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The coupling between Gross Primary Productivity (GPP) and Solar-Induced

Chlorophyll Fluorescence (SIF) is crucial for understanding terrestrial carbon

cycles, with the GPP/SIF ratio regulated by canopy structure, environmental

change, and other factors. While studies on canopy structure focus on how

internal structure regulates light use efficiency, the impact of remotely sensed

canopy structural parameters, particularly Fractional Vegetation Cover (FVC) and

Leaf Area Index (LAI), on GPP-SIF coupling remains understudied. Investigating

the response of canopy structure to GPP-SIF in large-scale forests supports

high-accuracy GPP estimation. LiDAR offers unparalleled advantages in capturing

complex vertical canopy structures. In this study, we used multi-source data,

particularly LiDAR-derived canopy structure products, to analyze the annual

variations in canopy structural parameters and GPP/SIF across different forest

types, investigate the response of canopy structure to the GPP-SIF relationship,

and employ machine learning models to estimate GPP and assess the

contribution of canopy structural factors. We found that LiDAR-derived canopy

structure products effectively captured vegetation growth dynamics, exhibiting

strong correlation with MODIS products (maximum R²=0.95), but with higher

values in densely vegetated areas. GPP/SIF exhibited significant seasonal and

forest-type variations, peaking in summer. Its correlation with canopy structural

parameters varied seasonally, ranging from 0.21 to 0.75. In summer, the

correlation decreased by 5.53% to 30.59% compared to other seasons. In

random forest models, incorporating canopy structural parameters improved

GPP estimation accuracy (R2 increasing by 1.30% to 8.07%).
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1 Introduction

Terrestrial gross primary production (GPP), representing the

amount of atmospheric carbon dioxide (CO2) fixed by vegetation

photosynthesis, constitutes the largest flux of the global carbon

budget and plays a fundamental role in the carbon cycle (Liao et al.,

2023; Ryu et al., 2019; Wang et al., 2021a). Accurately quantifying

GPP is of great significance for monitoring forest growth conditions

(Xie et al., 2019). The utilization of remote sensing techniques for

large-scale, high-precision GPP estimation and subsequent forest

state assessment has become a research hotspot.

Solar-induced chlorophyll fluorescence (SIF) is a radiation flux

driven by APAR, emitted as a light in the spectral range of 650–

800nm (Mohammed et al., 2019). Studies have confirmed that SIF is

strongly correlated with GPP, making it a direct and reliable indicator

of GPP (Cheng et al., 2021; Pierrat et al., 2022; Wu et al., 2022a; Yang

et al., 2018). Compared to traditional vegetation indices, SIF exhibits

a stronger ability to monitor terrestrial photosynthesis (Li et al.,

2018). Satellite-based SIF observations have been widely applied as a

proxy for GPP at the global scale, further demonstrating its

effectiveness in large-scale carbon cycle studies (Wang et al., 2021a).

While SIF has been widely used as a proxy for GPP, the GPP-SIF

relationship is not uniform across different conditions, leading to

uncertainties in GPP estimation. This relationship varies significantly

across different vegetation types and growing seasons (Bai et al., 2022;

Chen et al., 2021b). Studies have shown that the GPP-SIF relationship

is influenced by biomes, climate conditions, and canopy structure

(Guanter et al., 2012; Sun et al., 2017; Wang et al., 2021b). Especially,

canopy structure plays a crucial role in the GPP-SIF relationship.

Zhang et al. (2019) found that the canopy-leaving SIF observed by

sensors represented only a portion of the total canopy SIF emission,

which was sensitive to canopy structure and observation direction.

Correcting for canopy structure helped improve the consistency

between SIF and GPP. Dechant et al. (2020) analyzed the GPP-SIF

relationship from a mechanistic perspective, demonstrating the

dominant role of canopy structure and establishing a strong link

between the near-infrared reflectance of vegetation (NIRV) and the

canopy structure information embedded in the SIF signal. Yazbeck

et al. (2021) demonstrated that canopy structure played a dominant

role in the GPP-SIF relationship across timescales, with a stronger

influence at longer timescales. Incorporating canopy structural

variables into the SIF-GPP relationship improved site-level GPP

predictions and reduced estimation uncertainty. Existing studies

have mechanistically emphasized the influence of canopy structure

on the GPP-SIF relationship at the site scale. However, it remains

unclear whether this relationship holds at larger scales, especially in

complex forest canopies. Additionally, the influence of product-level

canopy structure data on large-scale GPP-SIF estimations from

remote sensing is still underexplored.

