 Multi-scale principal curvature
derivative 3D ridge detection

This subsection shows the process of 3D leaf vein detection.

Figure 6 illustrates the ridge detection process at the first level of the

Gaussian pyramid. The 3D geometry of the leaf is depicted in

Figure 6A. The surface geometry variation is approximately 50 mm,

indicating that the leaf was not flattened. The maximum curvature,

calculated using the shape operator, is shown in Figure 6B. As

expected, the vein regions of the leaf exhibit higher curvature
FIGURE 4

Experimental setup: (A) Multispectral and 3D imaging system; (B) white reference used for calibration; (C) lower side of a sugar maple leaf.
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FIGURE 6

Leaf vein segmentation process at the first level of the Gaussian pyramid. (A) 3D surface geometry of the leaf; (B) maximum curvature; (C) maximum
curvature derivative; (D) zero-crossings of the maximum curvature derivative; (E) response of the vesselness function; (F) leaf vein segmentation
result by thresholding (D) with (E).
FIGURE 5

Multispectral images captured with identical camera exposure times, along with their corresponding estimated reflectance. Constant and lower
exposure times were employed to reduce the measurement duration. The captured spectral images at (A) 650 nm; (B) 700 nm; (C) 750 nm; (D) 800
nm, and the estimated reflectance at (E) 650 nm; (F) 700 nm; (G) 750 nm; (H) 800 nm.
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compared to other areas. The derivative of the maximum curvature

is estimated in Figure 6C. Across the leaf veins, the curvature

derivatives display positive and negative values, indicating ridge or

valley structures. The zero-crossings, where the second-order

derivative of the maximum curvature achieves a local maximum,

are located and displayed in Figure 6D. To differentiate the leaf

veins from other areas, we thresholded the zero-crossings using the

output of the vesselness function, based on the magnitude of the

maximum and minimum curvatures, as shown in Figure 6E. The

vesselness highlights the veins with tube-like structures. Finally,

Figure 6F presents the 3D leaf vein segmentation result from the

first level of the Gaussian pyramid.

Figure 7 presents the results of leaf vein segmentation across all

three levels of the 3D Gaussian pyramid. Compared to Figures 7A–

C demonstrate that the leaf geometries become increasingly

smoothed and downsampled, which makes smaller veins less

distinguishable. As a result, the segmentation outputs shown in

Figures 7F, G predominantly detect the larger veins. Figure 7D

shows the grayscale image of the leaf. The final vein segmentation

result is obtained by taking the union of the results from

Figuress 7E–G, as illustrated in Figure 7H.
3.4 Combining Hessian 2D leaf vein
segmentation with 3D leaf
vein segmentation

We first perform leaf vein segmentation on grayscale, NDVI,

and RNDVI images using the 2D Hessian matrix method. The

segmentation results for one of the 32 leaves are shown in Figure 8.
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For reference, Figure 8A displays the grayscale image of the leaf,

while Figures 8B–F show the corresponding vein segmentation

results overlaid on Figure 8A. Specifically, Figure 8B presents the

segmentation result using the grayscale image, while Figures 8C, D

show results using NDVI and RNDVI images, respectively.

Figure 8E illustrates the combined multispectral segmentation by

merging Figures 8C, D. Finally, Figure 8F presents the

comprehensive 2D segmentation result by integrating the

grayscale and multispectral segmentations.

From the segmentation results, we observe that the grayscale

image captures the majority of the leaf veins, except in regions with

lower contrast. NDVI segmentation generally outperforms RNDVI,

likely due to differences in focus levels across wavelengths. The

combined multispectral segmentation demonstrates a slight

improvement over NDVI and RNDVI segmentations individually.

The most comprehensive results are obtained by merging both

grayscale and multispectral data.

To further enhance segmentation performance, we integrate 3D

vein segmentation with the 2D results. The combined 2D and 3D

segmentation outcomes are shown in Figure 9A. For detailed

analysis, we skeletonize the combined segmentation result and

label different segments with color codes (Figure 9B): yellow

pixels indicate overlap between 2D and 2D + 3D segmentation,

magenta pixels correspond to additional positive detections by 2D +

3D segmentation compared to 2D segmentation, cyan pixels

correspond to additional false detections by 2D + 3D

segmentation compared to 2D segmentation, and orange pixels

correspond to veins detected only by the 2D method. For clarity,

regions with pixel deviations less than two pixels after

skeletonization are considered overlapping.
FIGURE 7

Leaf vein segmentation results using the multi-scale principal curvature derivative 3D ridge detection. (A) 3D geometry from the first level of the
Gaussian pyramid; (B) 3D geometry from the second level of the Gaussian pyramid; (C) 3D geometry from the third level of the Gaussian pyramid;
(D) grayscale image of the leaf; (E) vein segmentation result derived from (A); (F) vein segmentation result derived from (B); (G) vein segmentation
result derived from (C); (H) final 3D vein segmentation result (blue pixels) obtained by merging (E–G) overlaid on (D).
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The 3D segmentation method provides additional vein

detection in areas where 2D segmentation fails due to low

contrast, as highlighted in the enlarged region in Figure 9C.

