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Introduction: Amomum tsao-ko Crevost et Lemaire is not only a traditional

Chinese medicine but also a significant cash crop in the border regions of

southwest China. However, challenges pertaining to its growing environment,

yield, and overall quality have considerably impeded its development. This paper

investigates the responses of A. tsao-ko to climatic challenges, aiming to

contribute to the long-term stability and sustainability of the industry.

Methods: The MaxEnt model, combined with ArcGIS software, was utilized to

analyze key environmental factors and predict potential suitable habitats for A.

tsao-ko under various climatic conditions. Furthermore, the volatile oils in A.

tsao-ko samples from high-suitable habitats were analyzed using gas

chromatography-mass spectrometry (GC-MS).

Results: The results indicated that Bio04 (Temperature seasonality (standard

deviation * 100)), Bio17 (Driest quarterly precipitation), and Bio12 (Precipitation of

the wettest month) were the primary environmental factors influencing the

distribution of A. tsao-ko. Under future climatic scenarios, it is expected to

gradually adapt to new environmental conditions, with suitable habitats

progressively shifting northward. The volatile oil extraction and GC-MS analysis

revealed that the sample from Xishuangbanna (S8) exhibited not only the highest

extraction rate (32.6 mL/g) but also the highest relative content of terpenes,

particularly eucalyptol (29.26%).

Discussion: S8 is regarded as a source of high-quality production that fulfills the

criteria outlined in the Chinese Pharmacopoeia. The results show that

Xishuangbanna can be used as a high-quality production area for A. tsao-ko

planting, and large-scale artificial planting can be carried out to realize the

sustainable development of A. tsao-ko industry and ecology.
KEYWORDS

environmental factor, species distribution, potential habitat, volatile oil, Amomum
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1 Introduction

Amomum tsao-ko Crevost et Lemaire refers to the dried ripe

fruit of Amomum Roxb., which belongs to the Zingiberaceae family.

This species prefers warm and humid environments at elevations

between 1100 and 1800 meters (Wu, 1987). China is the largest

global producer of A. tsao-ko, accounting for over 80% of total

production, with the primary growing regions being the provinces

of Yunnan, Guangxi, Guizhou, Chongqing, and Sichuan.

Significantly, Yunnan is responsible for 95% of the nation’s yield

(Liu et al., 2021a). A. tsao-ko is recognized not only as a precious

spice but also as a crucial herbal remedy (Jia et al., 2021). It is

frequently used to treat conditions such as cold and dampness,

abdominal distension, vomiting, and fevers linked to malaria and

plague (Wen et al., 2024). Consequently, this medicinal and

culinary plant is predominantly employed in China for enhancing

flavor, as a food additive, and in the formulation of traditional

Chinese medicines, among various other uses (Yang et al., 2014;

Liang et al., 2024).

As market demand for A. tsao-ko increases, it has emerged as a

significant cash crop in the southwestern border region,

highlighting the importance of expanding its cultivation area.

Global climate change is impacting the habitats of medicinal

plants and altering the accumulation of chemical constituents

(Wang et al., 2019a; Rana et al., 2020). Research indicates that

environmental factors such as light, temperature, and humidity are

critical determinants of fruiting rates and the accumulation of

secondary metabolites (Zhao et al., 2016; Koch et al., 2017; Zhang

et al., 2018). Furthermore, variations in yield, morphological

characteristics, and volatile oil composition of A. tsao-ko have

been observed across different latitudes, altitudes, and soil

conditions (Yang et al., 2014; Kazemi et al., 2017; Li et al., 2021).

Despite its long history of cultivation in China, A. tsao-ko ‘s growth

and quality are highly dependent on environmental conditions. The

cultivation areas remain semi-wild, typically characterized by

abundant flowers but limited fruit production, resulting in poor

and unstable yields and significant damage to natural resources

(Yang et al., 2020). Therefore, it is crucial to establish effective

analytical methods and scientifically select appropriate planting

habitats to optimize A. tsao-ko yields and prevent resource wastage.

MaxEnt (maximum entropy) model has high accuracy in

predicting the potential distribution of species (Elith et al., 2010;

Tarroso et al., 2012). In recent years, it has been extensively utilized

for predicting suitable habitats for Chinese herbs and cash crops.

For instance, Yang et al. (2023a) assessed and predicted the

distribution of Zanthoxylum nitidum in China under various

climate scenarios using the MaxEnt model, as well as identifying

and evaluating the species through high-performance liquid

chromatography (HPLC) techniques, hierarchical cluster analysis,

and principal component analysis. Similarly, Zhan et al. (2022)

employed the MaxEnt model in conjunction with HPLC to assess

suitable cultivation habitats for Panax notoginseng under different

climatic conditions in China. Furthermore, Wan et al. (2021)

investigated the factors influencing the quality of Codonopsis

pilosula by integrating chromatographic fingerprinting with
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MaxEnt modeling. The MaxEnt model is characterized by its high

prediction accuracy, effective application, and user-friendly

procedures, thereby providing a scientific foundation for

biodiversity conservation and management (Li et al., 2019; Liu

et al., 2021b). It can also provide information about the area of

distribution of species, the suitable range of environmental

variables, etc (Adhikari et al., 2012; Xu et al., 2021).

