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temperate tree species of
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reference to xylem hydraulics
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Leaf and cambium phenologies are both important aspects of tree

environmental adaptation in temperate areas. Temperate tree species with

non-porous, diffuse-porous and ring-porous woods diverge substantially in the

strategy of coping with freezing-induced hydraulic dysfunction, which can be

closely associated with the timing of both leaf phenology and xylogenesis.

Nevertheless, we still know little about the potential differences in the intra-

annual process of xylogenesis among species of the three functional groups as

well as its association with leaf phenology. Here, we monitored leaf phenology

and xylogenesis in a non-porous (Pinus), a diffuse-porous (Populus), and a ring-

porous (Ulmus) temperate tree species in a common garden. The results showed

clear divergences in leaf and cambium phenologies and their chronological

orders among the three species. The two hardwood species exhibited earlier bud

burst and leaf unfolding than the conifer. The cambial activity of the ring-porous

species began earlier than the diffuse-porous species, although the leaf

phenology of the diffuse-porous species was earlier. The conifer species

showed the latest bud break but the initiation of cambium activity was the

earliest, which can be attributed to its strong resistance to freezing-induced

embolism in the tracheid-based xylem. The leaf phenology preceded the onset

of cambial activity in the Populus species, which was permitted by the ability of

diffuse-porous species in largely retaining the stem hydraulic function over the

winter. In contrast, the Ulmus species with ring-porous wood had to restore its

severely hampered stem hydraulic function by winter embolism before leaf flush.

The results revealed that leaf and cambium phenologies are closely

interconnected due to the coordination between xylem water transport and

leaf water demand. These findings contribute to a better understanding of the

divergent adaptive strategies of temperate trees with different wood types.
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1 Introduction

Plant phenology refers to the timing of annually recurring plant

life cycle stages in response to seasonal climatic changes, including

the timing of bud burst, leaf unfolding, flowering, fruiting, and

cambial activity, etc., and is a critical aspect of plant adaptation to

their environments (Linkosalo et al., 2009; Morel et al., 2015). It

reflects the balance that plants strive to achieve between optimizing

growth potential and minimizing risks from adverse climate

conditions (Delpierre et al. , 2016). In seasonally cold

environments, temperate deciduous trees avoid cold stress by

regulating the timing of spring bud burst, as well as leaf

senescence and abscission in autumn (Badeck et al., 2004). This

periodic rhythmic change reflects a strategy for trees to maximize

resource utilization and minimize risks related to low temperatures

(Chuine, 2010; Nord and Lynch, 2009). Due to seasonal changes of

climate conditions, the cambium also alternates between active and

dormant periods over the year (Qian et al., 2023; Rossi et al., 2016,

2006b). During spring and summer, the cambium is active, taking

advantage of warm and humid conditions for stem growth. In

autumn and winter, cambial activity decreases or ceases, and the

metabolic processes of trees slow down as temperature drops

(Begum et al., 2016). Leaf phenology and cambium phenology are

likely coupled but research linking the two remains relatively scarce

(Lavrič et al., 2017; Savage and Chuine, 2021). One of the main

functional association between cambium and leaf phenologies can

be related to the fact that the growth of stem xylem in spring is vital

for trees to rebuild an effective water transport system required for

leaf transpiration, which may have been severely damaged due to

the freezing-induced embolism over the winter (Hao et al., 2013;

Niu et al., 2017; Sperry and Sullivan, 1992; Yin et al., 2018). It

remains largely unclear what the mechanisms linking leaf and

cambium phenologies under temperate climate conditions are,

and how the coupling of leaf and cambium phenologies influence

species’ adaptive strategies with respect to the coordination of plant

water relations and carbon economics, although this becomes

particularly important as global warming are significantly

influencing various aspects of plant phenology (Du et al., 2018;

Morin et al., 2010; Muffler et al., 2024).

The leaf and cambium phenologies are regulated by internal

factors, such as hormones, and are functionally closely coupled as

leaf and stem xylem are two key components of water flux system

through plants. The onset of spring cambial activity is controlled by

auxin produced by buds and growing leaves, although the sensitivity

of cambial reactivation to auxin can be different among species

(Aloni, 1992, 2021). In diffuse-porous tree species, cambial activity

requires a high concentration of auxin, from rapidly growing young

leaves, to be reactivated and to extend from the branches down to

the base of the trunk (Takahashi et al., 2013). In contrast, ring-

porous tree species experience extremely rapid cambial reactivation

before bud burst with this process occurring almost simultaneously

in both the trunk and branches, which is attributable to their

sensitivity to low levels of auxin originating in dormant-looking

buds a few weeks before bud break (Aloni, 1991; Aloni and

Peterson, 1997; Aloni et al., 1997; Puchałka et al., 2017;

