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The olive tree is one of the most iconic species within the Mediterranean Sea

Basin. Countries bordering this sea enjoy a favourable climate that contributes to

high-quality agricultural production for numerous horticultural species. The

quality of the propagation material is one of the most important factors in

determining the value of the final product, regardless of the cultivation-model,

climate, and soil characteristics. Therefore, it is crucial to ensure genetic and

sanitary certainty of vegetal/propagation material, which can be achieved

through nursery productions. These goals are based on efficient propagation

systems and methods to obtain high-biological quality plants. Over the last four

decades, the application of biotechnology has introduced significant changes in

the sector of nursery production. The Authors in this chapter aimed to present

through their personal experimental experiences the latest advances in in vitro

techniques and technologies that are revolutionizing the field of olive tree

nurseries. While some of these methods are currently being employed, others

are still undergoing research and development. Experts in this field firmly believe

that all these techniques hold great practical value and have immense potential

for high-quality nursery production.
KEYWORDS

Olea europaea L., in vitro propagation, encapsulation, temporary immersion system,
slow growth storage
1 Introduction

Over the last two decades, olive cultivation areas have expanded to regions across the

globe (FAOSTAT, 2023) where the olive tree thrives and allows for the production of

quality products (olives and oil). In addition, olive cultivation can leverage a diverse range

of varieties and cultivation models, ranging from traditional grafting or cutting to

innovative propagation (in vitro culture). Considering these assumptions, olive growers

can choose from a wide range of cultivation techniques suited to their individual needs

(Rosati et al., 2024) Biotechnological innovations have played a key role in modern nursery

production by transferring research advancements into practical applications. In particular,

in vitro culture techniques, such as micropropagation and in vitro conservation, have

introduced a real industrial/commercial revolution. Many trees, shrubs, and even
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herbaceous species are very well adapted to these advanced

propagation methods, which allow the quality of final

productions to be elevated and introduce great practical

advantages in the nursery field. These systems help overcome

specific problems such as recalcitrance to rooting or graft

disaffinity while keeping costs under control.

Despite the strong interest in the application of biotechnology

to the olive tree, research in this species has hardly ever received

adequate attention and resource support. Most studies have been

conducted by researchers working limited in the countries of the

Mediterranean basin, traditionally and historically the most

interested in olive growing. This has reduced the expansion of

research and technology transfer in this species, limiting the

widespread adoption of in vitro propagation, despite increasing

demand for high-quality plant material. However, biotechnological

innovations hold great potential for olive nurseries, biodiversity

preservation, and both short- and long-term conservation. In vitro

techniques also facilitate the exchange of genetically and

phytosanitarily certified plant material. This study aims to

describe the experimental experiences conducted by the authors

on in vitro culture techniques for olive trees. The main objective is

to improve the efficiency of these techniques, whether they are

currently being used in commercial production or to optimize them

for future use. In this review, authors will discuss recent aspects of

micropropagation, encapsulation technology for synthetic seeds

production, slow growth storage, cultivation on liquid medium,

and biotechnological tools mediated by tissue culture.
2 Micropropagation

Olea europaea L. is traditionally propagated vegetatively

through various methods, including grafting scions onto

seedlings, clonal rootstocks, or suckers, but the most prevalent

method is the rooting of leafy stem cuttings under mist conditions

(Bayraktar et al., 2020). However, the success of this technique is

influenced by several factors such as season, cultivar, and the

availability of healthy, viable material (Lambardi et al., 2013,

2023). For cultivars that are difficult to root, grafting remains the

only effective method for clonal propagation. Nonetheless, grafting

is more expensive, more complex, and requires specialized nurseries

and skilled personnel (Fabbri et al., 2009; Lambardi et al., 2023).

To overcome the constraints related to the abovementioned

traditional propagation techniques, in vitro propagation has been

proposed and increasingly applied to olive as an alternative to

agamic propagation technique (Bayraktar et al., 2020).

