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Frontiers in Plant Science 
Unlocking the potential of 
CRISPR tools and databases for 
precision genome editing 
Pooja Saraswat and Rajiv Ranjan* 

Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Agra, Uttar Pradesh, India 
Recent breakthroughs in CRISPR/Cas genome editing have transformed 
molecular biology research and offer significant potential across biotechnology 
and medicine. This has created a broad spectrum of computational tools and 
databases that aim to optimize each phase of the genome-edited workflow, from 
guide RNA design and off-target prediction through screening analysis and 
biological validation. Here, we survey major CRISPR tools and analyse their 
features in the context of precision genome editing. CRISPOR and 
CHOPCHOP versatile platform that provides robust guide RNA design for 
several species, integrated off-target scoring, and intuitive genomic locus 
visualization. This review gives an overview of these new resources that have 
been developed, grouped based on their functionalities like design of guide RNA, 
off-target predictions, genome-wide screens, and visualizations of the data. 
Furthermore, we discuss new trends in database development like their 
integration with genome browsers and implementation of machine learning. 
This review thus gives a useful overview of the dynamic field of CRISPR/Cas 
genome editing tools. It also serves as a helpful guide for researchers looking to 
utilize these tools in their research. 
KEYWORDS 

CRISPR/Cas, genome editing, computational tools, databases, guide RNA design, off 
target prediction 
1 Introduction 

CRISPR-Cas is a versatile genome editing tool applicable to different species, including 
viruses, plants (Saraswat et al., 2024), and mammals (Mali et al., 2013). CRISPR revolutionizes 
farming by enabling scientists to change a plant’s DNA. It means we can grow crops that 
perform under hot conditions, drought, and pests, with improved yield, nutrition, and better 
longevity. Unlike traditional methods such as conventional breeding or GMOs, CRISPR uses 
the plant’s natural genes, making the technology faster, cleaner, and easier to approve. This 
technology isn’t merely a laboratory innovation instead, it’s a practical answer for enabling to 
produce more food sustainably for a growing global population (Gao, 2021). Also, CRISPR/Cas 
technology has come into importance as a breakthrough technology for cancer research due to 
its efficacy, flexibility, and specificity. CRISPR helps in cancer screening by making whole
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genome functional analyses to map cancer-causing genes and 
pathways, diagnosis with ultrasensitive tools such as CRISPR-based 
biosensors and nucleic acid tests, and therapeutic intervention where 
genome editing corrects for errors in the genes or enhances 
immunotherapy, such as CAR-T cell engineering. Its ability to target 
specific genes with accuracy makes CRISPR a promising approach for 
individualized and targeted therapy for cancer (Yang and Zhang, 2023). 

CRISPR uses an RNA-guided endonuclease, Cas9 and target 
sequences by complementary base pairing between a guide RNA 
(gRNA) and a 20-bp target sequence adjacent to protospacer 
adjacent motif (PAM) which is in the form of NGG (Wang and 
Li, 2021). The structure typically consists of direct repeats, ranging 
between 25 to 45 nt. These repeats are spaced by similar-length 
spacers that carry unique genomic material that is unique and most 
likely introduced via plasmids or viruses (Katyal et al., 2013). As a 
result, it’s crucial to consider both possible off-target sites and the 
gRNA sites in a gene when creating gRNAs for editing (Naeem 
et al., 2020). Based on the accessory cas genes and structure of the 
CRISPR-Cas locus, the CRISPR-Cas system is presently categorised 
into two main classes, which are further divided into six types and 
various subtypes (Koonin et al., 2017). However, new types may still 
need to be found (Makarova et al., 2020). Examining the CRISPR 
distribution among target strains is crucial from an evolutionary 
perspective. They are anticipated to be key players in prokaryotic 
adaptive immunity and could act as markers; therefore, having 
specialised identification methods and up-to-date databases 
is required. 