Takahashi et al., 2013). In conifer species, bud burst may occur
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either before, after or synchronized with the production of stem

xylem cells (Antonucci et al., 2015; Cuny et al., 2012; O’Reilly and

Owens, 1989). However, the adaptive significance of the

relationship between leaf and cambium phenologies remains

uncertain across different tree functional groups, particularly with

respect to the coordination between xylem water transport and leaf

transpirational water demand. Leaf flush in spring leads to an

abrupt increase in tree water demand, which necessitates that the

xylem at least maintains some functionality when bud burst begins

(Lavrič et al., 2017). Coniferous and diffuse-porous species are less

susceptible to freezing-induced xylem embolism and still maintain a

largely functional hydraulic system over the winter (Davis et al.,

1999), while ring-porous species adopt a strategy of “abandoning”

the heavily winter-emblized vessels and produce new ones in spring

to meet the water transport demand (Hacke and Sauter, 1996;

Sperry et al., 1994). Therefore, from the perspective of the

functional coordination between xylogenesis and hydraulics,

studying the chronological sequences of leaf and cambium

phenologies can help us better understand the adaptive strategies

of different temperate tree species, particularly among species of

different wood types.

The xylogenesis involves the division and differentiation of

cambial cells, such as cell enlargement, secondary wall thickening,

and the maturation of xylem cells (Perrin et al., 2017; Qian et al.,

2023; Rossi et al., 2006b, 2012). This process is regulated not only by

hormones but also by the water and carbon status of plants. It has

been shown that water status controls xylem cell production, while

carbon is the energy source of cambial activity and cell differentiation

(Deslauriers et al., 2016; Michelot et al., 2012). Changes in the

coupled water and carbon relations of trees can likely affect the

process of xylem formation (Jyske and Holtta, 2015; Steppe et al.,

2015). The hydraulic architecture of trees influences their ability to

transport water from the soil to the leaves, which in turn affects

photosynthetic carbon assimilation and growth rate (Tyree and

Ewers, 1991). Numerous studies have explored the relationship

between xylem hydraulics and tree growth from the perspective of

water-carbon coupling, showing that species with higher hydraulic

efficiency tend to have faster growth rates (Fan et al., 2012; Wang

et al., 2022). Additionally, in temperate regions, the divergence in

strategies of coping with the risk of freezing-induced xylem embolism

may lead to differentiation in radial growth patterns. The tracheid-

based xylems usually exhibit strong resistance to embolism induced

by freeze-thaw cycles due to their small conduit sizes but may have

limited the potential of water transport efficiency in conifers,

although the low end wall resistance to water flow due to the

torus-margo pit structure allow some of them have comparable

hydraulic efficiency to angiosperm trees (Davis et al., 1999;

Pittermann et al., 2005; Sperry et al., 1994). Thus, conifer trees may

have slow instantaneous growth rates but have longer growth periods

during a year. In contrast, deciduous angiosperm tree species have

larger and wider vessels that improved water transport efficiency but

are at the cost of reduced resistance to freezing-induced embolism

(Yin et al., 2022). These species may adopt a quick growth strategy

during their shorter growth period. In particular, for ring-porous

species, although their leaf phenology is usually later than that of

diffuse-porous species, their larger early-wood vessels enable them to
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have higher water transport efficiency (Song et al., 2022; Wang et al.,

2022; Yang et al., 2019). This might allow them to utilize their higher

water transport efficiency and higher photosynthetic carbon

assimilation capacity after bud burst, achieving higher growth

increment in a shorter growth period. However, few studies have

compared intra-annual radial growth patterns among coniferous,

diffuse-porous, and ring-porous tree species with different xylem

structures, and even fewer have discussed their differences from the

perspective of hydraulic adaptation.

In this study, using field observations and microcore analyses we

monitored the leaf and cambium phenologies in the trunks and

branches of Pinus tabuliformis Carrière, Populus alba L. × P.

berolinensis Dippel, and Ulmus pumila L., i.e. three important

temperate tree species commonly found in northern China.

Particularly, the three species represent trees of different wood types,

including non-porous (P. tabuliformis), diffuse-porous (P. alba × P.

berolinensis), and ring-porous (U. pumila) tree species. Such difference

makes them highly representative for comparing environmental

adaptation strategies of distinct tree functional groups. This study

focused on the chronological sequence between leaf and cambium

phenologies in trees with different wood types, as well as the role of

their coordination in shaping the water-carbon coupling strategies of

temperate trees.We proposed the following specific hypotheses: (I) The

deciduous species bud burst earlier than the evergreen species, and the

diffuse-porous species bud burst earlier than the ring-porous species.

