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Introduction: The number of rice leaves largely reflects the growth stage and

health status of rice. However, the current rice leaf counting method is time-

consuming and laborious, with low accuracy and poor efficiency, which is

difficult to meet the needs of rice growth monitoring.

Methods: This study proposes a field rice leaf detection method based on an

improved YOLOv5s model. First, we added a high-resolution layer and removed

the original low-resolution detection layer, using the K-Means++ clustering

algorithm to reset the anchor box sizes, enhancing the model’s ability to identify

small leaf tip targets while reducing the number of parameters. Second, we

introduced a coordinate attention mechanism (CA) to strengthen focus on leaf

tip features under weed interference and leaf occlusion conditions. Finally, we

employed a content-aware reassembly of feature (CARAFE) upsampling operator

to enhance the detail reconstruction capability of leaf tip features.

Results and discussion: Experimental results showed that the improved rice leaf

tip detection model achieved precision, recall, and mean average precision rates

of 93.7%, 87%, and 93.5%, respectively, with a parameter count of 5.02million (M),

improving by 6.5%, 22.1%, and 18.5% compared to the YOLOv5s baseline model,

while reducing the parameter count by 28.4%. The improved model effectively

reduced the missed detection rate of rice leaves and enhanced the accuracy and

robustness of field rice leaf tip detection, providing strong technical support for

rice phenotype feature extraction and growth monitoring.
KEYWORDS

rice, leaf tip detection, YOLOv5S, small targets, attention mechanism
1 Introduction

Rice, as one of China’s major staple crops, plays a crucial role in enhancing agricultural

sustainability and improving both yield and quality (Chen et al., 2021b). Plant phenotypic

analysis has become an important tool for monitoring crop growth dynamics in modern

agricultural research, which can accurately evaluate the physiological and developmental
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state of crops (Xiong et al., 2021). Leaf number is a representative

agronomic trait of rice phenotype, which directly determines the

photosynthetic efficiency of rice and reflects the growth and

development stage of rice. It is an important indicator of crop

health, nutritional status and final yield (Chen et al., 2021a; Bir et al.,

2024). Leaf counts not only reflect the growth status of individual

rice, but also provide an important reference in yield prediction,

pest and disease monitoring, and fertilizer management of crop

populations. Traditional leaf counting mainly relies on manual

labor, which is not only time-consuming and inefficient in large-

scale agriculture, but also affected by the subjective judgment of the

counters. Although it can provide some data support, there are

obvious limitations, and it is difficult to meet the demand for high-

frequency and large-sample data in modern agriculture. Therefore,

how to use advanced technology to realize the automation and

precision detection and counting of the number of rice leaves has

become a key topic in the research of smart agriculture.

In recent years, with the development of deep learning,

Convolutional Neural Network (CNN) (Cong and Zhou, 2022)

has been widely used in agricultural fields such as plant phenotypic

feature extraction (Murphy et al., 2024), yield prediction (Van

Klompenburg et al., 2020), and pest detection (Liu and Wang,

2021). CNN-based target detection algorithms have also shown

good results in leaf counting and detection tasks in crops such as

rice, wheat, corn and sorghum (Farjon et al., 2021). Miao et al.

(2021) proposed a two deep learning-based method for automatic

counting of maize and sorghum leaves: regression-based whole-plot

analysis and Faster R-CNN (Faster Region-Based Convolutional

Neural Net-work)-based leaf detection, in which the Faster R-CNN

worked both in the occluded and visible viewpoints best reached

78% and 88%. Li et al. (2023) presented a self-supervised plant

phenotyping method combining domain adaptation and 3D plant

model simulation for leaf counting in wheat at seedling stage. The

Faster-RCNN model combined with CycleGAN technique

performs best on a diverse test dataset from five countries and

achieves 94% leaf counting accuracy. Compared to the traditional

two-stage target detection algorithm Fater R-CNN (Ren et al., 2017)

based on region suggestion and classification regression, The single-

stage detection algorithm YOLO (Shen et al., 2024) has significant

advantages in terms of speed. It is not only suitable for real-time

detection tasks, but also capable of maintaining high detection

accuracy in complex backgrounds (Jiang et al., 2022). Hou et al.

