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Meloidogyne incognita in tomato
Wajahat Azeem1,2*, Tariq Mukhtar1*, Muhammad Inam-ul-Haq1,
Muhammad Azam Khan3, Muhammad Suhail Ibrahim4,
Ahmad Hassan5, Homan Regmi2 and Larry W. Duncan2

1Department of Plant Pathology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan,
2Citrus Research and Education Center (CREC), University of Florida, Lake Alfred, FL, United States,
3Department of Horticulture, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan,
4Institute of Food and Nutritional Sciences, Pir Mehr Ali Shah Arid Agriculture University,
Rawalpindi, Pakistan, 5School of Biochemistry and Biotechnology, University of the Punjab,
Lahore, Pakistan
Here we report the effects of aqueous extracts of the plant Moringa oleifera and

rhizobacterial strains, Bacillus australimaris (BA-LWD73) and B. thuringiensis (BT-

WAG41), applied singly and in combination, on tomato growth and Meloidogyne

incognita infection. Plant height, root length, shoot and root biomass (fresh and

dry), were significantly increased by most treatments compared to the control.

The combined treatment of BA-LWD73 + M. oleifera produced the highest plant

height (96.94 cm) and root length (30.48 cm). The highest shoot biomass was

observed in BA-LWD73 alone treatment while root biomass was generally lower

in all treatments than in the control. M. incognita induced, root gall rating,

number of eggs per root system, second stage juveniles (J2), and reproduction

rate, were significantly reduced in treatments involving M. oleifera and BA-

LWD73, either alone or in combination. The lowest root gall rating (2.67) and

J2 count (680) were observed in B. australimaris LWD73 + M. oleifera treatment.

FTIR analysis of M. oleifera extract indicated the presence of functional groups

such as hydroxyl, C=C, S=O, and C–O, suggesting bioactive potential. GC-MS

analysis revealed six phytocompounds, with 5-Hydroxymethylfurfural (71.76%) as

the dominant component, all known for antimicrobial and nematicidal activities.

Moreover, volatile organic compounds from BA-LWD73 included 1H-Indole

(87.46%) and 2-Nonanone (6.54%), known for their nematicidal properties.

These findings highlight the potential of rhizobacteria and plant extracts in

promoting tomato growth and suppressing M. incognita infection.
KEYWORDS

root-knot nematodes, biological control, Meloidogyne incognita, Moringa oleifera,
rhizobacteria, bacterial VOCs, FTIR, GC-MS
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1 Introduction

Root-knot nematodes (Meloidogyne spp.) have a devastating

impact on vegetable crops worldwide, causing significant yield

losses and compromising overall plant health (Ornat et al., 2001;

Haq et al., 2022; Yaseen et al., 2023; Shahid et al., 2024). These

polyphagous nematodes have an extensive host range, infecting

over 3,000 plant species (Kayani et al., 2013; Kayani and Mukhtar,

2018; Hussain and Mukhtar, 2019; Khairy et al., 2021; Saeed et al.,

2021, 2023). Upon infection, they induce the formation of root galls,

which disrupt normal root functions and impair the ability of plants

to efficiently absorb water and nutrients from the soil (Karssen and

Moens, 2006; Nazir et al., 2019; Khan et al., 2019; Saeed and

Mukhtar, 2024). This leads to stunted growth and reduced crop

yields (Mukhtar et al., 2013a; Abbas et al., 2024). Moreover, root-

knot nematode infections often predispose plants to secondary

infections by soil-borne pathogens, exacerbating damage and

further diminishing plant health (Asghar et al., 2020; Ahmed

et al., 2021; Yaseen et al., 2024; 2025).

The severity of the damage caused by root-knot nematodes

depends on various factors, including environmental conditions,

nematode population density, species virulence, and the

susceptibility of the host plant (Tariq-Khan et al., 2017, 2020, 2025).

Managing these nematodes is particularly challenging due to their high

reproductive potential and remarkable adaptability (Hussain et al.,

2011; Ayub et al., 2024). Although chemical nematicides have proven

effective in controlling root-knot nematodes, their adverse

environmental impacts have driven a shift toward developing

alternative, management strategies (Yaseen and Mukhtar, 2024).

Tomato (Lycopersicon esculentum L.) is a major crop in

Pakistan, cultivated on 68,863 hectares with an average yield of

11.08 t/ha, significantly lower than in China (59.2 t/ha), Turkey

(79.3 t/ha), and India (25.1 t/ha) (FAO, 2021). The crop is

vulnerable to various diseases caused by fungal, bacterial, viral,

and nematode infections, leading to substantial yield losses (Aslam

et al., 2017; Hassan et al., 2024; Iqbal et al., 2024; Mustafa et al.,

2024; Vagelas, 2024).