In commonly acquired canopy structure products from remote

sensing technology, fractional vegetation cover (FVC) and LAI are

critical in canopy radiative transfer and photosynthetic process

(Fang et al., 2021; Gao et al., 2020). As important indicators of

canopy, they have been widely applied in researches. LAI has been

shown to have a strong response to SIF and GPP (Bai et al., 2022;
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Wu et al., 2022b; Xie et al., 2019; Zhang et al., 2021). FVC has a large

influence the SIF emission (Zeng et al., 2020). Escaping probability

of canopy SIF and total emitted SIF showed nonlinear responses to

FVC (Zhang et al., 2022). Despite their importance, the roles of

FVC and LAI in the GPP-SIF relationship remain underexplored.

At large scales, the accuracy of canopy structure products also

affects the reliability of conclusions regarding GPP-SIF responses.

Currently, large-scale canopy structure products are primarily

derived from passive remote sensing data (Fang et al., 2019). Using

LAI as example, various global LAI products based on optical

imagery have been found obvious inconsistencies and uncertainties

due to the vegetation characterization, input data and retrieval

algorithms (Breunig et al., 2011; Camacho et al., 2013; Fang et al.,

2013; Jiang et al., 2017; Jin et al., 2017; Xiao et al., 2017). Due to

limitations in measurement principles, light saturation effects of

radiation at high LAI can lead to underestimation of LAI (Liu

et al., 2012). Especially in forested areas, the underestimation of

canopy structure is significant due to the inability of passive optical

sensors to penetrate beneath the canopy (Li et al., 2022; Xu et al.,

2024). Moreover, current global LAI retrieval algorithms largely

neglect topographic effects, introducing uncertainty into GPP

research and resulting in better simulation performance in flat than

in complex terrain (Xie et al., 2019). LiDAR, as an active sensor, has

the ability to penetrate forest canopies, offering a distinct advantage in

quantitatively assessing forest ecosystems (Moran et al., 2018; Shi et

al., 2025). In 2018, NASA launched the GEDI (Global Ecosystem

Dynamics Investigation LiDAR) mission, equipped with a full-

waveform LiDAR (Dubayah et al., 2020a). GEDI has been used to

monitor forest growth conditions, generating public multi-level

canopy structure products, which offered a new source for GPP

inversion research and hold significant potential for widespread

applications (Tang et al., 2019). LiDAR help reduce estimation

errors caused by topography and light saturation, enabling accurate

retrieval of canopy structral parameters in densely vegetated areas,

facilitating amore precise assessment of its impact on GPP estimation

and the GPP-SIF relationship. Currently, there is a lack of research in

the field of GPP-SIF relationship using LiDAR data.

In this study, we integrated spaceborne LiDAR data and multi-

source data across five forest types in the continental United States

to investigate how canopy structral parameters (LAI and FVC)

influence the GPP-SIF relationship and GPP estimation in large-

scale. We addressed the following questions: (1) How do the

seasonal variations of GPP/SIF and LiDAR-derived canopy

structure differ across tree species? (2) How do LiDAR-based

canopy structure products respond to GPP/SIF? (3) What are the

contributions of LAI and FVC to large-scale GPP estimation using

machine learning models?
2 Materials and methods

2.1 Data collection

Various remote sensing data with an 8-day resolution were

collected to obtain parameters related to canopy structure and
frontiersin.org
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productivity across the continental United States (CONUS).

Especially, in calculating GPP/SIF, we normalized GPP and SIF

products to fall within the [0,1] range. The normalization method

has been proved not to affect the result (Chen et al., 2021b). Figure 1

showed the multi-source remote sensing data and data

preprocessing flow of this study.
2.1.1 Canopy structure metrics
The Global Ecosystem Dynamics Investigation (GEDI), as a

new spaceborne LiDAR instrument launched in December 2018,

was specifically designed to measure high resolution 3D vegetation

structural metrics and estimate biomass under different

environmental conditions (Dubayah et al., 2020a; Liu et al.,

2021a). The GEDI instrument is comprised of 3 lasers

illuminating a 25 m spot (a footprint) on the surface and each

footprint is separated by 60 m along track, with an across-track

distance of about 600 m between each of the 8 tracks (Dubayah

et al., 2020a; Potapov et al., 2021). The GEDI Level 2 data products

include L2B Canopy Cover and Vertical Profile Metrics, available

from the NASA’s Land Processes Distributed Active Archive Center

(LPDAAC) (Dubayah et al., 2020b). In this study, we acquired the

GEDI L2B (version 1.0) products and extracted FVC and LVC data.

For data assessment and comparison, we also obtained LAI and

FVC data from MODIS products. LAI was acquired from

MCD15A3H Version 6 LAI product (4-day composite data set

with 500-meter pixel size). FVC was derived from MOD13A1

Version 6 product Enhanced Vegetation Index (EVI) values (16-

day composite data set with 500-meter pixel size). The calculation

Equation 1 is as follows:

FVC = EVI−EVIs
EVIv−EVIs

(1)

EVIs   is the mean 5% value of total pixels, and EVIv is the mean

95% value of total pixels.

