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Yongfan Pu2 and Kun Du2

1School of Computer and Software Engineering, Xihua University, Chengdu, China, 2School of
Mechanical Engineering, Xihua University, Chengdu, China
Accurate assessment of the planting effect is crucial during the potato cultivation

process. Currently, manual statistical methods are inefficient and challenging to

evaluate in real-time. To address this issue, this study proposes a detection

algorithm for the potato planting machine’s seed potato scooping scene, based

on an improved lightweight YOLO v5n model. Initially, the C3-Faster module is

introduced, which reduces the number of parameters and computational load

while maintaining detection accuracy. Subsequently, re-parameterized

convolution (RepConv) is incorporated into the feature extraction network

architecture, enhancing the model’s inference speed by leveraging the

correlation between features. Finally, to further improve the efficiency of the

model for mobile applications, layer-adaptive magnitude-based pruning (LAMP)

technology is employed to eliminate redundant channels withminimal impact on

performance. The experimental results indicate that: 1) The improved YOLOv5n

model exhibits a 56.8% reduction in parameters, a 56.1% decrease in giga floating

point operations per second (GFLOPs), a 51.4% reduction in model size, and a

37.0% reduction in Embedded Device Inference Time compared to the YOLOv5n

model. Additionally, the mean average precision (mAP) at mAP@0.5 achieves up

to 98.0%. 2) Compared with the YOLO series model, mAP@0.5 is close, and the

parameters, GFLOPs, and model size are significantly decreased. 3) Combining

the ByteTrack algorithm and counting method, the accuracy of counting reaches

96.6%. Based on these improvements, we designed a potato precision planter

metering system that supports real-time monitoring of omission, replanting, and

qualified casting during the planting process. This system provides effective

support for potato precision planting and offers a visual representation of the

planting outcomes, demonstrating its practical value for the industry.
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1 Introduction

Potatoes are one of the most widely consumed food crops

globally, ranking fourth after maize, wheat, and rice. As a nutrient-

rich staple food, potatoes are not only a significant dietary

component in many countries but also play a crucial role in

global food security and sustainable agricultural development

(Dai et al., 2022; Gao et al., 2023). Their high yield potential and

adaptability enable growth under various climatic conditions,

making them pivotal in addressing global population growth and

food scarcity challenges. Furthermore, the short cultivation cycle

and minimal soil requirements of potatoes make them a vital choice

for poverty alleviation and food insecurity mitigation in numerous

developing countries. With the continuous advancement of modern

technology, mechanized planting has increasingly become a key

technological component of agricultural mechanization,

particularly in potato cultivation, where its significance is

becoming more pronounced. The application of mechanized

planting technologies in potato cultivation has not only

significantly enhanced production efficiency and reduced labor

intensity but also enabled precise seeding and fertilization,

effectively promoting a dual increase in potato yield and quality

(Zhou et al., 2022). Nevertheless, in the process of mechanized

potato planting, traditional reliance on manual statistical methods

for evaluating planting outcomes is not only cumbersome and time-

consuming but also inefficient. This challenge is exacerbated in the

face of vast planting areas, making it nearly insurmountable.

Consequently, the adoption of an efficient and accurate precision

planting metering system for potatoes as a substitute for traditional

manual methods is of paramount importance for advancing

precision potato planting.

In recent years, the continuous advancement of deep learning-

based object detection algorithms, such as YOLO (You Only Look

Once), has revolutionized various fields, with significant

applications in agriculture. Object detection algorithms,

particularly YOLO, have become essential tools for the automatic

identification and localization of objects in images or videos,

offering substantial benefits for tasks that require high precision

and real-time performance. In agriculture, these algorithms have

garnered attention for applications such as crop detection (Gui

et al., 2023; Meng et al., 2023), plant disease identification (Li et al.,

2022), fruit quality detection (Karthikeyan et al., 2024), pest

monitoring, livestock management, and other critical tasks, with

promising results. For example, Rashid et al. (2021) applied the

YOLOv5 image segmentation technique to extract potato leaves and

detect early and late blight diseases using convolutional neural

networks (CNNs). Their proposed multilevel deep learning model

for potato leaf disease recognition demonstrated excellent accuracy.

Huang et al. (2023a) proposed a lightweight CNN-based model for

the accurate and efficient detection of potato seed eyes in automated

cutting equipment. By integrating GhostNetV2 as the backbone for

YOLOv4, along with depthwise separable convolutions and the

SCYLLA-IoU loss function, the model reduced inference

parameters while enhancing detection performance. Wang et al.

(2024c) utilized VanillaNet as the backbone network and
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introduced the VBGS-YOLOv8n model for potato seedling

detection. They also developed a dataset of potato seedling images

captured by drones, providing valuable technical support for

monitoring potato health. These advancements underscore the

growing importance of object detection algorithms in addressing

complex agricultural challenges.