(2024) proposed a fast detection method for leaf count in wheat

seedling stage based on improved YOLOv8, which improves the

detection accuracy in complex field environments by fusing the

coordinate attention mechanism and the small target detection

layer, and the accuracy of leaf count and the average detection

accuracy reach 91.6% and 85.1%, and can adapt itself to different

lighting conditions to realize the efficient leaf detection. Xu et al.

(2023) proposed a leaf counting method for UAV RGB images of

corn seedlings combining semi-supervised learning and deep

learning, using SOLOv2 and YOLOv5x networks for two-stage

detection. In this method, YOLOv5x achieves 69.4% and 72.9%

accuracy for counting fully expanded leaves and newborn leaves.
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Ning et al. (2024) proposed a lightweight corn leaf detection and

counting method based on improved YOLOv8, which enhances the

feature extraction and information fusion capabilities of the model

by introducing StarNet network to replace the YOLOv8 backbone

network and combining convolutional and attentional fusion

module (CAFM) with an average detection accuracy of 97.5%.

Vishal et al. (2020) used YOLOv3 to detect the leaf tips of potted

rice and realized the automatic counting of rice leaves, and the final

detection accuracy reached 82%. Chen et al. (2024) used YOLOv5m

model combined with CBAM-CPN to extract phenotypic

parameters for single tiller rice, in which YOLOv5m was used for

single tiller rice leaf detection with an average detection accuracy

of 91.17%.

Most scholars focus on potted crops in laboratories or seedlings

with relatively less occlusion. Research on field rice leaf detection

remains limited, and detecting leaf tips in field rice presents several

challenges: 1) In real field environments, detection performance is

greatly affected by natural factors such as lighting, weather, and

weed backgrounds. 2) As the growth process advances, the

morphological and color characteristics of rice leaves change

significantly, with more severe occlusion between leaves, which

exponentially increases the difficulty of detection. 3) Existing object

detection algorithms are mainly designed for the COCO general

dataset, which is insufficient to meet the needs of rice leaf detection.

Therefore, this study focuses on field rice from the transplantation

stage to the pre-heading stage. Based on the YOLOv5s model,

improvements and optimizations are made in three areas: detection

layers, attention mechanisms, and upsampling modules. These

enhancements aim to improve the accuracy and robustness of

field rice leaf tip detection, providing more efficient algorithmic

support for rice growth monitoring systems and promoting the

development of agricultural intelligence.
2 Materials and methods

2.1 Data collection

In this study, rice plants were selected as the research subjects,

with data collected from two experimental fields located in Huzhou,

Zhejiang Province: one in Balidian Town, Wuxing District, and the

other in Shanlian Town, Nanxun District. The data collection was

conducted using a smartphone camera. The dataset includes three

rice varieties: Chunyou927, Jiayouzhongke6, and Jianong4, covering

various leaf stages from transplantation to heading. To better meet

the requirements of subsequent rice growth monitoring, different

smartphones were deliberately selected to capture images from

multiple angles, with the background of the rice plants

intentionally blocked. Additionally, different weather and lighting

conditions were considered during the collection process. In total,

1,200 images of rice plants were collected. Figure 1 shows examples

of images from the rice dataset. As seen in Figure 1, in addition to

the listed conditions, there are also complex backgrounds

with weeds.
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2.2 Dataset creation

Compared to the leaves of other broadleaf plants, rice leaves are

typically sword-shaped, with long blades and distinct leaf tips (Jia

et al., 2024). The leaf tip is the foremost and sharpest part of the rice

leaf, characterized by clear geometric features (Zhu et al., 2021). The

overlapping and crossing phenomenon between rice leaves is

common in the field, making it complex and challenging to use

entire leaves as features for visual identification. Since the leaf tip is

located at the front end of the leaf, it is easier to identify

individually, even when leaves are dense or overlapping.

