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Keteleeria evelyniana Mast., which is widespread in southwestern China, is valuable

for studying under different future climate scenarios to assess potential distribution

shifts in response to climate warming. Understanding these changes can provide

theoretical support for species conservation, rational utilization, ecological

restoration, and management of K. evelyniana habitats. The Maxent model was

optimized using the package of ENMeval to adjust the Regularization Multiplier (RM)

and Feature Class Combinations (FC) parameters. Utilizing 221 effective distribution

points and 33 environmental variables, the potential distribution of K. evelyniana in

current and future climate scenarios was predicted, with the key environmental

variables analyzed. The model with FC = LQ and RM = 0.5, demonstrated low

complexity, minimal overfitting, and high accuracy, achieving an AUC value of 0.946

with a standard deviation of 0.011. Under the current climate conditions, 68% of the

suitable areas for K. evelyniana were focused on Yunnan Province, with additional

areas in western and southwestern Guizhou, southwestern Sichuan, and the

southeastern Xizang Autonomous Region. In various future climate scenarios, the

suitable areas for K. evelyniana gradually decreased, with a maximum reduction of

33%. Simultaneously, the centroids of these areas are expected tomigrate northward

by up to 33 km. Temperature was the dominant factor affecting its distribution

(77.8%), whereas the effects of soil variables and altitude were significant. This study

clarified the current distribution of K. evelyniana, projected the potential shifts under

different future climate scenarios, and identified the main environmental factors

affecting the distribution. These findings offer valuable theoretical support for the

conservation, ecological restoration, and sustainable use of K. evelyniana.
KEYWORDS

Keteleeria evelyniana Mast., Maxent model, climate change, potential distribution,
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1 Introduction

Species distribution is closely related to climate, with climate

change serving as the primary driver for shifts in these distributions

(Paz-Kagan et al., 2021; Lawlor et al., 2024). Climate change not only

alters the geographical distribution of species but also significantly

affects their abundance, diversity, composition, and ecosystem

functioning (Bellard et al., 2012; Dieleman et al., 2015; Feeley et al.,

2020; Ruiz-Labourdette et al., 2012). According to the

Intergovernmental Panel on Climate Change (IPCC) AR6 Synthesis

Report (IPCC, 2023), global warming is attributed to greenhouse gas

emissions caused by human activities. From 2011 to 2020, the global

average surface temperature was 1.1°C higher than that from 1850 to

1900 and is projected to surpass the 1.5°C threshold by 2021–2040

(Calvin et al., 2023). This trend indicates significant shifts in the

suitable ranges of species, with warming likely to drive species toward

higher altitudes or latitudes (Wilson et al., 2007; Lawlor et al., 2024),

whereas some may face extinction risks (Thomas et al., 2004).

Therefore, in-depth study of species distribution patterns related to

climate change is crucial for developing scientific strategies for species

conservation and germplasm resource management. Such research

not only supports biodiversity conservation but also provides a

scientific foundation for activities such as species introduction

and cultivation.

The Species Distribution Model (SDM), also known as an

Ecological Niche Model (ENM), is a mathematical tool adopted to

predict the geographic distribution of species based on data on species

presence or abundance and environmental factors (Elith and

Leathwick, 2009). When combined with global climate models,

SDMs can project species range changes in future climate scenarios.

Common SDMs methods include Random Forest, Maximum

Entropy, eXtreme Gradient Boosting Training, and more than ten

others (Thuiller et al., 2012). Among these, Maximum Entropy has

been widely applied in areas such as assessing climate change impacts

on species distribution (Soilhi et al., 2022; He et al., 2023; Shi et al.,

2024), protecting endangered species (Gao et al., 2022; Zhao et al.,

2022; Deng et al., 2024), prevention and control of invasive species

(Low et al., 2021; Sorbe et al., 2023), pest management (Kuprin et al.,

2024; Wei et al., 2024), and geological disaster prediction (Boussouf

et al., 2023; Qasimi et al., 2024) because of its advantages such as high

predictive accuracy, reliance solely on occurrence data, and

robustness to sample size limitations (Pearson et al., 2007;

Phillips and Dudık, 2008; Elith et al., 2011).

K. evelyniana, an evergreen tree in the Pinaceae family and

genus Keteleeria, is a relict species from the Tertiary period (Du,

2022). It is a valuable timber and reforestation species in the

southern plateau region, with significant economic importance

and a crucial role in ecological conservation (Du, 2022).