In this experiment, we aimed to standardize the temporal

resolution of the data to an 8-day interval. Due to the 16-day
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temporal resolution of MODIS vegetation index products, some

MODIS FVC data were partially missing as a result.

2.1.2 SIF data
The Tropospheric Monitoring Instrument (TROPOMI),

launched as the single payload of ESA’s Sentinel-5 Precursor (S-

5P) satellite in 2017, is enabled to monitor terrestrial SIF

(TROPOSIF) (Borsdorff et al., 2018). TROPOMI combines a

global continuous spatial sampling with a 3.5×7.5 km2 pixel size

at nadir in the near infrared (3.5×5.5 km2 since August 2019) with a

daily revisit time (Butz et al., 2012). The L2B TROPOSIF product

consists in global daily SIF743 and SIF735 in netCDF-4 files (Guanter

et al., 2015). In this study, we acquired the L2B TROPOSIF product

covering the CONUS for the whole year of 2020 and the SIF data

was summarized into one set for every eight days.

2.1.3 GPP data
We selected two types of GPP data: flux tower data and remote

sensing products, to conduct a more accurate assessment of results.

We obtained weekly AmeriFlux FLUXNET (CC-BY-4.0) SUBSET

data from 33 forest flux towers across the CONUS, covering the

year 2020. The obtained GPP values (GPP_DT_VUT_REF) from

these sites were denoted as “GPPAMF”. The 33 flux towers

represented the following forest types: 15 deciduous broadleaf

forests (DBF), 15 evergreen needleleaf forests (ENF), and 3 mixed

forests (MF). The flux tower for the other two forest types

deciduous needleleaf forests (DNF) and evergreen broadleaf

forests (EBF) were not found.

The GPP product used in this paper is MOD17A2H Version 6, a

cumulative 8-day composite of GPP values with 500-meter (m)

pixel size based on the radiation-use efficiency concept. The MODIS

Adaptive Processing System (MODAPS) at the NASA Goddard

Space Flight Center produces this gridded Collection-5 GPP

product, which is validated to Stage-3 (Running et al., 2015). In

this experiment, we obtained MOD17A2H GPP data every 8 days in

2020 covering the CONUS (denoted as “GPPMOD”).
FIGURE 1

Multi-source data and data preprocessing flow of this study.
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2.1.4 Land cover data
Accurate extraction of vegetation land cover is essential for forest

research. TheMCD12C1 Version 6 data product provides maps of the

International Geosphere-Biosphere Programme (IGBP) classification

schemes at yearly intervals at 0.05 degree (5,600 meter) spatial

resolution for the entire globe from 2001 to 2020 (Friedl and Sulla-

Menashe, 2015). Here, we selected 5 major forest types based on the

IGBP classification scheme including evergreen needleleaf forest

(ENF), evergreen broadleaf forest (EBF), deciduous needleleaf forest

(DNF), deciduous broadleaf forest (DBF) and mixed forest (MF).

2.1.5 Environmental parameters
Environmental factors such as temperature, humidity, and

radiance have been shown to affect vegetation productivity

(Gonsamo et al., 2016). We got the environment parameters from a

reanalysis dataset ERA5-Land (Muñoz Sabater, 2019). It has been

produced by replaying the fifth-generation global land component of

the European Centre for Medium Range Weather Forecasts

(ECMWF) ERA5 climate reanalysis with a 0.25° spatial resolution.

In this study, we downloaded ERA5-Land daily aggregated

meteorological data including the 2 m temperature Ta ( °C), 2 m

dewpoint temperature Td ( °C) and daily surface downward solar

radiation SW (W=m2) in 2020. Then, we used Ta and Td to calculate

vapor pressure deficit VPD (hPa) (Bai et al., 2022; Zheng et al., 2020).

In this experiment, the obtained Ta,VPD, and SW data would be used

as input parameters for the GPP inversion model.
2.2 Methods

Figure 2 illustrated the research methods and procedures

employed in this study. Firstly, we used mathematical and statistical

methods to analyze annual variations in GEDI and MODIS canopy

structure products, as well as GPP/SIF values (including GPPAMF/SIF

and GPPMOD/SIF) across different forests. We assessed the quality of
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GEDI data by comparing it with MODIS products, identifying

changes in canopy structure and GPP/SIF for each forest type.