This research employed MaxEnt software along with ArcGIS

software to investigate A. tsao-ko and identify key environmental

factors that affect its geographical distribution. The study also aims to

forecast how climate change over time will impact the growth

environments of A. tsao-ko and alter the distribution of its potential

habitats. This paper proposes strategies and management measures to

adapt to climate change. Meanwhile, gas chromatography-mass

spectrometry (GC-MS) was used to determine the volatile oils of A.

tsao-ko from different regions. Cluster analysis was used to analyze the

volatile oil constituents and to compare the quality of A. tsao-ko from

different regions. This study is the first to integrate the MaxEnt model,

ArcGIS technology, and GC-MS in A. tsao-ko. By leveraging big data

analytics, it accurately predicts the distribution patterns of suitable

habitats and volatile oil composition variations under different climate

change scenarios. The findings provide a scientific basis for the

adaptive management and future cultivation planning of the A.

tsao-ko industry, demonstrating significant innovative and practical

value for promoting sustainable development and enhancing farmers’

economic benefits.
2 Materials and methods

2.1 Prediction of potentially suitable habitat

2.1.1 Distribution data collection and processing
The distribution data of A. tsao-ko in China were sourced from

online databases, including the Chinese Virtual Herbarium (http://

www.cvh.ac.cn/) , the National Specimen Information

Infrastructure (http://www.nsii.org.cn/), and the Global

Biodiversity Information Facility (GBIF). To minimize sampling

deviations, the data points were analyzed in the field using ArcGIS

10.4.1 software. In order to reduce the overfitting of the model

caused by sampling bias, ArcGIS was used to select neighborhood

analysis, set a buffer with a radius of 5km, randomly retain a

distribution point within 10km, and screen out other distribution

points. The final distribution sample points (Supplementary Figure

S1) were then obtained for further data analysis.

2.1.2 Selection and dealing with environmental
factors

Climate factors such as temperature, precipitation, and

humidity were sourced from the WorldClim (version 2.1) website

(http://www.worldclim.org) for the period from 1970 to 2000.

Paleo-climate data (CURRENT) served as a reference standard.

Past climate scenarios for the Last Glacial Maximum (LGM) and

the Middle Holocene (MH) were selected, along with future climate

scenarios for the periods 2041–2060 and 2081-2100 (Yang et al.,
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2023a). In addition, 11 soil factors, including vegetation type and

soil cover, as well as three topographic factors–elevation, slope, and

aspect–were collected from the Harmonized Word Soil Database

(version 1.2) (Harmonized World Soil Database v1.2 | FAO SOILS

PORTAL | Food and Agriculture Organization of the United

Nations) and the WorldClim website. This resulted in a total of

33 independent environmental factors selected for the study

(Supplementary Table S1).

In order to mitigate multicollinearity among environmental

factors and prevent overfitting of the model, Spearman correlation

and variance inflation factor (VIF) of all environmental variables

were analyzed. The high contribution factors were retained,

especially the factors with correlation coefficients of |r| > 0.8 and

VIF <10 (Karakaya and Yücel, 2021; Wu et al., 2024). Through

analyses conducted with ArcGIS, MaxEnt, and SPSS, we ultimately

identified 14 valid environmental factors to construct a prediction

model for A. tsao-ko growth, ensuring the accuracy and stability of

the model predictions.

2.1.3 MaxEnt modeling and suitable habitat
delineation

To quantitatively assess the contribution of each environmental

factor to the construction of the prediction model, this study employed

the MaxEnt model to analyze the contributions of 14 selected

environmental factors. The modeling parameters included the

Bootstrap method for sampling, with the output format set to

Logistic. A random selection of 75% of the distribution points was

utilized for training, while the remaining 25% was reserved for testing.

After 106 iterations, themodel was operated 10 times (Zhao et al., 2021;

Hosni et al., 2022). To evaluate model uncertainty and prediction

accuracy, multiple random resampling of the dataset was conducted

using Bootstrap resampling. The accuracy of the model’s predictions

was assessed using the area under the receiver operating characteristic

(ROC) curve (AUC) (Zhan et al., 2022; Wu et al., 2024). The Jackknife

method was used to determine the degree of contribution of each

environmental factor. In addition, the Maximum Test Sensitivity Plus

Specificity Logistic threshold (MTSPS) was used to delineate the

suitable potential habitats for A. tsao-ko (Ramos et al., 2019; Yang

et al., 2023a). The habitats were categorized into four levels: 0-MTSPS

indicating unsuitable habitats, MTSPS-0.3 indicating low-suitable

habitats, 0.3-0.5 indicating medium-suitable habitats, and 0.5–1

indicating high-suitable habitats. Subsequently, the various categories

of suitable habitats were quantified.
2.2 Quality evaluation of the volatile oil of
A. tsao-ko from different regions

2.2.1 Sample collection
Samples were collected from the Honghe Hani and Yi

Autonomous Prefecture, Lincang, Nujiang Lisu Autonomous

Prefecture, Baoshan, Wenshan Zhuang and Miao Autonomous

Prefecture, and Xishuangbanna Dai Autonomous Prefecture in

Yunnan Province (see Supplementary Table S2). The samples

were collected in November 2022. The samples were identified as
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A. tsao-ko by Yang Qing, a Deputy Senior Agronomist at the

Academy of Agricultural Sciences in Wenshan Zhuang and Miao

Autonomous Prefecture, Yunnan Province.

2.2.2 Extraction of volatile oil
The extraction procedure was carried out following Method A,

as described in the four general rules 2204 of the 2020 version of the

Chinese Pharmacopoeia for measuring volatile oils (China

Pharmacopoeia Commission, 2020). The reflux was heated until

the oil volume in the extractor reached a stable state; thereafter, the

upper layer of volatile oil was collected and quantified. This

procedure was repeated three times. Samples of volatile oil from

A. tsao-ko, sourced from various regions, were transferred in 5 mL
aliquots and then diluted to a final volume of 4 mL with an acetone

solution. The mixture was thoroughly mixed and subsequently

filtered through a 0.4 mm microporous membrane, resulting in a

filtrate designated as the sample solution. This solution was then

subjected to analysis using gas chromatography-mass spectrometry

(GC7890B-MS5977A, Agilent, USA).

