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The challenge of salinity stress significantly impacts global rice production,

especially in coastal and arid regions where the salinization of agricultural soils

is on the rise. This review explores the complex physiological, biochemical, and

genetic mechanisms contributing to salinity tolerance in rice (Oryza sativa L.)

while examining agronomic and multidisciplinary strategies to bolster resilience.

Essential adaptations encompass the regulation of ionic balance, the

management of antioxidants, and the adjustments to osmotic pressure, all

driven by genes such as OsHKT1;5 and transcription factors like OsbZIP73. The

evolution of breeding strategies, encompassing traditional methods and cutting-

edge innovations, has produced remarkable salt-tolerant varieties such as FL478

and BRRI dhan47. The advancements in this field are enhanced by agronomic

innovations, including integrated soil management, crop rotation, and chemical

treatments like spermidine, which bolster stress tolerance through antioxidant

activity and transcriptional regulation mechanisms. Case studies from South Asia,

Sub-Saharan Africa, the Middle East and, Australia demonstrate the

transformative potential of utilizing salt-tolerant rice varieties; however,

challenges persist, such as the polygenic nature of salinity tolerance,

environmental variability, and socioeconomic barriers. The review highlights

the importance of collaborative efforts across various disciplines, merging

genomic technologies, sophisticated phenotyping, and inclusive breeding

practices to foster climate-resilient and sustainable rice cultivation. This work

seeks to navigate the complexities of salinity stress and its implications for global

food security, employing inventive and cohesive strategies to confront the

challenges posed by climate change.
KEYWORDS

salt tolerance, spermidine treatments, quantitative trait loci (QTLs), global food security,
CRISPR-Cas9 applications, oryza sativa
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1 Introduction

Rice (Oryza sativa L.) is a cornerstone of global food security,

acting as the essential dietary staple for more than half of the world’s

populace, particularly in regions such as Asia, Africa, and Latin

America. This crop plays a crucial role in the caloric and protein

consumption of billions, as nations in Asia account for more than

90% of the worldwide rice production and consumption (Dutta

et al., 2019). The versatility of rice in thriving under various

environmental conditions has facilitated its growth in a range of

ecosystems, spanning from lowland paddies to upland rain-fed

systems (Neupane et al., 2020; Gairola et al., 2024). Beyond its

nutritional significance, rice cultivation serves as a foundation for

the livelihoods of countless smallholder farmers, especially in

developing nations where it represents an essential source of

income and employment (Asma et al., 2023; Singh et al., 2024).

The influence of the crop permeates various dimensions, shaping

cultural practices, traditions, and the economic landscapes of

numerous nations. In areas such as Sub-Saharan Africa, the

growth of rice farming responds to the interrelated issues of food

security and rural development (Saito et al., 2023). However,

addressing the increasing demand for rice presents significant

challenges. The surge in population and the expansion of urban

areas are propelling a significant escalation in the necessity for rice
Frontiers in Plant Science 02
production, anticipated to increase by 25% by the year 2030 to

satisfy worldwide demand. The sustainability of rice production

systems is further jeopardized by environmental challenges,

including salinity, water scarcity, and the impacts of climate

change (Ansari et al., 2023). In light of these challenges,

advancements in breeding, biotechnology, and crop management,

exemplified by the creation of climate-resilient rice varieties,

provide a promising avenue for maintaining production levels

and safeguarding global food security.

Salinity stress is a major abiotic challenge that profoundly

influences rice production worldwide, especially in coastal and

irrigated lowland regions where soil salinization is widespread.

Approximately 20% of the world’s irrigated land experiences the

detrimental effects of salinity, which leads to a decrease in rice yield

as a result of ionic toxicity, osmotic stress, nutrient imbalance, and

oxidative damage, as illustrated in Figure 1. O. sativa L.

demonstrates a significant vulnerability to salinity, leading to

pronounced growth inhibition and a decline in productivity when

subjected to salt-affected soils, particularly during its early

developmental phases (Abbas et al., 2024). Salinity causes an

excessive buildup of sodium (Na+) and chloride (Cl−) ions in

plant tissues, which disrupts ionic homeostasis and reduces the

absorption of vital nutrients such as potassium (K+) and calcium

(Ca²+). The ionic imbalance disrupts enzymatic activities, cellular
FIGURE 1

Illustrative summary of salinity stress on rice growth, development, and yield.
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functions, and the process of photosynthesis. Osmotic stress

resulting from salinity diminishes water availability, reducing cell

turgor and inhibiting growth. Excessive reactive oxygen species

(ROS) lead to oxidative stress, which results in additional damage to

cellular structures (Gupta et al., 2024; Požgajová et al., 2024;

Ruksaar, 2024).

Recent advancements in breeding, including the incorporation

of salt-tolerant genes and quantitative trait loci (QTLs) such as

Saltol, have facilitated the creation of resilient rice varieties,

exemplified by FL478. These varieties demonstrate improved

ionic regulation and osmotic adjustment. Molecular tools,

including CRISPR/Cas9, are being utilized to target and enhance

stress-responsive genes, such as OsHKT1;5 and OsbHLH024, to

improve salinity tolerance (Akhlasur Rahman et al., 2024). Salinity

stress is expected to intensify due to climate change and the rising

scarcity of water resources. Implementing effective strategies such as

enhanced irrigation practices, soil management, and genetic

improvement is crucial for sustaining rice production in saline-

prone regions (Irin et al., 2024; Sikder and Khan, 2024). Integrating

traditional breeding methods with contemporary biotechnological

techniques is essential for maintaining productivity and tackling

global food security issues (Zhang et al., 2024a).

This review aims to thoroughly examine the effects of salinity stress

on rice (Oryza sativa L.) production, emphasizing the physiological,

biochemical, and molecular pathways that contribute to salt tolerance

in rice. It explores advancements in breeding strategies, genetic

modifications, and agronomic interventions designed to mitigate the

detrimental effects of high salinity and sustain yield stability in affected

regions. Given the escalating challenges posed by climate change,

irrigation practices, and soil deterioration, this study also assesses the

global implications of salt-induced stress and evaluates region-specific

adaptation strategies, particularly in vulnerable agricultural areas.
2 Environmental factors influencing
salt stress tolerance in rice

2.1 Role of soil microbiome in
salinity tolerance

The soil microbiome is essential for plant growth and resistance,

especially under abiotic stressors such as salinity (Chen et al., 2024;

Etesami, 2024). Soil microbes, such as rhizobacteria, mycorrhizal

fungi, and other beneficial microorganisms, interact with plant

roots and affect essential physiological processes that alleviate the

impacts of salinity stress (El-Aal et al., 2024; Yahyaoui et al., 2024;

Zhang et al., 2024b). Microbial communities are widely

acknowledged for their capacity to improve plant resilience to

diverse stresses, such as drought, nitrogen shortage, and salinity,

via numerous pathways (Ali et al., 2024; Muhammad et al., 2024).

2.1.1 Beneficial soil microbes in salinity tolerance
Rhizobacteria and mycorrhizal fungi are two of the many types

of soil microbes that play a crucial role in improving plant health

and resilience to stress. Plants benefit from rhizobacteria, which
Frontiers in Plant Science 03
reside in close proximity to their roots, since these microbes

increase nutrient intake, produce chemicals that stimulate plant

growth, and cause a defense mechanism against diseases

(Chaudhary et al., 2024; Hiremath et al., 2024). Improving water

intake or changing the ionic balance within plant tissues are two

ways in which some rhizobacteria might reduce salinity stress (Basu

et al., 2023; Acharya et al., 2024). For instance, Bacillus and

Pseudomonas species enhance salt tolerance by producing

exopolysaccharides, which help maintain cell turgidity under

saline conditions (N et al., 2024). Similarly, mycorrhizal fungi,

which create symbiotic associations with plant roots, are essential

for alleviating salinity stress. These fungi enhance the root system

via their hyphal networks, improving water and nutrient

absorption, particularly in saline soils where nutrient availability

is frequently restricted. Recent research indicate that mycorrhizal

inoculation can markedly enhance the salt tolerance of crops like

wheat and rice by improving the plant’s capacity to sustain osmotic

equilibrium and mitigate ion toxicity (Basit et al., 2024; Chaudhary

et al., 2024). Mycorrhizal fungi can boost the synthesis of stress

hormones such as abscisic acid, enhancing the plant’s response to

salt stress (Aizaz et al., 2024).

2.1.2 Microbial-mediated stress
alleviation mechanisms

Soil microbes assist plants in managing salt stress via many

methods, such as osmotic adjustment, ion homeostasis, and the

control of plant hormones. Certain beneficial microorganisms

synthesize suitable solutes (e.g., trehalose, proline) that assist

plants in conserving water and sustaining cellular function in

saline environments (Hmidi et al., 2018; Shafi et al., 2019; Imhoff

et al., 2020; Gil et al., 2023). These solutes can concentrate in plant

cells, preserving turgor pressure and stabilizing proteins and

membranes, which is essential for survival in saline soils.

Additionally, microbial communities play a key role in ion

homeostasis by the regulation of sodium (Na+) and potassium

(K+) ions in plant tissues, inhibiting the harmful buildup of Na+

and enhancing the absorption of K+ (Liu et al., 2023; Dong et al.,

2024; Dreyer et al., 2024). Rhizobacteria can modulate the

expression of salt-excluding or salt-tolerant genes in plants, hence

assisting in the maintenance of ion equilibrium in the root zone

(Guo et al., 2024). Specific bacterial strains, including Bacillus

subtilis, have demonstrated the ability to augment the function of

Na+/H+ antiporters in plant roots, hence mitigating salt absorption

(Pabuayon et al., 2021; Song et al., 2023). Furthermore, beneficial

microorganisms can stimulate the expression of plant stress-

responsive genes, enhancing the plant’s capacity to endure

oxidative damage caused by salt.

2.1.3 Recent findings on plant-
microbe interactions

Recent research efforts provide insight into the intricate

relationships between plants and their corresponding soil

microbiomes under saline stress. A significant discovery is the

influence of plant-associated microbiomes on the plant’s

transcriptional response to salinity. Research indicate that
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beneficial bacteria can modify the expression of essential genes

associated with stress signaling pathways, including those linked to

abscisic acid (ABA) production, osmotic control, and ion transport

(Davis et al., 2024; Wang et al., 2025). For instance, Salt-tolerant

rhizobacteria, such as Microbacterium ginsengiterrae S4, enhance

rice resilience by increasing antioxidant enzyme activity and

regulating osmotic substances under saline stress (Ji et al., 2024).

Another notable discovery is the influence of microbial

metabolites on enhancing plant health. Certain microbial species

generate volatile organic compounds (VOCs) that improve plant

salinity tolerance by regulating the plant’s hormonal equilibrium,

namely by elevating auxin and cytokinin levels, which facilitate root

development and salt resistance (Barghi and Jung, 2023; Mahadik

and Kumudini, 2024). Current research on plant-microbe

interactions underscores the potential for microbiome-based

strategies to enhance conventional breeding methods in the

creation of salinity-tolerant crops. Microbial inoculants,

comprising consortia of beneficial bacteria and fungi, are being

studied as economical and sustainable solutions for improving crop

performance in salt conditions. Microbiome-based techniques may

be incorporated into precision agriculture operations, facilitating

more effective management of salt-affected soils. The soil

microbiome’s function in facilitating salinity tolerance is an

increasing area with significant potential for sustainable

agriculture. Further studies into plant-microbe interactions and

their utilization in saline agriculture may substantially improve crop

resilience to salinity, hence aiding food security in salinity-

affected areas.
2.2 Combined abiotic and biotic stresses

The interaction between abiotic and biotic stressors in plants is

a difficult challenge that profoundly affects worldwide agricultural

growth and yield. Abiotic factors, like drought, salinity, and heat,

frequently coincide with biotic pressures such as pests and diseases,

resulting in complex interactions that may be either synergistic or

antagonistic. Understanding these relationships is essential for

creating resilient crop kinds and guaranteeing food security

throughout climate change. Plants have developed intricate

molecular defense mechanisms to withstand concurrent abiotic

and biotic stressors. These encompass transcription factors and

kinases that govern integrative plant responses (Menéndez and

Tundo, 2024) . Drought stress , for instance, induces

morphophysiological changes such as reduced leaf area and

enhanced root growth, which can prime plants for future stress

events. Biochemical responses include the production of secondary

metabolites and volatile organic compounds, which play roles in

signaling and defense against herbivores (Shafi et al., 2024).