Furthermore, target tracking algorithms have continuously

evolved, progressing from SORT (Simple Online and Realtime

Tracker) (Bewley et al., 2016) to MOT (Multi-Object Tracking)

(Tang et al., 2017; Zhang et al., 2022) and its various variants

(Wojke et al., 2017; Chu et al., 2017). MOT plays a crucial role in

applications such as crop counting and livestock tracking, where the

continuous monitoring of multiple objects is essential. The

integration of object detection with multi-object tracking enables

effective handling of dynamic scenes involving multiple moving

targets. Research has demonstrated the synergy between these two

techniques, showcasing their potential to enhance real-time tracking

and monitoring applications. For example, Rong et al. proposed an

improved tomato cluster counting method by combining object

detection, multi-object tracking, and specific tracking region

counting. To address background misidentification of tomatoes,

they introduced YOLOv5-4D, which fuses RGB and depth images,

while ByteTrack was used to track tomato clusters across frames, and

a specific tracking region counting methodwas designed to resolve ID

shifts in tracked clusters (Rong et al., 2023). Huang et al. proposed an

improved pig counting algorithm (MPC-YD) that integrates

YOLOv5 and DeepSORT to overcome challenges such as manual

counting inefficiency, rapid movement, and tracking deviations

(Huang et al., 2023b). Yang et al. improved the YOLOv5s model to

develop an automatic identification and counting system for laying

hens (Yang et al., 2023). Similarly, Liu et al. enhanced the YOLOv7

model with the SimAM attention mechanism and integrated the

ByteTrack algorithm for a real-time system to count dried Hami

jujubes (Liu et al., 2024b), while Huang et al. combined YOLOv5 with

DeepSORT for rapeseed seedling detection and counting (Huang

et al., 2024). These studies showcase how the integration of object

detection with multi-object tracking can address practical challenges

in agricultural production.

While substantial progress has been made in the development

and application of these technologies, challenges remain,

particularly in terms of scalability and robustness under diverse

environmental conditions. For example, occlusions, variations in

lighting, and different growth stages of crops can hinder the

performance of existing algorithms. The current research

continues to explore ways to enhance the accuracy, efficiency, and

generalization of these models, paving the way for more reliable

automation in agriculture. This paper builds upon previous work by

applying advanced object detection and multi-object tracking

algorithms to the specific problem of detecting and counting

potato seed tubers and seed scoops during the planting process.

In this study, the YOLOv5n model was optimized for

lightweight performance, with the objective of further diminishing

the model’s parameter count and accelerating target detection,

thereby enhanc ing i t s v i ab i l i t y for dep loyment on

computationally restricted embedded devices. Concurrently, the
frontiersin.org
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improved YOLO v5n model was integrated with the Bytetrack

algorithm, resulting in the development of a novel counting and

line-drawing algorithm that achieves precise enumeration of potato

seed tubers and seed scoops. Utilizing the QT framework, a

precision planting and measurement system for potatoes was

constructed. This system, operational on an embedded device,

enables real-time detection and enumeration of potato seed tubers

and seed scoops during planting, while concurrently harvesting

real-time sensor data. The system processes calculations in

accordance with established criteria and presents the potato

planting outcomes in real-time on the display interface.

The main contributions of this paper can be summarized

as follows:
Fron
1. A dataset was constructed on potato planters picking up

potato seed tubers, which included two types: potato seed

tubers and seed scoops.

2. In comparison with the original YOLOv5n algorithm, the

improved YOLOv5n version exhibits an improvement of

0.7 percentage points in the mAP@0.5 metric, a reduction

of 56.8% in the number of parameters, a decrease of 56.1%

in GFLOPs, a 51.4% reduction in model size, and a 37.0%

reduction in Embedded Device Inference Time.

3. By integrating the improved YOLOv5n algorithm with the

Bytetrack algorithm and designing a counting method, we

have successfully achieved precise identification and

counting of potato seed tubers and seed scoops.

Concurrently, we have developed a precision planting

metering system for potatoes based on this technology.
2 Materials and methods

2.1 Data acquisition

The dataset comprises two categories: potato seed tubers and

seed scoops. For ease of integration and development, we use a USB

industrial camera (JIERUIWEITONG DF500). This camera

supports 30fps and is ideal for many application scenarios due to

its easy accessibility, high cost-effectiveness, and strong
tiers in Plant Science 03
compatibility, especially in situations where high image

acquisition accuracy is required but the budget is limited. In

order to make the camera just enough to capture the seed taking

process of the potato planter, at the test site of the Institute of

Modern Agricultural Equipment Research of Xihua University, we

fixed the industrial camera on the bracket above the seed-clearing

position of the potato precision planter, and successfully recorded

the process of seed retrieval by a potato precision planter as well as

the video containing only the seed scoops. In addition, by means of

a hand-held industrial camera, we also recorded videos containing

only the seed scoops and only the potato seed tubers, totaling 30

video files. To facilitate the extraction of target images from the

videos, segments devoid of the target categories were excised. For

the edited videos, OpenCV functions were used to extract image

frames, which were then saved in a 640×480 pixel RGB format.