GC conditions: Column, VF-1701 MS flexible quartz capillary

column (30 m×0.25 mm×0.25 mm). Column temperature: 40°C,

retained for 1 min; warmed to 100°C at 30°C/min, retained for 1

min; then warmed to 220°C at 3°C/min, and then warmed to 280°C

at 5°C/min, retained for 14 min. Carrier gas: He, 1.0 mL/min; non-

split injection; injection volume of 1.0 mL. Mass spectrometry

conditions: EI ion source, ionization voltage of 70 eV; scanning

range m/z: 40–650 amu; four-stage rod temperature 150°C; ion

source temperature 230°C; electron multiplier voltage 2300V; GC/

MS interface temperature 280°C (Wang et al., 2021; Qin et al.,

2022). Identification of compounds was performed by comparing

with the NIST 20.L standard mass spectral library and was further

validated through references from previously published literature.

2.2.3 Systematic cluster analysis
Hierarchical Clustering is a hierarchical clustering analysis

method that gradually merges or segments sample sets by

calculating similarity measures between samples (such as Euclidean

distance, Manhattan distance, or correlation coefficient, etc.) to form

a hierarchical clustering structure. In this clustering method, samples

belonging to the same cluster are highly similar, while samples of

different clusters show significant differences (Buchgraber et al.,

2004). This research investigated the volatile oil content of A. tsao-

ko from various sources using SPSS 26.0 for statistical analysis. For

systematic cluster analysis, the Euclidean squared distance was

employed as the measurement, applying the homogeneous

correlation method among groups (Yang et al., 2023b).
3 Results and analysis

3.1 Evaluation of model prediction
accuracy

The distribution prediction of habitats for A. tsao-ko was

conducted using MaxEnt. After 10 cycles, an average ROC curve
frontiersin.org
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was generated. AUC values typically range from 0 to 1, with a value

of 0 indicating no predictive power (similar to random chance) and

a value of 1 representing perfect prediction (Porfirio et al., 2014).

AUC values nearing 1 demonstrate an enhanced model

performance. In this study, the average training AUC value

obtained from the ROC curve was 0.977 and the standard

deviation is 0.007. (Figure 1), indicating that the model was built

with a remarkably high accuracy, enabling an effective assessment of

the favorable habitats for the growth of A. tsao-ko.
3.2 Environmental factors affecting the
growth of A. tsao-ko and the extent of
their influence

In the MaxEnt model, Percent Contribution is a key metric used

to measure the relative contribution of each environment variable

(feature) to the model’s predictions (Shi et al., 2023). In order to

characterize the impact of various environmental factors on the

results of prediction model construction, MaxEnt model was used

to analyze the contribution rates of 14 environmental factors. In the

univariate analysis illustrated in Figure 2, Bio04, Bio17, and Bio12

each contributed over 15%, with Bio04 being the most prominent at

24.5%. This reveals the magnitude and frequency of temperature

fluctuations, indicating that these changes significantly affect A.

tsao-ko. Consequently, temperature emerges as the primary

environmental factor influencing the identification of suitable

habitats for A. tsao-ko. Together, the cumulative effects of

climatic variables—such as Bio04, Bio06, Bio12, Bio15, and Bio17

—reach a total of 70.5%, underscoring the crucial influence of

climate on the distribution of A. tsao-ko. In contrast, topographical

elements—such as aspect, elevation, and slope—contribute a

combined 19.5%. These topographical factors affect both direct

and indirect variables related to water distribution, light

accessibility, and soil erosion. Additionally, soil parameters,

including t_clay, awc_class, t_oc, t_sand, s_caco3, and s_ph_h2o,

account for a total of 9.9%. Although the individual contributions of
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each soil factor might appear minor, their overall influence is vital

for the growth of A. tsao-ko.

As indicated in Table 1, the range of suitable habitats (both high

and medium suitable habitat) for the distribution of A. tsao-ko

concerning Bio04 spans from 140.256 to 1600.848. Specifically, the

high-suitability habitat ranges from 140.256 to 977.688, with the

optimal condition identified at 460.451. Furthermore, the most

suitable conditions for the environmental factors Bio17 and Bio12

are recorded at 59.283 mm and 1666.240 mm, respectively. These

three ecological factors provide critical insights that significantly

influence A. tsao-ko and are essential for research and forecasting

suitable habitats for A. tsao-ko in designated regions. Seasonal

temperature variation, which refers to the fluctuation range of

temperature throughout the year, has a significant impact on the

growth and development of plants. Extreme temperature changes

can affect the photosynthesis, respiration, and transpiration of

plants, thereby influencing their growth rate and morphology

(Cheng et al., 2024b; Yin et al., 2024). For a plant like A. tsao-ko,

seasonal temperature variation may affect its seed germination rate,

flowering, and fruiting times. The amount of precipitation directly

affects the water supply for plants, thereby influencing their growth

and distribution (Zhang et al., 2025). For some drought-tolerant

plants, the less precipitation in the driest quarter, the better these

plants can grow and reproduce (Bao et al., 2024; Krasensky and

Jonak, 2012). However, A. tsao-ko has a high demand for water, and

too little precipitation in the driest quarter may limit its growth and

even cause its death. Therefore, the distribution of A. tsao-ko may

be significantly influenced by the precipitation in the driest quarter,

and it is usually distributed in areas with relatively sufficient

precipitation. Months with high precipitation can provide

sufficient water for plants, promoting their growth and

reproduction. For A. tsao-ko, the adequate precipitation in the

wettest month is helpful for its growth and development,

especially during the growth period and flowering period. If the

precipitation in the wettest month is insufficient, it may affect A.