According to the Plants of the World Online website, K.

evelyniana is distributed throughout East Asia, including China,

Laos and Vietnam (https://powo.science.kew.org/). Within China it

grows mainly in Yunnan Province, western and southwestern

Guizhou, and from the Anning River Basin to the western Dadu

River Basin in Sichuan Province (Editorial Committee of flora of

China, Chinese Academy of Sciences, 2004). Listed as Near
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Threatened (NT) on the IUCN Red List, existing research has

primarily focused on its chemical composition (Fu et al., 2008; He

et al., 2011), silviculture (Wang et al., 2022; Zhou et al., 2023b),

plant-fungal symbioses (Ge et al., 2012) and community structure

(Li et al., 2013; Tang et al., 2024). However, there is still a knowledge

gap regarding how its distribution can vary under future climate

scenarios and which environmental factors predominantly

influence its range. Based on the environmental variables and

distribution data of K. evelyniana, this study aimed to (1) predict

its potential distribution in southwest China, (2) analyze the

dominant environmental variables influencing its distribution,

and (3) explore how its suitable habitats may change under

different future climate scenarios. This study provides a

theoretical foundation for species conservation, rational resource

use, and ecological restoration of K. evelyniana.
2 Materials and methods

2.1 Data sources and processing

2.1.1 Species occurrence data
The main sources of distribution data for K. evelyniana were

field surveys, Global Biodiversity Information Facility (GBIF,

https://www.gbif.org/), Chinese Virtual Herbarium (CVH, https://

www.cvh.ac.cn/), and literature (Tang et al., 2017; Du, 2022).

Duplicate and invalid distribution points were removed, and to

reduce spatial autocorrelation and prevent overfitting, a grid cell

size of 2.5′×2.5′ latitude and longitude (consistent with the spatial

resolution of environmental variables) was used with one record per

cell (Yan et al., 2021). A total of 221 geographical occurrences of K.

evelyniana were included in further analysis (Figure 1), 85 from

field surveys, 77 from GBIF, 3 from CVH and 56 from literature.

2.1.2 Environmental variables
To study the potential distribution of K. evelyniana, 33

environmental variables were used, including 19 bioclimatic, 3

topographic, and 11 soil variables, as detailed in Appendix Table

S1. The bioclimatic variables included both current data and future

climate scenario projections for the following periods: the current

period and four subsequent 20-year intervals from 2021 to 2100.

Current bioclimatic data were extracted from WorldClim 2.1,

averaged over 1970–2000 (Fick and Hijmans, 2017), whereas

future bioclimatic data were obtained using the Beijing Climate

Center Climate System Model 2 Medium Resolution (BCC-CSM2-

MR) under the Coupled Model Intercomparison Project Phase 6

(CMIP6). The scenarios of SSP5-8.5, SSP2-4.5, and SSP1-2.6 were

selected to project the future distribution of K. evelyniana,

representing the conventional, moderate, and sustainable

development pathways with radiative forcings of 8.5, 4.5, and 2.6

W/m2, respectively, by 2100 (He et al., 2023; Shi et al., 2023). Each

scenario involved two time periods: 2021–2040 (2030s) and 2061–

2080 (2070s). The elevation data were sourced fromWorldClim 2.1,

whereas the aspect and slope were derived from the spatial analysis

using GIS software. Soil data were obtained from the SoilGrids 250
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m system, with each soil variable (except Ocs) divided into six

profile depths (Poggio et al., 2021), weighted, and averaged by depth

to obtain the final values. The spatial resolution of all environmental

variables was 2.5 arc minutes.

Environmental variables often exhibit varying degrees of

collinearity. To prevent model overfitting and enhance simulation

accuracy and practical usability, these variables should be screened

before being used in the Maxent model (Miller, 2010). Variables

that exhibited a correlation of less than 0.8 (Appendix Figure A1),

and an initial contribution value greater than 1% to Maxent’s

prediction was maintained (Appendix Table S1). Finally, six

environmental variables were adopted, as listed in Table 1.
Frontiers in Plant Science 03
Administrative division base maps in this study were sourced from

the Standard Map Service Platform (http://bzdt.ch.mnr.gov.cn/

index.html) with the map approval number GS (2016) 2923. The

base maps were used without modification.
2.2 Maxent model optimization,
construction, and evaluation

2.2.1 Maxent model optimization
Default parameter settings for Maxent models are commonly used

in species distribution modeling, but they can result in overly complex
TABLE 1 Contribution of the six environmental variables to the K. evelyniana Maxent prediction model.