Ultimately, 1500 images of the potato planter’s seed retrieval

process, 400 images of seed scoops, and 800 images of potato

seed tubers were obtained, including those with potato seed tubers

coated in talc. Figure 1 displays a selection of the collected

image samples.

Utilizing the LabelImg tool, all samples within the image dataset

were manually annotated, categorizing potato seed tubers as the

“green” class and seed scoops as the “red” class, with corresponding

XML formatted label data generated. In order to enhance the

diversity of the samples, four data enhancement methods

including rotating, adjusting brightness, adding noise and flipping

were used to process the image data to ensure that each image was

randomly enhanced four times. After the data augmentation

process, a total of 13,500 image samples were obtained, including

the original images. The enhancement effect of some samples is

shown in Figure 2. To maintain the randomness of the experimental

data, the dataset was divided in a ratio of 7:2:1, resulting in a

training set of 9,450 images, a validation set of 2,700 images, and a

test set of 1,350 images.
2.2 Algorithm description of YOLOv5

In 2020, the YOLOv5 (Jocher, 2020) algorithm was officially

introduced, rapidly becoming the preferred choice for mobile

deployment environments due to its exceptional detection speed.
FIGURE 1

Dataset instance. (a) Potato seed tubers and seed scoops; (b) Seed scoops; (c) Potato seed tubers.
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YOLOv5 (Guo and Zhang, 2022) consists primarily of three

components: the backbone network, the neck network, and the

prediction network. The backbone network comprises a sequence of

Convolutional (Conv) blocks, CSP modules, and an SPPF feature

pyramidmodule. Its primary function is to extract feature information,

translating image features into multi-level feature maps, which are

subsequently transmitted to the neck network for feature fusion (Wu

et al., 2019). The neck network incorporates a Feature Pyramid

Network (FPN) and a Path Aggregation Network (PAN) structure;

the FPN structure executes a topdown downsampling process, whereas

the PAN structure conducts a bottom-up upsampling process. This

architecture facilitates the fusion of feature maps across various levels,

thereby enhancing the precision of object detection. The prediction

network assumes a pivotal role in the initial stages of the model

training process. Initially, it generates object prediction bounding

boxes via the K-means clustering method and retains the bounding

box with the highest confidence using the non-maximum suppression

approach. Subsequently, it employs regression to ascertain the position

and dimensions of the object. Finally, it categorizes each bounding box
Frontiers in Plant Science 04
utilizing a Fully Connected (FC) layer and a softmax activation

function to determine the presence of an object, while also

calculating the loss value for each target box using the CIoU

loss function.

YOLOv5 version 6.0 offers five distinct model variants, namely

YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, with

the primary differences lying in the width and depth of the detection

network. Each version features unique parameter configurations. In

practical applications, the deployment of neural network models is

often constrained by factors such as model size, memory

requirements, and computational complexity. Due to the

necessity of deploying the findings on embedded devices with

limited computational capabilities and the requirement for real-

time detection, the smallest and narrowest feature map width

model, YOLOv5n, was selected as the base model for lightweight

modifications. Figure 3 illustrates the network structure of the

improved YOLOv5n model. As illustrated in Figure 3, the key

enhancements involve the substitution of the C3 and CBS modules,

culminating in LAMP pruning of the refined model.
FIGURE 2

Example of data augmentation. (a) The image after undergoing rotation, brightness adjustment, noise addition, and flipping; (b) The image after
undergoing rotation, brightness adjustment, and noise addition; (c) The image after undergoing brightness adjustment and noise addition; (d) The
image after undergoing rotation.
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2.3 Improvements in network structure

2.3.1 C3-Faster module
Considering the memory and computational resource

constraints of edge devices, the goal is to enable lightweight

deployment of the model without sacrificing performance. To

address this, we propose replacing the traditional C3 module in

the YOLOv5 architecture with the C3-Faster module. The C3-

Faster module is inspired by the PConv layer introduced in

FasterNet (Chen et al. , 2023), which aims to improve

computational efficiency by minimizing redundant computations

and memory accesses, thereby enhancing spatial feature extraction.

As shown in Figure 4a, this approach not only reduces the overall
Frontiers in Plant Science 05
computational burden but also optimizes memory usage, making it

well-suited for resource-constrained environments.