Genome editing technologies offer precise tools for enhancing

plant resilience to both abiotic and biotic stresses by enabling

targeted alterations in plant genomes (Mann et al., 2024).

Integrating bioinformatics and AI applications can enhance the

identification and analysis of stress-responsive genes and regulatory

networks, providing deeper insights into stress response pathways
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(Zhang et al., 2024). However, multi-omics approaches, including

genomics, transcriptomics, and metabolomics, are crucial for

understanding the complex regulatory networks involved in stress

adaptation. Combining these approaches with eco-physiological

assessments can provide a comprehensive understanding of how

plants adapt to changing environments (Shafi et al., 2024).

Comprehending the impact of these cumulative stresses on plants

at physiological, molecular, and ecological levels is crucial for

cultivating crops capable of sustaining output under realistic

growing conditions, where numerous stresses frequently occur.

2.2.1 Interactions between salinity, drought, heat,
pests, and diseases

Abiotic stresses such as salinity, drought, and heat frequently

intensify the effects of biotic pressures by modifying plant

physiology, hence increasing their vulnerability to pests and

diseases. Salt stress can diminish plant vigor and trigger water

stress, hence impairing the plant’s innate defense mechanisms

against diseases such as fungi or bacteria (Shafi et al., 2024).

Drought and heat can also hinder a plant’s capacity to synthesize

secondary compounds, essential for protection against insect pests

(Shafi et al., 2024). Elevated temperatures can compromise disease

resistance, making plants more susceptible to infections from fungi

and bacteria (Shelake et al., 2024).

Conversely, the existence of pests might affect a plant’s resilience

to abiotic pressures. Herbivore-induced stress can alter plant

metabolism, thereby augmenting or impairing the plant’s resilience

to other stressors. Research indicates that plants subjected to

simultaneous drought and insect herbivory stress demonstrate

modified hormonal responses, including heightened production of

jasmonic acid, which is crucial to both drought resistance and pest

defense (Khan et al., 2024; Margay et al., 2024). As illustrated in Figure

2, the combined stresses frequently have a synergistic or additive effect,

whereby one stress amplifies the adverse impact of another, resulting

in a more significant decline in growth, yield, and salt tolerance

(Khalid et al., 2024; Li et al., 2024). In order to ensure the stability of

salt tolerance characteristics under varying environmental conditions,

breeding programs must integrate multi-stress tolerance. Multi-

environment trials (METs) are crucial for evaluating salt-tolerant

rice cultivars under diverse climatic circumstances and across

several growth seasons. Such trials assist in identifying cultivars that

sustain constant performance despite varying environmental

conditions (Balasubramanian). Moreover, multi-stress breeding is

essential to guarantee that rice varieties exhibit tolerance not only to

salt but also to combined stresses such as drought and heat. This

underscores the necessity for a comprehensive strategy in breeding for

multi-stress tolerance, wherein the interconnections between abiotic

and biotic stressors are concurrently addressed.

2.2.2 Physiological and molecular responses to
combined stresses

When plants suffer combined abiotic and biotic challenges, their

physiological responses become more intricate than those

experienced under singular stress conditions. The initial line of

defense often entails a series of signaling pathways triggered by the
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perception of stress. In response to abiotic conditions including salt

and drought, plants initiate osmotic regulation and antioxidant

defense mechanisms to mitigate damage from reactive oxygen

species (Liu et al., 2024; Rafique et al., 2024). Simultaneously,

when plants encounter biotic stress, such as pathogen invasion,

they activate defense mechanisms, including the synthesis of

pathogenesis-related proteins and the initiation of systemic

acquired resistance (SAR) pathways (Bandyopadhyay et al., 2024).

Under conditions of combined salinity and pathogen stress, plants

may prioritize their response to salinity by activating ion

transporters such as NHX (Na+/H+ antiporters) and SOS (salt

excessively sensitive) pathways, which facilitate the maintenance of

ionic equilibrium (Maach et al., 2024). This may restrict the energy

allocated for activating defense mechanisms against pathogens,

leading to heightened disease vulnerability (Majidian and

Ghorbani, 2024). In contrast, other plant species, such as those in

the Brassica genus, exhibit cross-tolerance mechanisms that boost

their response to abiotic challenges, including drought or heat,

when subjected to biotic pressures like herbivore attacks (Cantila

et al., 2024; Yoo et al., 2024). The interaction among various stress

responses frequently entails communication between plant

hormones at the molecular level. The hormone abscisic acid

(ABA) is essential for drought tolerance and pathogen defense;

however, the precise regulation of ABA signaling is vital in deciding

whether a plant will initiate an effective defense response or

prioritize survival during drought or heat stress (Rizhsky et al.,
Frontiers in Plant Science 05
2004; Bharath et al., 2021; Lim et al., 2022). This crosstalk engenders

a complex environment for breeding strategies, as selecting for

tolerance to one stress may unintentionally diminish the plant’s

capacity to withstand another.

2.2.3 Multi-stress tolerance breeding strategies
Considering the intricate nature of combined stress reactions,

breeding for multi-stress tolerance necessitates a more

comprehensive strategy than conventional single-stress breeding.

A variety of breeding strategies have developed to tackle the

challenges posed by coupled stressors. These include Quantitative

Trait Locus (QTL) Mapping and Marker-Assisted Selection (MAS),

which have emerged as viable methods in recent years. For instance,

QTLs linked to simultaneous drought and heat tolerance in Oryza

sativa have been identified and utilized in marker-assisted selection

to create varieties with improved resilience to both extremes

concurrently (Hassan et al., 2023; Mohanavel et al., 2024).

Transgenic and genome-editing approaches also play a significant

role. Editing genes associated with ion transport, hormone control,

and reactive oxygen species scavenging can result in the creation of

plants that demonstrate improved tolerance to both abiotic

conditions (e.g., salt, drought) and biotic challenges (e.g., diseases,

pests) (Li et al., 2022; Yadav et al., 2023). The CRISPR/Cas9

technology has been employed to modify the OsERF48 gene in

rice, which is involved in the regulation of drought tolerance and

resistance to the rice blast fungus (Shim et al., 2018; Jung et al.,
FIGURE 2

Summary of interaction between salt stress and other environmental stresses.
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2021). Recent breakthroughs in functional genomics and systems

biology have enabled researchers to examine the integrated

responses of plants to various stimuli at the transcriptomic and

proteomic levels. By comprehending the systemic coordination of

stress responses in plants, breeders might formulate ways to

augment the overall resistance of crops against various combined

stressors. The utilization of transcriptome data has facilitated the

identification of genes associated with heat and pest resistance in

maize, potentially aiding in the breeding of maize varieties capable

of enduring both stressors (Xue et al., 2024; Zhao et al., 2024).

Traditional breeding techniques remain essential in the creation

of multi-stress tolerant cultivars. These programs must prioritize

the assessment of stress tolerance under various environmental

settings, mimicking the impacts of mixed abiotic and biotic

stressors. Breeding projects for wheat have aimed to create

varieties that exhibit tolerance to both drought and pest

infestations, seeing some success in areas susceptible to these

challenges (Tadesse, 2021; Bapela et al., 2022). Addressing

combined abiotic and biotic stresses is crucial for crop resilience

in the face of climate change and insect challenges. These stresses

cause complicated physiological and molecular responses, typically

requiring cross-talk between stress signaling pathways. Breeding

efforts must use QTL mapping, transgenic methods, and functional

genomics to create stress-resistant crops. Successful multi-stress

tolerance breeding requires a profound understanding of plant

stress physiology and a dedication to establishing breeding
Frontiers in Plant Science 06
programs that analyze numerous stress combinations to create

resilient, high-yielding crops.
3 Mechanisms of salinity tolerance
in rice

3.1 Ionic homeostasis

A key mechanism enabling rice to withstand salinity is ionic

homeostasis, which maintains the delicate ion balance within plant

cells under saline conditions. Plant growth and productivity are

significantly hampered by ionic toxicity, osmotic stress, and

nutritional imbalance caused by high concentrations of sodium

(Na+) and chloride (Cl-) ions in saline soils. As summarized in

Figure 3, rice plants have developed several adaptive methods to

lessen these negative effects and guarantee survival in the face of

saline stress. A fundamental mechanism includes the management

of sodium and potassium concentrations, in which effective ion

transport networks uphold Na+/K+ balance, essential for enzyme

functions and cellular integrity. The high-affinity potassium

transporter (HKT) gene family, especially OsHKT1;5, is crucial

for selectively extracting Na+ from the xylem, thus mitigating

harmful buildup in the shoots while maintaining sufficient

potassium levels in the cytoplasm (Shohan et al., 2019; Hussain

et al., 2022). The sequestration of sodium ions into vacuoles is
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mediated by vacuolar Na+/H+ antiporters such as NHX1, which

mitigate cytosolic toxicity and assist in maintaining osmotic

equilibrium. The sequestration process is facilitated by proton

pumps such as H+-ATPase and H+-PPase, which sustain the

electrochemical gradient essential for Na+ transport (Patel and

Mishra, 2021; Mansour, 2023). These physiological responses are

molecular mechanisms like the salt overly sensitive (SOS) pathway,

involving key components such as SOS1, SOS2, and SOS3. This

pathway modulates Na+ efflux and facilitates K+ retention, hence

maintaining ion homeostasis during salt stress. Transcriptomic

analyses reveal the overexpression of these transporters in salt-

tolerant rice cultivars, emphasizing their significance in salinity

resilience (Hussain et al., 2022). These interconnected methods and

mechanisms illustrate rice plants’ complex approach to sustaining

ionic equilibrium and flourish in saline conditions.