Micropropagation, which involves growing olive cultivars from

axillary buds, has proven successful and is used for commercial

purposes in several Mediterranean countries, such as Italy and

Spain (Fabbri et al., 2009; Lambardi et al., 2013; Sánchez-Romero,

2018). The main advantages of in vitro propagation consist of the

high genetic and sanitary quality of the propagated material and the

possibility to produce a large number of plants in a small space and

in a short time, which facilitates the plant material exchanges

between nurseries (Cardoso et al., 2018). However, the
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micropropagation of some economically important olive varieties

remains difficult due to their recalcitrant nature, tissue oxidation,

and challenges in obtaining sterile plant material and establishing in

vitro shoot cultures (Lambardi et al., 2013). The success of olive

micropropagation is highly dependent on the genotype, often

resulting in low shoot proliferation rates, difficulty in rooting,

high rates of post-transplanting losses, and, not least, the high

cost of zeatin, the primary cytokinin used in vitro olive propagation

(Grigoriadou et al., 2004; Sánchez-Romero, 2018; Regni et al., 2023).

In this context, one strand of research has been concerned with

studying alternative approaches to optimize the protocol for olive

tree micropropagation, focusing on the use of neem oil (Micheli

et al., 2018; Regni et al., 2023), selenium (Se) (Regni et al., 2021),

and zinc oxide nanoparticles (ZnO-NPs) (Regni et al., 2023).

In particular, many efforts have been made to identify alternative

cytokinin compounds or compounds with similar effects that can

enhance the proliferation rate of olive tree explants and thereby

lower the production cost per unit (Peixe et al., 2009; Micheli and

Berenato, 2016). There is increasing interest in utilizing natural

substances, sometimes referred to as “complex mixtures,” which,

when added to in vitro cultivation medium, appear to improve

proliferation rates. Among natural substances, neem oil, extracted

from the seeds of Azadirachta indica tree, has been evaluated as a

potential component of the medium in olive tree micropropagation.

The beneficial effects of neem oil on in vitro olive plant regeneration

were demonstrated for the first time by Micheli et al., 2018.

The authors emphasized the benefits of neem oil to improve

in vitro shoot proliferation in the olive Moraiolo cultivar. In

this study, uninodal explants were cultured on Olive Medium

(OM - Rugini, 1984) with different neem oil concentrations

(0, 0.1, 0.5, and 1.0 mL L−1). The addition of 0.1 mL L−1 neem oil

improved shoot regeneration, resulting in more vigorous and

longer shoots, and a higher multiplication rate. Neem oil is a

true nutritional supplement and, considering the large and varied

number of molecules it contains, is considered a real “complex

mixture” able to act as a plant growth promoter with effects similar

to those of some growth regulators, such as gibberellins and

cytokinins (Micheli et al., 2018). Another study by Regni et al.

(2023) explored the addition of neem oil to the propagation

medium, partially or completely replacing zeatin, during the

proliferation and rooting phases of the Moraiolo cultivar. In the

proliferation phase, media containing neem oil (0.1 mL L−1) and

different zeatin concentrations (0, 1, 2, and 4 mg L−1) were tested.

The results indicated that neem oil, combined with lower

concentrations of zeatin (1 and 2 mg L−1), enhanced the number

and length of adventitious shoots. This suggests that neem oil can

significantly reduce the need for high concentrations of zeatin and

lower production costs. For the rooting phase, agarised media and

potting substrates were used, with shoots derived from standard

and neem oil-enriched proliferation phase. The presence of neem

oil in the rooting media did not directly enhance rooting, but the

explants proliferated in a neem oil-enriched medium showed

increased root number and length compared to controls

(proliferated without neem oil). Further studies evaluated the

effect of another natural substance in the in vitro propagation of
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‘Moraiolo’: coconut water. It had previously been used by other

authors in olive trees (Peixe et al., 2007), but never with this cultivar.

The addition of 10% coconut water combined with three

concentrations of zeatin (0, 2 and 4 mg L-1) to the OM nutrient

substrate was studied in order to evaluate its effect on in vitro

multiplication of uninodal explants of ‘Moraiolo’. The use of

coconut water added to the medium OM without zeatin provided

interesting results, stimulating the development of the highest

number of new-formed shoots (14.2), which, however, were the

shortest in length (less than 0.5 mm) in comparison to those

obtained with the other treatments. On the other hand, the

combination with 2 mg L-1 zeatin resulted in the same vegetative

performances as those recorded with 4 mg L-1, i.e. the concentration

usually used for ‘Moraiolo’ proliferation. This would already be

enough to halve the cost of producing vitro-derived shoots in this

olive cultivar (Micheli and Berenato, 2016).