As illustrated in Figure 4c, the C3-Faster structure consists of a

main branch and several sub-branches. The main branch first

adjusts the dimensions of the feature map through a

convolutional layer, followed by feature extraction performed by

multiple FasterBlocks. These FasterBlocks are then connected to the

sub-branches. The output feature map is further refined through an

additional convolutional layer. Importantly, the FasterBlock, shown

in Figure 4b, consists of a PConv layer and two convolutional layers,

which work together to enhance both performance and training

efficiency. The key innovation of the FasterBlock lies in the use of a

Shortcut mechanism, which reuses input features, thereby
FIGURE 4

Structure diagram of PConv, FasterBlock and C3-Faster. (a) PConv; (b) FasterBlock; (c) C3-Faster.
FIGURE 3

Overall structural diagram of improved YOLOv5n.
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improving the model’s ability to efficiently capture and propagate

spatial information.

2.3.2 RepConv module
The feature extrac t ion network incorpora tes the

Reparameterizable Convolution (RepConv) module (Ding et al.,

2021), which represents a novel approach to convolutional neural

network design. RepConv is specifically aimed at addressing the

computational complexity and memory consumption challenges

commonly encountered in conventional convolutional networks.

By leveraging reparameterization techniques, RepConv significantly

reduces computational overhead and memory utilization, making it

more efficient and suitable for deployment in resource-constrained

environments, such as edge devices and real-time systems.

The key advantage of RepConv lies in its ability to share

parameters and increase the number of convolutional layers

without the typical computational cost associated with additional

layers. This is achieved through a process known as dynamic kernel

reconfiguration, where the convolutional kernels are adjusted

during inference to reduce the number of operations required.

This dynamic flexibility allows the module to adapt its architecture

based on the specific requirements of the task, enhancing its

versatility across different network architectures. During the

training phase, RepConv manifests as a multi-branch module;

however, during the inference phase, these multi-branch modules

are effectively transformed into a single-path module, with the

structural details depicted in Figure 5.

By reparameterizing the convolutional layers, RepConv reduces

the number of operations during inference. This results in faster

processing times, which is especially beneficial for real-time

applications or devices with limited computational resources.
2.3.3 LAMP pruning
LAMP (Layer-Adaptive Magnitude-Based Pruning) is an

innovative neural network pruning strategy (Lee et al., 2020),

which merges global pruning significance scores and introduces

the LAMP score. This scoring mechanism is pivotal in the pruning

process, deciding the retention of channel structures. Currently, the

prevalent evaluation criterion in pruning involves comparing the

absolute values of weights, with a preference for pruning weights
Frontiers in Plant Science 06
with smaller absolute values, deemed to contribute less to the

function. The LAMP method considers both weight magnitudes

and model-level distortion, obviating the need for hyperparameter

tuning. In various image classification tasks, LAMP exhibits

superior performance compared to traditional pruning methods.

While preserving generality, each weight tensor is transformed

into a one-dimensional vector. For each flattened vector, the

weights are arranged in ascending order according to the

specified indexes. Let u, v denote the indexes of the weights, such

that the condition W½u�
�� �� ≤ W½v�

�� �� is satisfied when u ≤ v.

Subsequently, the definition of the LAMP score for W½u� is

expressed as:

score (u;W) =
(W½u�)2

ov≥u(W½v�)2
(1)

(W½u�)
2 > (W½v�)

2
⇒ score (u;W) > score (v;W) (2)

In Equation 1, (W½u�)2 represents the square of the weight

magnitude of the target connection, and ov≥u(W½v�)2 signifies the
summation of the squares of the weight magnitudes for indexes v ≥

u within the same layer. Specifically, the denominator is defined as

the cumulative sum of the squares of all connections with greater

weight magnitudes in the layer, initiating from the current target

index u (where weight terms with indexes less than u have been

pruned). This implies the relative significance of the current

connection within the layer in comparison to other connections.

According to Equation 2, connections with larger weights have

smaller denominators and larger numerators and therefore

correspond to higher LAMP scores. This shows that the LAMP

score is closely related to the weight term and the importance of the

channel, and weight terms with low LAMP scores are regarded as

relatively unimportant and pruned. In addition, since each layer has

at least one connection with a score of 1, which is the maximum

possible LAMP score, the phenomenon of layer collapse is avoided,

effectively blending the advantages of global pruning and local

pruning. After setting the target pruning ratio, LAMP selects the

connection with the minimum LAMP score for pruning and

automatically determines the layer sparsity until the global

sparsity constraint is satisfied. Due to the unique design of

Equations 1, 2, this process is equivalent to performing global
FIGURE 5

Structure diagram of RepConv.
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pruning using automatically selected layer sparsity and ensures that

at least one connection is retained in each layer.