Environment
variables

Variable
description

Unit
Percent

contribution
(%)

Permutation
importance

(%)

Regularization
training gain only
with this variable

Regularization
training gain

without
this variable

Bio6
Min temperature of

coldest month
°C 39.3 45.8 0.0557 1.8310

Bio4
Temperature seasonality

(standard
deviation ×100)

– 38.5 31.2 1.2336 1.7856

Sand
Proportion of sand

particles (> 0.05 mm) in
the fine earth fraction

g/100g (%) 10.8 2.0 0.9840 1.8360

Soc
Soil organic carbon
content in the fine
earth fraction

g/kg 8.2 9.0 1.3736 1.8426

Bdod
Bulk density of the fine

earth fraction
kg/dm³ 1.8 0.7 0.7600 1.8393

Elev Elevation m 1.5 11.3 0.2238 1.7885
Bolding indicates the top three contributing variables.
FIGURE 1

Distribution of Keteleeria evelyniana Mast. in southwest China.
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models that are prone to overfitting (Shi et al., 2024; Warren et al.,

2014; Zhao et al., 2021b). Among the parameters influencing Maxent

model outcomes, the RegularizationMultiplier (RM) and Feature Class

Combinations (FC) have the greatest impact. In this study, we tuned

these parameters using the ENMeval package (Kass et al., 2021), setting

the RM values from 4 to 0.5 in 0.5 decrements and the FC values to

LQHPT, LQHP, LQH, H, LQ, and L, creating 48 parameter

combinations, following previous studies (Shi et al., 2024; Zhao et al.,

2021a). The model performance was evaluated using the 10% training

omission rate (OR10), the difference between the training and test

AUC (AUC.DIFF), and Akaike Information Criterion correction

(AICc) (Pearson et al., 2007; Warren and Seifert, 2011). The AICc

reflects the model’s complexity and goodness of fit, with the model

having the smallest AICc value (delta.AICc = 0) considered optimal,

and models with delta.AICc < 2 considered highly reliable. In addition,

AUC.DIFF and OR10 were used to assess the degree of overfitting.

2.2.2 Maxent model construction
The 221 occurrence records of K. evelyniana and six

environmental variables were input into Maxent V 3.4.4 (https://

biodiversityinformatics.amnh.org/open_source/maxent/) to predict

its potential distribution across different time periods, with the

cross-validation method repeated 10 times. RM and FC applied the

previously optimized parameters, whereas the other settings

adhered to Maxent’s default values. The model outputs (.asc)

were converted into raster data using ArGIS software, and the

potential distribution of K. evelyniana was categorized into four

suitability groups using the Jenks natural breaks method (He et al.,

2023; Shi et al., 2024): unsuitable area (0-0.11), low suitable area

(0.11–35), medium suitable area (0.35–0.63), and high suitable area

(0.63–1.00). Use the “Raster to Polygon” tool to convert the

classified raster data to vector data, define the projection, and

calculate the area of each suitability group. Additionally, the SDM

toolbox tool was applied to analyze the centroid location and

migration trends of suitable areas for K. evelyniana across

different future time periods (Brown et al., 2017).
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2.2.3 Maxent model evaluation
The area under the Receiver Operating Characteristic curve

(AUC), which ranged from 0 to 1, was used to evaluate the accuracy

of the model (Elith et al., 2006). A higher AUC value indicates better

predictive performance. An AUC value greater than 0.9 reflects the

excellent predictive performance, a value between 0.7 and 0.9

indicates the good predictive ability, and an AUC from 0.5 to 0.7

signifies the average predictive ability (Swets, 1988). Equation 1

shows the calculation of AUC.

AUC =
1

(a + c)(b + d)o
b+d
i=1oa+c

j=1 ∅ (Xi,Yj) (1)

Where, if Y > X, then ∅ (Xi,Yi) = 1, if Y = X, then ∅ (Xi,Yi) =

0.5, otherwise, ∅ (Xi,Yi) = 0. Xi and Yj are the predicted values for

the unmeasured sample i and the measured sample j, respectively.