tsao-ko ‘s flowering and fruiting, thereby affecting its distribution

and population size.
FIGURE 1

ROC curve of MaxEnt model.
FIGURE 2

Estimates of relative contributions of the environmental variables.
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3.3 Distribution of suitable habitat for A.
tsao-ko under different climatic conditions

3.3.1 Distribution of suitable habitats under
current climatic conditions

Based on Figure 3, the distribution of A. tsao-ko is primarily

found in certain regions of China, including Yunnan, Guangxi, and

Guizhou, aligning with existing documentation in FRPS. Its major

distribution zones occur within the latitudinal range of 20° to 30° N

and the longitudinal range of 90° to 110° E. The total area identified

as suitable for its habitat is a mere 422,933.30 km², representing

only 4.41% of China’s entire land mass. High-suitability habitats

encompass an area of 137,814.34 km², predominantly situated in

Yunnan, southern Guizhou, and western Guangxi. The medium-

suitable habitat covers 285,118.96 km², accounting for 2.97% of the

country’ s total land area, primarily located in Yunnan, Guizhou,

Guangxi, and other regions. The area of low-suitable habitat

accounts for 3.40% of the total land area of China, which is

326,702.33 km2. In addition to the above areas, there are a small

number of distributions in Sichuan, Guangdong, and Chongqing.

3.3.2 Distribution of suitable habitats under past
climatic conditions

Figures 4a, b illustrates the distribution of suitable habitat for A.

tsao-ko under past climate conditions. The range of suitable habitat for

A. tsao-ko during the Last Glacial Maximum (LGM) is relatively
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limited compared to current climate conditions (Figure 4a),

primarily concentrated in a few regions, including Yunnan, Guangxi,

and Guizhou. Notably, this habitat is categorized as low-suitability,

with a total area of only 748.60 km², which constitutes merely 0.01% of

China’s land area. This phenomenon is likely associated with the

extreme cold climate prevalent during the LGM, which may have

adversely impacted the growth of A. tsao-ko, leading to a restricted

range of suitable habitat (Huang and Zhang, 2000; Wu et al., 2024).

In contrast, suitable habitat during the Middle Holocene (MH)

period (Figure 4b) expanded significantly into surrounding areas

compared to the LGM period. The total suitable habitat area

increased to 3767.13 km², likely due to the notable warming of

temperatures during the MH period (Zhan et al., 2022; Yang et al.,

2023a). The expansion of suitable habitats for A. tsao-ko correlates

with rising temperatures, thereby providing enhanced opportunities

and space for its growth.

3.3.3 Distribution of suitable habitats under
future climate conditions

Figures 4c–f clearly demonstrate that the future suitable habitat

for A. tsao-ko is expanding beyond its original distribution. This

indicates that as climate change progresses, A. tsao-ko possesses the

ability to adapt to new environmental conditions and extend its

range for survival. Figures 5a, b depict the projected expansion of

suitable habitat area for A. tsao-ko in the future. According to the

SSP126 model scenario, the overall suitable habitat area increases by

22,482.07 km² in SSP126–2050 and by 107,315.04 km² in SSP126-

2090. In SSP126-2050, the area of highly suitable habitat rises by

17,097.00 km², while in 2090 under the SSP126 scenario, the highly

suitable habitat area increases by 70,223.25 km². In the SSP585

scenario, the medium suitability area expands significantly, with

increases of 998,452.61 km² and 169,158.83 km² projected for

SSP585–2050 and SSP585-2090, respectively. For both SSP126

and SSP585 future climate conditions, the area of suitable habitat

in 2090 surpasses that of 2050. This trend further substantiates the

expectation that the habitat area for A. tsao-ko will continue to

increase in the future.

Figure 6 clearly illustrates the spatial distribution of A. tsao-ko’s

highly suitable habitats across different provinces during various

periods. The data for Yunnan, Guizhou, Guangxi, and Xizang

provinces were significantly higher compared to other regions, with

Yunnan Province consistently exhibiting the highest values across all

periods (including the present period). This underscores Yunnan’s

absolute dominance as the primary production area for A. tsao-ko.

Additionally, the suitable areas in each province have shown a

continuous increasing trend, suggesting that there is potential for

further exploration of its cultivation capabilities in the future.
TABLE 1 Range of suitable habitat for key environmental variables affecting the potential distribution of Amomum tsao-ko.

Environmental factors Total suitable habitat range High-suitable habitat range Optimal value Unit

Bio04 140.256-1600.848 140.256-977.688 460.451 –

Bio17 -62.800-274.059 -62.800-158.758 59.283 mm

Bio12 379.984-4654.00 790.168-4654.00 1666.240 mm
FIGURE 3

Distribution of suitable habitats for Amomum tsao-ko under the
current climate conditions. [Maximum Test Sensitivity Plus Specificity
Logistic threshold (MTSPS)].
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3.4 Volatile oil content of A. tsao-ko from
different regions

The samples were gathered from Yunnan, a region that is ideal

for A. tsao-ko, where both geographic and climatic factors establish
Frontiers in Plant Science 06
an optimal ecological environment for its development. As

illustrated in Figure 7a, the sample obtained from Xishuangbanna

(S8) exhibited the highest content of volatile oil at 32.6 mL/g,
showing a notable difference in volatile oil levels when compared

to samples from other locations. The volatile oil concentrations for
FIGURE 4

Distribution of suitable habitats for Amomum tsao-ko under different climatic conditions. (a) Last glacial maximum (LGM). (b) Middle holocene (MH).
(c) Average for 2041–2060 (2050S), SSP126. (d) Average for 2041–2060 (2050S), SSP585. (e) Average for 2081–2100 (2090S), SSP126. (f) Average
for 2081–2100 (2090S), SSP585.
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samples sourced from Lincang, Tengchong, Wenshan, Maguan,

Nujiang, Malipo, and Honghe were recorded as 28.6 mL/g, 26.0 mL/
g, 20.4 mL/g, 20.0 mL/g, 19.6 mL/g, 18.0 mL/g, and 15.4 mL/g,
respectively. All these measurements surpass the criteria

established in the 2020 edition of the Chinese Pharmacopoeia.

