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Insights into the association of
Nicotiana tabacum health with
eukaryotic microbial community
and environmental factors
Longxin Chai †, Yue Shun †, Lei Xue, Yong Yang* and Mei Li*

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei
University, Wuhan, Hubei, China
As an important cash crop, Nicotiana tabacum’s yield and quality are influenced

by various factors, yet the correlations between its health status, microbial

community, and environmental factors remain largely unexplored. In this

study, we analyzed the microbial diversity of Nicotiana tabacum rhizosphere

microbiomes using ITS rDNA sequencing under different conditions. Compared

with soil associated with healthy Nicotiana tabacum, the alpha and beta diversity

of the eukaryotic microbial community decreased in soil with diseased Nicotiana

tabacum, indicating a decline in microbial abundance and composition.

Compared with healthy soil, the eukaryotic microbial community in diseased

soil exhibited looser structural networks, with the assembly process of both

communities predominantly governed by stochastic processes. Soil element

measurements and correlation analyses identified pH, manganese, and copper

as key environmental factors associated with the health status of Nicotiana

tabacum. A machine learning model incorporating environmental factors and

major microbial phyla was developed to predictNicotiana tabacum health status,

achieving a high accuracy of 93%. These findings collectively offer

comprehensive insights into the relationship between Nicotiana tabacum

health status, soil conditions, environmental factors, and eukaryotic

microbial community.
KEYWORDS

Nicotiana tabacum, eukaryotic microbial community, health status, soil condition,
machine learning, environmental factor
1 Introduction

The plant-associated microbial community, characterized by its complex composition

and vast numbers, plays a vital role in the health of land plants and is often regarded as their

“second genome” (Tringe et al., 2005; Berendsen et al., 2012). Symbiotic microbial

communities facilitate nutrient exchange with land plants, promoting mutual growth

(Long, 1989; Bolan, 1991; Zhang et al., 2009). Additionally, rhizosphere microbes

contribute to pathogen resistance, water retention, and the synthesis of growth-
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promoting hormones (Mendes et al., 2011; Bulgarelli et al., 2013).

Root-associated microbial communities, present in both the

rhizosphere and endosphere compartments, are strongly

influenced by plant development, primarily through the effects of

root exudates (Trivedi et al., 2020).

The plant-associated microbial community exhibits high

diversity and undergoes change based on plant health status

(Song et al., 2020; Adedayo et al., 2022). In addition to bacterial

microbes, land plants host numerous soil-borne and filamentous

eukaryotic microbes, including fungi and oomycetes (Ruggiero

et al., 2015; Duran et al., 2018; Sutela et al., 2019). Notably, fungi

interact with plants in various ways, with each interaction leading to

distinct alterations in both partners (Zeilinger et al., 2016; Tripathi

et al., 2022; Mishra et al., 2024). Oomycota constitutes a distinct

class of fungus-like eukaryotic microbes, with many species acting

as highly destructive plant or animal pathogens (Fawke et al., 2015).

Complete and balanced nutrition is crucial for both plant

growth and defense against invading pathogens (Tripathi et al.,

2022). Mineral nutrients—including primary macronutrients,

secondary macronutrients, and micronutrients—influence plant

health by regulating enzyme activity and indirectly enhancing

plant vigor through various pathways (Tripathi et al., 2022).

Primary macronutrients such as nitrogen (N), phosphorus

(P), and potassium (K) collectively regulate plant defense

mechanisms. While N contributes to phytoalexin biosynthesis

and K mediates stomatal immunity (Bolton and Thomma, 2008;

Tripathi et al., 2022; Ortel et al., 2024), P plays a crucial role in

energy metabolism and signal transduction during pathogen

invasion (Zipfel and Oldroyd, 2017; Chan et al., 2021). The

micronutrient manganese is essential for photosynthesis, lignin

biosynthesis, and other plant metabolic functions (Graham,

1983). Zinc is involved in auxin synthesis, as well as the

production of infectivity factors, phytotoxins, and mycotoxins in

pathogenic microorganisms (Dordas, 2008). Copper is an essential

trace element involved in various cellular processes, including

protein transport, cell wall metabolism, and photosynthesis,

making it crucial for the regular growth and development of

plants (Chen G. et al., 2022). More importantly, these elements

can either enhance or reduce host susceptibility to disease onset and

progression (Tripathi et al., 2022). In addition, soil pH has been

reported to significantly influence soil biological, chemical, and

physical processes in the natural environment (Neina, 2019).