However, it also introduces some false positives, particularly in

areas with abrupt geometric variations on the leaf surface. An

example of these false detections is shown in Figure 9D. This

suggests that regions with high geometric variability or sharp

deformations are more prone to producing false positives in the

3D segmentation.

To quantitatively evaluate the impact of incorporating 3D

segmentation, we compare the total number of detected vein points

between the 2D and combined 2D + 3D approaches. The detected

vein points are the number of pixels of the skeletonized segmentation

result. The addition of 3D segmentation increases the total number of

detected points, as shown in Figure 10A. Figure 10B shows the

increased positive and false detection rates after integrating 3D

segmentation. On average, the inclusion of 3D segmentation results

in a 7.97% increase in positive detected vein points, a 2.16% increase

in false detected vein points. The segmentation results for all leaves

with 2D Hessian matrix method are compiled in Video 1.
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3.5 Combining CNN 2D leaf vein
segmentation with 3D leaf
vein segmentation

We conducted experiments using the same set of 32 leaves as in

the previous analysis. Figure 11 shows the results of leaf vein

segmentation on grayscale, NDVI, and RNDVI images using the

2D CNN segmentation method. For reference, Figure 11A presents

the grayscale image of the leaf, while Figures 11B–F display the vein

segmentation results overlaid on Figure 11A. Specifically,

Figure 11B shows the segmentation result using the grayscale

image, while Figures 11C, D show segmentation results using

NDVI and RNDVI images, respectively. Figure 11E represents the

combined multispectral segmentation by merging Figures 11C, D.

Finally, Figure 11F presents the overall 2D segmentation result by

combining the grayscale and multispectral segmentation outputs.

From the segmentation results, we observe that the grayscale

image captures most of the leaf veins, except in regions with lower

contrast. Compared to Figure 8E, the multispectral segmentation

shown in Figure 11E performs better, likely due to the CLAHE
FIGURE 8

Vein segmentation results of the lower side of a sugar maple leaf using the Hessian matrix method. The segmented veins (blue pixels) are overlaid on
the grayscale image. (A) grayscale image; (B) grayscale segmentation result; (C) NDVI segmentation result; (D) RNDVI segmentation result; (E)
combined multispectral segmentation by merging (C, D); (F) final 2D segmentation combining (B, E).
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contrast enhancement step. The most comprehensive results are

achieved by combining both grayscale and multispectral data.

Compared to the Hessian-based method, the CNN method

performs slightly better in low-contrast regions, likely because the

network can extract high-level vein characteristics.

We also incorporated 3D vein segmentation with the 2D CNN

results. The combined 2D and 3D segmentation results are shown

in Figure 12A. For detailed analysis, we skeletonize the combined

segmentation result and label different segments with color codes

(Figure 12B): yellow pixels indicate overlap between 2D and 2D +

3D segmentation, magenta pixels correspond to additional positive

detections by 2D + 3D segmentation compared to 2D segmentation,

cyan pixels correspond to additional false detections by 2D + 3D

segmentation compared to 2D segmentation, and orange pixels

correspond to veins detected only by the 2D method. To improve
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visualization clarity, regions with pixel deviations of less than two

pixels after skeletonization are considered overlapping.

The 3D segmentation method provides additional vein

detection in areas where 2D segmentation fails due to low

contrast, as highlighted in the enlarged region in Figure 12C.

However, compared to the previous experiments, the CNN-based

2D segmentation already detects more low-contrast veins, resulting

in reduced improvement from the 3D segmentation. Additionally,

as in the earlier experiments, 3D segmentation introduces false

detections, especially in regions with abrupt geometric changes on

the leaf surface, as shown in Figure 12D.