Therefore, this study uses the leaf tip as the feature for leaf

counting. The leaf tips were manually annotated as point labels

using the Labelme tool, and a 60×60pixel rectangular annotation

box was generated around each point label. This approach
Frontiers in Plant Science 03
significantly reduces the workload compared to directly drawing

rectangular boxes. Additionally, using fixed-size rectangular boxes

centered on point labels ensures that the model focuses on the

characteristics of the leaf tip, reducing background interference,

which helps the model more accurately learn leaf tip features,

improving the effectiveness of leaf tip detection.

In order to further expand the dataset and increase the

diversity and generalizability of the model, the study expanded

the data from 1200 original images, with horizontal inversion,

luminance correction, and random noise being the main methods

used. Examples of images with different expansion methods are

shown in Figure 2. The total number of final dataset after

expansion is 3600 pictures, and the number of leaf tip labels is

141411. The dataset is split into training, validation and test sets in

an 8:1:1 ratio finally.
FIGURE 1

Example images from the rice data set.
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2.3 Improving the YOLOv5s detection
model

2.3.1 Design of a single high-resolution detection
layer

When performing the task of detecting and counting rice leaf

tips, because of their extremely small size and slender

morphological features, the actual length and width are usually

only less than 8 mm, and the high-resolution images are scaled

under the influence of the model input image size (Yu et al., 2024),

making the final leaf tip size only 5×5 to 10×10 pixels, and this

extremely small size makes the leaf tips easily masked by the

complex background. Therefore, how to effectively detect these

extremely small leaf tip targets becomes the key issue in this study.

In order to solve the challenge of small targets in rice leaf tip

detection, this study proposes a single high-resolution detection

layer design, which firstly introduces a high-resolution detection

layer P2 into the YOLOv5s model (Zhang et al., 2022), while

removing the original low-resolution detection layers P3, P4, and

P5, in which the resolutions of the feature maps corresponding to

P2, P3, P4, and P5 are respectively 160×160, 80×80, 40×40, and

20×20. The rice leaf tip labeling frames in the training data were

then analyzed using the K-means++ clustering algorithm (Baldassi,

2022) and the preset anchor frame sizes that were more in line with
Frontiers in Plant Science 04
the distribution of the leaf tip mini-objects were redesigned. The

specific improvements are as follows:

First, a new feature fusion enhancement module is added to the

original YOLOv5 network structure, which generates a P2 detection

layer based on a 160×160 high-resolution feature map through 1×1

convolution, up-sampling and feature splicing operations. The high

resolution feature map can retain deeper and highly semantic

information, this high resolution feature map allows the model to

detect at a smaller scale and can provide more pixels and richer

detail information in the region of small targets, which enables the

model to more effectively detect the boundaries, contours, and fine

details of small objects.

Then by removing the low-resolution P3, P4, and P5 detection

layers, the model avoids the problem of detail loss for small targets

on low-resolution feature maps. Since small targets, such as rice leaf

tips, account for a small percentage of the image, fine features may

be blurred or covered by other noise information. Therefore

removing these layers of low-resolution layers makes the model

more focused on the details of high-resolution feature maps,

reducing the loss of information on small targets. At the same

time, the simplified structure not only makes the computational

resources of the model more focused on the detection of small

targets, better learning and adapting to the feature patterns of leaf

tip small targets, but also reduces the model parameter count.
FIGURE 2

Example images of different expansion methods.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561018
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2025.1561018
In addition, the traditional YOLOv5 model uses the K-Means

algorithm to cluster the label box sizes from the COCO dataset in

order to determine the preset anchor boxes, however, these preset

frames are not applicable to the rice leaf tip dataset in this study. In

this study, the K-Means++ algorithm is applied to cluster all the leaf

tip bounding boxes to obtain three preset anchor frames. The K-

Means++ algorithm improves the selection of initial clustering

centers, effectively avoiding the local optimization issues caused

by the randomness in the traditional K-Means algorithm (Ahmed

et al., 2020), and can better adapt to the actual dimensions and

shapes of the leaf tips of the rice to boost the model detection

accuracy and convergence speed. The three preset anchor box sizes

are [7,9], [13,10] and [17,11].