(II) The difference in chronological order of leaf and cambium

phenologies among tree species of different wood types stems from

the coordination between stem hydraulics and leaf transpirational

water demand along with seasonal changes. (III) The non-porous

species would have a longer xylem growth period and slower growth

rate, while the diffuse-porous and the ring-porous species exhibit a

more concentrated xylem growth over a shorter period.
2 Materials and methods

2.1 Study site and plant materials

The study was performed in Qingnian Park (41.78°N, 123.44°

E), located in Shenyang, Liaoning Province, Northeast China. The

region has a temperate sub-humid monsoon continental climate.

Daily climate data, including temperature, precipitation and relative

humidity in 2023, were obtained from Shenyang Arboretum,

Chinese Academy of Sciences, which is about 2 km from the

study site. Vapor pressure deficit (VPD) was calculated based on

relative humidity and temperature data using the RHtoVPD

function in R package ‘plantecophys’ (Duursma, 2015). In 2023,

the mean temperature was 9.71°C, with the highest and lowest

temperature of 32.78°C (25th June) and -23.87°C (23rd December),

respectively. Total precipitation in 2023 was 528.9 mm, with

approximately 83% occurred from April to September. Relative

humidity ranged from 19.5% to 97.30% (Supplementary Figure S1).

Three upright and healthy individuals of each of the three tree

species were chosen to monitor leaf and cambium phenologies. Trees

of the three tree species were growing under similar environmental

conditions of the common garden. The average diameters at breast
Frontiers in Plant Science 03
(DBH) were 24.2 ± 3.2 cm, 23.3 ± 1.1 cm, and 37.9 ± 5.3 cm for Pt, Pab,

and Up, respectively and the tree ages ranged from 15 to 25 years.
2.2 Leaf phenological observations

Leaf phenology was observed on the three tree species at 2-day

intervals from March to November 2023. Following the method of

Gričar et al. (2017), we observed the leaf phenology of the two

deciduous broadleaved tree species according to a seven-phases scale:

1-swollen bud, 2-bud break, 3-leaf emergence, 4-leaf development, 5-

full leaf unfolding, 6-initiation of autumn colouring (the beginning of

leaf colour change from green to yellow, red and orange), and 7-leaf fall.

The spring phenology of the conifer species was described as five

phases: 1-swollen bud (smooth and pale scales but invisible needles), 2-

translucent bud (visible needles through the scales), 3-split bud (open

scales and cluster needles), 4-exposed shoot (fully emerging needles),

and 5-leaf fully expanded (fresh needles reaching half the length of old

needles), according to a protocol adjusted from Perrin et al. (2017). The

autumn leaf phenology of the evergreen conifer species was not

observed due to a lack of obvious changes in the number and colour

of leaves.
2.3 Cambium phenology and xylogenesis
monitoring in tree trunk and branches

In 2023, microcores of branches and trunks were collected weekly

from March to June, biweekly from July to August, and monthly from

September to October using a Trephor tool (Rossi et al., 2006a). For

branches, the microcore samples were taken in the stems 1-2 m from

the branch apex (Gričar et al., 2017). The sampled branches, with

diameters at the sampling locations of 2-3 cm, were located

approximately 3 m above the ground. A long-reach pruning shear

was used to obtain a branch from each tree, and then Trephor was used

to obtain microcores on the branches. All branches were sampled from

the southern side of selected trees. To minimize the effect of high-

frequency sampling of branches on tree growth, we sampled 7-8

individuals for collecting branch microcores per species in addition

to the trees that were used for leaf and trunk phenological monitoring.

The sampling trajectory from trunk at breast height (1.3 m) followed a

spiral pattern, with an approximate 3 cm separation between each

sampling to minimize the wound effect. Wood microcores were

preserved in Formalin-Aceto-Alcohol (FAA) solution and stored at

4°C to avoid tissue deterioration. After 1-2 weeks, the samples were

dehydrated in a graded series of ethanol (70%, 90%, 95%, 100%),

infiltrated with D-limonene and embedded in paraffin blocks.