To quantitatively evaluate the impact of incorporating 3D

segmentation, we compared the total number of detected vein points

between the 2D and combined 2D + 3D segmentation approaches. The

results for all 32 leaves are summarized in Figure 13A. On average, the
FIGURE 9

Leaf vein segmentation combining 2D Hessian and 3D segmentation. The segmented veins (blue pixels) are overlaid on the grayscale image. Yellow
pixels: overlap between 2D and 2D + 3D segmentation; magenta pixels: additional positive detections by 2D + 3D segmentation; cyan pixels:
additional false detections by 2D + 3D segmentation; orange pixels: veins detected only by 2D segmentation. The red rectangles are the enlarged
regions. (A) combined 2D + 3D segmentation; (B) skeletonized 2D + 3D segmentation; (C) enlarged region highlighting improved detections using
3D segmentation; (D) enlarged region illustrating false positives from 3D segmentation.
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inclusion of 3D segmentation results in a 9.32% increase in positive

detected vein points, and a 2.17% increase in false detected vein points

(Figure 13B). The segmentation results for all leaves using the 2D CNN

method are compiled in Video 2.
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From the experiments in Sec. 3.4 and Sec. 3.5, we observe that

integrating 3D data improves segmentation results but introduces

additional false detections. Thus, users can assess whether the

benefits of 3D integration justify its application for their specific
FIGURE 10

Quantitative analysis of leaf vein segmentation by incorporating 3D with 2D Hessian segmentation. (A) total number of detected skeletonized vein
points in 2D versus 2D + 3D segmentation; (B) increase in detection rates after adding 3D segmentation for each leaf.
FIGURE 11

Vein segmentation results of the lower side of a sugar maple leaf using the 2D CNN method. The segmented veins (blue pixels) are overlaid on the
grayscale image. (A) grayscale image; (B) grayscale segmentation result; (C) NDVI segmentation result; (D) RNDVI segmentation result; (E)
multispectral segmentation by combining (C, D); (F) combined 2D segmentation using (B, E).
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needs. In subsequent experiments, beyond vein segmentation, we

utilize the precise geometric data from 3D imaging to calculate an

important plant trait: VLA.
3.6 Leaf vein density measurement using
3D geometry

Traditional methods for calculating VLA often involve

flattening and 2D scanning the leaf using a flatbed scanner with

known dpi. However, the requirement for flattening can damage the

leaf, and leaves with high curvature are difficult to flatten

completely, which compromises accuracy. Additionally, the

flattening and scanning process can be time-consuming. By

utilizing high-resolution 3D information of the leaf, we can

directly measure leaf traits, such as VLA, without the need

for flattening.
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To verify the accuracy of using 3D geometry for calculating

VLA on non-flattened leaves with arbitrary orientation, we

conducted an experiment on an additionally collected sugar

maple leaf to measure VLA. First, the non-flattened leaf was

imaged using our high-resolution 3D imaging system to capture

both its 3D geometry and the corresponding grayscale image.

Subsequently, the same leaf was flattened and scanned using a

flatbed scanner (HP MFP E87660) with a resolution of 600 dpi. To

eliminate the influence of segmentation performance, we carefully

hand-traced the skeletons of the major veins with clear start and

end points on both the flattened and non-flattened leaf images. The

same veins were traced on both images to ensure consistency.

Figure 14A displays the flattened leaf image captured using a

flatbed scanner, while Figure 14B shows the non-flattened leaf

image, with its corresponding 3D geometry illustrated in

Figure 14C. For the vein tracing results, Figure 14D presents the

hand-traced veins on the flattened leaf image, and Figure 14E shows
FIGURE 12

Leaf vein segmentation combining 2D CNN and 3D segmentation. The segmented veins (blue pixels) are overlaid on the grayscale image. Yellow
pixels: overlap between 2D and 2D + 3D segmentation; magenta pixels: additional positive detections by 2D + 3D segmentation; cyan pixels:
additional false detections by 2D + 3D segmentation; orange pixels: veins detected only by 2D segmentation. The red rectangles are the enlarged
regions. (A) combined 2D + 3D segmentation; (B) skeletonized 2D + 3D segmentation; (C) enlarged region highlighting improved detections using
3D segmentation; (D) enlarged region illustrating false positives from 3D segmentation.
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the hand-traced veins on the non-flattened leaf image. The VLA of

the leaf was calculated using three different approaches:
Fron
1. Flattened 2D method: Use the hand-traced veins on the

flattened flatbed-scanned image with the scanner’s dpi for

VLA calculation.
tiers in Plant Science 15
2. Non-flattened 3D method: Use the hand-traced veins on

the non-flattened leaf images, with the corresponding 3D

geometry, and calculate VLA as described in Section 2.5.