2.3.2 Incorporating CA attention mechanism
In the rice leaf tip target detection task, rice leaves grow more

densely and shade each other, and the leaf tip features are easily

masked by other leaves, and the model may face the problems of

detail loss and inaccurate target localization. To tackle this problem,

this study adds a coordinate attention mechanism CA (Hou et al.,

2021) between the feature fusion enhancement module and the

prediction head to enhance the feature representation and spatial

localization ability of the model for very small targets. Figure 3

shows the structure of the CA attention mechanism module, which

is accomplished through two steps: spatial information encoding

and coordinate attention generation.

In the spatial information coding stage, it is assumed that The

input feature map has dimensions of C×H×W, where C stands for

the number of channels, H denotes the height, andW represents the

width. To extract spatial information in the height direction Y and

width direction X, the feature map is initially processed using global

average pooling. Along the X and Y directions, the feature maps are

encoded in the width and height dimensions to generate feature

maps Fh and Fw of size C×H×1 and C×1×W, respectively.

In the coordinate attention generation stage, the two generated

feature maps are first concatenated along the channel dimension,

then a 1×1 convolution is applied to reduce the channel size. Batch

normalization and a nonlinear activation function are then applied,

forming an intermediate feature map F with a size of C/r×(W

+H)×1, where r represents the channel compression ratio. The

feature map is subsequently divided into two maps along the height

and width dimensions. Another 1×1 convolution is applied to

recover the original channel dimension C, and the Sigmoid

activation function (Narayan, 1997) is applied to compute the

coordinate attention weights Aw and Ah for the two directions.

Finally they are multiplicatively weighted on the input feature map

X, resulting in an output feature map of size C×H×W but weighted

by coordinate attention.

2.3.3 Incorporating the CARAFE upsampling
operator

The traditional nearest-neighbor interpolation up-sampling

method of YOLOv5 relies on a fixed interpolation rule and a

limited sensory field, which is difficult to be flexibly adjusted

according to the actual features of the image; this method can
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only utilize the nearest pixels for interpolation, which makes it

difficult to capture the contextual information of a larger region,

resulting in the loss of spatial details and semantic information,

which in turn affects the detection accuracy (Shen et al., 2023). To

address this challenge, this study introduces the CARAFE

upsampling module (Wang et al., 2019) to substitute the original

upsampling module based on nearest neighbor interpolation.

In CARAFE module, feature up-sampling is regarded as the

process of feature reorganization, which primarily consists of the

up-sampling kernel prediction module and the feature

reorganization module, with the structure illustrated in Figure 4.

In the up-sampling kernel prediction module, the input feature

map X is assumed to have a size of C×H×W, where C denotes the

channel count, while H andW represent the height and width of the

feature map. First, the input feature map X undergoes channel

compression, reducing the number of channels from C to a smaller

dimension Cm. Then, the corresponding reorganization kernel Ml′

is generated according to the local region features of each position

in the compressed feature map. The kernel size is s2×k2up, where s
is the upsampling ratio, and Kup is the size of the reassembly kernel.

This kernel is closely related to the semantic and spatial information

of the input features and can adaptively adjust the upsampling

kernel based on the local features at each position. The generated

upsampling kernel is normalized using a Softmax operation to

ensure that the weights of the upsampling kernel sum to 1, enabling

precise weighted processing of the neighboring area for each

position. The calculation formula for the reassembly kernel

(Equation 1) is as follows:

Ml0 = j(N(Xl ,Kencoder)) (1)

Here, f represents the kernel prediction module, Kencoder is the

size of the convolution kernel, and N(Xl, Kencoder) refers to a local

subregion in the feature map centered at position 1, with a size of

Kencoder × Kencoder.

After generating the upsampling kernel, the feature reassembly

module applies these kernels to reassemble the input feature map.