Additionally, a denotes the true positive (TP), b the false positive

(FP), c the false negative (FN), and d the true negative (TN).

A combination of percentage contribution, permutation

importance, and jackknife tests was used to identify the dominant

environmental factors.
3 Results

3.1 Model optimization and
accuracy evaluation

RM and FC were optimized in this study to reduce model

complexity and improve fit. With RM set to 1 and FC set to LQHPT

as the default, the model had a delta.AICc of 47.95. In contrast, the

model with RM set to 0.5 and FC set to LQ had the smallest delta.AICc

value of 0 (Figure 2A), indicating the lowest complexity. Further

comparison showed that under FC=LQ and RM=0.5, the AUC.DIFF

increased by 4.48% (Figure 2B), whereas OR10 decreased by 20.00%

(Figure 2C) compared to the default settings. Therefore, FC=LQ and

RM=0.5 were selected as the optimal settings.
FIGURE 2

Changes in delta.AICc (A), AUC.DIFF (B), and OR10 (C) of the K. evelyniana Maxent model under different parameter combinations of FC and RM.
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The ROC curve of the K. evelyniana Maxent model is shown in

Figure 3, with an AUC value of 0.946 and a standard deviation of

0.011. This demonstrated that the model presented excellent

predictive ability and accurately predicted of the potential

distribution of K. evelyniana.
3.2 Dominant environmental variables and
response curve analysis

The contributions of each environmental variable to the K.

evelyniana Maxent model are presented in Table 1. The top three

contributing variables were the lowest temperature of the coldest

month (Bio6), temperature seasonality (Bio4), and the proportion

of sand particles (> 0.05 mm) in the fine earth fraction (Sand), with

a combined contribution of 88.6%. The highest permutation

importance was attributed to Bio6, Bio4, and elevation (Elev),

with a cumulative contribution of 88.3%. When considering

individual variables for prediction, soil organic carbon (Soc),

Bio4, and Sand were the most significant. Removing Bio4, Elev,

and Bio6 from the model resulted in the greatest loss of

regularization training gain. Overall, temperature variables (Bio4

and Bio6) were the most critical environmental factors influencing

the distribution of K. evelyniana, contributing 77.8%, whereas soil

variables and elevation also played significant roles.

Figure 4 illustrates the response curves of the probability of K.

evelyniana presence on the dominant environmental variables.

According to previous studies (Shi et al., 2024; Zhao et al., 2021b),

when the probability of presence exceeds 0.5, the corresponding

environmental variable value can be considered favorable for plant

cultivation. Based on this, suitable ranges for K. evelyniana growth

were identified with Bio4 ranging from 370 to 550 (Figure 4A), Bio6

from -1.93 to 5.65 °C (Figure 4B), Elev from 1373.8 to 2490.5 m
Frontiers in Plant Science 05
(Figure 4C), Bdod from 0 to 1.44 kg/dm³ (Figure 4D), Sand from 0 to

27.79% (Figure 4E), and Soc from 0 to 14.07 g/kg (Figure 4F).
3.3 Potential distribution and dynamic
changes of K. evelyniana

3.3.1 Potential distribution of K. evelyniana under
current climate conditions

The suitable areas for K. evelyniana, attributed to the Maxent

model prediction under current climate conditions, are presented in

Table 2 and Figure 5A. The total suitable area was 40.94×104 km2,

with a 9.13×104 km2 high suitable area, 12.01×104 km2 medium

suitable area, and 19.80×104 km2 low suitable area. In southwest

China, the potential distribution was primarily concentrated in

Yunnan Province, which accounted for 68% of the suitable area.

Others were located in western and southwestern Guizhou

Province, southwestern Sichuan Province, and southeastern

Xizang Autonomous Region, whereas no suitable areas were

found in the Chongqing Municipality.

3.3.2 Potential distribution of K. evelyniana under
future climate scenarios

The Maxent model was implemented to predict the suitable

areas for K. evelyniana under various future climate scenarios, and

the results are shown in Table 2 and Figure 6. Compared with the

current climate conditions, the future scenarios indicated a

decreasing trend in suitable areas for K. evelyniana. Under SSP5-

8.5 scenarios, the dominant significant reduction was observed

during the 2061–2080 period, with a 33% decline in the

suitable area.