Selenium (Se) known for its antioxidant properties and ability

to improve plant growth and stress resistance has also shown

promising in enhancing olive plants micropropagation (Regni

et al., 2021). The effects of different Se concentrations (0, 10, 20,

40, and 80 mg L−1) were studied in four olive cultivars: ‘San Felice’,

‘Canino’, ‘Frantoio’, and ‘Moraiolo’. Results demonstrated that Se

concentrations between 10 and 40 mg L−1 increased shoot lengths,

fresh and dry weights of the proliferated explants in all cultivars. Se

treatment also resulted in higher Se content in the explants,

indicating efficient absorption and accumulation. However, the

beneficial effects tended to diminish with successive subcultures,

suggesting an adaptation effect.

The application of ZnO-NPs in olive tree micropropagation was

also investigated to enhance growth and biochemical parameters

(Regni et al., 2022). Biogenic ZnO-NPs, synthesized using Lemna

minor L. extract, were added to the growth medium at

concentrations of 0, 2, 6, and 18 mg L−1. Explants treated with 6

and 18 mg L−1 ZnO-NPs showed significant improvements in shoot

number, fresh and dry weight, and chlorophyll content. Moreover,

these ZnO-NPs concentrations increased carotenoid, anthocyanin,

and total phenol content, as well as antioxidant activity. These

findings suggest that ZnO-NPs, by enhancing the content of

molecules involved in photosynthesis and plant growth, can

significantly promote olive tree micropropagation.

In the context of innovative aspects of micropropagation in

olive, the evolution of in vitro rooting techniques represents a

significant advancement. Traditionally, in vitro rooting methods

are now considered outdated, with the current trend favouring a

more integrated approach that includes ex vitro rooting and

acclimatization concurrently. This approach involves transferring

mini-cuttings directly into pre-formed containers filled with

commercial substrates composed of soil, peat, and perlite mixes.

These containers are maintained in a controlled environment to

facilitate a gradual transition from the highly controlled conditions

of in vitro culture to the natural conditions found in vivo.

For certain olive cultivars, such as ‘Sirole’ and ‘Frantoio’, this

method has demonstrated exceptionally high rooting rates,

approaching 100%. However, for cultivars that usually show

resistance to traditional rooting methods, additional strategies are
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with an auxin solution, such as a liquid indole-3-butyric acid (IBA)

solution applied directly into the propagation containers. This pre-

treatment, lasting 3 to 10 days prior to transplanting for rooting, has

been shown to significantly enhance rooting success, achieving rates

above 80% even in cultivars considered recalcitrant. The integration

of rooting and acclimatization stages into a single step is a

substantial advantage in modern olive micropropagation. This

approach not only streamlines production processes but also

enhances the quality of the resulting plant material. Mini-shoots

rooted in this manner tend to develop robust, well-established root

systems (Figure 1) that outperform those obtained through

traditional in vitro rooting methods.

This shift towards integrated ex vitro rooting methods

underscores ongoing advancements in olive micropropagation

techniques, promising improved efficiency and higher-quality

plant production.
3 Encapsulation technology

As reported above, modern nurseries are increasingly adopting

in vitro propagation techniques, such as micropropagation, which

enable the mass production of high-quality plantlets with excellent

genetic health, even from limited starting materials. This approach

effectively addresses the rising costs associated with traditional

methods by utilising innovative techniques and technologies that
FIGURE 1

Ex vitro rooting of an olive mini-cutting.
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facilitate the rapid production and distribution of genetically

uniform materials with significant agronomic or environmental

value, such as commercial varieties, rootstocks of particular interest,

restored plants, and genotypes that must be preserved ex situ. To

simplify the management of micropropagated materials, especially

during and after the acclimatisation phase, and limit the final costs,

the encapsulation technology could represent a new productive tool.