This computational design facilitates the LAMP score’s efficacy

as a superior metric for assessing relative importance, readily

attainable through fundamental tensor operations, obviating the

need for hyperparameter adjustments.
2.4 ByteTrack for multi-target tracking

To enable the tracking and counting of potato seed tubers and

seed scoops, the Bytetrack algorithm was employed. Bytetrack is an

object detection-based tracking method, which primarily relies on a

data association strategy known as Byte. Unlike conventional

approaches that simply discard low-confidence detections,

Bytetrack differentiates between low- and high-confidence

detection boxes by leveraging their respective confidence scores,

and subsequently applies distinct processing strategies for

each category.

The Bytetrack algorithm is integrated with an improved

YOLOv5n model, as depicted in the tracking system structure

shown in Figure 6. In this framework, the improved YOLOv5n

model is tasked with detecting objects within video frames and

relaying the detection results to the Bytetrack algorithm. Bytetrack

employs a confidence threshold to classify the detection results into

high-confidence and low-confidence bounding boxes, from which

trajectories are subsequently derived. Initially, high-confidence

bounding boxes are correlated with existing trajectories based on

the Intersection over Union (IoU) metric, which acts as the primary

similarity measure, thereby optimizing the matching process. High-

confidence bounding boxes that remain unmatched are utilized to
Frontiers in Plant Science 07
initiate new trajectories, while unmatched high-confidence

trajectories are preserved. A subsequent matching phase ensues,

where low-confidence bounding boxes are paired with previously

unmatched high-confidence trajectories, with any remaining

unmatched trajectories maintained. This process facilitates the

Bytetrack algorithm in assigning unique identity labels and class

labels to potato seed tubers and seed scoops appearing within the

video frames.
2.5 Counting method

The Bytetrack algorithm was employed for the purpose of

tracking potato seed tubers and seed scoops. However, the

operation of the potato planter may lead to alterations in the

detected target IDs, meaning that the high-scoring detection frames

in the current frame may not be effectively matched to the previously

assigned trackers. This could potentially affect the accuracy of the

counting process. To address this issue, instead of solely relying on

the IDs generated by the Bytetrack algorithm for enumeration, a line-

drawing based counting method was developed.

Two lines offixed width and position are set in the middle of the

video window as shown in Figure 7, one as the entry line and the

other as the counting line. Observed from the left part of the seed

taking mechanism (the same for the right part), as the potato seed

tubers and seed scoops move from top to bottom, when the center

point of the target moves to the entry line, the target ID will be

added to the List Left list if neither of them appears in the List Left

and List Sum lists. When the target continues to move downward

and its center point crosses the count line, the target ID is checked

at this point to see if it is in both the List Left list and the List Sum
FIGURE 6

Improved YOLOv5n with Bytetrack tracking algorithm flowchart.
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list. If the target ID exists in the List Left list and is not in the List

Sum list, the target is counted and the target ID is added to the List

Sum list. The counting method for the right side is the same as for

the left side, based on the position of the target’s center coordinates.

If the target is located in the left side area, it is counted in the left

side; if it is located in the right side area, it is counted in the right

side. The counting process of the left and right sides is carried out

independently at the same moment without interfering with each

other. Finally, according to the changes in the number of categories

in the left and right parts, the number of missed sowing, the number

of replanting and the number of qualified sowing in the potato

sowing process are counted, which provide a basis for the

calculation of the subsequent index data. This counting method

ensures that the target count is somewhat stable and accurate.
2.6 Evaluation metrics

To evaluate the performance of the improved model, we used

metrics such as precision, recall, average precision mean(mAP),

number of parameters, giga floating point operations per second

(GFLOPs),and model size. The pertinent equations are delineated

in (Equation 3, Equation 4, Equation 5, Equation 6):

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

AP =
Z 1

0
P(R)dR (5)

mAP =
1
no

n
i=1APi (6)
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When potato seed tuber is categorized as a positive class and

seed scoop is categorized as a negative class, True Positives (TP) are

instances where the model correctly predicts potato seed tuber as a

positive class; False Negatives (FN) are instances where potato seed

tuber is actually a potato seed tuber but was incorrectly predicted as

a negative category; False Positives (FP) are instances where the

model incorrectly predicted seed scoop as a positive category; and

True Negatives (TN) are instances where the model correctly

predicted seed scoop as a negative category. AP is the P-R curve

of a single class. The variable n refers to the count of target classes to

be detected, whereas mAP signifies the mean Average Precision

across all categories. Precision quantifies the ratio of correct

predictions by the proposed model to the total number of

predictions made. mAP is predominantly utilized for evaluating

recognition efficacy and is extensively used in the assessment of

detection model performance. mAP@0.5 represents the mean

Average Precision computed at an Intersection over Union (IoU)

threshold of 0.5. In contrast, mAP@0.5:0.95 denotes the mAP

calculated across a spectrum of IoU thresholds from 0.5 to 0.95,

incremented by steps of 0.05. This metric considers the model’s

performance across varying degrees of overlap, thereby offering a

thorough evaluation of the model’s capability to localize targets.
3 Results and analysis

