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Baphicacanthus cusia (Nee) Bremek, a perennial herbaceous plant with

medicinal properties, has limited genomic insights regarding the genes

involved in its indole alkaloid biosynthesis pathway. In this study, the BcSK

gene was isolated and cloned from the transcriptome data of B. cusia. The

full-length cDNA of BcSK is 1,657 bp, comprising a 265 bp 5’ UTR, a 507 bp 3’

UTR, and an 885 bpORF encoding 295 amino acids. The exon-intron structure of

BcSK consists of four exons and three introns. Bioinformatics and phylogenetic

analyses revealed a high degree of homology between BcSK and its counterparts

in various plant species. Quantitative real-time polymerase chain reaction (RT-

qPCR) analysis showed that BcSK expression was significantly altered under

abiotic stress conditions, including methyl jasmonate (MeJA), abscisic acid (ABA),

and ultraviolet (UV) radiation. The gene was predominantly expressed in flowers

compared to roots, stems, and leaves. Subcellular localization analysis indicated

that BcSK is primarily expressed in chloroplasts, confirming that the conversion of

shikimic acid to shikimate-3-phosphate occurs in this organelle. Prokaryotic

expression and enzyme activity assays demonstrated that the heterologously

expressed BcSK protein catalyzed the conversion of shikimic acid to shikimate-

3-phosphate. Furthermore, the ectopic overexpression of BcSK in Isatis

indigotica significantly enhanced the biosynthetic flux toward indole alkaloids,

including indole, indigo, and indirubin. In conclusion, this study identifies and

characterizes a novel BcSK gene, providing new insights and potential

applications for the metabolic engineering of B. cusia.
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Introduction

Baphicacanthus cusia (Nee) Bremek, a prevalent member of the

Acanthaceae family, primarily thrives in China. Its stems and leaves

are commonly used for medicinal purposes (Ai, 2017). Renowned

for its superior quality, the Fujian-originated product, known as

“Jianqingdai” (Indigo Naturalis, IN), is considered one of Fujian’s

authentic medicinal treasures (Xu, 2014). The root of B. cusia,

recognized as Southern Banlangen (Rhizoma et Radix

Baphicacanthis Cusiae, RRBC), is a prestigious traditional Chinese

medicinal variety listed in the Chinese Pharmacopoeia, alongside

Qingdai (National Pharmacopoeia Committee, 2020).

The primary active compounds in B. cusia belong to the indole

alkaloid family, which includes indirubin, indigo, and isatin (Liu

et al., 2009). Pharmacological studies have demonstrated that indigo

exhibits potent immunomodulatory, antimicrobial, and

hepatoprotective properties (Lee et al., 2019). Indirubin has

shown promise as an antitumor agent or adjuvant therapy,

exhibiting therapeutic efficacy against both transplanted animal

tumors and human malignancies (Yu et al., 2021).

From a biological perspective, the genotype of medicinal plants

plays a crucial role in determining their quality and efficacy (Huang

et al., 2009). Despite being a key source of Qingdai, the genetic

foundation of B. cusia remains poorly understood, and research on

the synthesis pathways and metabolic networks of its indole

alkaloids is limited. Genetic factors are essential for regulating

metabolic pathways, and genetic engineering has emerged as a

powerful approach for manipulating plant biosynthetic pathways

(Huang et al., 2008, 2009). This technique enables the regulation of

metabolic flux to enhance the production of pharmacologically

active compounds. Functional genes are pivotal in plant genomics

and play a fundamental role in secondary metabolic engineering

(Farrokhi et al., 2006).

Indole alkaloids are synthesized from indole and tryptophan

(O’Connor and Maresh, 2006). The incorporation of an indole

nucleus, a widely recognized pharmacophore in indole alkaloids,

results in a versatile heterocyclic structure with broad biological

activity (Yu et al., 2021). This nucleus, derived from the shikimate

pathway, serves as the structural backbone of indole alkaloids

(Maeda and Dudareva, 2012). Notably, vinblastine and

vincristine, two anticancer bisindole alkaloids in Catharanthus

roseus, utilize tryptophan from the shikimate pathway as a key

precursor (Sun et al., 2023). Genomic (Xu et al., 2020) and

transcriptomic (Liu et al., 2023) studies on B. cusia have

confirmed that the shikimate pathway is an integral component

of its indole alkaloid biosynthesis.

Shikimate kinase (SK), a key enzyme in the fifth step of the

shikimate pathway, irreversibly converts shikimate into shikimate-

3-phosphate using ATP as a cofactor (Coracini and de Azevedo,

2014) (Supplementary Figure S1). This enzyme is also a target for

drug design (Dadlani et al., 2022; Rios-Soto et al., 2021). SK has

been extensively studied in microorganisms such as Escherichia coli

(Millar et al., 1986) and Mycobacterium tuberculosis (Saidemberg

et al., 2011; Rajput et al., 2023). In higher plants, SK genes have been

cloned in rice (Kasai et al., 2005) and cabbage (Hu et al., 2021).
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The biosynthesis and metabolism of indoles represent a crucial

downstream branch of the shikimate pathway. Indigo and indirubin

are dimeric indole compounds (Supplementary Figure S1). Thus, it

can be inferred that the shikimate pathway plays a role in the

biosynthesis of indole alkaloids in B. cusia, with BcSK potentially

influencing this process.