For each position l′=(x′, y′) in the output feature map, its

corresponding position l=(x, y) can be found in the input feature

map. The neighborhood N(Xl, Kup) around position l is extracted

and element-wise multiplied with the upsampling kernel Ml′,

generating the final upsampled feature map X′. The calculation

formula for Xl′ (Equation 2)is as follows:

Xl0 = f(Ml0 ,N(Xl ,Kup)) (2)

Here, r represents the radius of the neighborhood, Ml′(n, m) is

the weight at position (n, m) in the upsampling kernel, and Xl(x+n,y

+m) represents the pixel value in the neighborhood of the input

feature map.

CARAFE generates the upsampling kernel through content

awareness, making the upsampling process no longer reliant on

fixed interpolation rules but able to adaptively adjust sampling

weights based on the position of the rice leaf tip in the image. This

adaptive mechanism ensures precise reconstruction of spatial

details and effectively preserves the surrounding semantic

information and morphological features of the rice leaf tip.
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Additionally, the feature of CARAFE reassembly mechanism

enhances the semantic representation capability of the feature

map through weighted combinations of local regions, ensuring

that the positional information and details of the rice leaf tip are

fully preserved during the upsampling process, thereby improving

the model’s detection performance for very small targets.

2.3.4 Rice leaf tip detection model
Figure 5 shows the structure of the improved rice leaf tip

detection model. The optimized detection layer network

introduces a new P2 high-resolution detection layer, effectively

capturing the details of small leaf tip targets. The original P3, P4,

and P5 low-resolution detection layers are removed, which reduces

the loss of small target information and reduces the number of

model parameters. To improve the feature extraction and spatial

localization capabilities of the P2 high-resolution detection layer

further, the CA coordinate attention mechanism is introduced. This

mechanism encodes the high-resolution feature map bidirectionally

to generate spatial information, effectively improving the model’s

ability to represent and localize the features of rice leaf tips,

preventing the loss of leaf tip features due to occlusion by other

leaves. Finally, by introducing the CARAFE upsampling

operator, the sampling weights are adaptively adjusted based on

the local information of the feature map, allowing the CA attention

mechanism to retain more spatial details and semantic information of

the rice leaf tips.
Frontiers in Plant Science 06
3 Results and analysis

3.1 Experimental setup and evaluation
metrics

3.1.1 Experimental environment and parameters
The experiments in this study were conducted on an Ubuntu

20.04 operating system, with a CPU model of Intel(R) Xeon(R)

Platinum 8362 CPU @ 2.80GHz and a GPU model of NVIDIA

GeForce RTX 3090 (24GB). The deep learning framework is built

using Python 3.8, CUDA 11.3, and PyTorch 1.11.0. The

configuration details for training the network model are

summarized in Table 1.
3.1.2 Evaluation metrics
This study employs Precision (P), Recall (R), Mean Average

Precision (mAP), and the number of Parameters as evaluation

metrics for the rice leaf tip detection model. The formulas for

calculating P (Equation 3), R (Equation 4), and mAP (Equation 5)

are as follows.

P =
TP

TP + FP
(3)

R =
TP

TP + FN
(4)
FIGURE 3

CA block structure.
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FIGURE 4

CARAFE block structure.
FIGURE 5

Network structure of rice leaf tip detection model.
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mAP =
1
No

N

i=1

Z 1

0
P(R)dR (5)

Here, TP represents the count of samples that are correctly

predicted as positive by the model. FP refers to the count of samples

that are wrongly predicted as positive. FN represents the count of

positive samples that the model fails to identify. N denotes the total

number of predicted categories by the model, which in this study

is 1.
3.2 Experimental results and analysis

3.2.1 Comparative analysis of different detection
layer design

To analyze the performance of different resolution detection

layers in rice leaf tip detection, a comparative experiment was

conducted on different detection layer designs. The detection layers,

based on the resolution of the corresponding feature maps, are

categorized from high to low as P2, P3, P4, and P5. Starting from

the combination of P3, P4, and P5 detection layers in the YOLOv5s

baseline model, the following operations were tested: adding the P2

detection layer, removing the P5 detection layer, removing the P4

detection layer, and removing the P3 detection layer. The

experimental comparison results are shown in Table 2.