This observation suggests that the volatile oil content of A. tsao-

ko typically adheres to high-quality benchmarks within Yunnan’s

favorable habitat, thus underscoring the importance of this optimal

environment in preserving the quality of A. tsao-ko.
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3.5 Analysis of volatile oil composition of A.
tsao-ko from different regions

Gas chromatography-mass spectrometry (GC-MS) methods are

extensively utilized in various fields including traditional herbal

medicine, analyzing pesticide residues, and assessing food flavors

(Hailemariam et al., 2018; Sharma et al., 2021; Liang et al., 2024).

The assessment of A. tsao-ko’s quality can be conducted by

examining the variations in its odor-active compounds. In this
FIGURE 5

Total suitable habitats: Medium-suitable habitats + High-suitable habitats. (a) Area of suitable habitat for Amomum tsao-ko under different climatic
conditions. (b) Future reduction and expansion of the area of suitable habitat for Amomum tsao-ko under different climatic conditions.
FIGURE 6

Area of Amomum tsao-ko suitable habitat in different provinces in different periods.
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study, a total of 53 compounds were identified in samples from

eight regions (Table 2). Specifically, 20, 22, 23, 19, 21, 18, 20, and 23

compounds were identified in A. tsao-ko samples from the S1-S8

regions, respectively. Eucalyptol, 2(E)-Decenal, b-Citral, a-
Phellandrene, D-Limonene, Terpinen-4-ol, and Nerolidol were

present in each sample, though the contents of these components

varied significantly. Eucalyptol is its main component. Eucalyptol

has rich pharmacological activities, used for antibacterial, anti-

inflammatory, antioxidant, anti-tumor, nervous system and

promoting osmolar effects (Nikhil et al., 2021; Zhang et al., 2020).

Notably, Eucalyptol exhibited the highest terpenoid content across

all samples, with a significant difference observed in the
Frontiers in Plant Science 08
Xishuangbanna (S8), which had a content of 29.26%, compared

to the other samples (Figure 7b). In contrast, the Honghe (S1) and

Wenshan (S7) showed no significant difference, with contents of

25.71% and 25.79%, respectively. The Maguan (S6) yielded a

content of 27.86%, while the Malipo (S5) had 26.5%. The Lincang

(S2) presented a content of 26.07%, and the Nujiang (S3) had

24.88%. The Tengchong (S4) recorded the lowest content at 20.33%.

The content of 2(E)-Decenal ranged from 14.18% to 20.02%, with

the highest concentration of 20.02% found in the Lincang (S2). No

significant difference was noted between the Lincang (S2) and the

Tengchong (S4), nor between the Honghe (S1) and Nujiang (S3).

Additionally, no significant difference was observed in the D-

Limonene content between the S1 and S8.
3.6 System cluster analysis

The eight samples mentioned above were clustered and analyzed

(Figure 7c). At a Euclidean distance of 5, the cluster analysis

categorized the eight samples into four major groups. The Malipo

(S5) and the Wenshan (S7) were grouped together. The Honghe (S1),

Lincang (S2), Nujiang (S3), and Maguan (S6) formed another group.

The Tengchong (S4) was classified in a separate group, as was the

Xishuangbanna (S8). When the Euclidean distance was increased to

25, samples S1 through S7 were clustered into one group, while the

Xishuangbanna (S8) remained in a distinct group. Notably, S8

exhibited the highest volatile oil content among all samples, along

with the highest relative content of eucalyptol, indicating superior

quality. These results suggest that there are notable differences in the

volatile oil composition of A. tsao-ko across different regions, which

may be related to geographical location, soil conditions, and the

ecological environment of the samples.
4 Discussion

4.1 Impacts of climate change on A. tsao-
ko’s habitats

Precipitation and temperature are essential elements that

impact the growth and development of plants. They directly

influence metabolic processes, such as signaling, self-defense

mechanisms, and physiological regulation within plant systems

(Pant et al., 2021). In this research, Bio04, Bio17, and Bio12 were

identified as the primary environmental factors that affect the

potential distribution of A. tsao-ko. The findings highlight the

crucial influence of temperature and rainfall in defining the

suitable habitats for A. tsao-ko, particularly noting the significant

impact of temperature. These results align with the analysis of

suitable habitats for medicinal Amomum Roxb. species, where

annual temperature fluctuations and the lowest temperature

during the coldest month surfaced as vital bioclimatic factors

determining their distribution (Zhao, 2022).

Environmental changes can lead to variations in the living space

and distribution range of medicinal plants. For instance, under
FIGURE 7

(a) Total volatile oil content of Amomum tsao-ko from different
regions. (b) Eucalyptol content of samples from different regions. (c)
Results of volatile oil cluster analysis of Amomum tsao-ko from
different regions. Different letters indicate significant
differences (p<0.05).
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TABLE 2 GC-MS results of volatile oil composition of Amomum tsao-ko from different regions.