Root-knot nematodes pose a significant threat, causing yield

losses of up to 29%. In India, nematode-related losses reach $21.7

million, and the Mediterranean region reports losses of 62% (Kumar

et al., 2020; Fullana et al., 2023). Pakistan also faces considerable

economic damage from root-knot nematodes resulting in reduced

plant vigor, chlorosis, stunted growth, and potential crop failure (Oka

et al., 2000). Infected plants develop weak root systems, making them

easily uprooted (Anwar and Javed, 2010).

The use of biological control agents, primarily bacteria and fungi,

presents a promising alternative approach to suppressing nematode

populations. Similarly, plant-based natural products have proven

effective against various pathogens including root-knot nematodes

(Aslam et al., 2024; Atiq et al., 2024; Manzoor et al., 2024; Taha et al.,

2024). Incorporating macerated leaves of Cannabis sativa and

Azadirachta indica into the soil significantly reduced M. javanica

populations and infection severity in plants in a dose-dependent

manner (Kayani et al., 2012; Mukhtar et al., 2013b). Likewise, the

combined application of dried neem leaves and Trichoderma
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harzianum on tomato plants increased reductions in root galls, egg

mass production, and egg hatching compared to their individual

applications. This synergistic effect also enhanced plant height and

fresh shoot weight, with outcomes strongly influenced by dosage and

exposure time (Azeem et al., 2021).

Alternative nematode management strategies include gene editing,

natural nematicides (bacteria, fungi, botanicals), and cultural practices,

reducing reliance on chemical controls (Afzal and Mukhtar, 2024).

Plant growth-promoting rhizobacteria (PGPR) are essential for

enhancing plant growth and mitigating stress through increased

mineral availability, phytohormone production, alleviating heavy

metal stress, and biocontrol of pathogens leading to better nutrient

uptake, growth, and crop yields (Khandagale et al., 2024; Zhang et al.,

2024). For sustainable rice and sugarcane production, bacteria from the

genera Bacillus, Rhizobium, Comamonas, Cyanobacteria, Nodosilinea,

Levinella, and Pseudomonas effectively produce nitrogen and solubilize

essential nutrients (Khandagale et al., 2024). A consortium of B. cereus

AR156, B. subtilis SM21, and Serratia sp. XY21 has been shown to

reduce root-knot disease severity while enhancing cucumber yield and

fruit quality (Zhang et al., 2024).

Moringa oleifera has shown promise as a natural nematicide,

with its bioactive compounds disrupting nematode life cycles and

improving plant vigor and yield. When combined with beneficial

rhizobacteria, M. oleifera enhances nematode suppression, offering

an eco-friendly approach to nematode management (Geldenhuys,

2023; Aminisarteshnizi, 2024).

The present study, therefore, aims to evaluate the nematicidal

potential ofM. oleifera, both alone and in combination with PGPR,

to identify effective, alternative solutions for managingMeloidogyne

incognita in tomato.
2 Materials and methods

2.1 Inoculum preparation of nematode

Meloidogyne incognita culture, maintained in the Citrus Research

and Education Center (CREC), University of Florida, USA, was

initiated from a single egg mass on a susceptible tomato host (cv.

HM1824) and identified based on perineal pattern morphology

(Taylor and Netscher, 1974). Infected root fragments were shaken

in 0.5% sodium hypochlorite (NaOCl) to release eggs. The suspension

was filtered through a 200-mesh sieve to remove debris and a 500-

mesh sieve to collect eggs. The eggs were rinsed three times with tap

water to eliminate residual bleach. Freshly hatched second-stage

juveniles (J2) were obtained by incubating eggs at 25°C for 48 h

and used as inoculum (Kayani et al., 2018).
2.2 Preparation of aqueous extracts of M.
oleifera

Fresh M. oleifera leaves were washed, blended in sterile water,

and left for 12 h. The mixture was filtered sequentially through

muslin cloth, Whatman No. 1 filter paper, and a Millipore filter.
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Different extract concentrations (0 to 100%) were prepared by

dilution with distilled water (Mukhtar et al., 2013c, d).
2.3 Isolation and purification of
rhizobacteria

Rhizosphere soil from tomato plants was collected, and

rhizobacteria were isolated via serial dilution (Shahzaman et al.,

2015; Aziz et al., 2024; Aslam et al., 2025). Dilutions (10-5, 10-6 and

10-7) were plated on nutrient agar (NA) and incubated at 26 ± 2°C.