Secondly, in order to investigate the relationship between canopy

structure and GPP/SIF (including GPPAMF/SIF and GPPMOD/SIF),

quantitative approaches were adopted. We conducted correlation

analysis between canopy structural parameters and GPP/SIF every 8

days. Pearson correlation coefficient (Cohen et al., 2009) was

calculated for different forest types.

Finally, we assessed the contribution of structural parameters to

the calculation of GPPMOD/SIF and the subsequent inversion of

GPP using random forest. We incorporated various features as

inputs to the random forest (RF) model (Rigatti, 2017) to estimate

GPPMOD/SIF. Then the GPP was estimated using the SIF and

estimated GPPMOD/SIF. Based on random forest model RF1 and

RF2, we estimated GPP using different sets of input feature

parameters. RF1 included canopy structural parameters, while

RF2 did not. The GPP inversion Equations 2–3 are as follows:

GPPRF1 = f (LAI, FVC,Ta, SW,VPD)� SIF (2)

GPPRF2 = f (Ta, SW ,VPD)� SIF (3)

where LAI is leaf area index,  FVC is the fractional vegetation

cover, Ta is the air temperature ( °C), SW is the surface downward

solar radiation (W=m2), VPD is the vapor pressure deficit (hPa).

The model was implemented in Python 3.12 using the

‘RandomForestRegressor’ function from the scikit-learn 0.24.1

package to develop two random forest models, RF1 and RF2.

Except for differences in input data, both models were configured

with identical parameters, specifically: the number of decision trees

(n_estimators) was set to 150, Out-of-Bag (OOB) evaluation was

enabled, and the random seed (random_state) was fixed at 22 for

reproducibility, while all other parameters remained at their default

settings. The computational environment consisted of an Intel Core

i5-13600K CPU (3.50 GHz) and an NVIDIA T400 4GB GPU.

The metrics used to evaluate the accuracy of GPP inversion

included the goodness of fitting and generalization ability of the

random forest model, as well as the coefficient of determination (R2)

and root mean square error (RMSE) between the predicted values

and the true values. The principles of each evaluation metric refer to

the python ‘RandomForestRegressor’ documentation.

Feature importance analysis for the trained random forest

model was conducted using the ‘permutation_importance’ from

the scikit-learn 0.24.1 package. The ‘n_repeats’ was set to 5,

permuting each feature five times to average its impact on model

performance. ‘random_state’ was set to 0 for reproducibility, with

all other parameters at default settings.
3 Results

3.1 Annual variation of LiDAR canopy
structural parameters

The average of FVC and LAI obtained from GEDI for five types

of forests were calculated (Figure 3). The results revealed
FIGURE 2

The research methods and procedures employed in this study.
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significant differences in the FVC values among different forests.

All forests exhibited a general pattern of increasing followed

by decreasing average FVC trends throughout the year. Among

them, the magnitude of FVC variation followed the order:

DBF>DNF>MF>EBF>ENF, indicating a higher degree of variation

in deciduous forests compared to evergreen forests and a higher

variation in broadleaf forests compared to needleleaf forests. In the

non-summer seasons, the total average FVC values ranked as follows:

ENF>EBF>MF>DNF>DBF. During the summer season, the order of

total average FVC values was: EBF>ENF>DBF>MF>DNF. For LAI,

the values exhibited a similar trend to FVC, with higher values

during the summer compared to other seasons. Comparing the

annual variation in average LAI, the magnitude of change was
Frontiers in Plant Science 05
ranked as follows: DBF>DNF>MF>EBF>ENF, indicating that

deciduous forests showed a greater overall variation than evergreen

forests. In non-summer seasons, the ranking of average LAI values

was ENF>EBF>MF>DNF>DBF. During the summer, the average

LAI followed the order: DBF > DNF > EBF > MF > ENF, with DBF

having the highest average 3.515 and ENF having the lowest value of

average 3.322.

To further assess GEDI data, we obtained MODIS products at

an 8-day interval and conducted a correlation analysis on the

annual variations of their means (Figure 4). The results showed

high consistency between MODIS and GEDI in annual FVC and

LAI variations across five forest types. The correlation R2 for FVC

ranged from 0.64 (DNF) to 0.90 (MF) and for LAI from 0.71 (EBF)
FIGURE 3

The average FVC and LAI of five forest types in CONUS (the error bars represent the standard deviation of each set of data).
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to 0.95 (DBF). Seasonal analysis revealed summer data concentrated

centrally, with other seasons at the extremes, indicating a common

trend of increasing then decreasing canopy structural parameters in

both datasets. The cumulative distribution function (CDF) results

in the third and fourth columns indicated significant differences

between the GEDI and MODIS datasets. In most cases, GEDI-

derived values (blue) were higher than MODIS-derived values

(green) in the lower quantiles, while also exhibiting distinct

distribution shapes and spreads. GEDI-derived FVC values were

generally shifted toward higher values compared to MODIS,

whereas the LAI distributions showed more pronounced

differences. Specifically, GEDI exhibited a broader spread,

suggesting greater variance in estimated LAI values relative

to MODIS.
3.2 GPP/SIF changes of different forest
types

The GPPMOD/SIF of five forest types was shown in Figure 5.