Transverse sections of 12-16 mm were cut with a rotary microtome

(YD-335 A, Jinhua YIDI Medical Appliance Co., Ltd., Zhejiang

Province, China). These sections were cleared in D-limonene and

100% ethanol, stained in a safranin water solution (0.04%) and astra

blue water solution (0.15%). Cambium cells and xylem cells can be

clearly distinguished by staining. Usually, lignified cells (mature xylem

cells) are stained red or purple, and non-lignified cells (cambium cells)

are stained blue. Then the samples were photographed under an optical

microscope (DM750, Leica, Wetzlar, Germany).
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Based on the cell morphology and the staining characteristics of the

cell wall (Figure 1), we measured the widths of cambial cell zone,

enlarging cell zone, wall-thickening cell zone and maturing cell zone

along three radial files in each sample using ImageJ software (https://

imagej.nih.gov/ij/). Cambial cells and enlarging cells were both stained

blue, but cambial cells had thinner walls and smaller radial diameters.

During cell enlargement, the radial diameters of enlarging cells were

approximately twice those of cambial cells (Zhang et al., 2018). Wall-

thickening cells showed red outer walls and blue inner walls indicating

incomplete maturity. Mature cells, with lignified walls and lacking

protoplasts were completely stained in red. In our study, cambium

phenology was assessed as the dates of first enlarging cell, first wall-

thickening cell, first mature cell, last enlarging cell and last wall-

thickening cell (Perrin et al., 2017).
2.4 Data analysis

The dates of leaf, branch and trunk phenology were expressed as

day of year (DOY). Analysis of variance (ANOVA) and Tukey’s

tests were used to test the differences among the three species for

leaf, branch and trunk phenology in SPSS 22.0. The differences in
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branch and trunk phenology within a species were compared using

the t-test. For each species, the mean cumulative radial growth and

the radial growth rate were fitted by the Gompertz function

(Equation 1) using the following formula (Michelot et al., 2012):

y = A exp½� e(b� kt)� (1)

where y is the cumulative xylem width (μm), t is the day of year, A

is the upper asymptote (μm), b is the placement parameter, and k is the
rate of change parameter. All figures were completed in Origin

Lab 2018.
3 Results

3.1 Inter-specific differences in
leaf phenology

There were distinct differences in leaf phenology among the

three tree species with different wood types (Figure 2,

Supplementary Table S1). Overall, the two broadleaved tree

species had much earlier leaf phenology than the conifer species.

During the early spring of 2023, bud expansion occurred in the
FIGURE 1

Types of cells corresponding to different phases of xylem formation observed in the growing season of 2023 for the three studied tree species. (A–
D) The xylem cell morphology of Pinus tabuliformis in April, May, August, and October. (E–H)The xylem cell morphology of Populus alba ×P.
berolinensis in April, May, and July. (I–L) The xylem cell morphology of Ulmus pumila in March, April, May, and October. Ph, phloem; Xy, Xylem; EW,
early wood; LW, late wood; Cz, cambium cell zone; Ec, enlarging cell; Wc, wall-thickening cell; Mc, mature cell. The white horizontal bars =
200 mm.
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Populus species in late March (DOY 87.3), followed by U. pumila

that was approximately one week later (DOY 92.3). Both species

exhibited rapid leaf unfolding and only took 4-5 days from bud

break to full leaf unfolding. In contrast, P. tabuliformis showed a

delayed bud expansion (DOY 98.0), and its leaf growth extended

until late May (DOY 143.7). For the autumn leaf phenology of the

two deciduous species, the Populus species-initiated leaf coloring on

DOY 247.0 and the complete leaf abscission occurred about a

month later (DOY 285.7). U. pumila, showed a much later onset

of leaf coloring (DOY 291.0) and complete leaf fall occurred until

early November (DOY 311.0).
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3.2 Inter-specific differences in cambium
phenology of the trunks

Clear differences in the timing of cambium phenology of the tree

trunk were also identified among the three tree species (Figures 3A,

4A–E). The first enlarging cell occurred in the tree trunk ofU. pumila

began the earliest (DOY 89.7) with P. tabuliformis closely followed

(DOY 92.0), while P. alba × P. berolinensis had the latest onset of

trunk cambium activity (DOY 103.3). In addition to the timing of the

appearance of the first wall-thickening cell, there were significant

differences in the timing of each phase of xylogenesis between the
FIGURE 2

The occurrence time of different phases of leaf phenology of the three studied tree species. (A) Spring leaf phenology and (B) Autumn leaf
phenology. SB, swollen buds; BB, bud break; LE, leaf emergence; LD, leaf development; FLU, full leaf unfolding; AC, initiation of autumn colouring;
LF, leaf fall. Data are presented as mean ± 1 SE.
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diffuse-porous and the ring-porous species (Figures 4A–E,

Supplementary Table S2). The duration of xylogenesis in P.

tabuliformis and U. pumila lasted over three months, nearly double

the duration observed in P. alba × P. berolinensis (Figure 3A).
3.3 Difference in cambium phenology
between trunks and branches

In P. tabuliformis, cambial activity in the trunks and branches

began at the same time (DOY 92.0), but the trunk’s cambial activity
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ended 3 weeks later than that in the branches, i.e. DOY 284.7 vs.