3. Non-flattened 2D method: Use the hand-traced veins on

the non-flattened leaf images, with the camera’s dpi at the

average distance of the leaf surface for VLA calculation.
FIGURE 14

Comparison of vein tracing on the same leaf using various methods. (A) Flattened leaf image captured using a flatbed scanner; (B) non-flattened leaf
image; (C) 3D geometry of the leaf corresponding to (B); (D) hand-traced veins on the flattened leaf image; (E) hand-traced veins on the non-
flattened leaf image.
FIGURE 13

Quantitative analysis of leaf vein segmentation by incorporating 3D with 2D CNN segmentation. (A) total number of detected skeletonized vein
points in 2D versus 2D + 3D segmentation; (B) increase in detection rates after adding 3D segmentation for each leaf.
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The measured vein length, leaf area, and VLA from the three

approaches are summarized in Table 1.

The results show that the non-flattened 3D method achieves

approximately the same VLA compared to the flattened 2Dmethod.

The vein length and leaf area measured by the non-flattened 3D

method are slightly lower, with differences of 2.8% and 2.7%

respectively, compared to the flattened 2D method. These

differences are relatively minor, considering potential variations

due to hand tracing, measurement artifacts, occlusions, and

imperfect leaf flattening. In contrast, the differences between the

flattened 2D method and the non-flattened 2D method are

significantly larger, with discrepancies of 14.3%, 22.5%, and 10.6%

for vein length, leaf area, and VLA, respectively. The greater

discrepancy, particularly in leaf area, underscores the accuracy of

the non-flattened 3D method and highlights the limitations of using

2D imaging without flattening. These findings demonstrate that

high-resolution 3D imaging can achieve accuracy comparable to 2D

flattening approaches in measuring vein length, leaf area, and VLA.

This provides a viable alternative for calculating leaf vein traits

without the need for flattening, which is particularly beneficial in

unstructured environments.
4 Discussion

The results of this study underscore both the strengths and

limitations of integrating high-resolution 3D imaging with

traditional 2D techniques for leaf vein segmentation and VLA

measurement. Our initial hypothesis–that incorporating 3D

topographical information would enhance vein detection,

particularly under suboptimal imaging conditions–was partially

supported by our findings. The 3D imaging system successfully

captured detailed geometric features that 2D methods struggled to

identify, leading to improved detection of veins, especially in low-

contrast regions where traditional approaches often fail. By

leveraging the additional depth information, our system was able

to distinguish veins more effectively from the surrounding

mesophyll, resulting in a notable increase in the number of

detected vein points. However, while the inclusion of 3D data

enhanced segmentation performance, it also introduced some

challenges. Specifically, the increased sensitivity to surface

irregularities, such as variations in mesophyll geometry, led to a

higher rate of false positives. Therefore, it will be up to the users to

determine whether the integration of 3D segmentation provides

sufficient value for their specific application.
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Beyond vein segmentation, the 3D imaging system

demonstrated clear advantages in direct trait measurements.

Utilizing high-resolution depth maps, we were able to derive key

metrics such as leaf area, vein length, and VLA directly from the 3D

geometry. These measurements were consistent with those obtained

from traditional 2D flatbed scans, highlighting the potential of 3D

imaging for non-invasive phenotyping. This is particularly

beneficial in field conditions where leaves cannot be chemically

cleared or flattened, allowing for rapid and non-destructive data

acquisition. However, the 3D method might show limitations in

cases where occlusions occurred on the leaf surface. For instance,

overlapping leaves, curled edges, or dense trichomes introduced

artifacts in the 3D point cloud, complicating accurate segmentation

and trait extraction.

Additionally, while the proposed method was validated on sugar

maple leaves, further exploration is needed to assess its generalizability

to other species. Different leaf structures, such as denser venation

networks or more pronounced surface undulations, may require

adjustments to the imaging parameters or segmentation algorithms.

Future studies should focus on refining these techniques to enhance

robustness across a wider range of plant species.

In summary, integrating high-resolution 3D imaging with

conventional 2D methods improved vein segmentation detection

rate, particularly in challenging conditions. While it introduced

some false positives, the overall benefits in vein detection and direct

trait measurement suggest that 3D imaging is a promising tool for

precision agriculture. The ability to measure complex leaf traits

non-destructively highlights its potential for high-throughput

phenotyping in natural, unstructured environments.
5 Conclusion

This study developed and validated a multispectral, high-

resolution 3D imaging system to investigate whether integrating

3D topographical data with traditional 2D imaging methods could

improve leaf vein segmentation and VLA measurement in non-

flattened sugar maple leaves. The results partially supported our

hypothesis: combining 3D imaging with 2D techniques led to

increased positive vein detection rates of 7.97% and 9.32%, and

increased false vein detection rates of 2.16% and 2.17% for the 2D

Hessian matrix and CNN-based methods, respectively. Therefore,

users can decide if 3D segmentation adds sufficient value for their

application. Despite these challenges, the 3D imaging system

demonstrated clear strengths in direct trait measurements. It

provided accurate assessments of vein length, leaf area, and VLA,

with less than a 3% discrepancy compared to traditional flattened

2D methods without requiring destructive sample preparation. This

capability is particularly valuable in field conditions, where non-

invasive and high-throughput phenotyping is essential. These

findings highlight the potential of the proposed 3D imaging

system as a robust tool for precision agriculture, particularly in

applications where traditional methods are impractical. Future

research should focus on optimizing the 3D segmentation

algorithms to reduce false positives and extend the system’s
TABLE 1 Comparison of leaf vein length, leaf area, and VLA
measurements using three different approaches.