In this study, the BcSK gene encoding shikimate kinase was

identified from the B. cusia transcriptome. Its cloning, expression,

and functional characterization were investigated to elucidate its

biological role. These findings provide insights into the biosynthesis

of pharmacologically active compounds in B. cusia and contribute

to future research in secondary metabolic engineering and

germplasm improvement.
Materials and methods

Sequence acquisition

The BcSK gene sequence was identified from the B. cusia

transcriptome database (NCBI SRR4428209) using gene-specific

primers SK-F and SK-R (Supplementary Table S1). The complete

coding sequence of BcSK (Supplementary Data Sheet S1) was

amplified via polymerase chain reaction (PCR) using KD Plus

DNA Polymerase (TransGen Biotech, China). PCR amplification

was conducted under stringent conditions: an initial denaturation at

98°C for 30 s, followed by 35 cycles of denaturation at 98°C for 10 s,

annealing at 55°C for 30 s, and extension at 72°C for 1 min, with a

final extension at 72°C for 7 min. The PCR products were then

cloned into a pBlunt-Zero vector (TransGen Biotech, China) and

transformed into Trans1-T1 cells (TransGen Biotech, China) for

further propagation and sequencing.
Bioinformatic analysis

The cDNA sequences were analyzed using the Open Reading

Frame (ORF) Finder to identify potential protein-coding regions.

Vector NTI Advance (TM) 11.0 and ProtParam tools were

employed to determine the isoelectric point, molecular weight,

and solubility of the protein. Amino acid sequence alignment was

performed using Clustal X2 software (version 1.83). Conserved

motifs were identified using SMART.

To examine the phylogenetic relationships of BcSK across different

plant species, a keyword search of the NCBI database was conducted.

BcSK sequences from various species (Si XP_011100091.1, Eg

XP_012845202.1, Nt NP_001312965.1, Si XP_011100896.1, Nt

XP_009625951.1, Na XP_019257262.1, Nt XP_016441940.1,

St XP_006362781.1, Ns XP_009762461.1, Sp XP_015071619.1, Sl

NP_001234112.1, Ca XP_016552050.1, Dc XP_017229061.1, Vv

XP_010652781.1, Vv NP_001268016.1, Pp XP_007205622.1, Pm

XP_008232698.1, Gm XP_014634441.1, Cs XP_010416950.1,

Cs XP_010429111.1, Cs XP_010472194.1, At NP_179785.2, At

NP_001077937.1, Ca XP_004504021.1, Cs NP_001292691.1, Pt

XP_002307130.2, At NP_195664.2, Va XP_017421154.1) were used
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to construct a phylogenetic tree using MEGA 5.0 with the neighbor-

joining (NJ) algorithm and 1,000 bootstrap replications for robustness.

All sequences are listed in Supplementary Data Sheet S1.

The SOPMA method was used to predict the secondary

structure, while the tertiary structure of BcSK was modeled using

Phyre 2. Domains, motifs, and active sites were identified using

PredictProtein. The web addresses of relevant online analysis tools

are listed in Supplementary Table S2.
Plant materials and abiotic stress
treatments

Specimens of B. cusia were collected from the Shufeng Farm,

Fujian, China (25°25′N, 118°39′E). Tissue samples, including roots,

stems, leaves, and flowers, were harvested from plants at the

flowering stage. Six-month-old plants were subjected to stress

treatments before flowering. Plants were transferred to flowerpots

and exposed to UVB radiation (0.2 mW/cm²) for 3 h. Viable leaves

were subsequently selected for analysis.

Additionally, the aerial parts were sprayed with 100 mM methyl

jasmonate (MeJA) or 100 mM abscisic acid (ABA). Leaf samples were

collected in triplicate at 0, 2, 4, 6, 8, 12, and 24 h post-treatment,

resulting in 60 distinct samples: 12 organ-specific samples (roots,

stems, leaves, flowers) and 48 stress-treated leaf samples (MeJA, ABA,

UV radiation). After collection, samples were rapidly frozen in liquid

nitrogen and stored at −80°C for further analysis.
Total RNA extraction, cDNA synthesis, and
RT-qPCR analysis

Frozen samples were homogenized in liquid nitrogen using a

mortar and pestle. Total RNA was extracted using TRIzol reagent

(Invitrogen, USA) and further purified with the Column Plant Total

RNA Kit (TransGen Biotech, China) following the manufacturer’s

protocol. RNA concentration was quantified at 260 nm using a

NanoDrop 2000 spectrophotometer (Thermo, USA), and purity

was assessed based on the 260/280 nm absorbance ratio. Only

samples with an OD260/280 ratio between 1.9 and 2.2 and an

OD260/230 ratio below 2.0 were selected for cDNA synthesis. RNA

integrity was verified by agarose gel electrophoresis with ethidium

bromide staining.