Nicotiana tabacum, a land plant and cash crop that thrives in

diverse growing environments, is susceptible to various diseases at

different growth stages (Yuan et al., 2018). Common diseases of

Nicotiana tabacum include viral, bacterial, fungal, and soil-borne

diseases, which can significantly reduce its yield and quality

(Ahmed et al., 2022). Recent studies using high-throughput

sequencing have provided new insights into the bacterial

composition and organization of different plant microbiomes,

including Arabidopsis, Populus, and maize (Gottel et al., 2011;

Bulgarelli et al., 2012; Lundberg et al., 2012; Peiffer et al., 2013;

Shakya et al., 2013; Schlaeppi et al., 2014). Despite advances in

microbial research, little is known regarding how the totality of

Nicotiana tabacum rhizosphere microbes, particularly the
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eukaryotic microbial community, is shaped by various factors or

the plant’s health status. To explore how the microbial community

and environmental factors correlate with the health status of

Nicotiana tabacum, we conducted microbial diversity analyses of

its rhizosphere microbiome to identify key environmental factors

and phyla. Additionally, a machine learning model was built to

predict health status.
2 Materials and methods

2.1 Collection and processing of Nicotiana
tabacum rhizosphere soil samples

The study area is in Xiaogan region (30°54′–31°46′N, 113°19′–114°
35′E), Hubei Province, China, characterized by a humid subtropical

monsoon climate with an annual average temperature of 16.2°C and

precipitation of 1,100 mm. The sampling sites, located at elevations of

500, 900, and 1,300 m, are in hilly regions with predominantly yellow-

brown soils (pH 5.8–6.5) used for continuous tobacco cultivation. At

each elevation, three plots (10 m × 10 m) representing different health

statuses were selected: healthy (no visible disease symptoms in plants),

diseased (typical soil-borne disease symptoms in plants), and control

(fallow fields without tobacco cultivation for ≥ 3 years). Each health

condition at each elevation was represented by three replicate plots (10

m × 10 m), resulting in 27 sampling points (3 elevations × 3 health

statuses × 3 replicates). Within each plot, five 1 m × 1 m subplots were

arranged diagonally, and three subplots were randomly selected for

sampling, yielding a total of 81 samples (27 points × 3 subplots).

Rhizosphere soil (0–20 cm depth) was collected by gently shaking the

roots to remove loosely adhered soil, followed by brushing with sterile

spatulas to obtain tightly bound rhizosphere soil (Peiffer et al., 2013).

After collection, the samples were homogenized in sterile phosphate-

buffered saline (PBS, pH 7.4) at a 1:5 (w/v) ratio by vortex mixing

(2,000 rpm, 10 min), followed by filtration through a 2-mm filter to

remove root debris. The homogenized suspensions were aliquoted for

DNA extraction using the Cetyltrimethylammonium Bromide (CTAB)

method and stored at − 80°C (Bulgarelli et al., 2012; Rastogi

et al., 2012).
2.2 Measurement of environmental factors

To investigate the potential drivers of microbial composition

changes, we conducted detailed measurements of soil physical and

chemical properties. Soil pH was measured using a LeiCi PHSJ-4F

pH meter (INESA, Shanghai, China) with a 1:2.5 soil-to-water ratio

after 30 min of equilibration. Alkaline nitrogen (AN) was

determined by the diffusion absorption method, while organic

matter (OM) was quantified using the potassium dichromate

external heating method. Soil samples were digested with 0.8 mol/

L K2Cr2O7 and concentrated H2SO4 at 180°C for 5 min, then

titrated with FeSO4. Total nitrogen (TN) was analyzed using a

FlashSmart Elemental Analyzer (Italy) via the Dumas combustion

method. The soil was combusted at 900°C under a He flow of 200
frontiersin.org
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mL/min, and N2 was quantified by thermal conductivity detection.

Available phosphorus (AP) was extracted with 0.5 mol/L NaHCO3

(pH 8.5) and determined by molybdenum-blue colorimetry using

UV-1800PC UV-Vis Spectrophotometer (MAPADA, Shanghai,

China) at 700 nm. Available potassium (AK) was extracted with 1

mol/L NH4OAc (pH 7.0) and measured by flame atomic absorption

spectrometry (AAS FP6410, INESA, Shanghai, China) at 766.5 nm.