To describe the spatial variations in suitable areas for K.

evelyniana due to climate change, the binary maps of the current
FIGURE 3

ROC analysis of Maxent model for predicting the distribution of K. evelyniana.
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climate scenarios were compared with those from the 2030s and

2070s under various future climate scenarios (Table 3; Figure 7).

The results indicated that suitable areas for K. evelyniana expanded

and contracted across different future periods, whereas the

contraction areas consistently exceeded the expansion areas,

reducing the total suitable area. During 2021–2040, the changes

in the area under SSP5-8.5, SSP2-4.5, and SSP1-2.6 were -1.19×104,

-0.09×104, and -1.44×104 km², respectively, with the smallest

decrease occurring under SSP2-4.5. By 2061-2080, the decline in

suitable area intensified, with the reductions of 5.74×104, 2.82×104,
Frontiers in Plant Science 06
and 2.24×104 km2 under SSP5-8.5, SSP2-4.5, and SSP1-

2.6, respectively.

3.3.3 Centroid migration of K. evelyniana under
future climate scenarios

The shape of the suitable area for K. evelyniana was irregular.

To measure the changes in its distribution, the centroid was defined,

and its migration was calculated and analyzed under different

scenarios (Figure 5B). Under the current conditions, the centroid

was located in Yuanmou County, Yunnan Province (101.927E,
FIGURE 4

Response curves of dominant environmental variables: (A) temperature seasonality; (B) min temperature of coldest month; (C) elevation; (D) bulk
density of the fine earth fraction; (E) proportion of sand particles (> 0.05 mm) in the fine earth fraction; (F) soil organic carbon content in the fine
earth fraction.
TABLE 2 Suitable area for K. evelyniana under current and different future climate scenarios.

Scenarios Period
Total suitable area

(×104 km2)
Low suitable area

(×104 km2)
Medium suitable area

(×104 km2)
High suitable area

(×104 km2)

Current 40.94 19.80 12.01 9.13

SSP1-2.6
2021-2040 37.20 18.56 11.20 7.44

2061-2080 35.71 17.91 10.48 7.32

SSP2-4.5
2021-2040 39.34 20.20 11.38 7.76

2061-2080 34.22 18.11 9.72 6.39

SSP5-8.5
2021-2040 37.60 18.91 10.98 7.71

2061-2080 27.55 14.66 8.21 4.68
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25.517N). In the future climate scenarios, the centroid gradually

migrated to the northeast, north, and northwest, with migration

distances ranging from 8.33 to 33.40 km. Additionally, for the same

climate scenario, the migration distance between 2061 and 2080 is

greater than that between 2021 and 2040.
4 Discussion

4.1 Accuracy and reliability of the
K. evelyniana Maxent model

This study utilized the Maxent model to predict the potential

distribution of K. evelyniana in southwest China. After performing

10-fold cross-validation on the environmental factors and

distribution data, the model achieved an AUC value of 0.946 (±

0.011), demonstrating its excellent predictive ability. This was

consistent with AUC values between 0.9 and 0.98 reported in

related studies on conifer species, affirming the accuracy and
Frontiers in Plant Science 07
reliability of the results (Zhao et al., 2021b; Duan et al., 2022; Feng

et al., 2023; He et al., 2023). According to the model predictions, K.

evelyniana was primarily distributed in Yunnan Province, with

additional suitable areas in western and southwestern Guizhou,

southwestern Sichuan, and the southeastern Xizang Autonomous

Region (Figure 5A). The predicted distribution of K. evelyniana was

closely aligned with its description in the Flora of China (Editorial

Committee offlora of China, Chinese Academy of Sciences, 2004). To

prevent overfitting and improve the model’s migration capability, this

study, following similar research (Li et al., 2020; Shi et al., 2024; Zhao

et al., 2021b), adjusted the Maxent model parameters and analyzed

the model complexity using the ENMeval package. The parameter

with the lowest complexity was selected to run the Maxent model to

ensure more accurate predictions. With the model parameters set to

FC=LQ and RM=0.5, the Maxent model produced the smallest

delta.AICc value of 0 (Figure 2A), indicating the lowest complexity.

In summary, the reliability and accuracy of the K. evelynianaMaxent

model were validated using effective methods, parameter

optimization, and robust results.
FIGURE 5

Potential distribution of K. evelyniana under current climate conditions (A) and centroid migration under future climate scenarios (B).
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TABLE 3 Changes in suitable area for K. evelyniana under different future climate scenarios compared to current conditions.