VL (mm) LA (mm2) VLA
(mm/mm2)

Flattened 2D 2013.3 11921.4 0.169

Non-flattened 3D 1957.5 11604.8 0.169

Non-flattened 2D 1725.5 9237.4 0.187
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applicability to a broader range of plant species with diverse leaf

architectures. This will ultimately advance automated phenotyping

technologies, enabling more accurate and efficient assessments of

plant traits critical for sustainable agricultural practices.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

Y-HL: Writing – original draft, Writing – review & editing,

Conceptualization, Data curation, Formal Analysis, Methodology,

Software. SZ: Writing – review & editing, Conceptualization,

Funding acquisition, Supervision.
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. Purdue

University (Institute of Digital Forestry Seeding Funding).
Acknowledgments

The authors thank Sara Sullivan for her help with data

collection and leaf vein tracing. This work was partially sponsored

by the Institute of Digital Forestry Seed Funding of Purdue

University. Views expressed here are those of the authors and not

necessarily those of the Institute of Digital Forestry.
Frontiers in Plant Science 17
Conflict of interest

SZ serves as the CTO and co-founder of Vision Express Optics

Inc Auburn Hills, Michigan, USA. He serves as a consultant for

Orbbec3D Inc Troy, Michigan, USA, and ORI LLC Salt Lake City,

Utah, USA. The work conducted in this research was not supported

by any of these entities.

The remaining author declares that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2025.1560220/

full#supplementary-material
References
Balasubramaniam, B., Li, J., Liu, L., and Li, B. (2023). 3d imaging with fringe
projection for food and agricultural applications—a tutorial. Electronics 12, 859.
doi: 10.3390/electronics12040859

Brodribb, T. J., and Feild, T. S. (2010). Leaf hydraulic evolution led a surge in leaf
photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13, 175–
183. doi: 10.1111/j.1461-0248.2009.01410.x

Brodribb, T. J., Feild, T. S., and Jordan, G. J. (2007). Leaf maximum photosynthetic
rate and venation are linked by hydraulics. Plant Physiol. 144, 1890–1898. doi: 10.1104/
pp.107.101352

Brodribb, T. J., Feild, T. S., and Sack, L. (2010). Viewing leaf structure and evolution
from a hydraulic perspective. Funct. Plant Biol. 37, 488–498. doi: 10.1071/FP10010

Bruzzese, E., and Hasan, S. (1983). A whole leaf clearing and staining technique for
host specificity studies of rust fungi. Plant Pathol. 32, 334–338. doi: 10.1111/j.1365-
3059.1983.tb02841.x

Bühler, J., Rishmawi, L., Pflugfelder, D., Huber, G., Scharr, H., Hülskamp, M., et al.
(2015). Phenovein—a tool for leaf vein segmentation and analysis. Plant Physiol. 169,
2359–2370. doi: 10.1104/pp.15.00974

Cai, W., Wang, B., and Zeng, F. (2024). Cudu-net: Collaborative up-sampling
decoder u-net for leaf vein segmentation. Digit. Signal Process. 144, 104287.
doi: 10.1016/j.dsp.2023.104287
Choong, M. (1996). What makes a leaf tough and how this affects the pattern of
castanopsis fissa leaf consumption by caterpillars. Funct. Ecol. 10, 668–674.
doi: 10.2307/2390178

Dinant, S., and Le Hir, R. (2022). Delving deeper into the link between sugar
transport, sugar signaling, and vascular system development. Physiol. Plant 174,
e13684. doi: 10.1111/ppl.13684

Frangi, A. F., Niessen,W. J., Vincken, K. L., and Viergever, M. A. (1998). “Multiscale vessel
enhancement filtering,” inMedical Image Computing and Computer-Assisted Intervention—
MICCAI'98. 130–137 (Berlin, Heidelberg: Springer). doi: 10.1007/BFb0056195

Gao, D., Li, M., Zhang, J., Song, D., Sun, H., Qiao, L., et al. (2021). Improvement of
chlorophyll content estimation on maize leaf by vein removal in hyperspectral image.
Comput. Electron. Agric. 184, 106077. doi: 10.1016/j.compag.2021.106077