Although sodium toxicity frequently generates greater focus,

the management of chloride ions is of equal significance. Rice plants

efficiently regulate Cl− absorption and translocation to prevent

excessive buildup in sensitive tissues, with stronger discrimination

mechanisms facilitating improved salinity tolerance (Sarangi et al.,

2024; Gupta and Shaw, 2021; Guo et al., 2024). Alongside these

intrinsic tactics, the utilization of biostimulants has surfaced as a

promising method. Exogenous compounds like gallic acid and

humic acid improve ionic homeostasis by decreasing Na+ buildup

and optimizing the Na+/K+ ratio. These biostimulants also stimulate

antioxidant defense mechanisms, alleviating oxidative damage

caused by saline environments (Rahman et al., 2022; Abu-Ria

et al., 2023; Zhang et al., 2024a).
3.2 Osmotic adjustment

Osmotic adjustment is essential for rice plants to adapt to

salinity stress, as it helps maintain cellular turgor and water

uptake, both of which are crucial for survival in salt-affected

environments. This adaptive mechanism relies on the active

accumulation of osmolytes, including proline, glycine betaine, and

trehalose, as well as inorganic ions such as potassium (K+). These

molecules reduce cellular osmotic potential, facilitating water

retention in the presence of external osmotic imbalances due to

elevated salinity (Suprasanna et al., 2016; Zouari et al., 2019;

Mohammadi Alagoz et al., 2023). In addition to water regulation,

these osmolytes play a role in stabilizing cellular proteins and

membranes, reducing ionic toxicity from Na+ and Cl-

accumulation, and enhancing antioxidant defenses. Proline serves

as a molecular chaperone and a scavenger of reactive oxygen species

(ROS), protecting cellular structures during stress conditions

(Rehman et al., 2021; Liu et al., 2022; Ulrich, 2023). The

importance of osmotic adjustment is further highlighted by

research on salinity-tolerant rice lines, in which certain

quantitative trait loci (QTLs) augment osmolyte synthesis and

transport. These genetic modifications highlight the relevance of

essential genes, especially those associated with tetrapyrrole

production, which enhance osmotic balance and photosynthetic

efficiency in saline environments (Nounjan et al., 2020). These
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findings highlight the interaction between metabolic pathways and

stress resilience in rice. Advancements in biotechnology, have

transformed approaches to improve osmotic adjustment.

Researchers have engineered genes involved in osmolyte

production to develop transgenic rice types with enhanced salt

tolerance. The overexpression of glycine betaine biosynthetic genes

has resulted in rice plants exhibiting enhanced growth and

productivity in saline soils (Liu et al., 2022; Mandal et al., 2022;

Yu et al., 2022). These insights and improvements collectively

underscore the complex mechanisms of osmotic adjustment and

its significant promise in developing salt-tolerant rice cultivars

(Nurbekova et al., 2024).
3.3 Antioxidant defense

Salinity stress in rice plants induces the excessive generation of

reactive oxygen species (ROS), such as superoxide anions, hydrogen

peroxide (H2O2), and hydroxyl radicals, leading to oxidative

damage to critical cellular components, including lipids, proteins,

and DNA. Rice plants employ a comprehensive antioxidant

defense system consisting of enzymatic and non-enzymatic

components to preserve cellular integrity during stress. Enzymatic

antioxidants, including superoxide dismutase (SOD), catalase

(CAT), ascorbate peroxidase (APX), and glutathione reductase

(GR), are upregulated in response to salinity stress. This increased

expression establishes a defense network that transforms harmful

reactive oxygen species (ROS) into less reactive molecules, such as

water and oxygen. Enhanced activities of APX and CAT have been

observed in salt-tolerant rice varieties, such as CSR36, leading to

reduced ROS levels and improved ionic homeostasis (Li et al., 2023;

Kumar et al., 2024). Non-enzymatic antioxidants such as ascorbate

(AsA), glutathione (GSH), proline, and phenolic compounds serve

to enhance enzymatic defenses. Proline facilitates osmotic

adjustment, stabilizes proteins, and scavenges free radicals,

enhancing stress tolerance (Hadid et al., 2023; Renzetti et al.,

2024). SOD serves as the initial line of defense, facilitating the

conversion of superoxide radicals into oxygen and hydrogen

peroxide through the process of dismutation. In rice, various

isoforms of superoxide dismutase (SOD), such as Cu/Zn-SOD,

Mn-SOD, and Fe-SOD, are distributed across distinct cellular

compartments, including chloroplasts, mitochondria, and the

cytosol, to offer protection that is specific to each compartment

(Sanyal et al., 2022; Zhou et al., 2022). CAT is essential for the

detoxification of hydrogen peroxide, facilitating its conversion into

water and oxygen. Rice cultivars demonstrating elevated CAT

activity in response to salinity stress show increased tolerance, as

indicated by diminished oxidative damage and enhanced growth

(Jiang et al., 2023). POD and APX play crucial role in the

ascorbate-glutathione cycle, facilitating the detoxification of

hydrogen peroxide within the cytosol and chloroplasts. APX

specifically employs ascorbate as a reducing agent to transform

H2O2 into water, whereas POD plays a crucial role in lignin

biosynthesis and the fortification of cell walls during stress

conditions (Foyer and Kunert, 2024; Yoshimura and Ishikawa, 2024).
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The application of exogenous antioxidants, including gallic

acid, significantly bolsters this defense mechanism by augmenting

the enzymatic activity within the AsA-GSH cycle, which in turn

mitigates oxidative damage in rice seedlings subjected to salinity

stress (Rahman et al., 2020). In the realm of genetics, genes like

OsAPX1 and OsCATC frequently exhibit upregulation in rice

varieties that demonstrate salt tolerance. Furthermore, genetic

modifications, particularly the overexpression of genes responsible

for scavenging reactive oxygen species, have proven effective in

enhancing salinity tolerance (Chen and Qiu, 2023; Song et al., 2024;

Zhao et al., 2024). Breeding programs incorporating molecular tools

to enhance antioxidant pathways are essential for developing rice

varieties with improved salinity tolerance. This highlights the

variability of antioxidant responses among different genotypes

and their significance for sustainable agriculture.
3.4 Morphological and
anatomical adaptations

Rice plants have developed a range of morphological and

anatomical adaptations that enable them to cope with the

detrimental impacts of salinity stress, such as decreased water

availability, ionic toxicity, and oxidative stress. The adaptations are

crucial for fostering growth and ensuring productivity in saline

environments. A significant approach involves altering root

morphology and architecture, which improves the absorption of

water and nutrients while minimizing sodium buildup. Salt-tolerant

rice varieties generally exhibit deeper andmore expansive root systems,

allowing them to reach less saline water located at greater depths.

Alterations in the density of root hairs and heightened root

exudation play a significant role in enhancing ionic balance

(Oburger et al., 2014; Holz et al., 2018). In light of the diminished

water availability linked to salinity, rice plants demonstrate reduced

leaf areas and heightened leaf rolling, adaptations that serve to

conserve water effectively. The regulation of stomata is essential in

this context, as the closure of these structures reduces water loss and

inhibits the absorption of harmful ions through evapotranspiration

(Raeisi Vanani et al., 2024). Salt-tolerant varieties exhibit

anatomical adaptations such as thicker cuticles and reinforced

epidermal layers. These features minimize water loss and serve as

barriers to ion entry, thereby improving the plant’s capacity to

sustain internal water potential and ionic balance. Moreover,

vascular adaptations, including decreased xylem vessel diameters

and a heightened number of xylem vessels, play a crucial role in

regulating ion transport and mitigating sodium translocation to the

shoots. Improved vascular compartmentalization isolates toxic ions,

thus safeguarding metabolic processes (Pouzoulet et al., 2020).

Furthermore, forming aerenchyma tissue in the roots enhances

oxygen transport in saline, waterlogged soils, offering significant

advantages for lowland rice varieties. Ultimately, the buildup of

osmolytes such as proline and glycine betaine within the leaves and

stems of rice plants plays a crucial role in sustaining cell turgor and

osmotic potential. This adaptation allows the plants to persist in

growth and photosynthesis, even when faced with salinity stress.
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The various adaptations contribute significantly to the resilience of

salt-tolerant rice varieties, offering important insights for breeding

programs and agricultural practices focused on enhancing rice

production in areas susceptible to salinity.
4 Genetics of salinity tolerance in rice

4.1 Key quantitative trait Loci

Salinity tolerance in rice is modulated by complex genetic

systems, with many Quantitative Trait Loci (QTLs) essential for

sustaining ionic homeostasis, osmotic equilibrium, and stress

signaling pathways. Recent advances in genomic technologies

have facilitated the precise identification of key QTLs associated

with salinity tolerance, especially during crucial growth phases. The

genetic complexity of these features renders them difficult to

identify and enhance via conventional breeding techniques.

Modern methodologies such as Quantitative Trait Locus (QTL)

mapping and Genome-Wide Association Studies (GWAS) have

facilitated the identification of loci linked to salinity tolerance.

Mapping these loci enhances the understanding of the genetic

variation that contributes to salt tolerance in rice, hence

informing breeding initiatives (Yin et al., 2023; Sugasi et al.,

2024). One of the most thoroughly investigated QTLs is Saltol,

situated on chromosome 1, which is significantly linked to the

regulation of sodium-potassium homeostasis during salt stress

(Marè et al., 2023). Saltol accounts for 62–80% of phenotypic

variation under salinity stress (Nutan et al., 2019; Marè et al.,

2023). The Saltol region, especially the SKC1 gene responsible for

encoding a sodium-potassium transporter, has played a crucial role

in marker-assisted selection (MAS) initiatives aimed at creating

salt-tolerant rice varieties, exemplified by FL478. Research on

haplotypes has demonstrated that various alleles in this region

play a significant role in salinity tolerance, observed in elite lines

and various landraces (Marè et al., 2023; Thippani et al., 2023). A

comprehensive meta-analysis focusing on salinity tolerance QTLs

has successfully identified 65 meta-QTLs (mQTLs) derived from an

initial pool of 768 QTLs across 35 studies. This extensive research

has effectively refined the confidence intervals for various traits,

encompassing root architecture, osmotic adjustment, and ionic

transport. Identifying these mQTLs has emerged as a critical

focus for breeding initiatives designed to enhance salt tolerance

(Satasiya et al., 2024). Recent sequencing studies have brought to

light the significance of qCMS1 and qTN1 located on chromosome

1, which are linked to important traits such as cell membrane

stability and tiller number in the context of salt stress. The identified

loci exhibit notable phenotypic variance ranging from 16% to 20%,

positioning them as strong candidates for the pyramiding of

multiple QTLs aimed at improving salt tolerance (Songtoasesakul

et al., 2023; Khunsanit et al., 2024).

Moreover, genome-wide association studies (GWAS) have

identified new quantitative trait loci (QTLs), such as qGPR2 and

qSLR9, which regulate seedling development and germination

capacity in saline environments, providing new avenues for
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genetic enhancement in breeding programs employing SNP

markers and marker-assisted selection (MAS) (Sayed et al., 2022;

Bas ̧taş, 2023; Maniruzzaman et al., 2023). The genes associated with

these QTLs encompass transcription factors (e.g., MADS-box,

calmodulin-binding proteins) and ion transporters (e.g.,

OsHKT1;5, OsSOS1), which are pivotal in ion transport,

signaling, and stress responses, elucidating the molecular

mechanisms of salinity tolerance (Leawtrakun et al., 2024a).

Incorporating these quantitative trait loci into superior rice

varieties, along with marker-assisted selection and advanced gene-

editing technologies, are facilitating the creation of rice cultivars

that exhibit improved tolerance to salinity. The recent

advancements hold considerable importance for global food

security, facilitating more sustainable rice production in areas

susceptible to salinity, thus contributing to the stabilization of

yields in the face of escalating environmental challenges.
4.2 Molecular markers, marker-assisted
selection, and modern breeding
approaches for salt tolerance

In recent years, molecular markers and marker-assisted

breeding (MAB) have become essential instruments for

improving the salinity stress tolerance of rice varieties. Aside the

Saltol QTL on chromosome 1, recent investigations have revealed

additional QTLs, including qSES1, qK8, and qRL1, which exhibit

distinct placements and notable stability across various genetic

backgrounds, offering new opportunities for developing salt-

tolerant rice varieties (Maniruzzaman et al., 2023). Molecular

markers, such as single nucleotide polymorphisms (SNPs) and

random amplified polymorphic DNA (RAPD) markers, have

greatly enhanced the high-resolution mapping of salt-tolerant

traits. SNP markers are crucial for accurately identifying traits in

salt-tolerant rice, whereas RAPD markers are effective for screening

aromatic rice varieties (Cuthbertson, 2022; Geng et al., 2023;

Maniruzzaman et al., 2023). Marker-assisted backcrossing

(MABC) effectively transfers salinity tolerance traits into elite

varieties. Examples of success include the introgression of the

Saltol locus into temperate japonica rice varieties such as Vialone

Nano and Onice, which improves salinity tolerance while

maintaining yield potential (Marè et al., 2023). In addition to

Saltol, loci including SKC1 and new QTLs derived from

landraces, such as Akundi, provide supplementary mechanisms

for salinity tolerance, thereby expanding the genetic resources

accessible for breeding purposes (Soda et al., 2013; Le et al.,

2021). The variety CSR43, produced using MABC, has exhibited

high yields under saline environments in India (Singh et al., 2016).