It combines the advantages of clonal propagation with the benefits

of seed propagation, such as smaller size, ease of transport, and

storage for short/medium/long-time (Micheli et al., 2022). This can

help to meet the high expectations of nursery operators for

innovation, which is a crucial factor in advancing the plant

breeding sector (Standardi and Micheli, 2013). The concept of

encapsulation was introduced by Murashige in 1978, who

suggested covering the vitro-derived propagules with a calcium

alginate-based gelled matrix, with a nutritive and protective

function by using somatic embryos. These propagules can develop

into complete plantlets when subjected to suitable environmental

and nutritional conditions. However, the effectiveness of this

technological innovation is closely linked to the availability of

efficient and reliable protocols of somatic embryogenesis, in the

absence of which the encapsulation has not yet been implemented

for most in vitro cultivated species (Gantait and Kundu, 2017). To

overcome this limit, research by Bapat and Redembaugh (1993) and

Leathers et al., 1995 expanded the variety of propagules including

non-embryogenic types. This led to the development of a new

classification of encapsulating propagules, including microbulbs,

microtubers, rhizomes, protocorms, meristemoids, tissue or organ

fragments, meristematic apices, root sections, and both apical and

axillary buds. They can be easily obtained through shoot

proliferation or direct organogenesis (Lambardi and Micheli,

2019). Depending on the species, the propagules capable of

developing both shoots and roots simultaneously are referred as

bipolar propagules useful to produce synthetic seeds. Others, known

as unipolar propagules, can be encapsulated obtaining beads able to

develop either shoots or, less commonly, roots, as they possess only

the apical or root meristem (Benelli et al., 2017). A common

example of unipolar propagules is represented by microcuttings,

which are uninodal sections of shoots derived from tissue culture,

typically measuring 3 to 5 mm in length, unable to develop roots

spontaneously because possessing only axillary or apical buds. The

possibility of obtaining synthetic seeds by unipolar propagules is

strictly connected to stimulating an organogenetic process to

develop the root system (Standardi and Micheli, 2013). The

potential for using various propagules allows the application of

encapsulation products for different goals. These include long-term

conservation of germplasm through low-temperature storage or

cryopreservation (Lambardi and Shaarawi, 2017; Lambardi and

Micheli, 2019; Wang et al., 2020) and the exchange of valuable

rare for hybrids and elite genotypes (Benelli et al., 2017).

Additionally, it simplifies the management of mass clonal

propagation products in different plant species (Gantait and

Kundu, 2017), particularly with the integration of automation

systems for certain processing steps (Singh, 2018). Despite its

promising potential, encapsulation is still not a widely used
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such example is the olive tree, which has only recently been

propagated in vitro for commercial purposes. The reduced

number of effective protocols for regeneration through somatic

embryogenesis, restricted to only a few more responsive olive

varieties (Abd El-Zaher et al., 2024; Palomo-Rıós et al., 2021;

Sánchez-Romero, 2021), limits the production of propagules

suitable for creating synthetic seeds directly. In contrast, some

researchers initially concentrated the studies on identifying the

most suitable propagules for encapsulation technology in olive

trees: they found that, in the absence of viable alternatives,

microcuttings have been determined to be the most accessible

explants (Standardi and Micheli, 2013). This type of propagules is

usually excised from the elongated shoot axis at the end of an in

vitro proliferation subculture. Each microcutting corresponds to a

node bearing axillary buds or an apical one without leaves. When

the nodes are directly subjected to encapsulation in calcium alginate

solved in a nutrient matrix, beads are obtained: they are structures

capable only of developing new shoots from the buds (Figure 2),

without the regeneration of a root system (Standardi and Micheli,

2013). Some problems may occur and limit the sprouting ability of

the beads, such as the axillary bud’s dormancy of some olive

varieties (Micheli et al., 2018). To overcome this problem, single

or combined treatments with gibberellic acid solutions (1 mg L−1)

and short/medium-term storage (from 45 to 180 days) at low

temperatures (4°C) have been proposed on ‘Moraiolo ’

microcuttings (Micheli and Standardi, 2005; Micheli et al., 2007;

Ikhlaq et al., 2010; Micheli et al., 2019), in addition to optimisation

of the nutrient composition of the encapsulating matrix (artificial

endosperm), in particular trying to identify the best concentration

of sucrose (from 15 to 30 g L−1), an essential element for keeping the

propagule alive and stimulating it to develop the new shoots

(Micheli et al., 2019).

After improving the vegetative behaviour of the encapsulated

microcuttings of ‘Moraiolo’, the next step was to induce their

rhizogenesis capacity, thereby producing synthetic seeds using the
FIGURE 2

Development of olive shoot tip from calcium alginate bead.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561350
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Micheli et al. 10.3389/fpls.2025.1561350
unipolar nodes. In olive trees, as with other in vitro propagated

species, adventitious root development usually relies on exogenous

auxin treatments, specifically IBA (indole-3-butyric acid indole-3-

butyric acid) and NAA (naphthaleneacetic acid) (Lambardi et al.,

2023). The success of the treatment depends on genotype, kind of

auxin, its concentration and the duration of the treatment (Allatif

and Hmmam, 2022). Based on what has been studied for

micropropagation, auxin treatment (dipping the microcuttings of

olive in a 5 mg L−1 IBA solution enriched with 15 g L−1 sucrose and

maintaining them for 24 h in darkness on rotator shaker at

100 rpm) was also found to be effective in inducing formation of

root primordia in olive microcuttings before encapsulation

(Standardi and Micheli, 2013; Micheli et al., 2019) or after by

dipping the beads directly in the same auxin inductive solution

(Micheli et al., 2006) to induce them to convert (Micheli et al.,

2019). Further studies showed an interesting positive effect of cold

treatment (4°C) alone or in combination with the IBA treatment on

the conversion of the synthetic seed of olive (Micheli et al., 2019).
4 Temporary immersion systems