As shown in Table 2, the number of detection layers has a

significant impact on the model’s parameter count—the fewer

detection layers, the lower the number of parameters. The single

P2 high-resolution detection layer design used in this study

demonstrates superior performance in all aspects. Compared to

the other four detection layer designs, the model with the single P2

high-resolution detection layer improves precision by 5.3%, 3.2%,

3.5% and 0.2%, recall by 19.4%, 10%, 10.4% and 1.4%, and mAP by

17.2%, 8%, 8.4% and 1.2%, respectively. Moreover, while

maintaining outstanding detection performance, the model’s

parameter count is also significantly reduced by 31.4%, 32.7%,

10.4% and 2.3% compared to the other four designs. To further

visualize the enhancement in detection performance with the single

high-resolution detection layer design, Grad-CAM (Selvaraju et al.,

2019) was used for heatmap analysis, as shown in Figure 6. The

figure includes four images taken from different periods, angles, and

lighting conditions. In the heatmap, the redder the region, the
Frontiers in Plant Science 08
greater its contribution to detection. From the figure, it is evident

that the model with the single high-resolution detection layer design

has significantly smaller and more focused activation areas,

concentrating on the leaf tip regions. This demonstrates a higher

dependency on the key features of the leaf tips, showing stronger

feature attention capability compared to the baseline model. The

model is more optimized in feature selection, effectively suppressing

the influence of background and leaf occlusion.

3.2.2 Ablation experiment performance analysis
To further verify the improvements in detection performance

brought by the three modifications—single high-resolution

detection layer design, CA attention mechanism, and CARAFE

upsampling operator—as well as their effectiveness on the rice leaf

tip dataset, four sets of ablation experiments were designed. The

results are shown in Table 3. In these experiments, Model 1

represents the YOLOv5s baseline model. Improvement one refers

to the single high-resolution detection layer design, improvement

two refers to the addition of the CA attention mechanism, and

improvement three refers to the introduction of the CARAFE

upsampling operator. In the table , “√” indicates the

corresponding modification was applied, while “-” indicates it was

not applied.

As shown in Table 3, the single high-resolution detection layer

design brings the most significant performance improvement to the

model, increasing precision (P), recall (R), and mAP by 5.3%, 19.5%

and 17.2%, respectively, while reducing the parameter count by

31.4%. This indicates that rice leaf tips, being extremely small

targets, are highly dependent on high-resolution feature maps.

After adding the CA attention mechanism, precision slightly

decreased, but recall and mAP increased by 0.4% and 0.3%,

respectively. This suggests that introducing the CA attention

mechanism before the prediction head can enhance the model’s

focus on the spatial positioning information of the leaf tips,

improving the model ’s robustness. When the CARAFE

upsampling operator was further introduced, compared to using

only the first two modifications, the parameter count slightly

increased, but precision, recall, and mAP were further improved

by 1.3%, 2.2% and 1%, reaching 93.7%, 87% and 93.5%, respectively.

Compared to the YOLOv5s baseline model, these represent

increases of 6.5%, 22.1% and 18.5%, respectively, while the

parameter count was reduced by 28.4%. This indicates that

CARAFE’s adaptive upsampling convolution kernel can effectively

retain spatial details and semantic features of rice leaf tips for the

high-resolution detection layer and CA attention mechanism.

Overall, across the four ablation experiments, using all three

improvements together significantly enhances the detection

performance of rice leaf tips, notably reducing the miss rate while

also reducing the parameter count to some extent.

3.2.3 Performance analysis of different detection
models

To further validate the superior performance of the improved

rice leaf tip detection model in this study, comparative experiments

were conducted between the improved model and the leading object
TABLE 1 Parameter setting.

Parameter Value

Momentum 0.937

Weight_decay 0.0005

Learning_rate 0.01

Image_size 640

Batch_size 32

Epochs 300

Optimizer SGD
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detection models currently in use, including Faster-RCNN,

YOLOv7-tiny, and YOLOv8s, under the same environment and

using the same dataset. The results are shown in Table 4.