Exchangeable Ca/Mg and available Fe/Mn/Cu/Zn were extracted

with 0.005 mol/L DTPA (pH 7.3) and analyzed by inductively

coupled plasma mass spectrometry (ICP-MS 7900, Agilent,

Cal i fornia , USA). Quality control included tripl icate

measurements, the use of certified reference materials (GSS-8 for

soil), and blank corrections. All data are provided in Supplementary

Table S1.
2.3 DNA extraction and ITS rDNA
sequencing and analysis

DNA from soil samples was extracted using either the CTAB or

SDS method, validated via agarose gel electrophoresis, and diluted

into 1 ng/µL. Using the diluted genomic DNA as a template, specific

primers with barcode tags, ITS5-1737F (5′-GGAAGTAAA

AGTCGTAACAAGG-3′) and ITS2-2043R (5′-GCTGCGTTCTTC
ATCGATGC-3′), were used to amplify the internal transcribed

spacer (ITS) ribosomal DNA (rDNA) gene. The PCR product was

subjected to 2% agarose gel electrophoresis and gel purification.

Subsequently, the TruSeq DNA PCR-Free Sample Preparation Kit

was used for library preparation. The constructed library was

quantified using Qubit and qPCR and subjected to high-

throughput sequencing with HiSeq2500 PE250.

For the reads of each sample, FLASH (Magoc and Salzberg,

2011) was used for splicing, and Qiime V1.9.1 (Caporaso et al.,

2010) was used for quality control of the spliced sequences and

removal of chimera sequences to obtain effective tags (Edgar, 2018).

Uparse software v7.0.1001 (Edgar, 2013) was then used to cluster

the valid tags from all samples. By default, sequences were clustered

into operational taxonomic units (OTUs) with 97% identity.

Representative OUT sequences were selected, and species

annotation was performed using the BLAST method in Qiime V

1.9.1 and the UNITE database (Koljalg et al., 2020).
2.4 Microbial metagenomics analysis

Microbial metagenomics analysis was conducted using various

R packages. Specifically, alpha diversity, indicated by the Shannon

diversity index, was calculated using estimateR and diversity

functions from the vegan package. Beta diversity, based on Bray–

Curtis dissimilarity, was assessed using the anosim function from

the vegan package. Statistical significance for alpha and beta

diversity among samples was determined using the ducan.test

function from the agricolae package.

To estimate the community structure and relationships of

eukaryotic microbes under different soil conditions, OTUs with
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relative abundance values ≥ 0.02% in each soil condition were

selected to construct the co-occurrence network of the eukaryotic

microbial community. The igraph package was used to calculate the

topological characteristics of the subnetwork in each sample,

including the average degree (the average number of connections

per node, reflecting network complexity), average path length (the

mean shortest path between nodes, measuring network

compactness), betweenness centrality (an indicator of a node’s

ability to control information flow within the network), and

closeness centrality (an indicator of the proximity of a node’s

connections within the network) among fungal microorganisms.

The WGCNA package was used to organize and integrate

correlation and significance information between OTUs,

providing foundational data for subsequent network construction

or analysis. The ggplot2 package was used to visualize the network.

Null model analysis (Gotelli, 2000) was performed to classify

community pairs based on the potential influence of deterministic

and stochastic processes. Changes in phylogenetic or taxonomic

diversity were measured using the null-model-based phylogenetic

beta diversity indicator (bNTI). The bmntd index was calculated

1,000 times using the comdistnt function in the phangorn package,

followed by the calculation of bNTI values. The Raup–Crick metric

based on Bray–Curtis (RCbray) was calculated using R.
2.5 Statistical analysis and machine
learning model

We used analysis of variance (ANOVA) and t-tests to evaluate

the statistical differences among groups in R. The Random Forest

model was implemented using the RandomForestClassifier module

from the scikit-learn (v1.2.2) package in Python with 10-fold

crossvalidation to split training and test datasets. The model was

configured with the following hyperparameters: number of decision

trees in the forest (n_estimators) = 8, minimum number of samples

required to split an internal node (min_samples_split) = 2, and

minimum number of samples required to be at a leaf node

(min_samples_leaf) = 4.
3 Results

3.1 Alpha and beta diversity of eukaryotic
microbial communities across elevation
gradients and soil conditions

To investigate the effects of elevation gradients and soil

conditions on eukaryotic microbial community diversity, we

sampled three elevations (500, 900, and 1,300 m) in Nicotiana

tabacum-cultivated areas of the Xiaogan region, Hubei Province,

China. Within each elevation, rhizosphere soils were collected from

three distinct soil conditions: healthy Nicotiana tabacum (termed

“healthy”), no Nicotiana tabacum (termed “control”), and diseased

Nicotiana tabacum (termed “diseased”) The ITS rDNA of

eukaryotic microorganisms was amplified, sequenced, and filtered
frontiersin.org
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to generate 10,475 high-quality OTUs, which contained roughly 17