3.1 Experimental Details

The hardware configuration for the model training platform

includes a CPU model i5-13400, 16GB of operational memory, and

a GPU RTX 3090 with 24GB of video memory. The software

environment comprises a Windows 11 operating system (64-bit),

Python version 3.8, the PyTorch framework version 1.10.0, and

Cuda version 11.3. This paper utilizes the following parameter and
FIGURE 7

Counting method. The number indicates the tracking ID of the target, the arrow indicates that the target is moving from top to bottom.
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hyperparameter configurations for training the YOLOv5n+C3-

Faster+RepConv model: the training duration is set to 200

epochs, the initial learning rate is 0.01, the batch size is 32, the

input image size is 640 × 640 pixels, the weight decay is 0.0005,

momentum is 0.8, the category loss coefficient is 0.5, the bounding

box loss coefficient is 0.05, the scaling ratio is 0.5, and the mosaic

augmentation ratio is 1.0. The LAMP pruning strategy was applied

to the model with the following training parameters: an speedup

ratio of 2.0, a maximum sparsity of 1.0, 200 iterative steps, a

regularization strength of 0.0005, a regularization variation of

0.0001, a training duration of 200 epochs, and a batch size of 32.

Model migration deployment embedded device: iTOP-RK3568

(TOPEET), configured with A55 quadcore ARM CPU, NPU 0.8T

arithmetic power, 4G of running memory, 32G storage.

Measurement system running environment: Linux system, cross-

compiler compiled OpenCV, FFMPEG library.
3.2 Ablation study

In order to verify the effectiveness of the proposed improvement

method on the performance of the YOLOv5n model, YOLOv5n is

used as a baseline model, and the performance of the model is

verified by adding different modules, and the experimental results

are shown in Table 1, where the “✓” mark indicates that the

corresponding improvement strategy is adopted, and the “×”

indicates that it is not adopted.

In Experiment 2 (Table 1), it is evident that the introduction of

the C3-Faster module improves the model’s mAP@0.5 and mAP@

0.5:0.95 while reducing the Parameters, GFLOPs, Model Size, and

Embedded Device Inference Time. These results demonstrate that

incorporating the C3-Faster module into FasterNet enhances the

model’s operational speed. Experiment 3 shows that the inclusion of

the RepConv module reduces the Parameters and Embedded

Device Inference Time, confirming that RepConv contributes to

faster inference. The results of Experiment 4 indicate that although

the LAMP pruning technique significantly affects model accuracy, it

has proven highly effective in reducing the Parameters, GFLOPs,

Model Size, and Embedded Device Inference Time. Specifically, the

LAMP pruning technique reduces the YOLOv5n model’s

Parameters by 51.6%, GFLOPs by 48.8%, Model Size by 45.9%,
Frontiers in Plant Science 09
and Embedded Device Inference Time by 26.1%. Despite these

reductions, the mAP@0.5 only decreases by 2.1 percentage points,

and the mAP@0.5:0.95 decreases by just 2.5 percentage points. To

further enhance inference speed and model compression, the

combination of the C3-Faster module, RepConv module, and

LAMP pruning technique was explored. The results of

Experiment 6 demonstrate a significant improvement in detection

accuracy. Compared to the baseline YOLOv5n model, the improved

model shows a 0.7 percentage point increase in mAP@0.5 and a 0.2

percentage point increase in mAP@0.5:0.95. Additionally, the

model’s Parameters were reduced by 56.8%, GFLOPs by 56.1%,

Model Size by 51.4%, and Embedded Device Inference Time by

37.0%. These results underscore the model’s exceptional

performance in terms of parameter efficiency, computational

efficacy, and lightweight design. The validation outcomes of the

model are depicted in Figure 8.
3.3 Comparison of YOLO series model
performance

To further evaluate the performance of the model, we compared

the improved YOLOv5n model with other models in the YOLO

series (Bochkovskiy et al., 2020; Wang et al., 2023; Jocher et al.,

2023; Wang et al., 2024b, a), with the results shown in Table 2.

Table 2 shows that, although the improved YOLOv5n model

slightly underperforms in terms of Precision, Recall, mAP@0.5,

and mAP@0.5:0.95, it excels in Parameters, GFLOPs, and Model

Size. Compared to YOLOv4-tiny, YOLOv5n, YOLOv7-tiny,

YOLOv8n, YOLOv9-T, YOLOv10n and YOLOv11n, the

improved YOLOv5n model reduces Parameters by 87.2%, 56.8%,

87.3%, 74.7%, 70.9%, 71.7%, and 70.5%, respectively; GFLOPs by

85.1%, 56.1%, 86.1%, 77.8%, 83.2%, 78.0%, and 71.4% respectively;

and Model Size by 92.0%, 51.4%, 84.6%, 70.0%, 69.0%, 67.3%, and

65.4%, respectively. These experimental results indicate that,

although the improved YOLOv5n model does not outperform

some of the advanced models in terms of Precision, Recall,

mAP@0.5, and mAP@0.5:0.95, its significant reductions in

Parameters, GFLOPs, and Model Size make it an ideal choice for

deploying high-performance object detection systems on

embedded platforms.
TABLE 1 Ablation experiment results.