Relative content (%)
Identification

S6 S7 S8

– – – GC-MS, RT

a – tr – GC-MS, RT

0.24 ± 0.02b – 0.70 ± 0.04a GC-MS, RT

– – 0.94 ± 0.02a GC-MS, RT

– 0.32 ± 0.02 – GC-MS, RT

– – – GC-MS, RT

0.42 ± 0.01 – – GC-MS, RT

a 0.46 ± 0.07a – – GC-MS, RT

– – – GC-MS, RT

– 0.51 ± 0.03 – GC-MS, RT

e 2.19 ± 0.02d tr 2.69 ± 0.02c GC-MS, RT

c – – – GC-MS, RT

1.19 ± 0.03a 0.13 ± 0.02d – GC-MS, RT

– – 0.62 ± 0.02 GC-MS, RT

a 1.25 ± 0.37a 0.77 ± 0.04a 1.17 ± 0.07a GC-MS, RT

c 27.86 ± 0.03b 25.79 ± 0.02e 29.26 ± 0.01a GC-MS, RT, CO

1.59 ± 0.08c 2.12 ± 0.03b 2.42 ± 0.01a GC-MS, RT

– – – GC-MS, RT

c 0.38 ± 0.02bc 0.40 ± 0.02bc 0.33 ± 0.02bc GC-MS, RT

1.72 ± 0.02b – – GC-MS, RT

– – – GC-MS, RT

– 2.01 ± 0.03a 1.53 ± 0.03c GC-MS, RT

b 6.73 ± 0.03c 8.59 ± 0.02a 1.29 ± 0.04g GC-MS, RT

– – 5.26 ± 0.07a GC-MS, RT

– – – GC-MS, RT
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No. Compound RT (min)
S1 S2 S3 S4 S5

1 b-trans-Ocimene 5.019 0.22 ± 0.04 – – – –

2 1S-a-Pinene 5.026 – 0.27 ± 0.03c 0.37 ± 0.03c 0.51 ± 0.02b 0.84 ± 0.03

3 1R-a-Pinene 5.026 – – – – –

4 b-Pinene 5.863 0.59 ± 0.01b 0.43 ± 0.01c – 0.84 ± 0.04a –

5 (+)-Sabinene 5.863 – – – – –

6 N-Methyl-2-pyrydylmethylamine 5.864 – – 0.50 ± 0.03 – –

7 Bicyclo[2.1.1]hexane, 1-ethenyl-5,5-dimethyl- 5.870 – – – – –

8 2-Methylpiperazine 6.345 – – – – 0.33 ± 0.02

9 2-(Pentylamino)ethanol 6.339 – – 0.50 ± 0.04 – –

10 Octanal 6.339 – – – – –

11 a-Phellandrene 6.411 3.25 ± 0.02b 1.19 ± 0.03e 0.90 ± 0.11e 4.63 ± 0.19a 0.80 ± 0.01

12 p-Cymene 6.840 1.56 ± 0.02a – – 1.06 ± 0.02b 0.51 ± 0.01

13 o-Cymene 6.840 – 0.36 ± 0.01c 0.83 ± 0.04b – –

14 b-Cymene 6.840 – – – – –

15 D-Limonene 6.932 1.27 ± 0.16a 0.95 ± 0.03a 1.07 ± 0.01a 1.12 ± 0.21a 0.87 ± 0.02

16 Eucalyptol 7.005 25.71 ± 0.02e
26.07
± 0.03d

24.88 ± 0.02f
20.33
± 0.02g

26.50 ± 0.0

17 2-Octenal, (E)- 7.546 2.12 ± 0.06b 1.68 ± 0.02c 1.61 ± 0.02c 2.11 ± 0.03b –

18 2-Methylene cyclopentanol 7.546 – – – – 1.19 ± 0.1

19 Terpinen-4-ol 10.336 0.43 ± 0.02b 0.41 ± 0.03bc 0.41 ± 0.02bc 0.74 ± 0.02a 0.31 ± 0.03

20 a-Terpineol 10.633 1.75 ± 0.03b 2.03 ± 0.04a – – –

21 Cyclofenchene 10.633 – – – – 1.40 ± 0.0

22 Terpineol 10.633 – – 1.86 ± 0.06b 1.86 ± 0.01b –

23 b-Citral 11.754 5.41 ± 0.03d 4.05 ± 0.03f 6.99 ± 0.07b 5.02 ± 0.05e 7.13 ± 0.05

24 2,7-Dimethylocta-2,6-dienol 12.025 0.44 ± 0.02b – – – –

25 Farnesol 12.031 – 1.82 ± 0.03 – – –
3

7

4
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TABLE 2 Continued

Relative content (%)
Identification

S6 S7 S8

– – – GC-MS, RT

c
14.18
± 0.10d

15.07 ± 0.02c
17.82
± 0.10b

GC-MS, RT

– – 0.56 ± 0.01 GC-MS, RT

15.25 ± 0.25b 21.28 ± 0.11a 3.80 ± 0.08e
GC-MS, RT

– – – GC-MS, RT

2.31 ± 0.08c – 7.84 ± 0.24a GC-MS, RT

10.48 ± 0.12 – – GC-MS, RT

– – – GC-MS, RT

– 9.25 ± 0.03 – GC-MS, RT

– – – GC-MS, RT

– – 0.29 ± 0.03b GC-MS, RT

– 0.19 ± 0.03b tr GC-MS, RT

– – – GC-MS, RT

– – – GC-MS, RT

– – – GC-MS, RT

– – – GC-MS, RT

1.21 ± 0.03a 0.71 ± 0.05b – GC-MS, RT

– – –
GC-MS, RT

– – – GC-MS, RT

– – – GC-MS, RT

– 1.68 ± 0.10a 1.15 ± 0.02b GC-MS, RT

– 1.20 ± 0.04a 0.80 ± 0.03b GC-MS, RT

– – – GC-MS, RT

– – 9.51 ± 0.12a GC-MS, RT
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No. Compound RT (min)
S1 S2 S3 S4 S5