As depicted in Table 4, Faster R-CNN achieved a precision,

recall, and mAP of only 42.8%, 31.1% and 35.3%, respectively, with
Frontiers in Plant Science 09
a parameter count reaching 41.5M. In terms of both detection

performance and parameter count, it is significantly inferior to the

one-stage YOLO series algorithms. The improved model in this

study achieved a precision of 93.7%, a recall of 87%, and an mAP of

93.5%. Compared to YOLOv5s, YOLOv7-tiny, and YOLOv8s, the
FIGURE 6

Heatmap.
TABLE 2 Comparison of different detection layer designs.

Detection
layer design

Precision P/% Recall R/%
Mean average

Precision mAP/%
Parameters/106

P3+P4+P5 87.2 64.9 75 7.01

P2+P3+P4+P5 89.3 74.4 84.2 7.16

P2+P3+P4 89 74 83.8 5.38

P2+P3 92.3 83 91 4.93

P2 92.5 84.4 92.2 4.81
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improved model increased precision by 6.5%, 10.6% and 11.8%,

recall by 22.1%, 28.2%, and 26.2%, and mAP by 18.5%, 26.5% and

22.4%. In terms of parameter count, the model reduced it by 28.4%,

16.5% and 54.8%. The comparison results demonstrate that the

improved rice leaf tip detection model in this study delivers optimal

detection performance with a relatively low parameter count.

3.2.4 Analysis of model detection performance
To visually demonstrate the effectiveness of the rice leaf tip

detection model, we performed leaf tip detection on rice plants

under different conditions, including various growth stages, angles,

lighting, and interference from weeds. The detection results of the

model in this study were compared with those of the YOLOv5s

baseline model, as shown in Figure 7.

The results indicate that during the early tillering stage, when

there are fewer leaves and minimal occlusion, both the baseline

model and the model proposed in this study are able to accurately

detect all leaf tips. However, as the number of leaves increases in

the later tillering stages, leaf overlap and occlusion between plants

become more pronounced, leading to a significant increase in

missed detections by the baseline model, particularly in the lower

parts of the leaves and near the stem, where the leaf tips partially

obscured by upper leaves are often undetected. Additionally,

under both strong and weak lighting conditions, the baseline

model exhibits even more pronounced missed detections. In

contrast, the model proposed in this study maintains high

detection performance under complex lighting conditions,

accurately identifying most leaf tips. Furthermore, in the

presence of background interference from weeds, the baseline

model fails to detect the occluded leaf tips, whereas the model

proposed in this study can still accurately identify leaf tips in

obstructed areas, demonstrating stronger background adaptability

and robustness.
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4 Discussion

This study introduces a rice leaf tip detection method based on

improved YOLOv5s, which improves the detection accuracy by

18.5% compared with the baseline model while reducing the

amount of parameters by 28.4%. This is mainly attributed to the

single P2 high-resolution detection layer design proposed in this

paper. The reason lies in the fact that the high-resolution detection

layer corresponds to high-resolution feature maps, which retain

deeper high-semantic information and can provide richer detail for

rice leaf tips. Low-resolution feature maps tend to lose local details

such as the boundaries and shapes of small targets, leading to

inaccurate localization and a reduction in overall recall. By

removing the low-resolution detection layers, the model can focus

on the key features of the leaf tips in the high-resolution feature

maps, reducing redundant calculations. This combination

effectively improves the detection accuracy of rice leaf tips while

reducing the model’s parameter count. The high-resolution

detection layer design is also known as the small target detection

layer, Hou et al. (2024) added a small target detection layer to the

leaf detection in the seedling stage of wheat, which is similar to that

of rice leaves, and fused the coordinate attention mechanism to

achieve a final mAP of 85.1%, which significantly improves the

detection effect in complex field environments, but with a slight

increase in the number of parameters, and only focusing on the

seedling stage.