Scenarios Period
Total suitable area

(×104 km2)
Range expansion

(×104 km2)
No change
(×104 km2)

Range contraction
(×104 km 2)

SSP1-2.6
2021-2040 37.20 0.87 38.64 2.31

2061-2080 35.71 0.76 37.95 3.00

SSP2-4.5
2021-2040 39.34 1.42 39.43 1.51

2061-2080 34.22 1.09 37.04 3.91

SSP5-8.5
2021-2040 37.60 0.96 38.79 2.15

2061-2080 27.55 1.92 33.29 7.66
F
rontiers in Plant
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FIGURE 6

Potential distribution of K. evelyniana under future climate scenarios: (A, C, E) represent scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5 for the period
2021-2040; (B, D, F) represent scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5 for the period 2061-2080.
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4.2 Dominant environmental factors
influencing the K. evelyniana distribution

Based on a comprehensive analysis of percent contribution,

permutation importance, regularization training gain only with this

variable and regularization training gain without this variable (Table 1),

temperature was identified as the most crucial environmental variable

affecting the potential distribution of K. evelyniana, with a cumulative

contribution of 77.8%. Similar results have been demonstrated for

other conifer species. For instance, Zhao et al. (2021b) suggested that

temperature was the primary factor affecting the distribution of

Cunninghamia lanceolata (Lamb.), contributing 64.24%, whereas
Frontiers in Plant Science 09
Feng et al. (2023) identified Bio4 as a key factor for Pinus

yunnanensis Franch. Zhang et al. (2023) also reported that two of

the three most significant factors influencing the distribution of

Keteleeria davidiana (C. E. Bertrand) Beissn were temperature-

related. K. evelyniana exhibited the most sensitivity to min

temperature of coldest month (Bio6), indicating that extremely low

temperatures may be a critical limiting factor for its distribution. Low

temperatures can cause frost damage, impair membrane function, and

reduce photosynthesis, thereby significantly hindering plant growth

(Ladwig et al., 2016). In this study, the temperature seasonality (Bio4)

range of 370–550 was found to favor the expansion of K. evelyniana’s

suitable areas, as temperature seasonality plays a vital role in plant
FIGURE 7

Changes in the potential distribution of K. evelyniana under future climate scenarios: (A, C, E) represent scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5
for the period 2021-2040; (B, D, F) represent scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5 for the period 2061-2080.
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growth, development, and flowering, with many species requiring a

warm-cold-warm cycle to complete their annual life cycle (Khodorova

and Boitel-Conti, 2013).

Soil plays a crucial role in regulating nutrients necessary for plant

growth, making it essential for plant development (Dighton, 2014). In

this study, Sand, Soc, and Bdod were found to significantly influence

the potential distribution of K. evelyniana, with a cumulative

contribution of 20.5%. Although elevation had a smaller contribution

to the final model, its importance was highlighted in the regularization

training gain without this variable (Table 1). Elevation can primarily

affect species distribution patterns through its indirect effect on

temperature and precipitation (Yin et al., 2023).
4.3 Potential distribution change and
centroid migration of K. evelyniana under
future climate scenarios

The low, medium, and high suitability areas for K. evelyniana

exhibited the decreasing trends (Table 2; Figure 6). The most

significant decline occurred under the SSP5-8.5 scenario during

2061–2080, with a 33% reduction in the suitable area. In the same

scenario, the decrease in suitable areas was greater in 2061–2080

than in 2021–2040. Additionally, for both periods, the reduction

was smaller in the low-emission scenario and larger in the high-

emission scenario. Under the future conditions, the distribution of

K. evelyniana could demonstrate not only a reduction in suitable

areas but also significant shifts in spatial patterns, particularly at the

edges of suitable regions (Figure 7). In high emission scenarios,

marked by dramatic and irregular changes in temperature and

precipitation, along with more frequent extreme events, the impact

on K. evelyniana could be substantial, leading to increased habitat

fragmentation (Fan et al., 2021; Zhang et al., 2021).