DOY 262.0, respectively. In P. alba × P. berolinensis, cambial

activity in the trunks (DOY 103.3) began 1 week earlier than that

in the branches (DOY 112.7), and ended 5 days earlier (DOY 201.0)

than that in the branches (DOY 206.0), resulting in a nearly equal

duration of xylogenesis in the trunks and branches. In U. pumila,

the cambial activity in the trunks (DOY 89.7) and branches (DOY

88.5) began almost simultaneously (Figures 3A, B). However, a

significant difference was observed in the timing of the cambial

activity cessation (Figures 4D, E), with the branches (DOY 168.7)

being much earlier than the trunks (DOY 273.7).
FIGURE 3

The occurrence time of different phases of cambium phenology of the three studied tree species. (A) Cambium phenology in the trunk and (B)
Cambium phenology in branches. FE, first enlarging cell; FW, first wall-thickening cell; FM, first mature cell; LE, last enlarging cell; LW, last wall-
thickening cell. Data are presented as mean ± 1 SE.
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3.4 Comparison between leaf phenology
and stem cambium phenology

There were clear differences in the chronological sequence

between leaf phenology and cambium phenology in the trunks

and branches among the three species (Figure 5). In P. tabuliformis,

the initiation of cambial activity (first enlarging cell) in both the

trunks and branches occurred simultaneously (DOY 92.0) and was

21 days prior to its bud burst (DOY 113.7). In P. alba × P.

berolinensis, bud burst occurred on DOY 92.0, which was 10 and

20 days before the initiation of cambial activity (first enlarging cell)

in the trunks (DOY 103.3) and the branches (DOY 112.7),

respectively (Figure 5, Supplementary Table S2). The xylem

lignification in this species did not begin until the leaves were

fully unfolded. About 1 month after the cambial activity ceased,

leaves of this species started to color and gradually fall. In contrast,

the stem cambium phenology of U. pumila preceded its leaf

phenology in the spring, and the onset of cambial activity

occurred almost simultaneously in both the trunks and branches.

Notably, xylem lignification in the trunks continued even after the
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leaves began to color and senesce in U. pumila (Figure 5,

Supplementary Table S2).
3.5 Comparison in xylogenesis between
tree trunks and branches

The xylogenesis processes in tree trunks and branches exhibited

different patterns with the average maximum growth rate of branches

occurred earlier than that of the trunks (Supplementary Figures S2,

S3; Figure 6). In P. tabuliformis, the maximum growth rate of the

trunk was 15.4 mm d-1 that occurred in mid-May (DOY 138.0), while

the maximum growth rate of the branches was 12.5 mm d-1 that was

recorded in mid-April (DOY 104.0). Notably, the maximum growth

rate of the trunk occurred 34 days later than that of the branches. For

P. alba × P. berolinensis, the maximum growth rates were observed at

the end of April, with the trunk reaching 40.8 mm d-1 on DOY 111.0

and the branches reaching 9.3 mm d-1 on DOY 110.0. In U. pumila,

the maximum growth rate for trunks was 35.7 mm d-1 that was

observed in early May (DOY 124.0), whereas the maximum growth
FIGURE 4

Cambium phenology in the trunk and branches of the three studied tree species in 2023. (A–E) The timing of each phase of the cambial phenology
occurring in the trunks and branches (including first enlarging cell, first wall-thickening cell, first mature cell, last enlarging cell, and last wall-
thickening cell). Different upper and lower case letters on top of the bars indicate significant differences (P < 0.05) among the three species in trunk
and branches, respectively. The “**” on top of the bars indicate significant difference between trunk and branch within a species (P < 0.001). Data are
presented as mean ± 1 SE.
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FIGURE 6

Seasonal pattern of cumulative tree ring width (TRW, %) expressed as (A, C) percentage of the total ring width and (B, D) growth rates of tree ring
width (Rate, mm d-1) of the three studied tree species in the trunk and branches. The curves in (A, C) were fitted using Gompertz model and the
curves in (B, D) show daily growth rates.
FIGURE 5

Leaf and wood growing periods of the three studied species in 2023, defined by corresponding phenological terms. The short vertical lines represent
the time of each phase of leaf and cambium phenology. For the trunk and branches, the vertical lines from left to right represent the time of the first
enlarging cell (left boarder of the rectangle), the first wall-thickening cell (red), the first mature cell (green), the last enlarging cell (purple) and the last
wall-thickening cell (right boarder of the rectangle). For the leaves, the vertical lines represent swollen buds (left boarder of the rectangle), bud break
(red), full leaf unfolding (green), initiation of autumn colouring (purple), and leaf fall or death (right boarder of the rectangle), respectively.
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rate for branches was 17.8 mm d-1 that was observed in early April