The use of liquid medium for in vitro culture has been

investigated in detail over the years (Takayama and Misawa,

1981; Harris and Mason, 1983; Berthouly and Etienne, 2005). In

vitro production of plant species using a liquid medium in

bioreactors is a complementary strategy in order to overcome the

limitations present in the in vitro system on conventional semi-solid

media. In comparison with culturing on semi-solid media, larger

containers can be used, and subculture times can be reduced to

avoid intensive manual handling (De Carlo et al., 2021).

The liquid medium has also frequently been considered an ideal

tool for biomass production as it reduces manual labor, facilitates

the change of composition medium, beyond offering benefits in

increased nutrient uptake, greater availability of dissolved oxygen,

easier dispensing of the medium, automated scale up and process

control, and more productivity (Leathers et al., 1995; Mirzabe et al.,

2022). Bioreactors for liquid culture used in the past were not

suitable for the propagation of plants, they were mainly developed

for bacterial culture and did not consider the specific requirements

of plants. After several tests, the Temporary Immersion System

(TIS) was applied to plants and deemed a good practice (De Carlo

et al., 2021). The novelty of TIS is due to its ability to allow a

contact, partially or totally, programmable between the explants

and the liquid medium. TIS bioreactors are periodic semi-

automated or fully automated cultivation systems, based on

alternating cycles of temporary immersion of the cultured plant

tissue into the liquid medium followed by a dry period. Usually, the

immersion period is shorter (a few minutes), whereas the dry period

is prolonged (several hours); the whole system is controlled by

pumps and timers to plan the different cycles.

The optimization of the suitable immersion time is the most

critical parameter for system efficiency, and it must be monitored to

avoid the hyperhydricity of culture; moreover, the choice of volume
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improve efficiency (Etienne and Berthouly, 2002; Quiala et al., 2012;

Carvalho et al., 2019; Garcìa-Ramìrez, 2023). Usually, TIS

bioreactors are made with transparent glass or plastic vessels, so

that the in vitro plants can be illuminated with external light (De

Carlo et al., 2021).

Different type of TIS bioreactors are now available (Georgiev

et al., 2014; De Carlo et al., 2021), consisting of one or two

containers, and some of them are also equipped with additional

option that permits the periodic replacement of the atmosphere

within the culture container, which limits gas accumulation

(mainly, CO2 and ethylene).

The positive effects of temporary immersion on micropropagation

are reported on shoot proliferation and microcuttings,

microtuberization and somatic embryogenesis in different species

such as Stevia rebaudia (Takayama and Akita, 1994), Solanum

tuberosum, Coffea arabica (Etienne and Berthouly, 2002), Quercus

suber (Pérez et al., 2013) and Crocus sativus (Tarraf et al., 2024).

Although the TIS is a recent approach to micropropagation,

several reports on woody plants are already available in the

literature (Wilken et al., 2014; Akdemir et al., 2014; Carvalho

et al., 2019), and it can be taken into consideration in developing

new technologies for olive micropropagation.

In olive, the first investigation on TIS was carried out with a

Greek olive ‘Chondrolia Chalkidikis’ (Grigoriadou et al., 2005). In

this study, a custom made TIS bioreactor, called ‘NovelTIS’ was

used, with uni-nodal olive shoots, as explants, and WPM medium

with zeatin (20 µM), GA3 (10 µM), NAA (0.3 µM) and sucrose (2%).

In this report, only one immersion period of 15 min every 8 hours

was tested. This device showed good results, but without significant

differences with respect to semi-solid medium, in terms of

improvement of the new shoots number or average shoot length,

at the end of subculture (30 days).