Test
No. Baseline C3-Faster RepConv LAMP

mAP@0.5/
%

mAP@0.5:0.95/
% Parameters GFLOPs

Model
Size/MB

Embedded Device
Inference
Time/ms

1 ✓ × × × 97.3 80.6 1761871 4.1 3.7 46

2 ✓ ✓ × × 98.0 81.2 1593439 3.6 3.5 41

3 ✓ × ✓ × 97.7 79.9 1619055 4.2 3.9 43

4 ✓ × × ✓ 95.2 78.1 852429 2.1 2.0 34

5 ✓ ✓ ✓ × 97.7 80.9 1614495 3.7 3.6 39

6 ✓ ✓ ✓ ✓ 98.0 80.8 761602 1.8 1.8 29
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3.4 Comparison of counting results

Furthermore, by integrating the improved YOLOv5n model

with the Bytetrack algorithm, we have successfully achieved real-

time detection, tracking, and enumeration of potato seed tubers and

seed scoops using the line drawing counting technique. To validate

the method’s effectiveness, this study randomly chose three video

clips, each with a resolution of 640×480, from the test dataset. These

clips all depicted the seed picking process of the potato planter and
Frontiers in Plant Science 10
had undergone manual counting for verification. The results

obtained from the algorithm were then compared to the manual

counts, and the pertinent data are presented in Table 3. The

experimental results showed that seed scoop with regular shape

and large target reached 100% counting accuracy, but potato seed

tubers with small target and irregular shape failed to reach 100%

counting accuracy. For the average accuracy of target counting,

96.6% accuracy can meet the requirement of potato precision

planter metering system.
FIGURE 8

Results of model validation. (a) Original image; (b) YOLOv5n; (c) Improved YOLOv5n.
TABLE 2 Detection results of YOLO series model.

Model Precision /% Recall/% mAP@0.5/% mAP@0.5:0.95/% Parameters GFLOPs Model Size/MB

YOLOv4-tiny 95.8 96.5 97.3 80.7 5939804 12.1 22.5

YOLOv5n 96.9 95.7 97.3 80.6 1761871 4.1 3.7

YOLOv7-tiny 96.3 97.2 98.9 82.3 6010302 13.0 11.7

YOLOv8n 96.4 96.7 98.6 84.5 3006038 8.1 6.0

YOLOv9-T 96.6 97.6 99.2 84.3 2617340 10.7 5.8

YOLOv10n 97.6 97.6 99.2 84.3 2695196 8.2 5.5

YOLOv11n 97.7 97.8 99.2 85.9 2582542 6.3 5.2

Improved YOLOv5n 96.2 96.2 98.0 80.8 761602 1.8 1.8
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3.5 Potato precision planter metering
system

Qt is a cross-platform C++ application framework widely

recognized for its superior efficiency, scalability, and cross-

platform compatibility, making it a popular choice for visual

interface development. In this study, a potato precision planter

metering system was designed and developed using Qt version 5.0,

integrating an improved YOLOv5n model, the ByteTrack

algorithm, and a counting method. Through cross-compilation,
Frontiers in Plant Science 11
the system was successfully deployed on the development board,

enabling precise metering of potato seed tubers and seed scoops.

The potato precision planter metering system consists of three

parts: the detection interface, the database interface, and the video

player interface, as shown in Figure 9. The detection interface is

used for real-time monitoring and display of potato planting results;

the database interface is responsible for data storage and query

functions; the video player interface is responsible for playing user-

recorded videos.

As shown in Figure 10, we mounted the camera on top of the

seed clearing device to capture the image of the seed clearing

position at a top-down angle. At the same time, the camera was

connected to the iTOP-RK3568 development board in the box in

front of the tractor’s steering wheel via a USB harness. At this point,

the potato precision planter metering system has been successfully

integrated into the potato precision planter. Once the system is

activated, the camera will capture the data of the seed picking

process in real time and present it instantly in the designated display

area of the inspection interface.
4 Discussion

As a globally important food crop, potato plays a crucial role in

solving the global hunger problem (Wang and Su, 2024). With the

development of smart agriculture, deep learning techniques, especially
TABLE 3 Comparison of counting results.