Genomic DNA was extracted from 100 mg of young leaves using

the cetyltrimethyl ammonium bromide (CTAB) method and

confirmed via agarose electrophoresis. First-strand cDNA synthesis

was performed using the TransScript One-Step gDNA Removal and

cDNA Synthesis SuperMix (TransGen Biotech, China), which included

Oligo (dT) primer, gRemover, R-mix, and E-mix, with 1 mg of total

RNA as the template. The reaction mixture (20 mL) was incubated at

42°C for 15 min, followed by enzyme inactivation at 85°C for 5 min.

The resulting cDNA was stored at −20°C for future use.

Real-time PCR amplification was conducted in 96-well plates

using a SYBR Green detection kit (TransGen Biotech, China) with a

Thermal Cycler Dice TP800 (TaKaRa, Japan). Each 20-mL reaction
Frontiers in Plant Science 03
contained 2.0 mL of template cDNA, 0.5 mL of each primer, 10.0 mL
of 2× Top Green qPCR SuperMix, and 7.0 mL of ddH2O. A negative

control was included, omitting the template. The amplification

protocol consisted of an initial denaturation at 95°C for 30 s,

followed by 40 cycles of denaturation at 95°C for 5 s and

annealing at 60°C for 30 s. A melting curve analysis was

performed over a temperature range of 60–95°C. Ct values were

determined based on fluorescence thresholds.

To normalize target gene expression, Bc18sRNA (GenBank:

GARR01001157.1) (Huang et al., 2017) was used as an internal

control. Relative expression levels were calculated using the 2^

−DDCT method based on the average of three technical replicates.

The primers used for RT-qPCR analysis are listed in Supplementary

Table S1.
Subcellular location of BcSK

Subcellular localization analysis using Plant-mPLoc predicted

BcSK to be localized in the chloroplast. This prediction was further

validated by a subcellular localization experiment involving BcSK-

GFP fusion driven by the CaMV 35S promoter.

The experiment followed the methodology of Wang et al (Wang

et al., 2018). The coding sequence of BcSK was amplified using

gene-specific primers (Supplementary Table S1) and fused in-frame

to the C-terminus of a green fluorescent protein (GFP) vector via

the Gateway LR reaction (Invitrogen, USA). The recombinant

vector (Supplementary Figure S2) was transformed into

Agrobacterium tumefaciens strain GV3101, and bacterial cultures

carrying the relevant plasmids were infiltrated into Oryza sativa

protoplasts following the protocol of Liu et al (Liu et al., 2007).

Fluorescent signals from the BcSK-GFP fusion protein were

detected using a confocal laser scanning microscope (LSM

800, Zeiss).
Protein prokaryotic expression and
purification

The BcSK gene was first transformed into Trans1-T1 cells for

amplification. The PCR-derived products were digested with BamHI

and XhoI (TaKaRa, Japan) and ligated into the pGEX expression

vector (Novagen, Madison, WI, USA). The recombinant plasmid

(Supplementary Figure S3) was then transformed into E. coli BL21

(DE3) and cultured in Luria–Bertani (LB) medium containing

ampicillin (100 mg/mL) at 37°C until the OD600 reached 0.6.

Protein expression was induced by adding 1.0 mM isopropyl b-D-
1-thiogalactopyranoside (IPTG), and the culture was incubated at 16°

C, 80 rpm, for 24 h.

Cells were harvested by centrifugation at 4°C, 5,000 rpm, for 10

min and resuspended in a lysis buffer containing 50 mM NaH2PO4

(pH 8.0), 10 mM Tris-HCl (pH 8.0), and 100 mM NaCl. Sonication

was performed to reduce viscosity. The recombinant protein was

purified using Bio-Scale Mini Profinity GST Cartridges.

The components were separated by 10% SDS-PAGE,
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distinguishing the supernatant, pellet, and purified product.

Proteins were visualized using Coomassie Brilliant Blue (CBB)

staining, and images were captured with an Amersham Imager

600 (AI600). Western blotting was performed to confirm the

expression of GST-fused BcSK using an anti-GST rabbit

monoclonal antibody (Cell Signaling Technology), followed by a

secondary anti-rabbit IgG HRP-linked antibody.
Protein quantification and enzyme activity
detection

Protein concentration was determined using the Bradford

Protein Concentration Kit. The enzymatic activity of BcSK was

assessed by coupling ADP release to sequential reactions catalyzed

by pyruvate kinase (PK) and lactate dehydrogenase (LDH) (Millar

et al., 1986; Rosado et al., 2013). The activity of shikimate-mediated

reactions was quantified by monitoring the decrease in absorbance

at 340 nm at 15 s intervals due to NADH oxidation.