After 24 h, individual colonies were purified by streaking (Aslam

and Mukhtar, 2023a, b, 2024).
2.4 Molecular characterization of
rhizobacterial isolates

Genomic DNA was extracted using a commercial kit. The 16S

rRNA gene was amplified via PCR with universal primers 27F and

1492R (Kumar et al., 2018). PCR conditions: initial denaturation (94°

C, 3 min); 35 cycles of 94°C (40 s), 60°C (50 s), 72°C (1 min); final

extension (72°C, 10 min). Amplified DNA was visualized, purified,

quantified (NanoDrop), and sequenced (Eurofins Genomics, USA).
2.5 Sub-culturing and preparation of
rhizobacterial suspensions

Identified strains were cultured on NA, transferred to Luria

Bertani broth, and incubated at 25°C (48 h, rotary shaker). Cell

suspensions were adjusted to OD600 = 1.0 (109 CFU/mL),

centrifuged (5000 rpm, 15 min, 4°C), washed, and resuspended in

sterile water (Nikoo et al., 2014).
2.6 Effect of rhizobacteria and plant extracts
on plant growth and M. incognita infection

Tomato plants (21-day-old) were inoculated with 5000 J2 M.

incognita (5 mL suspension). After 48 h, 50 mL of rhizobacterial

suspension (109 CFU/mL) orM. oleifera extract was applied via soil

drench (Mukhtar et al., 2013b). Controls received water. Six

replicates per treatment were maintained (Table 1).

After 45 days, growth parameters (plant height, root/shoot

length, fresh/dry weights) and infection parameters (root gall

rating, eggs per root, J2/100 cc soil, nematode reproduction

factor) were assessed (Mukhtar et al., 2021).
2.7 Detection of volatile organic
compounds from rhizobacteria

Bacilllus australimaris LWD73 was cultured overnight at 37°C

in LB broth. The bacterial culture was adjusted to an optical density
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(OD) of 0.132 at 600 nm (0.5 McFarland units) using a

spectrophotometer. A 5 mL aliquot was transferred to a

headspace (HS) vial, and a Solid Phase Microextraction (SPME)

fiber was inserted. The HS vial was incubated in a water bath at 60°

C for 60 min. After incubation, the SPME fiber was immediately

exposed to the GC injection port for 28 min. Each treatment was

replicated nine times (Tait et al., 2014).
2.8 Compound identification from plant
extracts

Nematicidal compounds in aqueous M. oleifera extracts were

identified using Fourier Transform Infrared Spectroscopy (FTIR)

(Elzey et al., 2016) and Gas Chromatography-Mass Spectrometry

(GC-MS) (Ahmed et al., 2024).
2.9 Statistical analysis

Data on plant growth and infection parameters were analyzed

using one-way analysis of variance (ANOVA) under a completely

randomized design (CRD). Comparisons of means were conducted

using Tukey’s Honestly Significant Difference (HSD) test. Statistical

analyses were performed using GenStat software (12th Edition,

Version 12.1.0.3278, www.vsni.co.uk), at a significance level of p

< 0.05.
3 Results

3.1 Molecular characterization of
rhizobacteria

The molecular characterization of rhizobacterial isolates was

conducted using the 16S rRNA gene region, amplified with

universal primers 27F and 1492R. The amplification successfully

yielded amplicons of approximately 1500 base pairs, as visualized
TABLE 1 Treatments involving rhizobacteria and moringa leaf extracts
for assessing plant growth and Meloidogyne incognita infection.

Treatment Description

T1 M. oleifera + Meloidogyne incognita

T2 Bacillus australimaris LWD73 + M. incognita

T3 B. australimaris LWD73 + M. oleifera + M. incognita

T4 B. cereus HR001+ M. incognita

T5 B. cereus HR001 + M. oleifera + M. incognita

T6 B. thuringiensis WAG41 + M. incognita

T7 B. thuringiensis WAG41 + M. oleifera + M. incognita

T8 M. incognita only

T9 Healthy Control
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through gel electrophoresis (Figure 1). This fragment size

corresponds to the expected region of the 16S rRNA gene, which

is widely used for bacterial identification and phylogenetic studies.