defined eukaryotic microbial phyla (Supplementary Table S2). Of

these OTUs, 2,308 were shared among the three soil conditions,

with the control soil harboring the highest number of unique

species (3,367 OTUs), followed by healthy soil (1,472 OTUs) and

diseased soil (977 OTUs) (Figure 1A). In all three soil conditions,

Ascomycota, Mortierellomycota, and Basidiomycota were the most

dominant phyla (Figure 1B).

Alpha diversity analysis was performed to compare the diversity

of eukaryotic microbial communities across all OTUs. As indicated

by the Shannon diversity index, the alpha diversities of microbial

communities in healthy (5.21 ± 0.32) and control soils (5.18 ± 0.29)

were significantly higher than in diseased soil (3.87 ± 0.41) (p <

0.001), suggesting that microbial diversity in diseased soil was

suppressed or altered (Figure 1D). In contrast, the Shannon

diversity index did not differ significantly across elevations

(Figure 1C). At the phylum level, Ascomycota dominated all soil

conditions (healthy: 48.2%, control: 45.7%, diseased: 62.3%), while

Mortierellomycota showed a marked decline in diseased soil

(healthy: 22.1% vs. diseased: 8.4%, p = 0.002). These results

indicate that soil condition has a greater impact on the alpha

diversity of eukaryotic microbial communities.
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We also used Bray–Curtis dissimilarity analysis to assess beta

diversity and examine the effects of elevation and soil condition on

eukaryotic microbial communities. The beta diversity of the eukaryotic

microbial community in diseased soil differed significantly from that in

healthy and control soils. However, within the diseased soil, Bray–

Curtis heterogeneity showed no significant variation across elevation

gradients (Figure 1E). Therefore, further investigation focused solely on

soil condition parameters.
3.2 Eukaryotic microbial community
co-occurrence patterns

To analyze the topological characteristics of eukaryotic

microbial communities under different soil conditions, OTUs

with relative abundances greater than 0.02% in each soil

condition were selected to construct co-occurrence networks and

calculate various network- and node-level topological features,

including average degree, graph density, and average path length.

In all networks across different soil conditions, the OTUs,

represented as nodes, were mostly positively connected

(Figures 2A–C), while the node-level topological features varied
FIGURE 1

Alpha and beta diversity of eukaryotic microbial communities. (A) Number of shared and unique operational taxonomic units (OTUs) across three soil
conditions. (B) The 10 major phyla of the eukaryotic microbial communities across different soil conditions. (C) Shannon diversity comparison across
different elevations. (D) Shannon diversity comparison across different soil conditions. (E) Bray–Curtis dissimilarity comparison across different
elevations and soil conditions. Conditions labeled with the same letters indicate no significant difference at p = 0.05, whereas conditions labeled
with different letters indicate a significant difference at p = 0.05.
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significantly across soil conditions (Figures 2D–F; Supplementary

Table S3). The eukaryotic microbial community network in

diseased soil was the simplest and loosest, characterized by the

lowest average degree, lowest graph density, and longest closeness

centrality. In contrast, the network in control soil was the most

complex and tightly connected, with the highest average degree,

highest graph density, and shortest closeness centrality. The healthy

soil network exhibited intermediate characteristics (Figures 2A–F;