(DOY 100.0). The maximum growth rate of the trunks in U. pumila

occurred 24 days later than that of the branches.
4 Discussion

4.1 Adaptive significance of divergence in
leaf phenology

The differences in spring leaf phenology between the evergreen

conifer species and the deciduous broadleaf species reflect distinct

carbon investment-return strategies. Conifer species typically adopt

a “slow” strategy, characterized by long lifespan leaves that maintain

photosynthesis even as broadleaf species are shedding their leaves

(Chen and Xu, 2014; Davis et al., 1999; Givnish, 2002). Although

their instantaneous photosynthetic carbon assimilation rate is

lower, the ability to retain leaves over the winter allows evergreen

conifers to accumulate carbon over a longer growing period (Qi

et al., 2021; Zhang et al., 2017, 2013). In early spring, previous year’s

needles can be used for photosynthesis under favorable climatic

conditions, so there is no selective pressure for early bud burst. In

contrast, deciduous tree species generally follow a “quick” strategy,

quickly capturing light energy to meet the carbon demands for tree

growth within a short growing period (Chen and Xu, 2014; Reich

and Cornelissen, 2014), and tend to bud burst earlier. However,

early bud burst increases the susceptibility to cold and frost damage

(Kollas et al., 2014; Vitasse et al., 2018). For evergreen conifer

species, the contribution of the current year needles to

photosynthesis is limited, and the benefits of early bud burst are

less pronounced. Delaying bud burst helps avoid cold damage and

reduces the need for investment in cold resistance for young needles

(Hufkens et al., 2012). Thus, the differences in spring leaf phenology

between evergreen conifers and deciduous broadleaf tree species

represent a balance between maximizing resource acquisition and

minimizing costs related to frost resistance (Saxe et al., 2001).

The earlier leaf phenology of the diffuse-porous tree species

compared to that of the ring-porous species is likely related to their

contrasts in the strategy of coping with the risk of freezing-induced

hydraulic dysfunction. Diffuse-porous species exhibit greater

resistance to embolism induced by freeze-thaw cycles over the

winter, and their xylem maintains relatively high water transport

efficiency in early spring (Ameglio et al., 2002; Dai et al., 2020;

Hacke and Sauter, 1996). This enables the diffuse-porous species to

meet the transpirational demands of leaves after bud burst

(Umebayashi et al., 2008), thus facilitating early leaf emergence

from the perspective of water transport requirements. In contrast,

ring-porous species are highly sensitive to embolism, and their

xylem can lose up to 90% or more of stem xylem water transport

function over the winter (Davis et al., 1999; Niu et al., 2017; Sperry

et al., 1994). Although tree water demand at the stage of bud

expansion can depend on the small-sized vessels in the late-woods

of previous years that remain functioning over the winter (Savage

and Chuine, 2021; Umebayashi et al., 2008; Valdovinos-Ayala et al.,

2022), these species primarily rely on the current year early-wood

vessels that form in early spring to meet greater hydraulic demands
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of faster leaf transpiration after leaf expansion (Takahashi et al.,

2013). In deed, studies on temperate forest tree species have shown

that the rapid expansion of leaves in ring-porous species occurs only

after the re-established of an effective water transport system

through the formation of new early-wood vessels to support leaf

transpiration demands (Yin et al., 2022).
4.2 Adaptive significance of divergence in
cambium phenology

The differences in the timing of cambial activity among the

three studied species seem to be aligned to their differences in

sensitivity to xylem embolism induced by freeze-thaw cycles. The

early onset of cambial activity in conifer species reflects their strong

adaptability to cold temperatures. The xylem of conifers, primarily

composed of tracheids, typically has diameters of less than 15 mm
and is strongly resistant to embolism induced by freeze-thaw cycles

(Rossi et al., 2006c; Sperry and Robson, 2001). This resistance may

be crucial for the survival of conifer species in high-altitude and

high-latitude environments. The early onset of cambial activity may

likely benefit conifers by allowing them to extend the period for

xylem growth in such regions with short growing seasons (Charrier

et al., 2015; Rossi et al., 2006c). In contrast, the cambial activity of

deciduous broadleaf species is delayed relative to that of conifers,

which may be attributed to the greater frost sensitivity of vessels

compared to tracheids (Davis et al., 1999). Developing vessels with

thinner cell walls may be particularly susceptible to embolism

induced by freeze-thaw cycles, making early onset of cambial

activity less advantageous for broadleaf trees (Granda et al., 2014;