The sequencing data obtained from the amplified products were

compared against the National Center for Biotechnology

Information (NCBI) database using the BLAST algorithm to

confirm the identity of the isolates at the species level. The

rhizobacterial isolates, along with their respective GenBank

accession numbers, are listed in Table 2. The high sequence

similarity (>99%) with reference sequences in the database

validated the taxonomic classification of the isolates.
3.2 Effect of rhizobacteria and plant
extracts on tomato growth

The effect of different treatments of M. oleifera, both

individually and in combination, was evaluated against M.

incognita in terms of plant growth parameters (plant height, root

length, fresh shoot weight, dry shoot weight, fresh root weight, dry

root weight) and M. incognita infection parameters (root gall

ratings, eggs per root system, J2/60 cc soil, and reproduction factor).

Plant height and root length were higher in nearly all treatments

compared to the nematode control, but only treatment 3 differed

significantly (Figure 2). The highest plant height (96.94 cm) and

root length (30.48 cm) were recorded in T3 (BA-LWD73 + M.

oleifera), whereas the lowest values (63.50 cm and 22.44 cm,

respectively) were observed in T7 (BT-WAG41 + M. oleifera).

For fresh shoot weight and dry shoot weight, the highest values

were recorded in T2, which involved the single treatment of BA-

LWD73, with fresh and dry shoot weights of 45.43 g and 9.13 g,

respectively. The lowest fresh shoot weight (25.80 g) was observed

in T7 (BT-WAG41 +M. oleifera), while the lowest dry shoot weight

(5.93 g) was recorded in both T6 and T7 (BT-WAG41 alone and in

combination with M. oleifera) (Figure 2).

Fresh and dry root weights were lower in all treatments,

significantly so in T1 and T9, compared to the nematode control.

The lowest fresh root weight (8.40 g) was recorded in T1, which

received the single treatment of M. oleifera. The lowest dry root
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weight (5.83 g) was observed in T7 (BT-WAG41 + M.

oleifera) (Figure 2).
3.3 Effect of rhizobacteria and plant
extracts on M. incognita infection

Root gall ratings were lower in most treatments, significantly so

in treatments T1-T3, compared to the positive control (Figure 3).

The lowest root gall rating (2.67) was observed in T3, which

consisted of the combined treatment of BA-LWD73 and M.

oleifera, whereas T8 (M. incognita only, control) exhibited the

highest root gall rating.

The single and combined applications of M. oleifera and BA-

LWD73 resulted in 11,500, 18,000, and 16,500 eggs per root system,

respectively. The lowest number of J2 was recovered from the single

and combined applications of M. oleifera and BA-LWD73, with

values of 746.83, 884.33, and 680 J2 per 60 cm³ of soil, respectively.

Similarly, the lowest reproduction factors were recorded in the

single and combined applications of M. oleifera and BA-LWD73,

with values of 3.35, 4.84, and 4.25, respectively (Figure 3).
3.4 FTIR and GC-MS analysis of aqueous
extracts of M. oleifera

The FTIR spectra ofM. oleifera are shown in Figure 4. The first

and second peaks, observed at wavelengths 2916.36 cm-¹ and

2848.86 cm-¹, correspond to strong and broad stretching

vibrations of hydroxyl groups, predominantly associated with

alcohols. The third peak, at 1620.20 cm-¹, exhibited medium

stretching vibrations, primarily indicating the presence of a C=C

functional group, characteristic of alkenes. The fourth peak, at

1415.53 cm-¹, showed strong stretching vibrations attributed to

S=O bonds, suggesting the presence of sulfates. The fifth peak,

ranging from 1315.45 cm-¹ to 1022.27 cm-¹, exhibited strong

stretching vibrations corresponding to C-O functional groups,

predominantly signifying tertiary alcohols. The final peak,

observed at 513.06 cm-¹, was characteristic of halo compounds.

The GC-MS chromatogram of the aqueous extract ofM. oleifera

revealed six distinct peaks, corresponding to six phytocompounds

identified through comparison with the NIST library: 4(1H)-

Pyrimidinone (3.02%), 2,6-Dimethyl acetic acid [(aminocarbonyl)

amino]oxo (3.01%), Maltol (9.58%), 4H-Pyran-4-one, 2,3-dihydro-

3,5-dihydroxy-6-methyl (10.30%), 5-Hydroxymethylfurfural
FIGURE 1

Molecular validation of rhizobacterial isolates using 16S rRNA
Primers. Lane 1–8 represents the rhizobacterial isolates, 9 as control
and L represents 1kb Ladder.
TABLE 2 Identity and accession numbers of rhizobacteria.