Among the forests, only EBF did not show a clear pattern of

variation in GPPMOD/SIF values throughout the year. ENF, DNF,

DBF and MF exhibited varying degrees of an increasing followed by
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a decreasing trend in their ratios, with the ratios during the summer

months (June, July, and August) significantly higher than in

other seasons.

A detailed analysis revealed that GPPMOD/SIF for ENF initially

increased and then decreased throughout the year, peaking at 1.95

in June and ranging between 0.5 and 1.0 in the off-summer months.

For EBF, the annual mean GPPMOD/SIF was 1.30, fluctuating

between 1.0 and 1.5 with no significant seasonal variation. DNF

showed a clear increasing-then-decreasing pattern, with GPPMOD/

SIF values nearly negligible from January to April, peaking in May,

remaining above 1.0 in summer, and decreasing to near-zero in

autumn and winter. DBF exhibited a similar trend, with the highest

mean during summer and the most significant variation. Deciduous

forests (DNF, DBF) had greater GPPMOD/SIF variation compared to

evergreen forests (ENF). MF also followed an increasing-then-

decreasing pattern, similar to broadleaf forests, but with slightly

lower variation.

Figure 6 illustrated the annual variations of GPPAMF/SIF for

three forest types based on flux tower data, showing similar

increasing-decreasing trends as Figure 5, with peaks notably

higher in summer. ENF exhibited a smaller annual variation

range compared to DBF and MF. The mean GPPAMF/SIF values

for ENF and DBF were higher than GPPMOD/SIF, while MF had a
FIGURE 4

Comparison of GEDI and MODIS derived FVC and LAI across different forest types: regression analysis and cumulative distribution function
(CDF) evaluation.
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lower mean. Additionally, the standard deviation of GPPAMF/SIF

was greater than that of GPPMOD/SIF, indicating higher

annual variation.
3.3 Annual correlation between canopy
structure and GPP/SIF

Figure 7 depicted the Pearson correlation coefficient between

GPPMOD/SIF and LAI, FVC, respectively, for five forest types across

the CONUS in 2020. Linear correlation was observed between

canopy structural parameters and GPPMOD/SIF, with correlations

ranging from 0.21 to 0.49 for FVC and from 0.26 to 0.63 for LAI.

Compared to MODIS data, GEDI data exhibited relatively lower

correlations with GPPMOD/SIF, with a more stable changes of

annual value.

Distinct patterns emerged in terms of the total correlation and

its temporal dynamics across different forests. The mean annual

correlation from high to low was: EBF>ENF>DNF>MF>DBF.
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Evergreen forests showed higher correlations compared to

deciduous forests, particularly in summer. The canopy structural

parameters of evergreen forests maintained relatively stable values

throughout the year. However, deciduous and mixed forests

exhibited a noticeable trend of decreasing correlation throughout

the year, followed by an increase. In summer, the average

correlation of FVC was lower than other seasons, with the

decrease magnitude 16.43%-28.44%. The average correlation of

LAI was 18.31% to 30.59% lower compared to other seasons.

Figure 8 showed the correlation results between GPPAMF/SIF

and MODIS and GEDI canopy structural parameters,

with correlations ranging from 0.22 to 0.75. No significant

difference was found between MODIS and GEDI data. Except

for GEDI FVC in ENF, the average correlation between FVC and

GPPAMF/SIF was 6.17% to 13.44% lower in summer compared to

other seasons. For LAI, the decrease ranged from 5.53% to

15.18%. These results highlight the variation in LAI, FVC, and

GPP/SIF correlations among different forest types, particularly

in summer.
FIGURE 5

The GPPMOD/SIF of five forest types throughout the year 2020 in CONUS (the error bars represent the standard deviation of each set of data).
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3.4 GPP estimation based on inversion
models

To assess the impact of canopy structural parameters on GPP

inversion, we compared the accuracy of GPP inversions using

different factors, as shown in Figure 9. The random forest model

incorporating canopy structural parameters (RF1) showed superior

goodness of fit (R² ranging from 0.977 to 0.989) compared to the

model without these parameters (RF2, R² ranging from 0.864 to

0.942). However, except for DNF, including canopy structural

parameters slightly reduced the model’s generalization ability by

1.08% to 2.24%. Incorporating these parameters improved R² by

1.30% to 8.07% and reduced RMSE by 1.72% to 9.41%. Among

forest types, DBF had the highest R² at 0.934, and DNF had the

lowest at 0.728. DNF also had the lowest RMSE at 0.057, while EBF

had the highest at 0.077. Overall, RF1 provided higher inversion

accuracy than RF2, indicating that incorporating canopy structural

parameters enhances inversion accuracy, though the improvement

varied across forest types.