Supplementary Table S3). Using “within-module connectivity” (Zi)
Frontiers in Plant Science 05
and “among-module connectivity” (Pi) to determine the roles of

individual OTUs (represented as nodes), we found that diseased soil

contained only six module hubs and one connector. In contrast,

control soil had 13 module hubs and 12 connectors, while healthy

soil had 17 module hubs and three connectors (Figures 2G–I). The

reduced and dispersed interactions in diseased soil resulted in a

simpler community structure, suggesting potential loss, instability,

and a lack of critical hub nodes essential for maintaining

community stability and function. Collectively, the structural
FIGURE 2

Co-occurrence network analysis. (A–C) Co-occurrence networks across different soil conditions: (A) control, (B) healthy, and (C) diseased. Red lines
connecting nodes represent positive OTU connections, while blue lines represent negative connections. (D–F) Node-level topological feature
parameters: (D) degree of co-occurrence network, (E) betweenness centrality of the co-occurrence network, and (F) closeness centrality of the co-
occurrence network. (G–I) Key species analysis across different soil conditions: (G) control, (H) healthy, and (I) diseased. Conditions labeled with the
same letters indicate no significant difference at p = 0.05, whereas conditions labeled with different letters indicate a significant difference at p = 0.05.
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differences in eukaryotic microbial community networks between

diseased and healthy soils are evident not only in the overall

community complexity but also in the interaction patterns

among microorganisms.
3.3 Assembly processes of eukaryotic
microbial communities across soil
conditions

To investigate the assembly processes of eukaryotic microbial

communities under different soil conditions, we employed null-

model analysis and the mean nearest taxon index (bNTI) to assess

the relative contributions of stochastic and deterministic processes.

The results showed that in both healthy and diseased soils, most

bNTI values ranged from − 2 to 2, indicating that stochastic

processes predominantly drive microbial community assembly

(Figure 3A). To further examine the role of stochastic processes

in community assembly, we assessed the relative importance of each

process using the Raup–Crick index (RCbary value) (Figure 3B).

The RCbary analysis indicated that dispersal limitation was the

dominant factor shaping microbial community assembly,

accounting for a significant proportion in control soil (53%),

healthy soil (42%), and diseased soil (39%). In contrast,

undominated processes contributed only 3%, 33%, and 27% in

the respective soils (Figure 3B). Moreover, homogeneous selection

contributed to microbial community assembly in control soil (44%),

healthy soil (25%), and diseased soil (31%) (Figure 3B).
3.4 Correlation analysis between
eukaryotic microbial communities and
different environmental factors

To identify key environmental factors influencing Nicotiana

tabacum health status, we analyzed correlations between the

eukaryotic microbiome and multiple environmental variables,
Frontiers in Plant Science 06
including AN, AP, AK, pH, OM, TN, Ca, Mg, Fe, Mn, Cu, and

Zn (Supplementary Table S4).

Correlation analysis revealed that pH fluctuation (r > 0.6, p <

0.01) and changes in Mn and Cu contents (0 < r < 0.4, p < 0.05) were

strongly associated with the onset of Nicotiana tabacum disease

(Figure 4A). To further explore the relationship between

environmental factors and eukaryotic microbial communities under

different soil conditions, we examined the correlations between the

top 10 microbial phyla and environmental factors. In diseased soil,

pH fluctuation was positively correlated with the abundance of the

Monoblepharomycota phylum, whereas in healthy soil, it was

positively correlated with Basidiomycota abundance and negatively

correlated with Olpidiomycota abundance. Additionally, Cu

content showed a positive correlation with the abundance of

Chytridiomycota, Zoopagomycota, and Monoblepharomycota in

diseased soil, but no such correlation was observed in healthy soil

(Figure 4C). Furthermore, variance partitioning analysis (VPA)

quantified the contribution of each environmental factor to

microbial community composition, revealing that pH, TN, Mg, and

Cu had the greatest impact on community structure (Figure 4B).
3.5 Machine learning model for predicting
Nicotiana tabacum health status

To predict Nicotiana tabacum health status, a machine learning

model was built using soil environment factors (AN, AP, AK, pH,

OM, TN, Ca, Mg, Fe, Mn, Cu, and Zn), the top 10 major phyla

(Ascomycota, Mortierellomycota, Basidiomycota, Mucoromycota,

Chytridiomycota, Olpidiomycota, Glomeromycota, Rozellomycota,

Zoopagomycota, and Monoblepharomycota), and binary Nicotiana

tabacum phenotype data (healthy or diseased). Using the Random

Forest (RF) algorithm with 10-fold crossvalidation, we trained and

tested an optimized model, achieving 93% prediction accuracy

(Figure 5A). Feature importance analysis using the RF model

revealed that the environment factors Cu and TN, along with the

major phyla Ascomycota and Chytridiomycota, are key predictors
FIGURE 3

Assembly process of eukaryotic microbial community across different soil conditions. (A) Variations in bNTI across different soil conditions. (B) Contributions
of various ecological processes to the assembly of eukaryotic microbial communities.
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of Nicotiana tabacum health status (Figure 5B). These findings