Enzymatic assays were conducted at 298 K in 96-well

polystyrene plates (Costar) using a BioTek Synergy 4 plate reader.

The reaction mixture (200 mL) contained 100 mM Tris-HCl (pH

7.5), 5 mM MgCl2, 50 mM KCl, 1.6 mM ATP, 0.2 mM NADH, 1.5

mM phosphoenolpyruvate, 6 U/mL PK, and 5 U/mL LDH. The

reaction was initiated by adding 50 nM purified BcSK, and kinetic

parameters were determined by measuring initial reaction rates

across a range of shikimate concentrations (10–1,200 mM). Final

kinetic parameters were calculated using non-linear regression

analysis in GraphPad Prism (GraphPad Software Inc.). All assays

were performed in triplicate.

The activity of BcSK was calculated using the following formula:

Enzyme activity (U=gprot) 

= △A=min=0:001=protein concentration
Construction of BcSK overexpression
vector and I. indigotica transformation

The full-length coding sequence of BcSK-PHB was amplified

from leaf-derived cDNA using primers PHB-SK-F and PHB-SK-R

(Supplementary Table S1). The amplified fragment was cloned into

the modified binary vector PHB-Flag at the BamHI and SpeI

restriction sites. This vector contained two CaMV 35S promoters,

serving as an efficient overexpression tool (Masani et al., 2009).

Agrobacterium tumefaciens strain C58C1 harboring BcSK-PHB

(Supplementary Figure S4) and the PHB vector were used to infect

I. indigotica leaf explants (Xiao et al., 2015). After two days of dark

incubation without antibiotics, the explants were transferred to

half-strength Murashige and Skoog (1/2 MS) solid medium

supplemented with a stepwise reduction of cefotaxime (250, 100,

0 mg·L-1) and 10 mg·L-1 hygromycin (Figure 1A). After 45 days, the

hairy roots were harvested for DNA and RNA extraction and

subsequent metabolite analysis. Transgenic BcSK-PHB lines were
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designated as “cSK-OVX,” while non-transformed C58C1 served as

the wild-type (WT) control.

Regenerated plants were obtained using A. tumefaciens strain

EHA105 following a similar infection protocol as for hairy root

cultures. However, the culture medium was supplemented with 6-

benzylaminopurine (6-BA, 1.0 mg·L-1) and a-naphthylacetic acid

(NAA, 0.1 mg·L-1), and cefotaxime concentrations were gradually

reduced (500, 300, 100, 0 mg·L-1). Once budding and rooting

occurred, growth hormones were gradually removed, and the

plants were transferred from water culture to soil. When tissue

culture seedlings reached 10 cm in height, leaves were harvested and

frozen in liquid nitrogen for further analysis. Transgenic BcSK-PHB

lines were labeled “eSK-OVX,” whereas non-transformed EHA105

served as the WT control.

Each experiment was conducted in triplicate to ensure

biological reproducibility.
Analysis of transgenic products

Polymerase chain reaction (PCR) was used to identify transgenic

regenerated plants and hairy roots (Yadav et al., 1982). Genomic

DNA was extracted from confirmed positive transgenic samples

using the cetyltrimethyl ammonium bromide (CTAB) method.

Regenerated plants were screened for the hpt resistance gene

fragment of the PHB-Flag vector, while the rbcsr sequence from the

pC1300-pHANNIBAL vector was also utilized for identification.

Additionally, the presence of the target gene fragment was verified.

For hairy roots, in addition to confirming the hpt resistance and

target gene fragments, rolB and rolC fragments from the Ri plasmid

of Agrobacterium rhizogenes C58C1 were also identified.

Quantitative real-time PCR (RT-qPCR) was performed to

measure BcSK expression levels in all verified positive lines, using

IiActin as an internal reference. Primer sequences used for detection

are provided in Supplementary Table S1. At least three independent

control lines were analyzed, and their average value was used as the

control benchmark.
Extraction and determination of metabolite
concentrations

Harvested transgenic hairy roots were dried at 40°C for 48 h and

ground into a fine powder, while plant leaves were pulverized under

liquid nitrogen. A 100 mg sample of powder was extracted via

ultrasonication for 1 h using 5 mL of methanol and

trichloromethane (1:1). The supernatant was transferred, and the

precipitate was re-extracted. The combined extracts were filtered

through a 0.22 mm microporous membrane. A 5 mL aliquot of the

supernatant was dried and redissolved in 200 mL of methanol.