Figure 10 illustrated the feature importance for GPP inversion

across five forest types, revealing significant variations. Ta

consistently showed the highest importance in most models,

while VPD was generally the least important. The overall ranking

of feature importance was Ta, SW, FVC, LAI, and VPD. In

particular, canopy structural parameters (FVC and LAI) had

similar contributions, ranging from 0.148 to 0.366, indicating a

moderate impact on GPP inversion.
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4 Discussion

4.1 Annual variation of LiDAR canopy
structural parameters and data quality

The experimental results indicated that, in the continental

United States located in the Northern Hemisphere, canopy

structural parameters FVC and LAI, were significantly higher in

summer compared to other seasons. The forest canopy exhibited

distinct growth and senescence trends in May and October,

manifested in corresponding increases and decreases in structural

parameter values. Aligned with the Northern Hemisphere’s

vegetation growth cycle, these findings coincided with the

vegetation’s growth period, a pattern corroborated by previous

studies (Sainte-Marie et al., 2014; Tian et al., 2004). The

preliminary evidence of the consistency in the forest growth cycle

substantiated the efficacy of GEDI data.

Figure 3 showed that evergreen forests maintain more stable

structural parameters year-round than deciduous forests, with less

seasonal variation. This aligned with Bonan et al. (2002), which

found that evergreen forests exhibit minor greening during the

growing season and peak LAI occurs later. Foliation and senescence

in forests were mainly driven by photoperiod changes (Sainte-Marie

et al., 2014). Evergreen forests exhibited a smaller impact from light

response compared to deciduous forests, experiencing a gradual and

steady leaf fall throughout the year (Chhabra and Panigrahy, 2011).

Consequently, the canopy structure of evergreen forests remained
FIGURE 6

The GPPAMF/SIF of three forest types throughout the year 2020 in CONUS (the error bars represent the standard deviation of each set of data).
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more stable throughout the year. Additionally, broadleaf forests had

higher average LAI and FVC than needleleaf forests, with greater

seasonal variation, consistent with Liu et al. (2017). These results

were mainly attributed to the shorter growing season and the lower

solar radiation at high latitudes of needleleaf forest than broadleaf

forest. The consistency of LAI and FVC variations across forest

types supported the accuracy of GEDI data.

A comparison of MODIS and GEDI canopy structure products

(Figure 4) revealed a strong and stable correlation (R2 = 0.64-0.95)

and consistent seasonal variation, with higher values in summer

than in other seasons. CDF analysis indicated that GEDI values

were generally higher than MODIS, often shifting toward greater

values. This difference was more pronounced in certain forest types

(e.g., DNF and DBF), where MODIS values appeared more

compressed, while GEDI exhibited a more gradual distribution.

These discrepancies reflected fundamental differences in

measurement techniques, with GEDI capturing more detailed

vertical vegetation structure, whereas MODIS provided broader

spatial coverage with lower vertical resolution.
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4.2 Analysis of annual GPP/SIF variation in
different forests

The results indicated that GPP/SIF exhibited seasonal variation,

being higher in summer compared to other seasons (Figures 5, 6).

There has been debate in previous studies about whether the

relationship between GPP and SIF shows a consistent linear

pattern across different biomes (Li et al., 2018; Liu et al., 2021b;

Sun et al., 2017; Wu et al., 2022b). These fluctuations in GPP/SIF

confirmed the validity of previous studies (Bai et al., 2022; Chen

et al., 2021b), emphasizing the non-constancy of GPP/SIF values

across different seasons. The impact of GPP/SIF variability in large-

scale GPP estimations cannot be overlooked. The primary factors

contributing to these changes include radiation, precipitation,

temperature, and structure (Chen et al., 2021a).