RITA® system (VITROPIC, France), a semi-automatic TIS

available on the market, was applied on ‘Canino’ olive shoots

(Lambardi et al., 2006). This type of bioreactor combines a

periodic immersion in liquid medium of shoot cultures with

periodic air replacement by pneumatic transfer avoiding the

accumulation of gases in the culture container. The explants used

in this study were uni-nodal, bi-nodal and tri-nodal olive

microcuttings with OM liquid medium added with mannitol

(36 g L−1), zeatin (10 µM). Three immersion periods were tested

(4min/2h; 16min/8h; 16min/16h). Overall, bi-nodal microcuttings

of ‘Canino’ positioned horizontally in the RITA® container and

immersed in the liquid medium 16 min every 8 hours, performed

better results, also when they were compared with bi-nodal

microcuttings grown in semi-solid OM medium with the same

composition reported above. In the same study, the best growth

conditions recorded on cv. Canino were tested in RITA®

bioreactors on four olive cultivars Arbequina, Gentile di Larino,

Frantoio and Ascolana Tenera. Promising improvement in average

node number was observed in TIS for microcutting of ‘Frantoio’

and ‘Ascolana Tenera’, while the proliferation in ‘Gentile di Larino’

was similar to the control shoots growing in a semi-solid medium.
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Cultivar Arbequina showed a slight decrease compared to the

control, but the shoots had an increase in length of internodes.

Peixe et al. (2007), in a study that aimed to simplify the olive

micropropagation and reduce its cost, reported a short information

about application of RITA® on cv. Galega Vulgar without given

specific detail on the used protocol; in results they asserted that this

system leads to a reduction of hand-labour necessary for the

systematic subcultures. Another type of TIS bioreactor applied on

olive cv. Canino has been Plantform™ (Benelli and De Carlo, 2018),

consisting of a single transparent container with a wide size that

allows a greater number of plants in each unit and a controlled

ventilation (Figure 3). In this research, the TIS showed good

adaptability and better growth rates for olive shoots in

comparison to conventional systems in glass jars with semi-solid

medium. Significant differences in proliferation, shoot length and

better vigour of shoots were noted when an immersion frequency of

8 min every 16 h and a ventilation of 15 min every 4 h were applied.

In addition, the Plantform™ bioreactor allowed the use of a lower

concentration of zeatin (5 µM, instead of 10 µM) without any

change in the growth performance of the shoots. Zeatin is a

fundamental hormone to ensure a good proliferation rate in vitro

culture of olive (Lambardi et al., 2023) and its high cost has always

penalized the micropropagation of this important species. The

study emphasizes the possibility to achieve an efficient in vitro

olive proliferation with lower production costs, maintaining high-

quality olive shoots.

Overall, the findings show that the TIS can represent a valid

alternative to conventional systems in vitro olive propagation,

resulting in a reduction of costs, labour and time for biomass

production. In fact, several are the advantages of the culture in

TIS. The size of recent bioreactors allows a larger number of plants

in each unit which reduces labor for transferring plants; the

enrichment of oxygen can be regulated, and the accumulation of

detrimental gases can be avoided. Moreover, the acclimatization

phase that generally causes great losses of plants can be facilitated by

improving the stomata function in TIS, so the plants are easier to
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establish ex vitro (Martıńez-Estrada et al., 2019; Bello-Bello et al.,

2019; Mancilla-Álvarez et al., 2024). Comparative studies between

the semisolid medium and the bioreactor culture, in general,

revealed that shoot proliferation and growth were more effective

in TIS system (De Carlo et al., 2021), as occurred in olive cultivar

‘Maurino’ when the shoots were cultured in SETIS bioreactor

(Figure 4), this latter showed the best proliferation rate respect to

conventional system.

The main drawbacks reported in TIS culture were the shoots

hyperhydricity for some species, resolvable by applying the

appropriate immersion cycles, and more difficult control of the

microbial contamination due to the greater number of plants kept

in the container (Dewir et al., 2014; Lotfi et al., 2020). The

introduction of a new type of TIS bioreactor, called ElecTIS

(http://www.explanta.com/bioreactor-electis/) is in progress in

olive cv. Canino at the Laboratory In Vitro Cultures of IBE/CNR.

This bioreactor is innovative compared to other TIS because it is not

the liquid to move up and down, but an internal basket, containing

the shoots, moves down into contact with medium by

programmable pump. In this system a lower amount of air blown

for the basket movement is necessary with minor risk of culture

contamination. ElecTis has already been successfully applied on

Malus (Sota et al., 2021) and Rubus fruticosus (Elazab et al., 2023)

and offers good perspectives also for in vitro propagation of olive.
5 Slow growth storage

Many National and International programs are currently

underway for the conservation of the large genetic variability of

the olive tree in order not to lose interesting genotypes, while the

current tendency is the cultivation of cultivars with more productive

and adaptable to most environmental conditions in the new olive

plantations (Rugini and Gutiérrez-Pesce, 2006).