Haritatos, E., Medville, R., and Turgeon, R. (2000). Minor vein structure and sugar
transport in arabidopsis thaliana. Planta 211, 105–111. doi: 10.1007/s004250000268

Iwamasa, K., and Noshita, K. (2023). Network feature-based phenotyping of leaf
venation robustly reconstructs the latent space. PloS Comput. Biol. 19, e1010581.
doi: 10.1371/journal.pcbi.1010581

Judd, T., Durand, F., and Adelson, E. (2007). “Apparent ridges for line drawing,” in
SIGGRAPH ‘07 (New York, NY, USA: Association for Computing Machinery). 19–es
doi: 10.1145/1275808.1276401
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2025.1560220/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2025.1560220/full#supplementary-material
https://doi.org/10.3390/electronics12040859
https://doi.org/10.1111/j.1461-0248.2009.01410.x
https://doi.org/10.1104/pp.107.101352
https://doi.org/10.1104/pp.107.101352
https://doi.org/10.1071/FP10010
https://doi.org/10.1111/j.1365-3059.1983.tb02841.x
https://doi.org/10.1111/j.1365-3059.1983.tb02841.x
https://doi.org/10.1104/pp.15.00974
https://doi.org/10.1016/j.dsp.2023.104287
https://doi.org/10.2307/2390178
https://doi.org/10.1111/ppl.13684
https://doi.org/10.1007/BFb0056195
https://doi.org/10.1016/j.compag.2021.106077
https://doi.org/10.1007/s004250000268
https://doi.org/10.1371/journal.pcbi.1010581
https://doi.org/10.1145/1275808.1276401
https://doi.org/10.3389/fpls.2025.1560220
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liao and Zhang 10.3389/fpls.2025.1560220
Katyal, V., and Aviral, (2012). Leaf vein segmentation using odd gabor filters and
morphological operations. arXiv. doi: 10.48550/arXiv.1206.5157

Kawai, K., and Okada, N. (2018). Roles of major and minor vein in leaf water deficit
tolerance and structural properties in 11 temperate deciduous woody species. Trees 32,
1573–1582. doi: 10.1007/s00468-018-1734-8

Li, Y., Chi, Z., and Feng, D. D. (2006). “Leaf vein extraction using independent
component analysis,” in 2006 IEEE international conference on systems, man and
cybernetics, Vol. 5. 3890–3894 (New York, NY, USA: IEEE). doi: 10.1109/
ICSMC.2006.384738

Li, L., Hu, W., Lu, J., and Zhang, C. (2022). Leaf vein segmentation with self-
supervision. Comput. Electron. Agric. 203, 107352. doi: 10.1016/j.compag.2022.
107352

Li, F., McCulloh, K. A., Sun, S., and Bao, W. (2018). Linking leaf hydraulic properties,
photosynthetic rates, and leaf lifespan in xerophytic species: a test of global hypotheses.
Am. J. Bot. 105, 1858–1868. doi: 10.1002/ajb2.2018.105.issue-11

Li, S., Wu, H., Zhao, J., Liu, Y., Li, Y., Liu, H., et al. (2023). Leaf-based species
classification of hybrid cherry tomato plants by using hyperspectral imaging. J. Near
Infrared Spectrosc. 31, 41–51. doi: 10.1177/09670335221148593

Li, J., Zheng, Y., Liu, L., and Li, B. (2021). 4d line-scan hyperspectral imaging. Opt.
Express 29, 34835–34849. doi: 10.1364/OE.441213

Liao, Y.-H., and Zhang, S. (2024). Image-based non-isotropic point light source
calibration using digital fringe projection. Opt. Express 32, 25046–25061. doi: 10.1364/
OE.529140

McKown, A. D., Cochard, H., and Sack, L. (2010). Decoding leaf hydraulics with a
spatially explicit model: principles of venation architecture and implications for its
evolution. Am. Nat. 175, 447–460. doi: 10.1086/650721

Peng, G., Xiong, Y., Yin, M., Wang, X., Zhou, W., Cheng, Z., et al. (2022). Leaf
venation architecture in relation to leaf size across leaf habits and vein types in
subtropical woody plants. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.873036

Price, C. A., Munro, P. R., and Weitz, J. S. (2014). Estimates of leaf vein density are
scale dependent. Plant Physiol. 164, 173–180. doi: 10.1104/pp.113.224451

Richardson, D. S., and Lichtman, J. W. (2015). Clarifying tissue clearing. Cell 162,
246–257. doi: 10.1016/j.cell.2015.06.067