Based on the description of GPP and SIF (Damm et al., 2015;

Monteith, 1972), GPP/SIF can be described as Equation 4:

GPP
SIF = LUEP

FF�fesc
(4)
FIGURE 7

The Pearson correlation coefficients between GPPMOD/SIF and LAI, FVC for five forest types across the CONUS in 2020.
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where LUEP is light use efficiency of the canopy, FF is the

chlorophyll fluorescence yield from absorbed sunlight, and fesc is the

escape probability of fluorescence. Chen et al. (2021b) suggested

that seasonal temperature variations primarily drive seasonal

changes in GPP/SIF in temperate regions. Comparing the results

with monthly temperature fluctuations in the CONUS in 2020, the

most pronounced GPP/SIF changes in June and September

coincided with peak temperature variations. The overall annual

trend of both curves showed a high degree of consistency, proving

the reliability of the study. LUEP and FF were highly correlated to

air temperature (Yan et al., 2017) but exhibited different light

sensitivities. LUEP showed a saturation pattern under high

temperatures, especially on clear days. Notably, differences in SIF

and GPP responses to light contributed to discrepancies in spring

onset estimates (Yang et al., 2022). In spring, SIF responded to light

earlier than GPP, resulting in lower GPP/SIF values. The seasonal

non-linear LUEP- FF relationship resulted in a higher LUEP=FF in

summer (Kim et al., 2021), contributing to increased GPP/SIF (Bai

et al., 2022). In addition, Dechant et al. (2020) reported that the

SIF-GPP relationship in crops was dominated by the strongly

seasonal fesc rather than the more temporally stable FF . fesc has

been demonstrated to strongly respond to canopy structural

parameters such as LAI (Fournier et al., 2012). In summer,

increased LAI and FVC were correlated with a decrease in fesc to

some extent, potentially leading to higher GPP/SIF (Zhang et al.,

2022, 2020). Comparing two GPP datasets (Figures 6, 7), GPP/SIF
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trends showed no significant differences, though mean GPPAMF/SIF

were higher than GPPMOD/SIF. This discrepancy likely arose from

MODIS GPP underestimation relative to flux tower GPP (Qiu et al.,

2020). The standard deviation and annual variation of GPPAMF/SIF

data were larger, possibly due to the relatively small amount of flux

tower data and greater sensitivity to outliers. These findings

confirmed the seasonal peak variations in GPP/SIF, reinforcing

the study’s conclusions.
4.3 Annual correlation between canopy
structure and GPP/SIF

The results demonstrated the response of canopy structural

parameters, FVC and LAI, to the seasonal variation in GPP/SIF

(Figures 7, 8). Overall, FVC-GPP/SIF and LAI-GPP/SIF were

moderately well correlated, with this linearity lower in summer

compared to other seasons. It confirmed the response of canopy

structural parameters to the GPP-SIF relationship.

The relationship between canopy structure and GPP/SIF was

complex and lacked a clear mechanistic explanation (Dechant et al.,

2020). Absorbed photosynthetically active radiation (APAR) is

considered the product of the fraction of absorbed PAR (fPAR)

and photosynthetically active radiation (PAR) (Zhang et al., 2018).

The relationship between fPAR and LAI can be approximated as

(Casanova et al., 1998) Equation 5:
FIGURE 8

The Pearson correlation coefficients between GPPAMF/SIF and LAI, FVC for three forest types across the CONUS in 2020.
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fPAR = 1 − e−k·LAI (5)

where k is the extinction coefficient. As LAI increased, APAR

also increased but gradually saturated at higher LAI due to

diminishing increments. High LAI and FVC also reduced the fesc ,

as multiple scattering and reabsorption within dense canopies limit

the amount of fluorescence escaping (Bailey and Fu, 2022; Dechant

et al., 2020; Liu et al., 2020; Zeng et al., 2019). High LAI and FVC

enhanced APAR (thus increasing GPP) but simultaneously reduced

fluorescence escape, suppressing SIF growth, which in turn led to an

increased GPP/SIF ratio. Consequently, LAI and FVC were

positively correlated with GPP/SIF, as confirmed by Figures 7 and

8. Overall, both FVC-GPP/SIF and LAI-GPP/SIF exhibited

moderate correlations. However, this relationship weakened in

summer, likely due to two main factors. First, higher

temperatures can induce stomatal closure and increase

transpiration, leading to a decline in light use efficiency (LUEP)

(Pei et al., 2022), which in turn complicates the relationship

between GPP/SIF and canopy structure. Second, in regions with

high canopy structural complexity, dense foliage limits radiation

penetration to lower leaves, reducing photosynthetic efficiency. As a

result, the effect of increasing LAI on fPAR diminished, ultimately

constraining GPP/SIF.
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Comparing different types of forests, it was observed that deciduous

and mixed forests exhibited lower correlations with GPP/SIF in

summer than in other seasons. This effect was more pronounced in

GPPMOD/SIF compared to GPPAMF/SIF, possibly due to the larger

MODIS dataset reducing the influence of outliers. In summer, the

increased canopy structural complexity of deciduous and mixed forests

(Hardiman et al., 2011) may weaken the correlation, as higher

photosynthetic demand (Bauerle et al., 2012) amplified radiation’s

impact on GPP/SIF, reducing the structural influence. In contrast,

evergreen forests, with their longer photosynthetic season and lower

amortized leaf construction costs (Givnish, 2002), exhibited greater

adaptability to light. Their stable year-round canopy structure led to a

more consistent impact on GPP/SIF.
4.4 The contribution of canopy structural
parameters to GPP estimation