At present, field clonal collection is the most widespread option

for preservation of olive germplasm; however, this traditional
FIGURE 3

Temporary Immersion System by PlantformTM bioreactor for olive
shoots proliferation.
FIGURE 4

Efficient olive shoot proliferation in SETIS TM bioreactor.
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method is expensive and subject to losses due to diseases, parasites,

extreme environmental conditions, and economic efforts (Fabbri

et al., 2009). To preserve diversity at all levels (genes, species and

ecosystems), which are constantly evolving, and to make them

always available, it is necessary to use or combine alternative

conservation tools. For this reason, there is an increasing interest

in the conservation of olive germplasm through methods involving

in vitro culture technology.

Generally, in vitro approaches are considered promising for the

conservation of plant biodiversity that includes the preservation of

genetic resources of vegetatively propagated species, threatened plant

species, taxa with recalcitrant seed, elite genotypes, and genetically

modified/engineered material (Chauhan et al., 2019). Considering the

olive tree, where the conservation of seeds is restricted to rootstocks,

and the various cultivars are propagated vegetatively, the in vitro

conservation, by means of Slow Growth Storage (SGS) for medium-

term preservation and by cryopreservation for long-term preservation,

can be a successful strategy complemented and integrated with

traditional conservation methods. The SGS (also called ‘minimal

growth’) is achieved by keeping explants in modified culture

conditions that slow down cell metabolism and growth. At the end

of the storage period, the cultures are transferred to optimal standard

conditions to stimulate their proliferative recovery. This technique

reduces markedly the frequency of periodic subculturing, compared to

the standard intervals of 3-5 weeks (Reed, 1999).

Depending on the species, conservation in SGS can be extended

from a few months to a year or more, without compromising the

viability and the growth potential of the shoots and with less

interference with the culture system therefore reducing the risk

of contamination.

Research on many woody plants has shown that 12 months

between subculture intervals seem to be a more realistic goal, but for

some species, the period can be more extended (Benelli et al., 2022).

The growth reduction is generally obtained by modifying the

culture medium and/or the environmental conditions. The growth

and quality of the shoots maintained in SGS are affected by several

factors, such as temperature, presence or absence of light, light

intensity, composition of the growth medium (macroelements,

carbohydrates, growth regulators, osmotically active compounds,

growth retardants and antioxidants), the type of container and the

type and physiological state of explant. The application of one or

more factors contributes to obtain the maximum time of storage

explants (Benelli et al., 2022).

The most used method to ensure slow growth storage, without

compromising the quality of the shoots, is the maintenance of the

explants at a temperature below that required for optimal growth of

assessed species.

Medium-term preservation strategy is actually used for a large

number of plant species, including several threatened species of

tropical and temperate, in biodiversity conservation programmes

and in vitro-banking (Ruta et al., 2020).

Commercial micropropagation laboratories also use this

technique to maintain the mother plants and to expand the

supply of species and cultivars and to achieve a better

organization of their production. In fact, the technique allows a
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significant extension of the interval between subcultures, thus

reducing the management (operative) costs of the culture of

breeding and the risks of contamination during subculture.

Although SGS is often applied in commercial and in vitro

culture laboratories for the conservation of fruit species, in the

case of the olive its application is still very sporadic.

Gardi et al. (2001) observed a different behaviour in the shoots

of several olive cultivars during SGS. ‘Frantoio’ was stored for 5

months at 6°C in the dark, showing 100% of survival and regrowth

after conservation, while for shoots of ‘Ascolana tenera’ and

‘Moraiolo’, preserved in the same condition, the maximum

regrowth potential was only up to 2 months.

Two olive cultivars (Leccino and Frantoio) were preserved for 8

months at 4°C on hormone-free OM medium (Olive medium;

Rugini, 1984) under dark conditions (Lambardi et al., 2002). High

rate of regrowth (up to 80%) was achieved in post conservation in

standard culture conditions (recovery). On the contrary, the

preservation of the shoots at 4°C under 8h photoperiod of light,

has involved a drastic significant reduction in the percentage of

shoot recovering for both cultivars: 15% (Leccino) and 10%

(Frantoio). Extending the conservation to 12 months, although

the survival rate remained satisfactory for ‘Leccino’ (66%), the

percentage of regrowth was almost nil after 6 weeks of recovery.