26 Bicyclooctyl 12.032 – – 0.82 ± 0.01 – –

27 2(E)-Decenal 12.196
18.04
± 0.05b

20.02 ± 0.08a 17.70 ± 0.11b 19.75 ± 0.06a 14.97 ± 0.01

28 Cyclodecanol 12.348 – – – – –

29 a-Citral 12.408 14.24 ± 0.10c
13.27
± 0.23d

15.05
± 0.28bc

– 21.57 ± 0.13

30 Citral 12.408 – – – 17.55 ± 0.14 –

31 3-Phenylpentane 12.863 9.60 ± 0.15a 9.73 ± 0.03a 2.47 ± 0.20c 1.33 ± 0.09d 8.99 ± 0.30

32 1,2-Dimethyl-3-phenyldiaziridine 12.863 – – – – –

33 2-phenylbutyraldehyde 12.863 – – 10.11 ± 0.07a 8.69 ± 0.03b –

34 2-Furfurylfuran 12.863 – – – – –

35 Hexane, 3,4-diphenyl- 13.041 – – – – 0.46 ± 0.02

36 2,3-Dimethylamphetamine 13.047 – 0.39 ± 0.02a – – –

37 1-(2,6-Dimethylphenyl)-2-propanamine 13.054 0.45 ± 0.01a 0.17 ± 0.03b 0.46 ± 0.03a – 0.21 ± 0.02

38 2-Methyl-2-phenylpropanal 13.265 – 1.59 ± 0.11 – – –

39 7-[(1E)-1-Propenyl]bicyclo[4.2.0]oct-1-ene 13.265 – – – – 1.10 ± 0.02

40 4-Propylbenzaldehyde 13.272 1.26 ± 0.05 – – – –

41 2,4-Dimethylamphetamine 13.865 – – 0.14 ± 0.02b 0.24 ± 0.03a –

42 Indane-4-carboxaldehyde 14.057 0.69 ± 0.03b 1.31 ± 0.12a 1.48 ± 0.04a – 0.75 ± 0.03

43
trans-2-Phenyl-1-

cyclopropanecarbonyl chloride
14.057 – 0.55 ± 0.06 – – –

44 2-Ethylindane 14.057 – – – 0.37 ± 0.01 –

45 Phthalan 14.347 – – – – 1.54 ± 0.03

46 a-Tolualdehyde 14.347 – – 1.47 ± 0.02a – –

47 a-Methylcinnamaldehyde 14.743 0.9 ± 0.04b – – – 0.84 ± 0.04

48 2-Butenal, 3-phenyl- 14.743 – – 1.90 ± 0.03a 0.98 ± 0.06b –

49 b-Myrcene 14.868 – 1.31 ± 0.03b – – –
a

a

b

b

b
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future climate scenarios, the total area of suitable habitat for

Angelica dahurica is projected to increase, primarily expanding to

the middle and high latitudes (Zhang et al., 2024). Similarly, future

warming is expected to alter the area of highly suitable habitats for

Gentiana rigescens, with its suitable habitat shifting to higher

altitudes (Shen et al., 2021). Future climate scenarios also indicate

a significant trend of expansion in the habitable zone of Lonicera

japonica Flos in certain regions (Cheng et al., 2024a). Currently, the

cultivation of A. tsao-ko is predominantly found in the southern

Yunnan areas of Honghe, Wenshan, Nujiang, and Xishuangbanna

(Wu and Zhu, 1987). These regions experience an average annual

temperature exceeding 15°C, along with abundant rainfall and

sunlight, creating an ideal ecological environment for the growth

of A. tsao-ko. Moderate rainfall enhances fruit set and quality

(Wang et al., 2024). However, both excessive and insufficient

rainfall can negatively impact yield; excessive rainfall may lead to

flower rot, whereas insufficient rainfall can desiccate the flowers.

The SSP126 and SSP585 scenarios predict increasing trends in

future temperatures and precipitation. As A. tsao-ko thrives in

warm and humid cl imates , i t i s l ikely that ongoing

global warming will further increase the area of suitable

habitat for this species, facilitating its expansion and spread into

middle and high latitudes. This outcome reflects the adaptive

adjustments of plants to climate change, which is significant

for the future planting strategies and industrial development of

A. tsao-ko. The change of the suitable area of A. tsao-ko was

consistent with the expansion direction of Amomum villosum

Lour and other ginger plants, which expanded to the high latitude

area (Ban et al., 2022).
4.2 Comparison of volatile oil content and
composition of A. tsao-ko in different
regions

Geographic diversity influences the secondary metabolic

pathways in medicinal plants. Environmental factors significantly

affect the content of secondary metabolites produced by plants and

their biological activity (Wang et al., 2019b; Li et al., 2020). The

habitat of Litsea cubeba is influenced by factors such as altitude and

soil composition. Notably, higher fruit yields correlate with

increased volatile oil content (Fan et al., 2023). The volatile oil

content and composition of the bark of Cinnamomum cinnamomi

vary significantly based on species, regions, and growing conditions

(Li et al., 2013). In the study of Zanthoxylum nitidum, the content of

active ingredients in samples from suitable habitat areas met

established criteria. Specifically, the concentration of active

ingredients was greater in high-suitability habitats compared to

low-suitability habitats (Yang et al., 2023a). For instance, among Z.

nitidum cultivated in Guangdong and Guangxi—regions

recognized as highly suitable for growth—the root medicine from

Guangdong exhibited a higher concentration of effective medicinal

components (Yang et al., 2023b). Moreover, Coptis herbs sourced

from highly suitable habitats demonstrated the highest total

alkaloid content, while medium and averagely suitable habitats
T
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yielded lower alkaloid levels. This suggests a potential relationship

between alkaloid content and environmental factors (Li et al., 2019).

The volatile oil contents of the eight samples analyzed in this study

exceeded the standards set forth in the 2020 edition of the Chinese

Pharmacopoeia, indicating that the volatile oil content of A. tsao-ko

from highly suitable habitats generally meets high-quality

standards. This finding underscores a positive correlation between

volatile oil content and the growing environment.