GPP estimation results based on RF model indicated that the

introduction of canopy structural parameters improved the model’s

goodness of fit, but concurrently, it led to a moderate decrease in

model generalization ability (Figure 9). This suggested that the

inclusion of canopy structural parameters enhanced the model’s
FIGURE 9

Accuracy results of GPP inversion using RF1 and RF2 models (The difference between RF1 and RF2 models lies in the inclusion of a canopy structural
factors in RF1).
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performance on the training data but reduced its performance on

new data. It may be attributed to the high correlation between

canopy structural parameter LAI and FVC, as well as the inter-

parameter correlations contributing to overfitting, resulting in a

slight reduction in generalization ability (Shi et al., 2018). Among

the five types of forests, evergreen forests demonstrated slightly

higher estimation accuracy compared to deciduous forests. Kim

et al. (2021) indicated that ENF exhibits strong seasonal variation in

physiology, in contrast to the stable canopy structure. This further

underscored the relatively minor influence of canopy structure on

ENF or even evergreen forests at a seasonal scale. Furthermore,

comparing precision changes after incorporating canopy structural

parameters, we found greater accuracy improvement in deciduous

forests than in evergreen forests, highlighting a stronger impact of

canopy structure on deciduous forests.

The feature importance results indicated that although canopy

structural parameters, such as LAI and FVC, responded to changes

in GPP/SIF and contributed to improving GPP estimation accuracy,

their impact were less significant than that of environmental factors

on the GPP-SIF relationship (Figure 10). This consistency was

observed across diverse forest types. This could be attributed to the

more pronounced and impactful spatiotemporal variations in

climate at larger scales. Additionally, there was no significant

difference in the impact of LAI and FVC on the canopy, which

was associated with their high correlation and consistent

spatiotemporal variations (Li et al., 2022). The results indicated

that canopy structural parameters contributed to the estimation of

GPP, but their impact was lower than environmental parameters.
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4.5 Limitations

In this study, we assessed the contribution of canopy structural

parameters obtained from LiDAR to the estimation of GPP. Our

research affirmed the spatiotemporal accuracy of LAI and FVC data

acquired by LiDAR and their contribution to GPP estimation.

However, the limitations of the study included the lack of specific

validation of the relationships between parameters such as LUEP ,

fesc , and FF that influence the GPP-SIF relationship, and canopy

structural parameters. Additionally, current research on the

relationship between GPP/SIF and canopy structural parameters

was limited to correlational analyses, without establishing the

theoretical causal relationships between the parameters.

Furthermore, for large continental spatial scale, many elements

contributed to the uncertainty of GPP estimation (Tramontana

et al., 2015). Reducing GPP uncertainty at large scales and

improving estimation accuracy remained an area for further

investigation. The limitations of this study suggested avenues for

future improvement.
5 Conclusion

In this study, we integrated spaceborne LiDAR (GEDI) and

other multi-source datasets to examine the response of canopy

structural parameters to the GPP-SIF relationship and their impact

on large-scale GPP estimation in forested ecosystems. Specifically,

we: evaluated the capability of GEDI-derived canopy structure
FIGURE 10

The feature importance results based on the GPP inversion model RF1 for the five forest types.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561826
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shi et al. 10.3389/fpls.2025.1561826
products to capture vegetation dynamics; investigated the response

of canopy structural parameters, LAI and FVC, to the GPP-SIF

relationship; and quantified the contribution of canopy structure to

GPP estimation using machine learning approaches. The main

findings are as follows:
Fron
1. LiDAR-derived canopy structural products effectively

captured seasonal dynamics and structural variations

across different forest types. Compared to MODIS, they

exhibited strong correlations and similar temporal patterns.

However, in densely vegetated areas, LiDAR yielded higher

LAI and FVC values, highlighting its enhanced capability to

resolve vertical vegetation structure.

2. GPP/SIF showed significant seasonal variations in all forest

types except EBF, with higher values in summer.

3. Canopy structural parameters, LAI and FVC, showed

seasonal variation in their correlation with GPP/SIF

(correlation coefficient: 0.21-0.75). In summer, the

correlation with GPP/SIF was lower in deciduous and

mixed forests, decreasing by 5.53% to 30.59% compared

to other seasons.

4. The inclusion of canopy structural parameters improved

the accuracy of model-based large-scale GPP estimation,

increasing R² by 1.30% to 8.07%.
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