Likewise, BRRI dhan67, introduced in Bangladesh, has

demonstrated exceptional adaptation to coastal areas

characterized by elevated soil salinity (Shamsuddin et al., 2022).

These achievements underscore the promise of molecular markers

in the creation of climate-resilient rice cultivars.

Omics technologies, including as transcriptomics and

proteomics, have detailed the molecular pathways that govern
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salinity tolerance. Transcriptomic analyses have demonstrated the

overexpression of genes like OsDREB2A and WRKY53, which are

pivotal in stress response pathways. Proteomic investigations have

discovered stress-protective proteins that facilitate osmotic

adjustment and mitigate oxidative stress, thereby deepening the

understanding of salt tolerance processes (Reddy et al., 2023). These

developments have facilitated the precise modification of genes such

as OsHKT1;5 and OsNHX1, which govern Na+ transport and

vacuolar sequestration, respectively, enhancing salinity tolerance

without diminishing yield (Rasheed et al., 2022). Modern breeding

approaches, notably CRISPR/Cas9-mediated genome editing,

genomic selection, and high-throughput phenotyping, have

enhanced traditional and marker-assisted breeding procedures.

For instance, CRISPR/Cas9 has been employed to delete the

OsERF922 gene, thereby augmenting blast resistance in rice while

preserving other agronomic characteristics (Liang et al., 2021).

Similarly, genomic selection (GS) has been utilized to enhance

complex traits, including grain quality and nitrogen use efficiency

(NUE), in rice (Yu et al., 2022). High-throughput phenotyping

platforms, coupled with advanced imaging technologies, have

enabled the rapid screening of large breeding populations for

traits such as canopy architecture, root morphology, and stress

responses (Yang et al., 2014; Tanger et al., 2017). The combined use

of genetic approaches (e.g., GWAS, GS) with high-throughput

phenotyping has enabled the creation of salinity-tolerant rice

cultivars with unparalleled precision and efficiency (Akhlasur

Rahman et al., 2024).
4.3 Genomic insights

The utilization of genomic technologies has significantly

enhanced the study of salt tolerance in rice, uncovering

complicated biochemical and genetic pathways that regulate this

feature. Candidate genes such as MIKC-type MADS domain

proteins and calmodulin-binding transcription factors have been

emphasized for their involvement in salt stress signaling

(Leawtrakun et al., 2024a). Further insight from transcriptomics

and eQTL analyses reveals that salinity induces significant changes

in gene expression in rice. The studies indicate that trans-eQTLs

have a greater impact compared to cis-eQTLs, implying the

importance of master regulatory genes in the adaptation to

salinity stress (Gupta et al., 2024). Moreover, transcriptomic

analysis highlights the potential of spermidine treatment in

mitigating salinity-induced transcriptional disruptions,

upregulating genes related to stress-alleviation pathways such as

MAPK signaling and phenylalanine metabolism, thus

complementing genomic strategies for enhanced salinity tolerance

(Shen et al., 2024). Simultaneously, advanced genotyping

technologies such as SNP chips and next-generation sequencing

(NGS) have significantly propelled genome-wide association studies

(GWAS) and marker-assisted selection (MAS) aimed at enhancing

salinity tolerance. These instruments facilitate the recognition of

markers associated with salinity, thus empowering more accurate

breeding initiatives aimed at multi-trait tolerance (Singh and Devi,
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2023). The exploration of functional genomics, especially regarding

genes like OsHKT1;5 and OsNHX1, has deepened our

understanding of the intricate mechanisms involved in ion

transport and compartmentalization when faced with salinity stress.
4.4 Role of wild rice germplasm

Wild rice germplasm has become crucial for improving salinity

tolerance in cultivated rice cultivars, tackling a significant

agricultural concern. The genetic variety in wild rice species offers

unique alleles and features that markedly enhance tolerance to salt

stress, exceeding the constraints observed in domesticated varieties

such as Oryza sativa (Shahzad et al., 2022). Species such as Oryza

rufipogon, Oryza coarctata, Oryza latifolia, and Oryza alta are

naturally adapted to saline environments, equipped with

mechanisms including effective Na+ exclusion, K+ retention, and

osmotic adjustment. These wild cousins offer distinct genes

responsible for activities such as vacuolar sequestration of

sodium, regulated xylem loading, and activation of stress-

responsive antioxidant pathways, all contributing to salt tolerance

(Solis et al., 2020). Furthermore, metabolomic analysis of

Dongxiang wild rice has shown the important function of amino

acids such as L-Asparagine in reducing salt stress and offering

biochemical markers for tolerance building. Crucially for preserving

cellular homeostasis under salt stress conditions, these metabolic

changes include the activation of antioxidant pathways and the

buildup of osmolytes (Chen et al., 2021a). Moreover, the

identification of new Quantitative Trait Loci (QTLs) and

candidate genes such as AGO2 and WRKY53, which improve salt

tolerance at crucial phases like germination and early development,

has been much aided by the establishment of Chromosome

Segment Substitution Lines (CSSLs). The key to stress adaption is

that these genes control fundamental processes, including reactive

oxygen species (ROS) scavenging and ion transport (Xing et al.,

2024). A number of studies have effectively pinpointed and

described salt-tolerant genes in wild rice species, while current

endeavors focus on incorporating these traits into superior rice

cultivars, thereby enhancing the genetic diversity accessible for

salinity tolerance (Samy et al., 2024).
5 Physiological and biochemical
responses to salinity

5.1 Impacts on photosynthesis and
chlorophyll content

Salinity stress significantly impairs essential processes of

photosynthesis and chlorophyll concentration in O. sativa, which

are vital for plant growth and yield. Sodium ions (Na+) interfere

with cellular ionic equilibrium and osmotic potential, causing

structural and functional damage to the photosynthetic system.

This disturbance results in diminished photosynthetic efficiency,

decreased chlorophyll levels, and impaired light absorption. Salinity
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inhibits chlorophyll biosynthesis and hastens its breakdown,

reducing light absorption and electron transport. A study on rice

cultivars subjected to 80 mM NaCl demonstrated considerable

chlorophyll decline, chiefly attributable to oxidative damage and

the suppression of enzyme pathways essential for chlorophyll

biosynthesis (da Silva et al., 2023). Rice genotypes possessing salt-

tolerant QTLs, exemplified by the Pokkali variety, exhibited

improved chlorophyll retention and superior photosynthetic

efficiency in saline conditions, highlighting the significance of

genetic diversity in stress adaptation (Nounjan et al., 2020).

Furthermore, salt stress affects chloroplast thylakoid membranes,

limiting Photosystem II (PSII) activity. This leads to reduced

quantum efficiency (Fv/Fm) and poorer photochemical

quenching, both of which are important for effective energy

conversion during photosynthesis (Tabassam et al., 2016). Salt-

tolerant genotypes, however, preserve higher PSII efficiency,

ensuring better utilization of light energy. As a result, the overall

photosynthetic rate (Pn) drops during salinity stress, mostly due to

stomatal closure and lower CO2 absorption. Improvements in water

use efficiency (WUE) and osmotic adaptations in salt-tolerant

cultivars alleviate these impacts, as demonstrated by Pokkali rice,

which showed a 19% rise in Pn under high salinity, indicating its

superior physiological resilience (Santanoo et al., 2023).

Figure 4 illustrates that physiological alterations under salinity

stress encompass various plant responses that result in diminished

growth (Riaz et al., 2019). These changes include alterations in the

Na+/K+ ratio, decreased stomatal conductance (gs), reduced

photosynthetic rates, and heightened production of reactive

oxygen species (ROS) to mitigate the detrimental effects of

salinity on photosynthesis and to stimulate the synthesis of

antioxidant enzymes. Moreover, antioxidant enzymes and

osmoprotectants, like glutathione and proline, are crucial in

safeguarding the photosynthetic apparatus from oxidative damage

caused by salinity. These chemicals neutralize reactive oxygen

species (ROS), mitigating cellular damage and preserving

chloroplast integrity. Genetic findings regarding salt adaptation

emphasize the significance of chlorophyll biosynthesis genes,

particularly Os08g41990, which have demonstrated the ability to

sustain chlorophyll levels under stress conditions. Studies

employing chromosomal segment substitution lines (CSSLs) have

demonstrated the significance of these genes in improving the rate

of photosynthesis and strengthening salt tolerance (Nounjan et al.,

2020). Thus, physiological and genetic techniques are required to

minimize salinity’s deleterious effects on rice’s photosynthesis.
5.2 Changes in nutrient uptake
and transport

By mainly disrupting ionic equilibrium and nutritional shortages,

salinity stress greatly hinders nutrient uptake and transport in rice.

Key macronutrients like potassium (K+), calcium (Ca+), and

magnesium (Mg2+), and micronutrients like manganese (Mn) and

zinc (Zn) are hindered in their uptake by salty environments’ high

sodium (Na+) and chloride (Cl−) concentrations. Ionic imbalances
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hinder plant development and productivity by interfering with

essential physiological processes, including photosynthesis and

enzymatic activities. Salinity significantly disturbs sodium-

potassium homeostasis by elevating the Na+/K+ ratio, hence

impairing metabolic processes and enzymatic functioning.

Nevertheless, several salt-tolerant rice cultivars, including Pokkali,

alleviate these impacts by effectively regulating Na+ and K+

transporters, such as OsHKT1;5 and OsNHX1, which decrease Na+

buildup in the shoots while preserving sufficient K+ levels for cellular

activities (Nampei et al., 2021). Wild rice species, including O.

coarctata, demonstrate mechanisms that improve K+ retention and

mitigate Na+ toxicity through effective xylem unloading and vacuolar

sequestration (Sarkar and Roy, 2020). Moreover, salt stress impedes

the absorption of micronutrients, especially manganese and zinc,

which are crucial for photosynthesis and enzymatic activities.

Supplementing manganese under salty conditions aids in restoring

nutritional equilibrium and promotes stress tolerance, presenting a

viable technique for increasing rice development under salinity

(Tabassam et al., 2022).