Yin et al., 2022). Surprisingly, although the leaves of the ring-porous

species emerged later, its cambial activity began significantly earlier

than that of the diffuse-porous species, and even earlier than that of

the conifer species. This suggests a strong selective pressure favoring

early xylem formation in ring-porous species. The large early-wood

vessels of ring-porous species, despite very efficient in water

transport, are highly sensitive to freeze-thaw cycles and lose much

of their water transport function over the winter (Niu et al., 2017;

Yin et al., 2018; Zwieniecki et al., 2001). Only when the functional

early-wood vessels of the current year are available can the ring-

porous trees meet their water transport needs for transpiration

(Hacke and Sperry, 2001; Niu et al., 2017). The early onset of

cambial activity in ring-porous species, however, increases the risk

of embolism induced by freeze-thaw cycles in early spring. As a

result, ring-porous species are generally distributed in areas with

lower altitudes and latitudes than diffuse-porous species (Yang

et al., 2020; Yin et al., 2023).

The differences in chronological sequence of leaf and cambium

phenologies in the three tree species are also closely related to their

divergence in hydraulic strategy. In conifer trees, cambial activity

began about a week earlier than bud burst and they can rely on the

perennial needles from the previous years for gas exchange during

early spring (Chen et al., 2022; Qian et al., 2024). The early onset of

cambial activity can enhance xylem water transport efficiency,

which can be critical for effective water transport during the

active growing period when transpiration is intense (Pittermann
frontiersin.org

https://doi.org/10.3389/fpls.2025.1562873
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1562873
and Sperry, 2006; Sperry and Robson, 2001). In contrast, the bud

burst of the diffuse-porous species occurred about 10 days earlier

than the onset of cambial activity. This is likely related to the fact

that the xylem of diffuse-porous species usually retain a high

proportion of its water transport function over the winter

(Brodersen and McElrone, 2013). Although the formation of new

vessels occurred later than the onset of transpiration, these species

can still rely on the vessels from the previous years for water

transport (Umebayashi et al., 2008; Yin et al., 2022). The late

onset of cambial activity helps avoid the negative effects of early

spring frost on the functional xylem, allowing these species to thrive

in colder environments compared to ring-porous species (Yang

et al., 2020; Yin et al., 2023). In contrast, ring-porous species lose

much of the water transport function of their previous early-wood

vessels over the winter and must form new early-wood vessels

earlier in the spring to restore effective water transport (Copini

et al., 2019; Hacke and Sperry, 2001; Niu et al., 2017; Yin et al.,

2022). The bud burst closely followed the onset of cambial activity

in the ring-porous species, reflecting the double selective pressures

tree species of this functional type face, i.e. the need for early

cambial activity to meet the transpirational demand for water

transport while simultaneously minimizing the risk of early

spring frost damage (Garcı ́a-González et al., 2016; Wang

et al., 2022).
4.3 Divergence in patterns of xylogenesis
and the underlying physiology

The differences in radial growth patterns among the three

species reflect distinct growth strategies that align with their

divergent physiological characteristics. The hydraulic architecture

plays a crucial role in regulating leaf transpiration, thereby

influencing the photosynthetic capacity and growth rate of the

trees (Fan et al., 2012; Ning et al., 2022). Compared to the other two

species, the conifer species has a longer growth period and slower

instantaneous growth rate. Although conifer species are known for

their strong resistance to embolism induced by freeze-thaw cycles

(Davis et al., 1999), the relatively lower water transport efficiency of

their tracheid-based xylem may have limited their instantaneous

growth rate. In contrast, the Populus and Ulmus species benefit

from higher efficiency of water transport in vessel-based xylem,

which supports higher photosynthetic carbon assimilation and

hence faster growth (Chen et al., 2022; Poorter et al., 2010).

Particularly, under conditions of sufficient water supply, the high

water transport rate in early-wood vessels of the ring-porous species

ensures more effective water delivery to transpiring leaves and

hence support high photosynthetic rate (Savage and Chuine,

2021; Wang et al., 2022). The strong coordination between water

transport and carbon assimilation ultimately translates into the

coordination between hydraulic efficiency and wood growth rate

(Poorter et al., 2010; Schuldt et al., 2016). The smaller diameter of

the late-wood vessels, along with their higher resistance to

embolism and the tree’s longer leaf lifespan, may have played a
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critical role in enabling U. pumila to maintain stem radial growth

over a longer period. These patterns illustrate a suite of

intercorrelations among different plant functions formed during

evolution, including the coordination between water transport and

carbon assimilation and the trade-off between hydraulic efficiency

and safety.