Metabolite quantification was performed using high-performance

liquid chromatography-mass spectrometry (HPLC-MS) on the

Agilent 1260 Infinity platform (Agilent, USA). HPLC analysis

utilized a Poroshell 120 EC-C18 column (3.0 × 150 mm, 2.7 mm)

with a flow rate of 0.4 mL/min at 25°C. The injection volume was 3 mL,
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and elution was performed in gradient mode (Supplementary Table

S2). The mobile phase consisted of 5 mM ammonium acetate (Phase

A) and 5 mM ammonium acetate in acetonitrile/methanol (Phase B,

HPLC grade).

Mass spectrometry employed an electrospray ionization (ESI)

source with a nebulizer gas pressure of 45 psi, drying gas

temperature of 350°C, and drying gas flow rate of 10 L/min. The

capillary voltage was set to 4000 V (+) and 3000 V (−). Data

acquisition and analysis were conducted using the Mass Hunter

software control system and processing workstation (Agilent, USA).

Multiple reaction monitoring (MRM) mode was used for target

compound detection. All required standards were obtained from

Sigma-Aldrich (St. Louis, MO, USA).
Statistical analysis

All experiments were conducted in triplicate, and data were

analyzed using GraphPad Prism 8.0 software. Results are presented

as mean ± SEM.
Frontiers in Plant Science 05
For multiple comparisons versus the control, one-way ANOVA

followed by Scheffé’s post hoc test was performed. For comparisons

between two groups, a Student’s t-test was used. Statistical

significance was set at p< 0.05 and p< 0.01.
Results

Isolation, gene structure, and
bioinformatics analysis

The BcSK cDNA consists of an 885 bp open reading frame (ORF)

encoding a 295-amino acid peptide with a predicted molecular weight

of 32.70 kDa. The isoelectric point (pI) is 6.83, indicating that BcSK is

slightly acidic. Analysis of its exon-intron structure revealed four

exons (211 bp, 59 bp, 127 bp, and 488 bp from the 5′ to 3′ end) and
three introns (107 bp, 82 bp, and 110 bp, respectively) (Figure 2A).

The BcSK protein contains a distinct hydrophobic region with a

value of −0.295, adjacent to a hydrophilic domain (Supplementary

Figure S5C). Structural predictions indicate that BcSK adopts a
FIGURE 1

Regenerated Plants of OVX-BcSK in I indigotica. (A) Induction and Culture of Regenerated I indigotica Plants at Different Stages. (a) Agrobacterium
tumefaciens EHA105 strains carrying plasmids were used to infect sterilized leaf explants, leading to callus formation. (b) Newly formed shoots were
transferred to MS medium supplemented with plant auxins. (c–f) Positive regenerated plants containing the EHA105-OVX-BcSK vector exhibited
robust growth on MS solid medium supplemented with cefotaxime and hygromycin. (B) Transferring Positive Regenerated Plants to Water and Soil
for Cultivation. Regenerated plants harboring the EHA105-OVX-BcSK vector were successfully transferred to water or soil for further cultivation.
(C) Molecular Identification of Transgenic Plants Lane 1: Engineered strain (positive control). Lane 2–8: OVX-BcSK transgenic plants. Lane 9: DNA
size marker. The hpt primer was used to verify hygromycin resistance. (D) Expression Analysis of BcSK RT-qPCR analysis of BcSK transcript
abundance in OVX-BcSK transgenic plants. Control: B. cusia leaf. (E) Metabolite Analysis of Transgenic Plants Metabolite quantification was
conducted to evaluate indole alkaloid levels. Data are presented as mean ± SEM; *P< 0.05, **P< 0.01 compared to the control.
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stable conformation without a signal peptide, though it may contain

a minor transmembrane topology segment (Supplementary Figure

S5B). The secondary structure is predicted to consist of 45.58%

alpha helices, 7.48% beta-turns, 34.35% random coils, and 12.59%

extended strands (Supplementary Figure S5A). Moreover, BcSK

possesses a conserved active structural domain characteristic of

shikimate kinase (SK) enzymes, spanning amino acids 111–270

(Supplementary Figure S6A, B).

A phylogenetic tree was constructed based on a comparative

analysis of B. cusia and 28 other plant species, revealing that BcSK

shares a clade with Sesamum indicum (Figure 2B). Amino acid

sequence homology analysis demonstrated high similarity between

BcSK and SK proteins from S. indicum, Erythranthe guttata,

Nicotiana tabacum, and Arabidopsis thaliana (Figure 2C).
Induction and expression patterns

To investigate BcSK expression patterns, RNA was extracted

from different B. cusia tissues, including roots, stems, leaves, and

flowers, for RT-qPCR analysis. The results indicated that BcSK was

expressed in all tissues, with the highest expression in flowers,

followed by stems and leaves, and the lowest in roots (Figure 3A).