Test
No. Category

Manual
counting

Algorithmic
counting

Accuracy/
%

1

seed scoops 61 61 100.0

potato
seed tubers 72 67 93.1

2

seed scoops 48 48 100.0

potato
seed tubers 57 53 93.0

3

seed scoops 67 67 100.0

potato
seed tubers 77 73 94.8

Average 382 369 96.6
FIGURE 9

Interface of the metering system. (a) Detection interface; (b) Database interface; (c) Video playback interface.
FIGURE 10

Potato precision planter metering system.
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YOLO series, ResNet, CNN and LSTM, have been widely used in

potato production. These techniques can significantly improve yield

and economic efficiency, especially in tasks such as potato bud eye

recognition, leaf disease diagnosis and health monitoring. Currently,

the assessment of potato planting effect still relies on the traditional

manual method, which is labor-intensive and costly. Therefore, the

development of an efficient and lightweight detection model suitable

for embedded devices is the key to improving work efficiency.

Although there are excellent algorithms for detection in potato

production such as Xiu et al. (Xiu and Sun, 2022) proposed an

automatic potato seedling bud detection method based on YOLOv4

network. Zhang et al. (2023) proposed an improved potato sprout

detection algorithm based on YOLOv5s. In addition, Liu et al.

(2024a) proposed an improved Bud-YOLOv8s model. Experimental

results show that this model performs well in the potato eye

detection task, and therefore greatly outperforms other models in

the YOLO family. However, fast detection in potato production is

still challenging, especially the balanced detection performance on

embedded devices with limited computational power, where the

speed and model parameters are not yet satisfactory.

To address this problem, in this paper, based on engineering

experience and experimental results, we compare and analyze the

YOLO series of algorithms for target detection. We choose YOLOv5n

as the base network and improve it in lightweight. As a result, we

proposed a potato planting machine’s seed potato scooping scene

detection algorithm based on the improved lightweight YOLOv5n

model, and combined it with the ByteTrack algorithm and counting

method to successfully develop a metering system for real-time

monitoring of the planting effect of potato precision planters.

Although the improved YOLOv5n has demonstrated excellent

detection performance and detection speed in inspection tasks,

there are still some limitations. The performance of the potato

precision planter metering system is affected by a number of factors

during practical application. Due to the performance of the

embedded devices, the accuracy of target tracking tends to

decrease when the potato planter is traveling too fast, resulting in

poor performance of the potato precision planter metering system.

In addition, lighting conditions (excessive or insufficient) can also

affect the accuracy of the potato precision planter metering system

in detecting seed potato nuggets and picking scoops.

In future work, we will further expand the dataset and enrich

the images with various scenes and lighting conditions to improve

the robustness of the model. To address the problem of degradation

of tracking accuracy due to the high speed of potato planters, we

plan to use higher performance embedded devices and USB

industrial cameras with high frame rates without significantly

increasing the hardware cost. In addition, we note the recent

progress of YOLOv10 and YOLOv11. We will integrate state-of-

the-art target detection algorithms to further optimize the system

performance in our future work, thus improving the stability and

accuracy of detection and counting, and further improving the

performance of the potato precision planter metering system.
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5 Conclusions

With the rapid advancement of deep learning, object detection

and tracking algorithms have been widely applied in agriculture.

This study addresses the challenge of accurately evaluating potato

planting performance by integrating existing agricultural object

recognition and counting techniques, aiming to improve data

acquisition in mechanized potato planting. To this end, a

detection algorithm for potato seeding scenes was proposed,

based on an improved lightweight YOLOv5n model. The model

was optimized by incorporating the C3-Faster and RepConv

modules while employing LAMP pruning to enhance its

efficiency. To enable precise counting, the ByteTrack algorithm

was introduced, along with a dedicated counting method tailored

for potato seeding scenes. Ultimately, a metering system for

precision potato planters was developed, combining the improved

YOLOv5n model, ByteTrack algorithm, and counting method to

facilitate accurate assessment of potato planting effectiveness. The

experimental results show that, compared to the baseline YOLOv5n

model, the improved YOLOv5n model demonstrated superior

performance in detecting potato seed tubers and seed scoops.

Specifically, the improved model showed a 0.7 percentage point

increase in mAP@0.5 and a 0.2 percentage point increase in mAP@

0.5:0.95. Additionally, the model reduced parameters by 56.8%,

GFLOPs by 56.1%, model size by 51.4%, and Embedded Device

Inference Time by 37.0%. When compared to mainstream YOLO

series models, the improved YOLOv5n model exhibited comparable

performance in Precision, Recall, mAP@0.5, and mAP@0.5:0.95,

while significantly reducing the number of parameters, GFLOPs,

and model size. Furthermore, the proposed counting method

effectively detected both potato seed tubers and seed scoops,

achieving a counting accuracy of 96.6%, thus meeting the

application requirements for the metering system. The study

offers technical support for assessing the planting performance of

potato planters. Potato precision planter metering system is capable

of evaluating the effectiveness of potato planting and promoting

high-quality development of the potato planting industry.
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