Specifically, one of the strengths of this study is that it was

optimized for the needs of leaf tip detection during the whole life

cycle, unlike many studies that focus only on the seedling stage or a

specific stage of rice. Full-life leaf tip detection can cover the entire

growth stage from seedling to maturity, which solves the problem of

other methods that have large fluctuations in accuracy at different

stages of the rice reproductive cycle.

In addition, many related experiments have adopted potted rice

for leaf tip detection, but potted rice is limited by space and has

controllable growth conditions, so it usually shows better accuracy

in detection. However, field rice is more affected by environmental

and climatic factors, and the growth of rice plants is more intricate.

Traditional methods often face the problems of poor recognition

accuracy and high false detection rate in this environment. Vishal

et al. (2020) used YOLOv3 to detect the leaf tips of potted rice and

realized automatic counting of rice leaves with a final detection

accuracy of 82%. In comparison, the method proposed in this study

demonstrated higher detection accuracy in the field environment

than in potted rice. Therefore, the present method has a stronger
TABLE 4 Comparison of different detection models.

Model P/% R/% mAP/% Parameters/106

Faster R-CNN 42.8 31.1 35.3 41.5

YOLOv5s 87.2 64.9 75 7.01

YOLOv7-tiny 83.1 58.8 67 6.01

YOLOv8s 81.9 60.8 71.1 11.1

Improved YOLOv5s 93.7 87 93.5 5.02
TABLE 3 Comparison of ablation experiments.

Model Improvement one Improvement two Improvement three P/% R/% mAP/% Parameters/106

1 – – – 87.2 64.9 75 7.01

2 ✓ – – 92.5 84.4 92.2 4.81

3 ✓ ✓ – 92.4 84.8 92.5 4.82

4 ✓ ✓ ✓ 93.7 87 93.5 5.02
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potential for practical application in field crop health monitoring

and growth assessment, and can be better adapted to the challenges

in natural growing environments. Future research will incorporate

environment-aware technology to enhance the stability and

adaptability of the model in dynamic and complex environments
Frontiers in Plant Science 11
through multi-source data fusion. In order to solve the problem of

leaf occlusion behind rice, future research considers combining the

information from multi-view images to enhance the robustness and

detection accuracy of the model in occluded environments through

the complementarity of different viewpoints.
FIGURE 7

Model detection performance.
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5 Conclusion

This study proposes a new method for detecting rice leaf tips in

the field, based on an improved YOLOv5s model, with the aim of

enhancing the accuracy and efficiency of rice leaf detection. By

introducing a single high-resolution detection layer design, the

model’s ability to recognize small targets such as rice leaf tips is

strengthened. The incorporation of the CA attention mechanism

enhances the model’s focus on rice leaf tip features, even under

conditions of weed interference and leaf overlap. Additionally, the

use of the CARAFE upsampling operator effectively preserves the

spatial details and semantic information of the leaf tips.
Fron
1. The improved model achieved precision, recall, and mean

average precision (mAP) of 93.7%, 87%, and 93.5%,

respectively, representing increases of 6.5%, 22.1% and

18.5% compared to the baseline YOLOv5s model, while

also reducing the parameter count by 28.4%. Compared to

the current mainstream object detection models, the

proposed model demonstrates significant advantages in

detection performance. Whether in the early tillering

stage with minimal occlusion, or the late tillering and

jointing stages with severe leaf overlap, or under varying

lighting conditions, different angles, and weed interference,

the model shows strong robustness and significantly

reduces the missed detection rate of rice leaf tips. This

model is capable of quickly and accurately identifying rice

leaf tips, providing robust technical support for intelligent

monitoring of rice growth, particularly in areas such as leaf

counting, health assessment, and fertilization management.

2. In future research, we plan to further optimize the model’s

computational resource consumption while maintaining

high accuracy, reducing computational costs on low-end

devices, and improving its application efficiency on edge

devices. Additionally, we aim to integrate data from other

sensors to develop a more comprehensive intelligent

monitoring system for rice growth, providing all-around

technical support for precision agriculture and promoting

the application of agricultural automation.
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