RT-qPCR analysis further demonstrated that BcSK expression

was significantly upregulated in response to methyl jasmonate

(MeJA), abscisic acid (ABA), and ultraviolet (UV) stress,
Frontiers in Plant Science 06
exhibiting phytohormone-specific and time-dependent regulatory

patterns (Figures 3B–D). Upon MeJA treatment, BcSK expression

peaked at 8 hours, briefly declined, and then gradually increased

until 24 hours. ABA exposure led to a marked 2.63-fold

upregulation at 6 hours, followed by a gradual decline while

remaining above baseline at 24 hours. Under UV stress, BcSK

expression surged rapidly, reaching a substantial 6.82-fold

increase at 6 hours compared to the control, suggesting a strong

induction response.
Subcellular localization characteristics

To verify the subcellular localization of BcSK, the gene was fused

with a green fluorescent protein (GFP) tag and expressed under the

CaMV 35S promoter. The construct was transiently introduced into

Oryza sativa protoplasts, with an empty pCAMBIA1301-GFP vector

serving as a control (Figure 4). In protoplasts expressing the GFP

control, fluorescence was distributed throughout the entire cell

(Figure 4IIA). In contrast, fluorescence from BcSK-GFP was

exclusively detected within the chloroplast (Figure 4IA–E), indicating

chloroplast localization. Additionally, overlapping signals from GFP

(Figure 4IA) and RFP (Figure 4IB) (Figure 4ID) suggested an

association of BcSK-GFP with the endoplasmic reticulum (ER). These

findings confirm that BcSK is primarily localized in the chloroplast,

consistent with prior predictions (Figure 4IA).
FIGURE 2

Schematic diagram of the BcSK gene and its bioinformatics analysis. (A) cDNA and gDNA structure of BcSK. (B) Phylogenetic tree of the BcSK
protein family from 28 plant species, constructed using MEGA 5.0 with the neighbor-joining method. (C) Homology comparison of BcSK amino acid
sequences across 28 plant species.
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Prokaryotic expression and enzymatic
activity

To assess BcSK function, the gene was cloned into the

pGEX-4T-1 prokaryotic expression vector with a GST-tag for

detection. The construct was introduced into E. coli BL21 (DE3)

and confirmed via PCR (Supplementary Figure S3) and DNA
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sequencing. The recombinant BcSK protein was purified and

analyzed by SDS-PAGE (Figure 5).

The expected molecular mass of the BcSK-GST fusion protein

was approximately 55.7 kDa, comprising BcSK (32.7 kDa) and the

GST-tag (23 kDa) (Figure 5A). Western blot analysis confirmed

immunoreactivity of the purified BcSK-GST protein against

anti-2GST antibodies (Figure 5B). The Bradford assay determined
FIGURE 4

Subcellular localization of BcSK: (A) BcSK-GFP transiently expressed in rice protoplasts. (B) Control contrast images. (A) GFP fluorescence. (B) Chlorophyll
autofluorescence. (C) Bright-field image. (D) Merged image of (A) and (B). (E) Merged image under bright-field conditions. Scale bar = 5 nm.
FIGURE 3

Expression profiles of BcSK in different B cusia organs: (A) Basal expression levels in various tissues. (B) Induction by MeJA. (C) Induction by ABA.
(D) Response to UV stress. Data are presented as mean ± SEM; *P< 0.05, **P< 0.01 compared to the control.
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the protein concentration, generating a standard curve with the

equation Y = 0.8483x − 0.0003 (R² = 0.9981, Figure 5C). The final

concentration of purified BcSK-GST protein was 8.4 mg/mL.

BcSK catalyzes the phosphorylation of shikimic acid to form

shikimate-3-phosphate. Enzyme activity was assessed using a

coupled reaction system, measuring OD340 of NADH every 15 s.

A linear correlation was observed (Figure 5D) after 105 s, and

OD340 values recorded within 1 min yielded an average change of

DOD340 = 0.0358. This corresponded to a BcSK enzyme activity of

4.26 U/g. Changes in OD340 confirmed the redox reaction, where

NADH was converted to NADPH, indirectly validating enzymatic

activity following the addition of BcSK-GST. The product was

subsequently used as a substrate in a secondary reaction catalyzed

by lactate dehydrogenase, further confirming that the BcSK-GST

fusion protein was functionally active and capable of catalyzing

shikimic acid phosphorylation.
Overexpression of BcSK increased the
content of indole alkaloids in I. indigotica

Transgenic plants overexpressing BcSK (BcSK-OVX) were

successfully generated (Figures 1A, B). PCR analysis confirmed

the integration of the BcSK transgene into the transgenic lines, as
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evidenced by the presence of the target gene (rbcsr) and the

hygromycin resistance gene (hpt) (Figure 1C).

RT-qPCR analysis revealed a significant upregulation of BcSK

expression in positive transgenic lines, with expression levels

increasing between 18- and 47-fold compared to the control

(Figure 1D). Three high-expressing lines (5, 6, and 14) were

selected for further analysis. HPLC-MS quantification

demonstrated a substantial increase in the concentrations of key

indole alkaloids, including indigo, indole, tryptanthin, and

indirubin, in transgenic lines compared to controls (Figure 1E).