Rolland-Lagan, A.-G., and Prusinkiewicz, P. (2005). Reviewing models of auxin
canalization in the context of leaf vein pattern formation in arabidopsis. Plant J. 44,
854–865. doi: 10.1111/j.1365-313x.2005.02581.x

Sack, L., and Scoffoni, C. (2013). Leaf venation: structure, function, development,
evolution, ecology and applications in the past, present and future. New Phytol. 198,
983–1000. doi: 10.1111/nph.12253

Sack, L., Streeter, C. M., and Holbrook, N. M. (2004). Hydraulic analysis of water
flow through leaves of sugar maple and red oak. Plant Physiol. 134, 1824–1833.
doi: 10.1104/pp.103.031203

Salima, A., Herdiyeni, Y., and Douady, S. (2015). “Leaf vein segmentation of
medicinal plant using hessian matrix,” in 2015 International Conference on
Advanced Computer Science and Information Systems (ICACSIS), 275–279. (New
York, NY, USA: IEEE). doi: 10.1109/ICACSIS.2015.7415152

Schneider, J. V., Habersetzer, J., Rabenstein, R., Wesenberg, J., Wesche, K., and Zizka,
G. (2017). Water supply and demand remain coordinated during breakdown of the
global scaling relationship between leaf size and major vein density. New Phytol. 214,
473–486. doi: 10.1111/nph.14382
Frontiers in Plant Science 18
Scoffoni, C., Rawls, M., McKown, A., Cochard, H., and Sack, L. (2011). Decline of leaf
hydraulic conductance with dehydration: relationship to leaf size and venation
architecture. Plant Physiol. 156, 832–843. doi: 10.1104/pp.111.173856

Sommerville, K. E., Sack, L., and Ball, M. C. (2012). Hydraulic conductance of acacia
phyllodes (foliage) is driven by primary nerve (vein) conductance and density. Plant
Cell Environ. 35, 158–168. doi: 10.1111/j.1365-3040.2011.02425.x

Sun, Z., Lu, S., Guo, X., and Tian, Y. (2011). “Leaf vein and contour extraction from
point cloud data,” in 2011 International Conference on Virtual Reality and
Visualization. (New York, NY, USA: IEEE), 11–16. doi: 10.1109/ICVRV.2011.40

THORLABS PTFE Diffuse reflector sheets. Available online at: https://www.thorlabs.
com/images/tabimages/PMR10_PTFE_reflectance.xlsx (Accessed 22 August 2024).

Vargas, R., Romero, L. A., Zhang, S., and Marrugo, A. G. (2023). Pixel-wise rational
model for a structured light system. Opt. Lett. 48, 2712–2715. doi: 10.1364/OL.492911

Vasco, A., Thadeo, M., Conover, M., and Daly, D. C. (2014). Preparation of samples
for leaf architecture studies, a method for mounting cleared leaves. Appl. Plant Sci. 2,
1400038. doi: 10.3732/apps.1400038

Wang, L., Duan, Y., Zhang, L., Wang, J., Li, Y., and Jin, J. (2020). Leafscope: A
portable high-resolution multispectral imager for in vivo imaging soybean leaf. Sensors
20, 2194. doi: 10.3390/s20082194

Wen, W., Wang, J., Zhao, Y., Wang, C., Liu, K., Chen, B., et al. (2024a). 3d
morphological feature quantification and analysis of corn leaves. Plant Phenomics 6,
225. doi: 10.34133/plantphenomics.0225

Wen, W., Wu, S., Lu, X., Liu, X., Gu, S., and Guo, X. (2024b). Accurate and semantic
3d reconstruction of maize leaves. Comput. Electron. Agric. 217, 108566. doi: 10.1016/
j.compag.2023.108566

Xu, H., Blonder, B., Jodra, M., Malhi, Y., and Fricker, M. (2021). Automated and
accurate segmentation of leaf venation networks via deep learning. New Phytol. 229,
631–648. doi: 10.1111/nph.16923

Yu, K., Zhao, Y., Li, X., Shao, Y., Zhu, F., and He, Y. (2014). Identification of crack
features in fresh jujube using vis/nir hyperspectral imaging combined with image
processing. Comput. Electron. Agric. 103, 1–10. doi: 10.1016/j.compag.2014.01.016

Zhang, S. (2016). High-speed 3D imaging with digital fringe projection techniques
(Boca Raton, FL, USA: CRC Press). doi: 10.1201/b19565

Zhang, W., Hansen, M. F., Smith, M., Smith, L., and Grieve, B. (2018). Photometric
stereo for threedimensional leaf venation extraction. Comput. Ind. 98, 56–67.
doi: 10.1016/j.compind.2018.02.006