Sr.
No.

Isolate
Rhizobacteria
Identified as

Accession
No.

1 W2
Bacillus australimaris
strain LWD73

OQ366704

2 W13 B. cereus strain HR001 OQ372951

3 W44 B. thuringiensis strain WAG41 OQ370579
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(71.76%), and 4(1H)-Pyrimidinone, 2-(methylthio) (2.32%)

(Table 3). These phytocompounds are reported to exhibit

antimicrobial and nematicidal properties.
3.5 Detection of VOCs using SPME-GC-MS

Volatile organic compounds (VOCs) produced by B.

australimaris strain LWD-73 were identified based on GC-MS

analysis and comparison with the NIST library (Figure 5,

Table 4). Four peaks were detected, corresponding to 2-

Nonanone (6.54%), 1H-Indole (87.46%), Tetradecanol (0.99%),

and 9-Hexadecenoic acid (5.02%).
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4 Discussion

M. incognita is one of the most economically important plant-

parasitic nematodes worldwide, causing significant yield losses in a

wide range of crops (Mukhtar and Hussain, 2019). It is highly

prevalent in tropical and subtropical regions making it a major

threat to agricultural productivity (Mukhtar and Kayani, 2019,

2020). Its widespread prevalence necessitates effective

management strategies to mitigate its impact on agricultural

productivity and food security.

In this study, the aqueous extract of M. oleifera, both alone and

in combination with rhizobacterial strains, effectively reduced M.

incognita populations and enhanced plant growth. Treatments
FIGURE 2

Effect of M. oleifera and rhizobacteria on the growth parameters of tomato. T1, M. oleifera + M. incognita; T2, B. australimaris LWD73 + M. incognita;
T3, B. australimaris LWD73 + M. oleifera + M. incognita; T4, B. cereus HR001 + M. incognita; T5, B. cereus HR001 + M. oleifera + M. incognita; T6, B.
thuringiensis WAG41 + M. incognita; T7, B. thuringiensis WAG41 + M. oleifera + M. incognita; T8, M. incognita only and T9, Healthy Control.
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combining M. oleifera with B. australimaris strain LWD-73

demonstrated superior performance compared to other

treatments, significantly reducing nematode infection and

promoting plant vigor.
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Numerous plant species possess nematicidal constituents that

suppress nematode populations and improve plant health (Mukhtar

et al., 2013b). All parts ofM. oleifera can be utilized as biopesticides

due to their ability to suppress pathogens and enhance crop health

(Yaseen and Hájos, 2020).

M. oleifera contains diverse bioactive compounds, including

aldehydes, flavonoids, alcohols, phenols, and terpenoids, which may

act individually or synergistically to affect nematodes. These

compounds disrupt nematode feeding and reproduction, inhibit

egg hatching, and exhibit juvenile toxicity. However, the precise

mechanisms underlying their nematicidal activity remain unclear

(Mukhtar et al., 2013b; Yaseen and Hájos, 2020).

Microbes also play a pivotal role in managing polyphagous

root-knot nematodes across various crops and soil conditions

(Mukhtar, 2018). They enhance plant health, induce systemic

resistance, and help mitigate a wide range of biotic stresses.

Rhizobacteria are particularly valuable for their contributions to

nutrient uptake, phytohormone production, heavy metal stress

mitigation, and increased crop yields (Groover et al., 2020; Bhat

et al., 2023). Certain bacterial volatile organic compounds (VOCs),

such as dimethyl disulfide, 2-nonanone, 1H-indole, tetradecanol,

and 9-hexadecenoic acid, exhibit strong nematicidal activity against
FIGURE 3

Effect of M. oleifera and rhizobacteria on infection parameters of M. incognita. T1, M. oleifera + M. incognita; T2, B. australimaris LWD73 + M. incognita;
T3, B. australimaris LWD73 + M. oleifera + M. incognita; T4, B. cereus HR001 + M. incognita; T5, B. cereus HR001 + M. oleifera + M. incognita; T6, B.
thuringiensis WAG41 + M. incognita; T7, B. thuringiensis WAG41 + M. oleifera + M. incognita; T8, M. incognita only and T9, Healthy Control.
FIGURE 4

FTIR Spectra of M. oleifera leaves.
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root-knot nematodes (Bhattacharyya et al., 2015; Agisha et al., 2019;

Bhat et al., 2023).