Moreover, the same study has tested innovative containers, called

‘Vitro Vent’ (Duchefa Biochemie BV, Netherlands), that allowed

continuous ventilation and prevented the accumulation of volatile

compounds inside the container. This non-forced ventilation

reduces internal condensation and makes the containers very

suitable for in vitro storage. Although the plants are maintained

at conditions of reduced metabolism, gas composition inside the

vessels, during SGS, can affect the storage period and shoot

regrowth in post-conservation. In this context, Benelli et al.

(2002) investigated the dynamics of carbon dioxide and ethylene

accumulation in ‘Frantoio’ culture vessels during 8 months of olive

SGS. Olive shoots were stored at 4°C in darkness into glass serum

bottles (100 ml volume) containing hormone-free OMmedium and

sealed with air-tight vial rubber septa. During the storage period a

rapid (a few weeks after the beginning of the SGS), and conspicuous

(up to 70.000 ml/L after 8 months) accumulation of CO2 within the

vessel was observed, while ethylene production was negligible.

Therefore, the authors hypothesized a relationship between high

levels of CO2 and poor recovery of shoots after SGS.

The possibility of storing olive explants in capsules (or synthetic

seeds) of Ca-alginate matrix containing a nutritive medium has

been tested for short period as aseptically exchange of plant material

between laboratories over long distances without danger of any loss

and reducing the phytosanitary and quarantine problems. Micheli

et al. (2007) investigated the storage of encapsulated olive

microcuttings (one node with two axillary buds) of ‘Moraiolo’.

The capsules were stored with a simple procedure in plastic cuvettes

with an artificial endosperm solution to maintain the relative

humidity during the SGS period. After SGS, the capsules were

transferred into glass vessels with OM medium to evaluate the

recovery. The olive capsules maintained a high ability to regrowth

after storage of 15 and 30 days at 18°C and 4°C. In particular, after
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30 days at 4°C the average number of shoots sprouted per capsule

was similar to the control, as well as the multiplication rate.

Encapsulated microcuttings of ‘Canino’, ‘Moraiolo’, ‘Ascolana

tenera’ and ‘Dolce Agogia’ on semi-solid medium were stored at 4°

C successfully for 30 days (Gardi et al., 1999). The explants showed

a viability rate between 47 and 100% immediately after storage,

depending on the cultivar, but poor results in terms of regrowth in

post conservation were observed.

The conservation of synthetic seeds of ‘Moraiolo’ cultivar was

also tested at 4°C and 21°C for different periods (15, 30, 45 and 60

days) (Ikhlaq et al., 2010). The best condition in terms of parameters

evaluated (germination percentage, number of shoots per explant,

shoots length, number of nodes, rooting percentage, number of roots

per explant and root length) was at 4°C after 45 days.
6 Perspective for future application in
olive tissue culture

In vitro tissue culture systems have demonstrated significant

potential as tools for understanding and addressing challenges in

plant growth and development, particularly under abiotic stress

conditions. Research indicates that the effects of abiotic stress

observed in vitro often closely mimic those experienced in natural

environments, making these systems valuable for studying water and

salt stress in plants (Pérez-Clemente and Gómez-Cadenas, 2012;

Silvestri et al., 2017; Bashir et al., 2021). For olive plants, studies by

Bashir et al. (2021) and Silvestri et al. (2017) investigated the impact

of NaCl-induced salt stress and PEG-induced drought stress on a

salt-tolerant cultivar and two transgenic lines overexpressing the

tobacco osmotin gene. Beyond their role in stress studies,

micropropagation and tissue culture provide versatile tools for

biotechnological and genetic advancements in olive trees. For over

three decades, these technologies have been utilized for various

purposes, including thermotherapy for virus eradication, embryo

rescue to accelerate breeding and enable interspecific crosses, and the

induction of haploidy and polyploidy. Furthermore, they support

somaclonal variation, somatic hybridization, and genetic

engineering (Rugini et al., 2016). These methods are gaining

renewed relevance with the advent of Next-Generation Breeding

Strategies, such as genome editing. In olive trees, a persistent

challenge lies in efficient regeneration through adventitious shoot

organogenesis, somatic embryogenesis, and protoplast technology.

Although almost underexplored in olives, these in vitro-mediated

approaches are garnering increased interest due to their potential,

aligning with evolving breeding and biotechnological goals.
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