Zhang, S., and Huang, P. S. (2006). Novel method for structured light system
calibration. Opt. Eng. 45, 083601–083601. doi: 10.1117/1.2336196

Zhang, J.-L., Zhang, S.-B., Chen, Y.-J., Zhang, Y.-P., and Poorter, L. (2015). Nutrient
resorption is associated with leaf vein density and growth performance of dipterocarp
tree species. J. Ecol. 103, 541–549. doi: 10.1111/1365-2745.12392

Zheng, X., and Wang, X. (2010). Leaf vein extraction based on gray-scale
morphology. Int. J. Image Graph. Signal Process 2, 25. doi: 10.5815/ijigsp.2010.02.04

Zhu, Y., Chen, C., Guo, Y., Fu, S., and Chen, H. Y. (2020b). Linking leaf-level
morphological and physiological plasticity to seedling survival and growth of
introduced canadian sugar maple to elevated precipitation under warming. For. Ecol.
Manage. 457, 117758. doi: 10.1016/j.foreco.2019.117758

Zhu, J., Yao, J., Yu, Q., He, W., Xu, C., Qin, G., et al. (2020a). A fast and automatic
method for leaf vein network extraction and vein density measurement based on
object-oriented classification. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00499
frontiersin.org

https://doi.org/10.48550/arXiv.1206.5157
https://doi.org/10.1007/s00468-018-1734-8
https://doi.org/10.1109/ICSMC.2006.384738
https://doi.org/10.1109/ICSMC.2006.384738
https://doi.org/10.1016/j.compag.2022.107352
https://doi.org/10.1016/j.compag.2022.107352
https://doi.org/10.1002/ajb2.2018.105.issue-11
https://doi.org/10.1177/09670335221148593
https://doi.org/10.1364/OE.441213
https://doi.org/10.1364/OE.529140
https://doi.org/10.1364/OE.529140
https://doi.org/10.1086/650721
https://doi.org/10.3389/fpls.2022.873036
https://doi.org/10.1104/pp.113.224451
https://doi.org/10.1016/j.cell.2015.06.067
https://doi.org/10.1111/j.1365-313x.2005.02581.x
https://doi.org/10.1111/nph.12253
https://doi.org/10.1104/pp.103.031203
https://doi.org/10.1109/ICACSIS.2015.7415152
https://doi.org/10.1111/nph.14382
https://doi.org/10.1104/pp.111.173856
https://doi.org/10.1111/j.1365-3040.2011.02425.x
https://doi.org/10.1109/ICVRV.2011.40
https://www.thorlabs.com/images/tabimages/PMR10_PTFE_reflectance.xlsx
https://www.thorlabs.com/images/tabimages/PMR10_PTFE_reflectance.xlsx
https://doi.org/10.1364/OL.492911
https://doi.org/10.3732/apps.1400038
https://doi.org/10.3390/s20082194
https://doi.org/10.34133/plantphenomics.0225
https://doi.org/10.1016/j.compag.2023.108566
https://doi.org/10.1016/j.compag.2023.108566
https://doi.org/10.1111/nph.16923
https://doi.org/10.1016/j.compag.2014.01.016
https://doi.org/10.1201/b19565
https://doi.org/10.1016/j.compind.2018.02.006
https://doi.org/10.1117/1.2336196
https://doi.org/10.1111/1365-2745.12392
https://doi.org/10.5815/ijigsp.2010.02.04
https://doi.org/10.1016/j.foreco.2019.117758
https://doi.org/10.3389/fpls.2020.00499
https://doi.org/10.3389/fpls.2025.1560220
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Combining multispectral and high-resolution 3D imaging for leaf vein segmentation and density measurement
	1 Introduction
	2 Materials and methods
	2.1 Multispectral and 3D imaging system
	2.2 Digital fringe projection technique
	2.3 Mutispectral reflectance estimation
	2.4 Leaf vein segmentation
	2.4.1 2D Hessian matrix leaf vein segmentation method
	2.4.2 2D CNN leaf vein segmentation method
	2.4.3 3D multi-scale principal curvature derivative ridge detection

	2.5 Leaf vein density calculation using 3D geometry

	3 Results
	3.1 Experimental setup and parameter configuration
	3.2 Multispectral reflectance estimation
	3.3 Multi-scale principal curvature derivative 3D ridge detection
	3.4 Combining Hessian 2D leaf vein segmentation with 3D leaf vein segmentation
	3.5 Combining CNN 2D leaf vein segmentation with 3D leaf vein segmentation
	3.6 Leaf vein density measurement using 3D geometry

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