underscore the model’s high prediction accuracy and highlight the

significant role of Cu, TN, Ascomycota, and Chytridiomycota in

Nicotiana tabacum health. Monitoring and adjusting these factors

could help reduce disease risks, enhance crop yield and quality, and

support sustainable Nicotiana tabacum cultivation.
4 Discussion

Predicting plant health is crucial for enhancing yield and

quality, particularly in economic crops (Cook, 2000). In this

study, we systematically examined the relationship among

Nicotiana tabacum health, the microbial community, and
Frontiers in Plant Science 07
environmental factors using multiple statistical analyses, yielding

a few unexpected findings.

Given that Nicotiana tabacum was grown at diverse elevations

and previous studies have emphasized the role of elevation in

microbial community diversity (Tang et al., 2020; Duan et al.,

2021; Li et al., 2022; Liu et al., 2022), we aimed to determine the

correlation between elevation gradients and rhizosphere microbial

community composition. However, our findings indicate that

elevation has a less significant influence on microbial community

compositions compared to the health status of the associated

Nicotiana tabacum. This insignificance may be due to the limited

microbial diversity in the selected Nicotiana tabacum growing area

and the relatively small elevation differences. Furthermore, in

identifying key environmental factors influencing Nicotiana
frontiersin.o
FIGURE 4

Environmental factors influencing eukaryotic microbial communities. (A) Environmental drivers of eukaryotic microbial communities assessed using
Mantel tests in healthy and diseased soils. (B) Variance partitioning analysis (VPA) showing the effects of environmental factors on community
structure. (C) Correlation between the key contributing phyla under different soil conditions and environment factors: healthy (left), diseased (right).
***p < 0.001; **p < 0.01; *p < 0.05.
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tabacum health and eukaryotic microbial community structure, we

found that pH, manganese, and copper play crucial roles in disease

onset, while pH and copper also impact eukaryotic microbial

communities under different soil conditions. These findings are

consistent with previous research indicating that soil pH and

micronutrient availability significantly influence Nicotiana

tabacum health by shaping microbial community structure (Jiang

et al., 2024). Similarly, a study on tobacco black shank disease

highlighted the crucial role of soil copper levels in disease

suppression (Chen J-n. et al., 2022).

The decline in alpha and beta diversity of the eukaryotic

microbial community in diseased soil observed in our study
Frontiers in Plant Science 08
aligns with findings from other crops. For instance, a similar

reduction in microbial diversity was reported in the rhizosphere

of Fusarium-infected banana plants, underscoring the roles of

microbial community stability in plant health (Zhou et al., 2019).

Likewise, our observation of a loose microbial network structure in

diseased soil parallels findings of disrupted microbial networks in

the rhizosphere of wilt-infected cotton plants (Tie et al., 2023).

These similarities suggest that the stability of microbial networks

may serve as a general biomarker for plant health across

diverse crops.

The machine learning model developed in our study integrated

environmental factors and major microbial phyla information,
FIGURE 5

Machine learning model for predicting Nicotiana tabacum health status. (A) Schematic diagram of the machine learning model workflow. (B) Importance
scores of influencing factors for predicting Nicotiana tabacum health status with random forest model.
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achieving high prediction accuracy of Nicotiana tabacum health

status. In contrast, traditional prediction models relying on single-

modality data (e.g., spectral or environmental factors alone)

exhibited lower accuracy. For example, Zhang et al. achieved 85%

accuracy in predicting tobacco disease using only spectral data

(Zhang et al., 2019). While Convolutional Neural Networks (CNNs)

have proven useful for image-based plant disease diagnosis

(Mohanty et al., 2016), their requirement for large labeled

datasets and computational complexity limits their widespread

application. Hybrid frameworks that combine our feature-driven

approach with deep learning could potentially enhance prediction

accuracy even further.

This study establishes the correlation between environmental

factors and the health status of Nicotiana tabacum, as well as

between plant health and the composition of the eukaryotic

microbial community. Using this information and the machine

learning model, future plant health can be predicted with high

accuracy, providing a valuable tool for monitoring. However,

further experiments are needed to establish causality between

Nicotiana tabacum health and microbial community composition.

Future work should focus on detecting and isolating health-

signature taxa, with the potential to utilize them as bioprotective

agents against Nicotiana tabacum pathogens.
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