Under climate change scenarios, shifts in the distribution

centroid of K. evelyniana’s suitable area can reflect its movement

in both distance and direction. Compared to current climate

conditions, the centroid was projected to move to higher latitudes

in the north, northeast, and northwest under various greenhouse

gas emission scenarios during 2021–2040 and 2061–2080, with the

longest migration distance reaching 33.40 km (Figure 5B). This is

consistent with previous studies indicating that a warming climate

prompts plant migration to higher latitudes and altitudes (Chi et al.,

2023; Shi et al., 2023; Zhou et al., 2023a). Such shifts in species

distribution may be an adaptive response to global warming,

because rising temperatures render the original habitats too

warm, forcing them to move to cooler areas. This migration helps

species maintain the temperature range and ecological niche

essential for their survival (Chen et al., 2011; Dullinger et al., 2012).
4.4 Future conservation strategies and
research perspectives for the K. evelyniana

Several strategies should be implemented to alleviate the impact

of climate change on the K. evelyniana populations. For areas lost
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due to climate change, it is necessary to re-evaluate conservation

strategies and adopt measures such as ex-situ conservation and

germplasm preservation (Wang et al., 2024). Maintaining suitable

areas is also crucial, as these regions serve as refuges and shelters for

future climate change. Prioritizing the conservation and

management of K. evelyniana habitats is essential. This involves,

first, protecting existing habitats to provide a stable base for species

survival, second, restoring and enhancing degraded habitats to

improve their resilience to climate change, and third, developing

adaptive management strategies (Guignabert et al., 2024), such as

adjusting conservation objectives and methods to address new

challenges posed by climate change. For newly suitable areas, it is

crucial to establish ecological corridors to facilitate species

migration and gene flow and to consider planned assisted

translocations (Ding, 2023; Twardek et al., 2023).

Studies have shown that species misidentification (Phillips et al.,

2009), sampling bias (Leitão et al., 2011; Beck et al., 2014), temporal

or spatial bias (Graham et al., 2008; Meyer et al., 2015) and

sampling strategy (Hirzel and Guisan, 2002) in species occurrence

data can lead to uncertainty in species distribution models. In

addition, the quality of environmental data (Graham et al., 2008),

model assumptions (Chen et al., 2019) and biological interactions

(Wisz et al., 2013) also contribute to uncertainty in these models.

Future research should focus on improving the quality of species

distribution data, including enhancing species identification

methods, optimizing sampling design, and filling data gaps. At

the same time, the accuracy of environmental data should be

improved, and their uncertainty taken into account. In terms of

model development, it is recommended to adopt multi-model

comparisons and dynamic simulation approaches, incorporating

biological interactions to improve ecological rationality.

Örücü et al. (2023) found that land-use change affects species’

migration speed and distribution range by altering habitat structure

and availability, with more pronounced impacts in tropical regions.

Population density was positively correlated with the distribution

probability of Pinus massoniana, indicating that Pinus massoniana

was more widely distributed in densely populated areas (He et al.,

2023). The construction of large-scale ecological engineering

projects may indirectly affect species distribution ranges by

changing local climate conditions (Wang and Guan, 2023). Only

topographic, soil, and bioclimatic factors were considered,

excluding important factors such as human disturbance, land use

and cover changes. Future research should incorporate more

environmental variables and continue to optimize the model to

enhance its predictive accuracy.
5 Conclusion

Based on 33 environmental variables and 221 distribution

points, this study utilized the Maxent model to simulate suitable

areas for K. evelyniana in southwest China under current and future

climate scenarios, while analyzing the dominant environmental

factors that could affect its distribution. The total suitable area for

K. evelyniana was 40.94×104 km2, with 68% concentrated in
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561031
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Feng et al. 10.3389/fpls.2025.1561031
Yunnan Province. Other suitable areas were distributed in western

and southwestern Guizhou, southwestern Sichuan, and

southeastern Xizang Autonomous Region, with no suitable areas

in the Chongqing Municipality. Under the future scenarios, the

suitable area is projected to gradually decrease, with a 33%

reduction during 2061–2080 under the SSP5-8.5. Currently, the

centroid was located in Yuanmou County, Yunnan Province

(101.927E, 25.517N), but it is expected to shift northeast, north,

and northwest, with migration distances ranging from 8.33 to 33.40

km under different climate scenarios. Temperature (Bio4 and Bio6),

soil, and elevation jointly influenced species distribution, with

temperature having the most significant effect (77.8%). Our

findings provide a theoretical foundation for conservation,

ecological restoration, and sustainable use of K. evelyniana.
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