Calcium (Ca2+) is essential in decreasing Na+ toxicity by

restricting Na+ transport to aerial parts and enhancing Cl−

exclusion. In salt-tolerant cultivars like Nona Bokra, appropriate

calcium levels considerably boost survival rates under salinity by

reducing Na+ and Cl− translocation (Abouzied and Abd El-latif,

2017). Furthermore, elevated rhizospheric pH in saline

environments restricts iron accessibility (Fe), an essential nutrient

for plant development. Salinity-tolerant genotypes mitigate this

issue by enhancing the expression of Fe transporters, including

OsIRT1 and OsYSL15, so securing sufficient Fe availability in

saline-alkaline environments (Nampei et al., 2021). The symbiosis

between arbuscular mycorrhizal (AM) fungus and rice is another

molecular process that contributes to salt tolerance. By controlling
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the genes for cation transporters, AM fungi improve root potassium

absorption and root sodium compartmentalization, which in turn

reduces root-to-shoot Na+ transit. Another way to increase rice’s

tolerance to salt is through this interaction, which upregulates genes

such as OsSOS1 and OsNHX3 that help maintain ionic balance

when the plant is exposed to salt (Porcel et al., 2016).
5.3 Hormonal regulation

Salinity stress in O. sativa produces complicated hormonal

changes that play a critical role in minimizing the detrimental

consequences of excessive salt concentrations. Hormonal signaling

serves as a conduit, merging environmental stimuli with growth and

stress response pathways, allowing rice plants to acclimate to

salinity stress via processes such as stomatal control, ionic

homeostasis, and mitigation of oxidative damage (Xiao and Zhou,

2023). Elevated salt concentrations stimulate the excessive

generation of reactive oxygen species (ROS), resulting in oxidative

damage to plant tissues, including lipid peroxidation, protein

breakdown, and DNA damage. Malondialdehyde (MDA), a

byproduct of lipid peroxidation, functions as a measure for

oxidative stress levels in plants (Zhao et al., 2021; Zhao et al.,

2024). Spermidine (Spd) treatment enhances the activity of

antioxidant enzymes such as superoxide dismutase (SOD) and

catalase (CAT), significantly reducing reactive oxygen species

(ROS) levels and boosting oxidative stress tolerance, especially in

rice roots (Shen et al., 2024).

Central to the salinity stress response is abscisic acid (ABA),

frequently referred to as the “stress hormone.” ABA concentrations

increase significantly during salt stress, inducing stomatal closure to

diminish transpiration and avert excessive water loss (Xiao and Zhou,
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Illustrative summary of the physiological response of rice to salinity stress.
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2023). Additionally, ABA stimulates downstream signaling pathways

that engage ABA-responsive element-binding factors (ABFs), which

modulate stress-protective genes and enhance water uptake efficiency

by improving root hydraulic conductivity (Formentin et al., 2018).

Salinity stress inhibits the manufacture of auxins (IAA) and

gibberellins (GA), hormones essential for cell elongation and shoot

development. In salt-tolerant rice varieties, an accelerated recovery of

IAA and GA levels facilitates root and shoot regrowth following

initial stress (Riaz et al., 2019; Liu et al., 2022). Cytokinin levels, which

decline under salinity stress, also limit cell division and shoot growth.

However, higher cytokinin levels in salt-tolerant varieties, particularly

in the roots, enhance nutrient translocation and stimulate shoot

development (Mandal et al., 2022; Li et al., 2023). They also interact

with other hormones, such as abscisic acid (ABA), to modulate stress

responses and delay senescence, thereby enhancing crop yields (Yu

et al., 2022). Ethylene, a hormone increased by salinity, has a dual

role. It induces stress-adaptive responses like leaf senescence and

aerenchyma formation, but excessive ethylene can hinder growth.

Rice varieties that regulate ethylene biosynthesis and signaling

enhance growth in saline conditions (Ji et al., 2020). Salicylic acid

(SA) and jasmonic acid (JA) also regulate defense responses to

oxidative stress and ionic imbalance. SA boosts antioxidant enzyme

activity to reduce ROS damage and promotes gene expression related
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to programmed cell death and autophagy, facilitating stress recovery

(Khan et al., 2019). These hormones interact intricately, with ABA

synergistically engaging with ethylene, SA, and cytokinins to

coordinate adaptive responses. For example, the ABA-ethylene

synergy helps regulate stomatal dynamics, while the interplay

between ABA and SA enhances ROS scavenging mechanisms

(Formentin et al., 2018). These hormonal responses create a

network allowing rice plants to effectively manage salinity stress.
6 Breeding strategies for
salinity tolerance

6.1 Conventional breeding

Traditional breeding has been essential in creating salinity-

resistant rice varieties, especially in areas with restricted access to

sophisticated molecular methods. Traditional breeding techniques

have effectively utilized the inherent genetic variety in rice

germplasm to identify and integrate features that improve salinity

tolerance, providing sustainable methods to address soil salinization

in prominent rice cultivation regions (Figure 5) (Mheni et al., 2024).

Traditional salt-tolerant landraces, such as Pokkali and Nona
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FIGURE 5

Illustrative summary of breeding strategies for salt-tolerant rice.
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Bokra, are among the principal contributions to these breeding

initiatives and have demonstrated significant value. These kinds

exhibit sodium exclusion, potassium retention, and improved

osmotic adjustment, rendering them suitable donors for salinity

tolerance to elite, high-yield rice cultivars (Chen et al., 2021b).

Recurrent selection, a cross-breeding approach, has been

extensively utilized to impart saline tolerance to vulnerable types.

By consistently selecting progeny exhibiting enhanced tolerance

qualities, breeders have achieved gradual genetic improvements

across generations. Crosses between Pokkali and the sensitive

variety IR29 have created recombinant inbred lines (RILs) like

FL478, which demonstrate enhanced salinity tolerance (Reddy et al.,

2023). Phenotypic screening under controlled saline conditions has

been essential for discovering salt-tolerant lineages. Parameters like

seedling vigor, shoot biomass, and Na+/K+ ratios are employed to

evaluate the lines’ resistance, while field testing in saline regions

further corroborates the performance of these lines under natural

settings (Aggarwal et al., 2024; Kumawat et al., 2024). Concerning

notable accomplishments, including the creation and extensive

utilization of salt-tolerant varieties such as BRRI dhan47 in

Bangladesh and CSR10 in India, conventional breeding continues

to encounter obstacles (Shamsuddin et al., 2022; Saminadane et al.,

2024). The polygenic nature of salinity tolerance indicates that the

integration of various traits into a single variety necessitates careful

selection and assessment across multiple generations (Qin et al.,

2020). The detailed nature of this issue restricts the pace at which

salinity-tolerant varieties can be cultivated and introduced, posing a

significant challenge for breeding initiatives (Akhlasur Rahman

et al., 2024). Nonetheless, traditional breeding continues to serve

as a fundamental strategy in tackling salinity stress in rice,

providing practical and effective solutions, particularly in

resource-constrained areas. Efforts to incorporate marker-assisted

selection (MAS) with traditional breeding methods can speed up

the process of developing better cultivars. To tackle salinity issues, it

is possible to use a wider genetic base by incorporating novel

donors, like wild rice species (Singh and Devi, 2023).
6.2 Transgenic approaches

Transgenic methods have greatly progressed the creation of

salinity-resistant rice cultivars by facilitating exact genetic

alterations that improve stress tolerance. These strategies aim to

introduce and express particular genes from various sources to

enhance rice’s ionic control, osmotic equilibrium, and antioxidative

responses. For instance, the overexpression of stress-responsive

genes such as OsHKT1;5 and OsNHX1 improves sodium

exclusion and compartmentalization, which are essential for

sustaining Na+/K+ equilibrium in saline environments (Kobayashi

et al., 2017; Prusty et al., 2018). Moreover, transgenic rice, including

SaPMP3 from Spartina alterniflora has demonstrated enhanced ion

homeostasis and plant vitality under saline stress (Biradar, 2012).

The functional integration of halophyte-derived genes, such as

SaVHAc1 (vacuolar H+-ATPase subunit) from S. alterniflora,

enhances this methodology. Transgenic rice, including SaVHAc1
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and SaPMP3 exhibits enhanced chlorophyll retention, decreased

ion toxicity, and improved grain production under high-salinity

conditions (Baisakh et al., 2012; Biradar et al., 2018). Moreover, the

inhibition of stress-sensitive genes via RNA interference, specifically

the silencing of OsDSR2, augments antioxidant activity, diminishes

oxidative damage, and elevates proline accumulation, resulting in

enhanced survival rates (Mamta and Rajam, 2018; Gahlaut et al.,

2021). The regulation of antioxidant enzymes, including superoxide

dismutase (SOD) and catalase, enhances resilience by reducing

reactive oxygen species (ROS) damage, hence maintaining cellular

integrity during oxidative stress (Reddy et al., 2023).
6.3 CRISPR-Cas9 applications

The CRISPR-Cas9 technique has transformed the emergence of

salinity-tolerant rice by facilitating accurate genome editing to

target genes essential for stress response pathways, improving

ionic homeostasis, antioxidant capacity, and osmotic regulation.

The downregulation of OsAKT1, a gene involved in potassium and

sodium transport, in the salt-sensitive IR29 rice cultivar has been

accomplished via CRISPR-Cas9, resulting in diminished sodium

leakage and enhanced potassium retention, thus markedly

improving survival in saline environments (Khan et al., 2023). In

a similar vein, the elimination of negative regulators such as

OsPUB7, which inhibits salinity tolerance, has demonstrated

significant promise; rice lines with null mutations in OsPUB7

displayed elevated proline levels, less ion leakage, and improved

survival rates under salt stress (Kim et al., 2023). This method has

been successfully utilized in hybrid rice systems, where CRISPR-

Cas9 editing of OsRR22, a crucial regulator of salinity responses,

produced transgene-free third-generation hybrid rice exhibiting

improved salt tolerance and consistent agronomic performance

(Sheng et al., 2023). Another innovative application focuses on

targeting the promoter regions of salinity-associated genes, such as

OsSRFP1, inside the ubiquitination pathway; altering its promoter

area has refined stress control mechanisms, enhancing the rice

plant’s resilience to salt stress (Linh Khanh et al., 2024). Although

CRISPR-Cas9 has significant potential, its integration with other

genomic technologies, such as transcriptomics and phenomics,

could further improve salt-tolerance characteristics. However,

problems like legislative limitations and the establishment of

effective delivery methods must be confronted, with the

generation of transgene-free edited lines being crucial for broad

acceptability and implementation.

6.3.1 Regulatory and ethical considerations for
CRISPR/Cas9

The emergence of CRISPR/Cas9 technology has transformed plant

breeding by facilitating precise genetic modifications with remarkable

accuracy. Nonetheless, its use in agriculture presents significant

regulatory, ethical, and biosafety issues that require meticulous

consideration to guarantee its safe and equitable deployment. As

CRISPR-edited crops approach commercialization, it is imperative to

navigate the regulatory framework and address ethical considerations
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for their effective incorporation into global agriculture. The regulatory

framework for genetically modified crops differs greatly among

countries, illustrating diverse strategies for reconciling innovation

with safety. In contrast to conventional genetically modified

organisms (GMOs), which often entail the introduction of

exogenous genes, CRISPR/Cas9 facilitates the precise alteration of an

organism’s existing DNA. This differentiation has prompted

continuous discussions on whether CRISPR-edited crops have to

adhere to the same rigorous rules as GMOs or be classified as a

unique category entirely (Prusty et al., 2018). In some countries, such

as the United States, regulatory authorities like the U.S. Department of

Agriculture (USDA) and the Food and Drug Administration (FDA)

have embraced a more adaptable approach, proposing that CRISPR-

edited crops be regulated according to their characteristics rather than

the technology employed in their creation, or whether they could have

been produced through conventional breeding techniques (Ahmad

et al., 2023). This method facilitates expedited approval procedures for

crops that do not incorporate foreign DNA. In contrast, the European

Union (EU) has adopted a more prudent stance, imposing identical

stringent rules on CRISPR-edited crops as those applied to

conventional GMOs. This regulatory disparity presents obstacles for

global markets and trade. Crops sanctioned in one jurisdiction may

encounter regulatory obstacles or complete prohibitions in others.