Transgenic I. indigotica hairy roots were harvested after 50 days in

1/2MS liquid culture (Figure 6A). Positive identification was conducted

similarly to that of transgenic plants but included the detection of rolB

and rolC genes, representing T-DNA fragments from the Ri plasmid

(Figure 6B). This confirmed the successful transfer of the exogenous Ri

plasmid from A. rhizogenes C58C1 into I. indigotica.

RT-qPCR analysis demonstrated a significant increase in BcSK

expression levels in transgenic hairy roots compared to controls

(Figure 6C). HPLC-MS analysis further confirmed elevated

metabolite levels, with indole content increasing 3.12-fold

compared to the control. Similarly, indigo and indoxyl b-D-
glucoside levels were 2.42- and 2.38-fold higher, respectively, in

BcSK-OVX lines compared to both wild-type (WT) and control

(CK) lines (Figure 6).
FIGURE 5

Functional characterization of BcSK in vitro: (A) SDS-PAGE analysis of BcSK-pGEX fusion protein. Lane 1: Crude enzyme extract from BcSK-pGEX cell
lysate. Lane 2: Supernatant of BcSK-pGEX cell lysate. Lane 3: Precipitate of BcSK-pGEX cell lysate. Lane 4: Crude enzyme extract from pGEX-4T-1
cell lysate after IPTG induction. Lane 5: Protein molecular weight marker. Lane 6: Crude enzyme extract from pGEX-4T-1 cell lysate without IPTG
induction. Lane 7: Supernatant of pGEX-4T-1 cell lysate without IPTG induction. Lane 8: Precipitate of pGEX-4T-1 cell lysate without IPTG induction.
(B) SDS-PAGE analysis of purified BcSK-pGEX fusion protein. Lane 1: Protein molecular weight marker. Lane 2: Purified BcSK-pGEX protein. Lane 3:
Supernatant of BcSK-pGEX cell lysate. (C) Western blot analysis of BcSK-pGEX. Lane 1: Supernatant of BcSK-pGEX cell lysate. Lane 2: Purified BcSK-
pGEX protein. Lane 3: Protein molecular weight marker. (D) Calibration curve of protein concentration. (E) Enzyme kinetic characterization of BcSK
in vitro.
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Discussion

Indole alkaloids constitute a diverse class of alkaloids

distinguished by the presence of an indole structural moiety.

Emerging evidence suggests that indole alkaloids, such as indigo and

indirubin, are major constituents of B. cusia (Lin et al., 2019; Abouzeid

et al., 2017), exhibiting higher concentrations than in other “blue”

plants, including I. indigotica, Indigofera tinctoria, and P. tinctorium.

Indigo and indirubin, widely recognized for their anti-inflammatory

and anticancer properties in traditional Chinese medicine, are

synthesized via the shikimate-derived metabolic pathway

(Supplementary Figure S1), with indole serving as the primary

precursor (Xu et al., 2020). The shikimate pathway plays a crucial

role in initiating indole biosynthesis (Bentley, 1990).

Despite the significance of shikimate kinase (SK) in the shikimate

pathway, no prior studies have reported its role in indole alkaloid

biosynthesis in B. cusia. In this study, the BcSK gene was isolated and

characterized from B. cusia transcriptome data. Bioinformatics

analyses were employed to investigate its predicted protein

structure, subcellular localization, and enzymatic properties.
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Additionally, its response to external stress was examined, and its

functional role was validated both in vivo and in vitro.

RT-qPCR analysis demonstrated that BcSK is ubiquitously

expressed across roots, stems, leaves, and flowers of B. cusia,

though with varying relative expression levels. This differential

expression pattern may be attributed to the shikimate pathway’s

central role in the plant’s metabolic network. The pathway’s

products are crucial for morphogenesis, developmental regulation,

stress adaptation, and defining key plant characteristics,

highlighting its importance in plant biology (Bentley, 1990).