Environmental changes can alter the chemical composition of

medicinal plants and their relative contents (Li et al., 2019; Fan

et al., 2023). Both excessive and insufficient water can place the

plant in a state of adversity. Moisture levels can impair the

secondary metabolic processes within the plant, subsequently

affecting the accumulation of bioactive compounds (Yang et al.,

2019; Cisse et al., 2024). Temperature influences enzyme activity,

thereby affecting the plant’s metabolic rate and developmental

growth period (Moore et al., 2021). Additionally, temperature

impacts the rate of photosynthesis and secondary metabolic

processes; within an appropriate range, higher temperatures can

enhance photosynthesis, whereas excessively high temperatures can

inhibit it (Chang et al., 2021). Experimental results from GC-MS

analysis by Liu et al. indicated that the volatile oil composition of A.

tsao-ko from Yunnan contained the highest total content of

monoterpenes, with eucalyptol being the most abundant

component (Liu et al., 2022). Although the volatile oils from

Yunnan and Guangxi shared similar major constituents, their

contents differed, with Yunnan exhibiting a higher eucalyptol

content compared to Guangxi (Sim et al., 2019). The volatile oil

species and their relative contents of A. tsao-ko varied significantly

across different regions, influenced by genetic and geographical

factors, with higher altitudes promoting the accumulation of A.

tsao-ko biomass (Li et al., 2021).

In this study, the volatile oil composition of eight regions

samples exhibited variation. All samples demonstrated a high

diversity and content of terpenoids, with eucalyptol identified as

the most abundant constituent, comprising over 20% of the total.

This finding suggests that regions with optimal environmental

conditions are more conducive to the synthesis of secondary

metabolites in A. tsao-ko, ultimately enhancing the concentration

of active ingredients in its volatile oil. Cluster analysis showed that

the volatile oil of Xishuangbanna sample S8 was significantly

different from that of other regions. This may be due to the

complex and diverse local ecosystems, the unique tropical

climate (high temperature and high humidity) and the special

evolutionary process of plant populations, forming a specific

genetic background, affecting their volatile oil synthesis

mechanism and producing a unique profile. Xishuangbanna,

located in the southern part of Yunnan, China, is characterized

by abundant sunshine, a warm climate, minimal temperature

fluctuations throughout the year, and significant rainfall. These

conditions are favorable for the growth and secondary metabolism

of A. tsao-ko, thereby influencing the synthesis and accumulation of

specific chemical components in its volatile oil. Consequently, this

region may serve as a high-quality production area for A. tsao-ko,

yielding superior medicinal herbs.
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4.3 Limitations of the study and future
prospect

In this study, the distribution characteristics and changing trends

of A. tsao-ko were preliminarily analyzed. However, due to

limitations in sample size and geographic coverage, the results may

not fully capture the actual distribution of A. tsao-ko or the

geographical variations in essential oil components. In future

research, it is essential to investigate the impact of climate change

on the physiological traits of A. tsao-ko by integrating long-term

meteorological data with physiological and ecological experiments.

This will facilitate an evaluation of how temperature, precipitation,

and other environmental factors influence its growth and metabolic

processes. Additionally, the interaction mechanisms between

environmental factors and essential oil components should be

explored. Multi-site sampling combined with metabolomics

analysis can be employed to elucidate the relationships between key

environmental factors and the accumulation of specific compounds,

thereby informing the optimization of cultivation techniques.

Furthermore, given the decline in wild resources, efforts should

focus on strengthening the collection and evaluation of germplasm

resources. This includes incorporating molecular marker-assisted

breeding and genetic diversity conservation strategies to advance

variety improvement and genetic enhancement.

In the context of resource protection, it is crucial to first accurately

delineate the primary distribution areas of production zones (e.g.,

Yunnan and Guangxi), implement dynamic monitoring systems for

changes in plant habitats, enforce strict protection measures, prohibit

illegal extraction, and prioritize the preservation of indigenous

communities and ecosystems. Secondly, establish relocation sites

and appropriate conservation areas for research purposes, collect

germplasm materials, develop techniques for artificial breeding and

cultivation, and simultaneously plan the construction of

demonstration parks for A. tsao-ko. These parks should integrate

cultural and ecological functions, such as oil extraction and product

development, while formulating sustainable harvesting standards,

including rotational practices. Furthermore, efforts should focus on

scientifically exploring the medicinal properties and economic value of

the resources. Additionally, mixed forest management models that

combine traditional knowledge with modern technologies are being

explored to create synergies between resource conservation and

community development.
5 Conclusion

In this study, we systematically evaluated the variation in

suitable habitats of A. tsao-ko under different climatic scenarios

using the MaxEnt model and gas chromatography-mass

spectrometry (GC-MS) coupling technology, as well as the quality

of A. tsao-ko across various regions. The following conclusions were

drawn: (1) The primary environmental factors influencing the

distribution of A. tsao-ko are Bio04, Bio12, and Bio17. (2)

Currently, the suitable habitats for A. tsao-ko are predominantly

located in Yunnan, southern Guizhou, and western Guangxi in
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southwest China. Under future climate scenarios, there is a

tendency for the distribution center to shift to higher latitudes.

(3) The combined volatile oil content, the relative content of the

indicator constituent eucalyptol, and cluster analysis indicate that

sample S8 (from the Xishuangbanna production area) can be

recognized as a high-quality production source in accordance

with the Chinese Pharmacopoeia standard. In conclusion, the

integration of the MaxEnt model and gas chromatography-mass

spectrometry (GC-MS) provides a scientific foundation for

evaluating the suitable habitats and the quality of the volatile oils

of A. tsao-ko. This approach is of great significance for resource

utilization, the planning of cultivation areas, and the quality control

of A. tsao-ko.
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