Moreover, conflicting rules may induce confusion and impede the

advancement of CRISPR-edited crops, thereby postponing their

advantages for farmers and consumers.
6.3.2 Ethical and biosafety concerns
In addition to regulatory difficulties, CRISPR/Cas9 presents

other ethical and biosafety concerns. A significant ethical problem

pertains to the possibility of unexpected outcomes, such as off-target

mutations or the introduction of characteristics that may yield

unknown ecological effects. For instance, research shows that off-

target changes may occur, where the CRISPR-Cas9 system

unintentionally alters non-target genomic regions, resulting in

minor insertions, deletions, or nucleotide swaps (Sturme et al.,

2022). The enduring impacts of CRISPR-modified crops on

biodiversity, soil integrity, and non-target species remain

inadequately comprehended, necessitating comprehensive

biosafety evaluations to guarantee that these crops do not inflict

ecological damage. Also, there are concerns regarding the equity

and accessibility of CRISPR technology persist. The capacity to

patent gene-edited crops may result in monopolies over essential

agricultural features, thereby centralizing the advantages of CRISPR

technology within a select number of multinational firms and

restricting access for smallholder farmers in underdeveloped

nations (Dace and Tony Blair Institute for Global Change, 2021).

This may intensify pre-existing disparities in global food systems,

especially if the technology is predominantly motivated by profit

rather than the public interest. Guaranteeing fair access to CRISPR

technology, particularly in resource-limited environments,

necessitates international collaboration and open policies.

Another ethical problem is the possibility of “designer crops”

customized to particular consumer tastes. Although CRISPR has the

potential to create crops with superior nutritional profiles or
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enhanced disease resistance, there are concerns regarding the

commercialization of traits aimed at affluent consumers,

potential ly overlooking the requirements of deprived

communities who may derive greater benefit from traits like

drought resistance or disease tolerance (Adane and Alamnie,

2024; Chen et al., 2024). The public’s view and acceptability of

CRISPR-edited crops significantly influence their uptake,

underscoring the necessity for clear communication and public

engagement in the regulatory process (Food Standards Agency,

2021). This underscores the necessity for ethical considerations in

prioritizing CRISPR research and development, ensuring that the

technology serves all societal sectors, especially those most

susceptible to climate change and food shortages.

6.3.3 The need for international collaboration
Considering the global scope of food production and trade,

international cooperation is essential for creating a unified

regulatory framework for CRISPR-edited crops. Harmonized

international standards would ease trade obstacles, eliminate

regulatory fragmentation, and promote the global use of CRISPR

technology (Gan and Ling, 2022). Entities like the World Health

Organization (WHO), the Food and Agriculture Organization

(FAO), and the Organization for Economic Co-operation and

Development (OECD) are crucial in facilitating discourse and

establishing guidelines for the secure application of CRISPR in

agriculture. Moreover, international collaboration might mitigate

ethical problems by fostering common values and principles in the

production and dissemination of CRISPR-edited crops. This entails

guaranteeing an even distribution of CRISPR technology benefits

and the management of any dangers through comprehensive safety

evaluations and oversight. A worldwide approach would enhance

the dissemination of knowledge and resources, guaranteeing that

developing nations are not overlooked in the biotechnology

revolution. Although CRISPR/Cas9 presents significant potential

for revolutionizing agriculture, its application requires careful

regulation, ethical deliberation, and global collaboration.

Addressing these difficulties is essential for unlocking the

complete potential of CRISPR technology while ensuring human

health, environmental sustainability, and social equality.
7 Management practices for salinity-
affected areas

7.1 Agronomic practices

Agronomic approaches are essential for alleviating salt stress in

rice agriculture by optimizing water, soil, and nutrient

management, therefore improving productivity and maintaining

soil health in saline-prone areas. Efficient irrigation management is

essential for regulating salt levels in the root zone. Methods like

alternating wetting and drying (AWD) and integrated irrigation-

drainage systems have effectively diminished salt accumulation

while preserving water use efficiency. Replacing saline water every

three days in fields with a ponding depth of 2-5 cm markedly
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enhanced the production of salt-tolerant rice varieties such as

Binadhan-10 and BRRI dhan-47 (Rahman et al., 2020).

Conservation agriculture approaches, such as zero tillage, crop

residue recycling, and crop rotations, mitigate soil salinity, enhance

organic carbon levels, and augment soil water retention capacity.

Research in the Ganges Delta has shown that these methods reduce

water footprints and increase profitability relative to traditional tillage

systems (Sarangi et al). Effective nutrient management is essential for

minimizing salinity stress. Utilizing essential nutrients like zinc and

potassium via foliar spraysmitigates ionic toxicity and enhances plant

vitality. Moreover, the integration of continuous saturation irrigation

with organic amendments like farmyard manure and vermicompost

has demonstrated a 19% increase in rice yields compared to

traditional methods in the saline soils of Bangladesh (Ali et al.,

2024). Soil reclamationmethods improve the management of salinity.

Integrating organic amendments such as green manure and gypsum

diminishes soil salinity, boosting microbial activity and improving

soil structure. Utilizing raised-bed cultivation with these amendments

effectively reduces salt intrusion in coastal agro-ecosystems (Mitran

et al., 2021). Farmer-led approaches integrating salt-tolerant varieties

(STVs) with modified agronomic practices, including nutrient

management specific to sodic soils, have demonstrated significant

outcomes. Participatory techniques enhanced rice yields by 35% in

reclaimed saline areas, highlighting the significance of farmer

involvement in adopting sustainable and localized practices (Singh

and Singh, 2022).
7.2 Crop rotation and intercropping

Sustainable soil improvement, reduced salinity accumulation, and

optimal resource use efficiency can be achieved by crop rotation and

intercropping agronomic procedures, which are essential for salinity

management in rice agriculture. These approaches promote long-term

agricultural resilience in saline-prone regions by utilizing the

complimentary features of multiple crops, which mitigates salt stress.

Crop rotation is essential for salinity control, as it involves using salt-

tolerant species like barley ormustard, which improve water infiltration

and reduce salt buildup in the root zone. This method also promotes

the drainage of surplus salts, establishing a conducive soil condition for

future crops. Legume rotations, including pigeon pea, augment soil

organic matter and nitrogen levels, so mitigating saline effects on rice.

Research on saline soils in India indicates that rice-mustard and rice-

sunflower rotations enhance soil permeability, decrease salinity levels,

and sustain elevated rice-equivalent yields (Mitran et al., 2021).

Intercropping enhances crop rotation by improving soil health and

production. The integration of rice with salt-tolerant legumes such as

mung bean or cowpea enhances soil fertility and microbial activity,

alleviating the detrimental impacts of salinity. Strategic intercropping

methods, such as ridge-planted pigeon peas alongside furrow-planted

rice, optimize water and nutrient utilization, promote soil aeration, and

enhance yield stability under saline stress (Kumar et al., 2012).

Furthermore, biodiversity-based intercropping of traditional and

hybrid rice varieties, as evidenced in Yunnan Province, China,

enhances system resilience and stabilizes yields under saline
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conditions. This method reintroduces historic rice varieties and

enhances genetic variety, hence establishing resilient cropping

systems (http://bioscience.oxfordjournals.org/). The incorporation of

these approaches with organic amendments, such as farmyard manure

and green leaf manure, enhances their synergistic advantages.

Improving soil organic carbon, microbial biomass, and overall

productivity highlights the efficacy of integrating crop rotation,

intercropping, and organic inputs for successful salt management in

rice cultivation (Raeisi Vanani et al., 2024).
7.3 Soil reclamation

Soil reclamation in minimizing salinity stress in rice farming aims

to restore the productivity of salt-affected soils by enhancing soil

structure, decreasing salinity, and improving crop performance. This

is accomplished by a comprehensive approach integrating physical,

chemical, and biological approaches. Gypsum and phosphogypsum are

efficient chemical additions for displacing sodium ions from soil

exchange sites, thus mitigating sodicity and enhancing soil

permeability. Studies in coastal Bangladesh indicated that the

synergistic application of phospho-gypsum and cyanobacteria

markedly diminished soil electrical conductivity (EC) and enhanced

rice yields by 15.3% during wet seasons (Ali et al., 2023). Likewise,

incorporating organic materials, including farmyard manure, compost,

and biochar, enhances soil carbon levels and microbial activity. In

Nigeria’s saline-sodic soils, biochar derived from rice straw and Typha

grass significantly diminished salinity, enhanced water retention, and

augmented rice biomass (Adam et al., 2022).

Physical reclamation approaches, such as deep plowing, field

leveling, and subsurface drainage, enhance water infiltration and salt

leaching. Longitudinal data from Russian rice fields demonstrate that

regulating groundwater tables and implementing appropriate

irrigation-drainage systems regularly lowers salinity levels (Malysheva

et al., 2020). Biological methods such as phytoremediation utilizing

halophytes salt-tolerant plants like barley during off-seasons facilitate

the biological extraction of salts while enhancing soil organic matter

and microbial activity, hence conditioning soils for future rice growth

(Singh and Singh, 2022). Moreover, integrated nutrient management,

which integrates gypsum application with foliar sprays of urea, zinc

sulfate, and potassium sulfate, enhances nutrient availability while

minimizing salt effects. Field trials in Bangladesh exhibited a 19%

enhancement in rice yield and an improved benefit-cost ratio through

the implementation of these strategies (Akhlasur Rahman et al., 2024).

These diverse strategies offer an extensive framework for addressing

salinity in rice cultivation areas.
8 Case studies and success stories

8.1 Global perspectives on
salinity tolerance

While research on salinity tolerance has progressed considerably,

the majority of studies and breeding initiatives have concentrated on
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areas with particular environmental circumstances or geographical

limitations. Consequently, remedies to salt stress have frequently

been proposed within restricted geographic boundaries, limiting their

relevance to wider, varied areas impacted by soil salinity.

8.1.1 Case study 1: South Asia - the salt-affected
plains of India and Pakistan

Soil salinity is a prevalent issue in South Asia, notably in India

and Pakistan, particularly in the Indo-Gangetic Plain and coastal

regions. Both nations possess extensive areas of saline-sodic soils,

where elevated concentrations of sodium chloride (NaCl) and

sodium bicarbonate (NaHCO3) diminish agricultural output.

Approximately 6.73 million hectares of agricultural land in India

are impacted by salinity (Sarkar et al., 2024; Singh et al., 2024). The

significant variability in soil salinity, coupled with unpredictable

monsoons, inadequate irrigation techniques and poor drainage

systems, complicates the management of salt stress, leading to the

gradual accumulation of salts in the root zone (Verma et al., 2012).

Furthermore, indigenous rice and wheat types demonstrate limited

resistance to elevated saline, hence constraining yield (Shrivastava

and Kumar, 2015). In response, breeding projects in South Asia

have concentrated on creating salt-tolerant rice cultivars,

exemplified by the ‘FL478’ cultivar, which exhibits tolerance to

salinity stress and is being utilized in regions of Pakistan and India

(Wu et al., 2024), and the wheat cultivar ‘KRL-19’, which has been

effectively cultivated in saline-prone regions (Sheoran et al., 2021).

Additionally, advanced irrigation methods, such as the

implementation of drip irrigation and improved salinity

management techniques, have contributed to alleviating the

detrimental impacts of soil salinity (Wang et al., 2023).