The patterns of timing of cambial activity in tree trunks and

branches of ring-porous and diffuse-porous species reflect the

combined effects of both internal and external factors on xylem

formation. Ring-porous species are more sensitive to auxin,

allowing them to respond strongly to the very low concentrations

of auxin released from buds just before bud burst (Aloni et al.,

1997). This sensitivity enables the onset of cambial activity to

extend rapidly from the upper parts of the stem to the base.

Consequently, the first large early-wood vessels appear before bud

burst and occur almost simultaneously on the trunk and branches

(Kudo et al., 2015; Takahashi et al., 2013; Takahashi and Takahashi,

2016). In contrast, diffuse-porous species are less sensitive to auxin,

and their cambiums require higher concentrations of auxin from

rapidly growing young leaves to be reactivated, and it usually takes

several weeks to extend from the branches to the base of the trunk

(Aloni, 2021; Takahashi et al., 2013). However, the timing of

cambial activity in diffuse-porous species does not always follow

this pattern. Our research shows that in the Populus species, the

cambial activity began first in the trunk, suggesting that xylem

formation may be influenced not only by auxin but also by external

environmental factors. For example, Huang et al. (2023) found that

a threshold temperature (4.9 ± 1.1°C) drives the cambial activity

and xylem formation in Northern Hemisphere conifers. The

chronological order of cambial activity in different parts of the

tree may also be influenced by tree age, species, and site conditions

(Gričar et al., 2017; Li et al., 2013). Therefore, xylem formation and

radial growth in trees may only begin when both internal and

external conditions are met simultaneously making the patterns

more complex.
5 Conclusions

Results of the present study indicate a close coordination

between leaf and cambium phenologies, which jointly influence

the coupling between water and carbon related physiological

processes as well as the growth strategies of trees. We identified

divergences in chronological sequences of leaf and cambium

phenologies among temperate tree species of different wood types.

The conifer species exhibited relatively early cambial reactivation

and late leaf phenology, which can be associated with its stronger

resistance to freezing-induced embolism of its tracheid-based xylem

and the evergreen leaf habit. In the diffuse-porous species, leaf

phenology preceded the onset of cambial activity, as most of the

vessels from the previous year can perform the water transport

function in spring, supporting the transpirational water demands of

the earlier-emerging leaves, while its relatively late onset of cambial

activity effectively avoids the potential adverse effects of early spring
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frost on the cambium and xylem tissues. In contrast, the earliest

onset of cambial activity in the ring-porous species, reflects the high

selective pressure to restore its severely hampered stem hydraulic

function before leaf flush. The bud burst closely followed the onset

of cambial activity in the ring-porous species, indicating that this

species faces dual selective pressures, i.e. starting cambial activity

early to meet the hydraulic demand for transpiration after leaf flush,

while also minimizing the risk of frost damage to cambium and the

newly formed xylem tissues in early spring. This study identifies

differences in leaf and cambium phenologies among the three

temperate tree species with different wood types as well as reveals

the underlying physiological mechanisms, particularly from the

perspective of xylem hydraulics related to the risk of winter

embolism in temperate trees. Given that the number of tree

species in each functional group is limited in this study, future

research should expand the sample size and incorporate other

relevant aspects to confirm the generalizability of the observed

patterns. Nevertheless, these findings substantially contribute to a

better understanding of the responses of trees to environmental

changes and the potential impacts of climate change on

forest ecosystems.
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SUPPLEMENTARY TABLE 1

Leaf phenology of the three studied species in 2023. Data are shown as day of

year (DOY) ± 1 SE (n = 3). Different letters following the numbers indicate
significant differences between the three species at P < 0.05 level.

SUPPLEMENTARY TABLE 2

Cambium phenology of the three studied species in 2023. Data are shown as
day of year (DOY) ± 1 SE (n = 3). Different letters following the numbers

indicate significant differences between the trunk and branches within a
species at P < 0.05 level.

SUPPLEMENTARY FIGURE 1

Variations in daily temperature, precipitation, relative humidity (RH) and

vapour pressure deficit (VPD) in 2023 in Shenyang.

SUPPLEMENTARY FIGURE 2

The width of (a) the cambial zone, (b) the enlarging cell zone, (c) the wall

thickening cell zone, and (d) the mature cell zone in tree trunks of the three

studied species during 2023. Data are presented as mean ± 1 SE.

SUPPLEMENTARY FIGURE 3

The width of (a) the cambial zone, (b) the enlarging cell zone, (c) the wall

thickening cell zone, and (d) the mature cell zone in branches of the three
studied species during 2023. Data are presented as mean ± 1 SE.
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