Numerous studies have explored the regulatory mechanisms

governing indole alkaloid biosynthesis genes in response to elicitor

treatments. These findings contribute to uncovering the molecular

mechanisms underlying indole alkaloid biosynthesis, laying the

foundation for future metabolic engineering approaches (Li et al.,

2023). In this study, the expression pattern of BcSK was analyzed

following exposure to defense-related signaling molecules,

including methyl jasmonate (MeJA) and abscisic acid (ABA), as

well as the abiotic stressor ultraviolet (UV) radiation. BcSK

expression exhibited significant variations compared to the
FIGURE 6

Hairy Roots of OVX-BcSK in I indigotica. (A) Induction and Culture of I indigotica Hairy Roots at Different Stages. (a) Hairy roots emerged from sterile
leaves after two weeks. (b) Positive hairy roots containing the C58C1-OVX-BcSK vector exhibited strong growth on 1/2 MS solid medium
supplemented with cefotaxime and hygromycin. (c) Liquid culture of C58C1-OVX-BcSK positive hairy roots in an Erlenmeyer flask. (d) Positive hairy
roots continued to grow on 1/2 MS solid medium with hygromycin. (B) Molecular Identification of Transgenic Hairy Roots. Lane 5 and 14: DNA size
marker. Lane 15–18: Engineered strain (positive control). Lane 19: Wild-type control. Lane 1–4, 6–13: OVX-BcSK transgenic hairy root lines. Primers
hpt, rolB, and rolC were used to verify hygromycin resistance and the presence of the Ri plasmid. (C) Expression Analysis of BcSK. RT-qPCR analysis
of BcSK transcript abundance in OVX-BcSK transgenic hairy roots. Control: B cusia root. (D) Metabolite Analysis of Transgenic Hairy Roots
Metabolite quantification confirmed an increase in indole alkaloid levels. Data are presented as mean ± SEM; *P< 0.05, **P< 0.01 compared to
the control.
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control (Figure 3), suggesting its involvement in the plant’s

response to abiotic stress.

It is well-established that exogenous MeJA treatment can

significantly enhance the levels of bioactive compounds in many

traditional Chinese medicinal plants (Jeyasri et al., 2023).

Furthermore, the upregulation of BcSK in B. cusia leaves

following UV irradiation suggests that its expression may be

influenced by environmental factors such as geographical

location, light exposure, and altitude. Subcellular localization

analysis confirmed that BcSK is specifically targeted to

chloroplasts (Figure 4), consistent with previous findings in A.

thaliana (Zhang et al., 2008). This supports the hypothesis that

BcSK plays a functional role in the biosynthesis of indole alkaloids.

The enzymatic function of BcSK was validated in vitro,

confirming its catalytic activity. However, due to the complexity

of the enzymatic reaction, direct quantification of substrate

consumption and product formation remains challenging.

Consequently, a coupled assay approach was employed to

monitor NADH consumption during the redox reaction catalyzed

by lactate dehydrogenase (Sutton et al., 2015). The observed redox

activity confirmed that BcSK effectively catalyzed substrate

conversion, supporting its functional role in the biosynthesis of

shikimate-3-phosphate. Therefore, our enzymatic activity

assessment conclusively demonstrates that ectopically expressed

and purified BcSK is catalytically active in vitro.

The BcSK-OVE construct was successfully introduced into both

regenerated plants and hairy roots of I. indigotica, an alternative

source of indigo and indirubin. Due to the challenges associated

with stable transformation in the perennial shrub B. cusia, I.

indigotica serves as a practical model for investigating the

biosynthetic pathways of indole alkaloids (Chen et al., 2018).

HPLC-MS analysis revealed that both indigo and indirubin

accumulated in regenerated plants, while indirubin was notably

absent from hairy roots. These overexpression results indicate that

BcSK is essential for indole alkaloid biosynthesis in B. cusia, offering

new insights into its functional role. Furthermore, BcSK is the only

gene successfully overexpressed in transgenic I. indigotica to date,

suggesting a unique role in plant secondary metabolism. The

specific function of BcSK in immunity and defense mechanisms

remains to be elucidated.

Future studies may employ single-cell multi-omics technology

(Li et al., 2023; Sun et al., 2023) to determine potential interactions

between BcSK and other genes or transcription factors. Such

investigations could further clarify the mechanisms by which

BcSK promotes indole alkaloid biosynthesis.
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SUPPLEMENTARY FIGURE S1

Prediction of the biosynthetic pathway of effective components inB. cusia. The
pink area are the substrate and product of the catalytic reaction of SK. SK,

shikimate kinase. AS, anthranilate synthase. IGS, indole- 3-glycerol phosphate.

TSA, tryptophan synthase alpha. CYP, cytochrome P450 monooxygenase.
UGT, uridine glycosyltransferase. Dashed arrows show the multiple steps in

the biosynthetic pathway.

SUPPLEMENTARY FIGURE S2

Schematic representation of the BcSK- GFP vector.
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SUPPLEMENTARY FIGURE S3

Schematic representation of the BcSK- pGEX vector.

SUPPLEMENTARY FIGURE S4

Schematic representation of the BcSK - PHB vector.

SUPPLEMENTARY FIGURE S5

Bioinformatics analysis of BcSK. (A) Prediction of the secondary structure of
the BcSK protein. (B) Prediction of the transmembrane domain of the BcSK

protein. (C) Prediction of hydrophobic/hydrophilic regions of the BcSK
protein. (D) Signal peptide prediction for the BcSK protein.

SUPPLEMENTARY FIGURE S6

Cloning the ORF sequence of BcSK gene and its tertiary structure. (A).
Functional domain of BcSK, (B). Nucleic acid and amino acid sequences,
the underlined parts are the corresponding functional domains). (C). Cloning
product of BcSK. (D). Prediction of the tertiary structure of BcSK protein.
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