8.1.2 Case study 2: Sub-Saharan Africa - the
challenges of coastal salinity in Senegal
and Egypt

Sub-Saharan Africa, especially coastal areas like Senegal and

Egypt, is experiencing rising salinity in soil and water. Saltwater

intrusion into the Senegal River Basin has emerged as a critical

problem in Senegal, particularly in the lower delta regions (Kabir

et al., 2024; Omuto et al., 2024). The implementation of flood

irrigation in Egypt, along with increasing sea levels, has led to salt

accumulation, threatening essential crops such as rice and wheat

(Saqr and Abd-Elmaboud, 2024). These issues are exacerbated by

inadequate freshwater supplies and inappropriate irrigation

methods, which worsen the salinization of cultivable land.

Furthermore, the agricultural industry in numerous African

nations is deprived of access to contemporary salinity-tolerant

cultivars and sophisticated irrigation technologies that could

mitigate salt accumulation in soils (Stein et al., 2023; Ghiardelli

et al., 2025; Tarolli et al., 2025). To address these challenges, Senegal

has promoted the use of salt-tolerant crops, such as salt-resistant

sorghum and millet, to improve agricultural resilience (Guden et al.,

2024; Pankaj et al., 2024). In Egypt, investigations into the

development of salt-tolerant rice cultivars, including those from

the Agricultural Genetic Engineering Research Institute (AGERI),

have demonstrated potential in mitigating issues associated with
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saline water sources (Leawtrakun et al., 2024b). Furthermore,

enhanced water management strategies, including subirrigation

systems and brackish water treatment technologies, are

progressively being implemented to mitigate soil salinization.

8.1.3 Case study 3: the Middle East - salinity
management in Iraq and Saudi Arabia

The Middle East suffers significant issues associated with soil

salinity, attributable to the region’s extreme temperature, scarce

freshwater resources, and heavy dependence on irrigation (Al-

Tardeh et al., 2023; Makttoof and Nafawa, 2024). In nations like

Iraq and Saudi Arabia, elevated evaporation rates, along with

inadequate water quality, result in considerable salinization of

both surface and groundwater resources. In Iraq, salinity has

made more than 20% of agricultural land unfit for crop

cultivation (Benaafi et al., 2024; Makttoof and Nafawa, 2024). The

interplay of increasing groundwater salinity and declining irrigation

infrastructure in numerous Middle Eastern nations has hindered

the maintenance of crop yields (Sameer et al., 2024). Climate change

worsens the issues, as elevated temperatures result in heightened

evaporation and increased soil salinity (Keutgen, 2023; Hakami-

Kermani et al., 2024). To address these challenges, Saudi Arabia has

invested in novel solutions, such as utilizing saline groundwater for

agricultural purposes. The King Abdullah Initiative for Saudi

Agricultural Investment Abroad seeks to research sustainable

agricultural methodologies in saline conditions, emphasizing drip

irrigation and greenhouse cultivation (Hemdan et al., 2024;

Nurbekova et al., 2024; Wang et al., 2024). Similarly, Iraq has

implemented salinity management strategies, such as developing

salt-tolerant crop varieties, including drought- and salinity-resistant

wheat cu l t ivars through convent iona l breeding and

biotechnological approaches (Al-Saadi et al., 2024; Tahir et al.,

2024). Moreso, soil reclamation methods, including gypsum

application and bio-amendment use, are being tested to alleviate

salinity in certain regions (Ali et al., 2024).

8.1.4 Case study 4: Australia - tackling salinity in
the Murray-Darling Basin

Australia, especially the Murray-Darling Basin in the southeast,

is facing salinity issues due to its dependence on irrigation for

agricultural output. Salinity levels in the region have markedly risen

over the past few decades, impacting both agricultural productivity

and ecosystem health (Walker and Hart, 2024; Nelson et al., 2024).

The primary concern in Australia is the extensive salinization of

soils resulting from the excessive extraction of groundwater for

irrigation purposes (Sanga et al., 2024). This has resulted in elevated

salt concentrations in surface water and soils, making extensive

regions of farming unproductive (Chanu, 2023). Ineffective land

management techniques, such as monocropping and insufficient

crop rotation, have further intensified the issue (Hannam, 2024). To

address these challenges, Australia has led the advancement of

salinity-resistant crop types, including wheat, barley, and cotton,

utilizing both traditional breeding and genetic modification

techniques (Sharma et al., 2024). Additionally, the Australian

government has enacted rules to regulate groundwater extraction
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and encourage sustainable water management techniques (Abu

Romman and Al Kuisi, 2023; Williams et al., 2023). Employing

salt-tolerant plants and enhanced irrigation techniques, such as

precision agriculture, has alleviated the impacts of salinity in certain

areas of the region (Nurbekova et al., 2024).

The case studies from South Asia, Sub-Saharan Africa, the

Middle East, and Australia demonstrate the necessity of region-

specific techniques for addressing salinity stress in agriculture.

Although salt-tolerant varieties and enhanced irrigation

techniques have demonstrated efficacy in numerous regions,

solutions must be tailored to local conditions, taking into account

the distinct problems presented by each region’s soil, water

resources, and climate. Along with that, the transfer of

information and technology among places impacted by salinity is

crucial for formulating global solutions to this escalating problem.

With the acceleration of climate change leading to the salinization

of agricultural lands globally, it is important to enhance research on

salt tolerance, particularly across varied geographic settings, and to

execute region-specific solutions that may be adapted and

expanded internationally.
8.2 Examples of successful deployment of
salt-tolerant rice varieties

The introduction of salt-tolerant rice varieties has greatly

enhanced agricultural production in saline-affected areas,

providing sustainable solutions to food security issues. A

prominent instance is the creation of the ‘Ezhome Rice’ varieties

‘Ezhome-1’ and ‘Ezhome-2’ in Kerala, India. These high-yielding,

non-lodging organic red rice cultivars were specifically developed

for the saline-prone Kaipad farms. Participatory plant breeding

with local farmers resulted in these types yielding 3.5 and 3.2 tons

per hectare, representing a 60-70% increase compared to standard

cultivars (Vanaja et al., 2017). Similarly, the Qingdao Saline-Alkali
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Tolerant Rice Research and Development Center in China has

developed ‘seawater rice’ types that can flourish in salty soils with

up to 4 grams of salt per kilogram. By 2021, these types were farmed

on 400,000 hectares, yielding an average of 8.8 tons per hectare, thus

converting barren saline soils into arable regions (Micu, 2022). The

International Rice Research Institute (IRRI) developed salt-tolerant

rice strains by hybridizing commercial types with wild species such

as O. coarctata. These hybrids feature specialized leaf glands that

excrete excess salt, facilitating agriculture in high-salinity settings

and increasing arable land availability (Barona-Edna, 2013).

Additionally, the traditional ‘Pokkali’ rice type from Kerala,

famous for its exceptional salt resistance, grows to a height of 140

cm and is farmed organically together with prawn culture in coastal

areas that experience floods (Wikimedia, 2013).

8.2.1 Regional adoption in South Asia and Sub-
Saharan Africa

The use of salt-tolerant rice varieties (STRVs), as listed in Table

1, has transformed agriculture in saline-affected areas of South Asia

and Sub-Saharan Africa, providing sustainable solutions to food

security issues and enhancing agricultural production (Radha et al.,

2024; Sellathdurai et al., 2024; Sikder and Khan, 2024; Zayed et al.,

2024). In the Mekong River Delta (MRD) of Vietnam, STRVs have

significantly minimized the detrimental effects of sea-level rise and

salinity intrusion. Advocated by the Consortium for Unfavorable

Rice Environments (CURE), these types were implemented in 47%

of salinity-affected rice fields during at least one of the two primary

growth seasons. Their adoption was significantly elevated in non-

irrigated regions and places lacking saline barrier gates,

underscoring their effective focus on sensitive ecosystems.

Although these varieties reduced production losses under salinity

stress, they did not surpass traditional varieties in low-salinity years

and frequently garnered lower market prices, indicating a trade-off

between stress tolerance and marketability (Paik et al., 2020). In

India, the Central Soil Salinity Research Institute (CSSRI) has
TABLE 1 A table listing salt-tolerant rice varieties, their genetic traits, and the regions of adoption.

Salt-Tolerant Rice Variety Genetic Traits Regions of Adoption

CSR 36 Contains the Saltol gene (a major gene for salinity tolerance) India, Bangladesh, Nepal

IR 64 Incorporates QTLs for salt tolerance and high yield under saline conditions South Asia, Southeast Asia, Africa

NERICA 4 High salinity tolerance, genes for drought and disease resistance West Africa, Sub-Saharan Africa

Pokkali Known for high salt tolerance; ability to withstand extreme salinity India (Kerala), Bangladesh, Sri Lanka

IRRI 123 Incorporates Saltol gene and QTLs for osmotic regulation Philippines, Southeast Asia

BPT 5204 (Swarna) Salt tolerance from native genetic traits; improved water-use efficiency India, Bangladesh, Southeast Asia

Kalarata Salt tolerance due to salt exclusion mechanisms in roots Fiji, Pacific Islands

Moroberekan Known for salt tolerance, with osmotic stress mechanisms Sierra Leone, Guinea

Swarna Sub1 (Swarna-Submergence Tolerant) Combination of submergence and salinity tolerance genes India, Bangladesh, Nepal

Yunnan Bai High salt tolerance in coastal regions, due to salt exclusion mechanisms China (Yunnan Province), Southeast Asia

IR 29 Saltol gene and high yield under saline conditions India, Southeast Asia

Upland Rice (Nerica) Improved salt tolerance through functional QTLs for salinity and drought West Africa, Sub-Saharan Africa
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561280
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sackey et al. 10.3389/fpls.2025.1561280
pioneered the creation of salt-tolerant rice varieties like CSR10 and

CSR36, tailored for saline and sodic soils (Kumar et al., 2024; Zayed

et al., 2024). These innovations have restored about 1.5 million

hectares of salt-affected land, enhancing food grain production by

roughly 15 million tons each year (Okur et al., 2023; Farooqi et al.,

2024; Nurbekova et al., 2024). CSSRI’s unified strategy merges

genetic innovations with smart soil and water management,

turning barren lands into thriving agricultural areas and

showcasing an integrative approach to tackle salinity (Mishra

et al., 2023; Shakar et al., 2024).

The Stress-Tolerant Rice for Africa and South Asia (STRASA)

initiative, led by the International Rice Research Institute (IRRI),

has enabled the introduction of more than 150 stress-tolerant rice

varieties throughout Sub-Saharan Africa. These initiatives have

enabled millions of farmers to augment yields and improve

resilience to salinity, drought, and flooding. The joint

introduction of the salt-tolerant variety ‘KARANADA’ by the

Kenya Agricultural and Livestock Research Organization

(KALRO) and IRRI has enhanced productivity and income

stability in saline-prone regions of Kenya, demonstrating the

global efficacy of salt-tolerant rice varieties (STRVs) in mitigating

environmental and economic challenges (IRRI, 2023).
9 Challenges and future perspectives

9.1 Limitations in current breeding and
genetic research

Despite advancements in breeding and genetic research, severe

impediments in saline-affected regions significantly hinder the

deployment of salinity-tolerant rice varieties. These problems

must be addressed for productivity and global food security. Rice

salt tolerance is polygenic, governed by a complex interplay of genes

and quantitative trait loci (QTLs) that influence sodium exclusion,

potassium retention, and osmotic adjustment. This complexity

hinders the identification, mapping, and integration of beneficial

genes into breeding programs, hence impeding progress. The

dynamic nature of salinity stress, together with waterlogging,

temperature changes, and microclimatic variations, influences the

expression of stress-responsive genes, resulting in significant

variability in the performance of salt-tolerant rice varieties across

different settings and seasons. The dependence on a limited genetic

basis, primarily consisting of conventional salt-tolerant donors such

as Pokkali, exacerbates these issues by constraining the investigation

of innovative tolerance mechanisms and diminishing the

adaptability of new types to changing stress conditions.