FTIR and GC-MS analyses ofM. oleifera extracts confirmed the

presence of flavonoids, alcohols, and phenols, which are known for

their antimicrobial and nematicidal properties. The nematicidal

activity of M. oleifera was positively correlated with the abundance

of these phytochemicals (Alam and Nuby, 2022; Anekwe

et al., 2023).

Among the rhizobacteria tested, B. australimaris strain LWD-

73 exhibited the most potent effects against M. incognita. SPME-

GC-MS analysis identified key volatile organic compounds

produced by B. australimaris, including 2-nonanone, 9-

hexadecenoic acid, tetradecanol, and 1H-indole, all of which

possess strong antimicrobial, antifungal, and nematicidal

properties. For instance, 2-nonanone demonstrates significant
Frontiers in Plant Science 07
nematicidal activity by inhibiting egg hatching, disrupting

feeding, and reducing nematode populations, thereby limiting

root damage over time (Huang et al., 2010; Cheng et al., 2017).

Moreover, this compound exhibits antifungal activity against

pathogens such as Verticillium longisporum and Botrytis cinerea

(Rybakova et al., 2017).

Indole, another prominent VOC, interferes with nematode egg-

laying and survival, induces oxidative stress at high concentrations,

and triggers methuosis at low concentrations, ultimately leading to

nematode mortality (Bommarius et al., 2013; Lee et al., 2017).

Moreover, indole functions as a key chemical signal that promotes

plant growth and influences auxin signaling. For example, indole

emitted by Escherichia coli has been shown to enhance the root

architecture of Arabidopsis thaliana (Bhattacharyya et al., 2015;

Elzey et al., 2016; Ahmed et al., 2024).
TABLE 3 Compounds identified in aqueous extract of M. oleifera L. by GC-MS analysis.

Peak
No.

Compound Name Molecular
Formula

Molecular Weight
(g/mol)

Retention
Time (Min)

Peak
Area (%)

1 4(1H)-Pyrimidinone, 2,6-dimethyl C24H30N2O 362.5 5.310 3.02

2 Acetic acid, [(aminocarbonyl)amino]oxo C3H4N2O4 132.08 5.561 3.01

3 Maltol C6H6O3 126.11 5.705 9.58

4 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-
6-methyl

C6H8O4 144.12 6.155 10.30

5 5-Hydroxymethylfurfural C6H6O3 126.11 7.636 71.76

6 4(1H)-Pyrimidinone, 2-(methylthio)- C5H6N2OS 142.18 11.364 2.32
FIGURE 5

HS-SPME GC-MS chromatogram profiles of VOCs emitted from B. australimaris LWD-73.
TABLE 4 VOCs produced by B. australimaris LWD-73 detected by SPME-GC.

No. Compound Molecular Formula Retention Time (min) Molecular Weight (g/mol) Peak Area Percent

1 2-Nonanone C9H18O 8.35 142.24 215618130 6.54

2 1H-Indole C8H7N 11.50 117.15 2882910162 87.46

3 Tetradecanol C14H30O 13.73 214.38 32564023 0.99

4 9-Hexadecenoic acid C16H32O2 19.00 256.42 165322864 5.02
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9-Hexadecenoic acid (palmitoleic acid) exhibits nematicidal

activity by inducing toxicity in larvae and eggs, acting as a

repellent, and interfering with nematode feeding and

reproduction. It may also stimulate plant defenses and influence

soil microbial communities, presenting a promising approach to

integrated nematode management (Cordovez et al., 2017).

Tetradecanol, emitted by Paenibacillus polymyxa strain J2-4,

has demonstrated strong fumigant activity against M. incognita,

further emphasizing the potential of volatile organic compounds in

nematode management strategies (Song et al., 2024). These findings

highlight the significance of plant-derived phytochemicals and

microbial VOCs as sustainable tools for controlling nematodes

and improving crop health.
5 Conclusions

The present study identified a novel bacterial strain, Bacillus

australimaris strain LWD-73, with significant nematicidal activity,

offering potential for the effective management of Meloidogyne

incognita. The integration of this bacterial strain with moringa

leaf extract demonstrated compatibility. Both moringa and the

selected rhizobacteria are rich in phytochemicals with potent

nematicidal and antimicrobial properties. These bioactive

compounds provide promising solutions for nematode

management and can be incorporated into integrated pest

management (IPM) strategies. Small-scale vegetable growers can

benefit from using aqueous moringa leaf extracts as a cost-effective

and accessible method for nematode control, ultimately improving

the health and productivity of vegetable crops.
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