9.1.1 Limitations of current
phenotyping technologies

Phenotyping for salinity tolerance has historically posed a

significant challenge in plant breeding, especially for high-

throughput screening of extensive populations. Conventional

phenotyping techniques, such as manual assessments of plant

height, leaf area, and visual evaluations of salt damage, are
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laborious, time-consuming, and frequently susceptible to

subjectivity (Chawade et al., 2019; Gill et al., 2022). Moreover,

these approaches fail to comprehensively represent the extensive

physiological responses of plants to salinity stress, which encompass

complex alterations in ion balance, osmoregulation, and gene

expression. A notable limitation is the incapacity of traditional

phenotyping methods to deliver real-time, high-resolution data on

physiological processes, including transpiration, root development,

and ion buildup in reaction to differing salt levels. The magnitude and

complexity of contemporary breeding programs require sophisticated

and automated phenotyping tools capable of effectively assessing

these qualities in both controlled and field environments (Gill et al.,

2022). Furthermore, several modern phenotyping methodologies are

inadequately equipped to manage the extensive datasets produced by

high-throughput screening. This data frequently necessitates

comprehensive processing and integration from various sources,

potentially creating barriers in breeding processes. Moreover,

conventional phenotyping techniques are inadequate for

quantifying small differences in salinity tolerance, especially in field

si tuations where environmental variabi l i ty may hide

genotype performance.

9.1.2 Potential of remote sensing and
machine learning

Recently, the combined use of remote sensing technologies and

machine learning algorithms has surfaced as a potent method to

address the constraints of conventional phenotyping. Remote

sensing technologies, including drones and satellites, can acquire

high-resolution imagery of plant canopies and root systems under

salt stress, offering insights on phenotypic characteristics that are

challenging to assess manually. Hyperspectral imaging, which

captures a wide range of light wavelengths, can identify

alterations in leaf pigment composition, water content, and stress-

induced biochemical indicators at an early stage (Stutsel et al., 2021;

Del Cioppo et al., 2024). This non-invasive method facilitates

continuous assessment of plant health over extensive regions,

rendering it suitable for field-based phenotyping of salinity

tolerance. Furthermore, remote sensing technologies can be

integrated with machine learning (ML) models to automate trait

extraction and analysis. Training machine learning algorithms on

datasets derived from hyperspectral imaging or other remote

sensing technologies enables the prediction of essential

physiological features associated with salinity tolerance, including

leaf area, chlorophyll content, and stomatal conductance. These

predictive models may efficiently screen huge populations and find

potential genotypes with minimal human interaction (Haq et al.,

2023; Mourched et al., 2023). Machine learning enables the

amalgamation of diverse data sources, including environmental

variables, soil salt levels, and genomic data, to improve the

precision of predictions in apropos of plant performance in saline

environments. By utilizing features acquired from drone-based

imaging data, researchers were able to effectively apply ML

algorithms to genotype classification according to salt tolerance

(El-Hendawy et al., 2024a; El-Hendawy et al., 2024b). Machine

learning can improve the efficiency of salt-tolerant variety
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production by integrating phenotypic and genotypic data for more

informed breeding decisions.

9.1.3 The need for scalable, cost-
effective solutions

There are still issues with scalability and cost-effectiveness, but

there is great promise for enhancing phenotyping efficiency with

remote sensing and machine learning. For smaller research projects or

environments with limited resources, the expensive acquisition and

maintenance of remote sensing equipment, along with the specialized

knowledge needed to operate and analyze the data, can be a significant

barrier. Many breeding projects in underdeveloped nations or areas

with inadequate technological infrastructure also lack access to

advanced phenotyping technologies because these tools are often

reserved for well-funded institutions. Addressing these challenges

necessitates the development of scalable and cost-effective

phenotyping solutions. A promising approach involves the

integration of low-cost sensors and imaging systems into current

breeding facilities. Small-scale, high-throughput phenotyping

platforms utilizing low-cost sensors to measure parameters like leaf

temperature, soil moisture, and chlorophyll fluorescence are being

developed. These platforms aim to deliver real-time, actionable data at

a significantly lower cost compared to more complex remote sensing

technologies (Wu et al., 2022; Yassue et al., 2022). These platforms are

applicable in both controlled environments and field conditions,

providing a more accessible alternative to costly drone or satellite-

based systems. In addition, open-source software and cloud-based

platforms can play a key role in making phenotyping technologies

more accessible. By providing free access to data analysis tools and

integrating them with cloud computing infrastructure, it becomes

easier for researchers from diverse institutions to collaborate and share

phenotypic data. Additionally, community-driven initiatives to

develop open-source phenotyping solutions may foster innovation

and lower the overall costs associated with technology adoption in

breeding programs. To fully harness the potential of these new

technologies, there is an urgent requirement for scalable, cost-

efficient solutions that can be implemented by breeding programs

globally. By addressing these issues, the domain of phenotyping can

significantly aid in the advancement of salinity-resistant crops, thereby

securing food availability in areas impacted by soil salinization.
9.2 Field-level performance and stability

To ensure that salt-tolerant rice varieties exhibit reliable

performance in various environments, it is essential that they

undergo thorough field-based evaluation. The evaluation of the

stability of salinity tolerance traits is most effectively conducted

through multi-environment trials (METs), which examine the

performance of varieties across diverse climatic and soil

conditions. For instance, the Saltol QTL, which has been

integrated into widely cultivated varieties such as IR64 and BRRI

dhan47, has undergone thorough evaluation in multi-location trials

throughout South and Southeast Asia. The trials demonstrated that

the Saltol QTL markedly enhances salinity tolerance during the
Frontiers in Plant Science 19
seedling stage; however, its efficacy is influenced by the type of soil

and the levels of salinity present (Ho et al., 2016; Yadav et al., 2020).

In a similar vein, the FL478 variety, which originates from the salt-

tolerant landrace Pokkali, has shown reliable performance in saline-

affected areas of India, Bangladesh, and Vietnam, underscoring the

significance of field validation. These trials enable researchers to

discern varieties that exhibit both salt tolerance and adaptability to

various environmental stresses, thereby securing sustained

productivity over time (Debsharma et al., 2024; Krishnamurthy

et al., 2024). Additionally, field testing can be enhanced through the

integration of high-throughput phenotyping technologies,

including UAV-based imaging and remote sensing, which

facilitate precise monitoring of rice performance in natural field

environments. These technologies offer accurate, non-invasive

assessments of plant stress responses, enhancing the

understanding of salt tolerance mechanisms in practical

environments. The integration of METs with modern

phenotyping techniques has the potential to connect the insights

gained from controlled experiments to the real-world

implementation of salt-tolerant rice varieties in the context of

agriculture (Del Cioppo et al., 2024; Fu et al., 2024).
9.3 Importance of
multidisciplinary approaches

Salinity stress in cultivation of rice is complex and varying,

requiring a multidisciplinary strategy that integrates genetics, soil

science, agronomy, climate modelling, and socioeconomics to

provide sustainable solutions. Integrating advancements in genetics,

such as the identification of salt-tolerant QTLs and the application of

transgenic technologies, with agronomic strategies is essential for

achieving success in the field. The implementation of salt-tolerant rice

cultivars, such as FL478, alongside efficient irrigation techniques like

alternate wetting and drying, significantly improves productivity and

resource utilization efficiency. Soil salinity arises from irrigation

methods, variations in the water table, and climatic changes,

highlighting the necessity for comprehensive soil science strategies.

The use of soil additives, such as gypsum and charcoal, alongside

breeding programs targeting features like root architecture and ionic

exclusion, improves soil fertility and crop resilience.

Predictive climate modelling and stress forecasting improve

interventions through the application of remote sensing and GIS

technologies. These technologies offer accurate identification of salt-

affected regions, guiding breeding and agronomic practices

customized to particular geographies. Nevertheless, constrained

landholdings and limited access to salt-tolerant seedlings impede

technological utilization. Involving politicians, extension agencies,

and agricultural communities in participatory breeding efforts

fosters equitable transmission of innovation, including farmer

preferences and local knowledge to improve uptake and efficacy.

Biotechnological innovations and omics technologies have the

potential to revolutionize breeding methodologies. However, they

must be combined with bioinformatics and high-throughput

phenotyping technologies to swiftly uncover context-relevant traits.
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These solutions synchronize productivity goals with sustainability

objectives when incorporated into comprehensive frameworks.

Integrating salinity-resistant rice farming with agroforestry in coastal

areas improves productivity, increases biodiversity, and strengthens

ecosystem resilience. Multidisciplinary approaches create a strong

basis for mitigating salt stress and promoting sustainable agriculture

and resilient livelihoods in saline-affected areas.
10 Conclusion

10.1 Summary of key findings

Salinity tolerance in rice presents a complex challenge,

necessitating a collaborative strategy that combines genetics,

agronomy, and sustainable practices. Significant breakthroughs

encompass finding critical QTLs such as Saltol, creating salt-tolerant

cultivars such as FL478 and BRRI dhan47, and advancements in gene-

editing technologies. Agronomic techniques, such as enhanced

irrigation, crop rotation, and organic amendments, augment these

genetic remedies, improving soil health and production in saline areas.

Case studies from South Asia, Sub-Saharan Africa, the Middle East

and Australia, illustrate the effective implementation of salt-tolerant

cultivars, showcasing their capacity to convert unproductive regions.

Nonetheless, obstacles, including the polygenic characteristics of salt

tolerance, restricted genetic diversity, and environmental

unpredictability, persist as substantial issues. Future perspectives

highlight the necessity for interdisciplinary cooperation, utilizing

improved phenotyping, digital agriculture, and participatory

breeding to guarantee climate-resilient and sustainable rice-

producing systems. These initiatives facilitate the establishment of a

more secure and resilient global food system.
10.2 Call for global collaboration in
addressing salinity challenges

Addressing salinity stress in rice farming requires coordinated

global initiatives that combine scientific research, policy formulation,

and community involvement. The complexity of salinity tolerance

encompassing genetic, physiological, and environmental factors

highlights the necessity for cooperative, interdisciplinary approaches.

Breeding efforts must integrate advanced genomic techniques with

traditional expertise to create hardy varieties suited to various agro-

climatic settings. Simultaneously, agronomic advancements, like

sustainable irrigation methods, crop diversity, and soil reclamation,

must be expanded through inclusive policies and effective extension

services. Global research consortia and platforms, including the

International Rice Research Institute (IRRI) and Stress-Tolerant Rice

for Africa and South Asia (STRASA), have exemplified the

transformative potential of collaboration. Expanding these programs

will facilitate resource-sharing, capacity building, and equitable access to

innovations, especially in vulnerable areas such as South Asia and Sub-

Saharan Africa. Policymakers must prioritize financing for climate-

smart agriculture and endorse farmer-led participatory initiatives to
Frontiers in Plant Science 20
guarantee the uptake and sustainability of solutions. Furthermore, the

use of digital technology, like remote sensing and precision agriculture,

in salinity management has the potential to transform the approach to

addressing difficulties in the field. This necessitates collaborations across

sectors connecting researchers, agribusinesses, and local communities to

expedite the shift to resilient rice systems. Global collaboration is

essential to confront the escalating issue of salinity. By cultivating

partnerships, augmenting knowledge exchange, and investing in

scalable innovations, we can ensure sustainable rice production

systems and safeguard global food security for future generations.
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