The CRISPR-Cas system, consisting of direct repeats (DRs) and 
spacers, is crucial in determining the type of RNA molecules that 
can activate adaptive immunity (Couvin et al., 2018). A 
comprehensive investigation of DRs and spacers is essential. 
Software tools available online can be used to select specific 
CRISPR sites. Computational methods like CRT (Bland et al., 
2007), CRISPRDetect (http://crispr.otago.ac.nz/CRISPRDetect/ 
predict_crispr_array.html) (Biswas et al., 2016), MetaCRAST 
(Moller and Liang, 2017), and CRISPRdisco (http://github.com/ 
crisprlab/CRISPRdisco) (Crawley et al., 2018) can  predict
prokaryotic genome CRISPR arrays. CRISPR-related databases 
like CRISPRdb http://crispr.upsud.fr/crispr (Grissa et al., 2007b), 
CRISPRI (Rousseau et al., 2009), and CRISPRCasdb (Pourcel et al., 
2020) also integrate programs for CRISPR identification. 

Also, to prevent viral infections, prokaryotes have developed 
antiviral defence mechanisms (Rostøl and Marraffini, 2019). The 
initial discovery of anti-CRISPR proteins was reported in phages 
and prophages associated with Pseudomonas (Bondy-Denomy 
et al., 2013). According to Samson et al. (2013), viruses have 
evolved anti-defence mechanisms, such as anti-CRISPRs, which 
prevent host CRISPR systems from functioning (Pawluk et al., 
2018). Naturally occurring CRISPR-Cas inhibitors, or anti-
CRISPRs (Acrs), may be used to create genome editing tools that 
are safer and easier to regulate. 

The recent tools and databases to identify them are discussed 
later in the review. 
Frontiers in Plant Science 02 
2 Databases and tools for the 
prediction of CRISPR-Cas systems 

CRISPR-Cas systems play a vital role in the adaptive immunity 
of prokaryotes have been harnessed as a genome editing tool. By 
studying their natural functions, new CRISPR-based systems can be 
developed (Akram et al., 2023). To analyse these systems, it is 
essential to identify CRISPR arrays and their spacer sequences, 
which has led to various computational tools for recognising 
CRISPRs (Figure 1; Table 1). Several articles have provided a 
detailed overview of such tools in recent years (Alkhnbashi et al., 
2020; Naeem and Alkhnbashi, 2023; Li et al., 2023). Early 
predictions of CRISPRs were made using tools such as PatScan 
(Godde and Bickerton, 2006), CRT (Bland et al., 2007), PILER-CR 
(Edgar, 2007), CRISPRFinder (Grissa et al., 2007a) and CRISPI 
(https://bio.tools/crispi) (Rousseau et al., 2009). Users can view all 
CRISPR identified in the genomes of bacteria and archaea using 
CRISPI. Microbial genomes are easily chosen using the accession 
number and the genome name. Following the selection of a genome, 
the findings are compiled into tables. Every CRISPR and its 
associated Cas genes are indicated. These are identified using 
specific Hidden Markov Model (HMM) profiles derived from the 
available genes. With the CRISPI tool, users can annotate their 
microbial sequences by identifying CRISPR repeats within the 
sequences they have submitted. The query sequence can be 
uploaded from a local machine or pasted into the input field; it 
must be in FASTA format (Rousseau et al., 2009). Previously 
developed bioinformatics tools like PatScan (Godde and 
Bickerton, 2006), CRT (Bland et al., 2007) and CRISPRFinder 
(Grissa et al., 2007a) often result in ambiguous CRISPR arrays, 
which are unable to identify the strand from which crRNA is 
derived. This is crucial for tasks like CRISPR conservation 
classification, detecting leader regions, identifying protospacers, 
and characterizing protospacer-adjacent motifs (PAM). 
CRISPRstrand is an advanced machine learning method designed 
to accurately predict the correct orientation of repeats within 
CRISPR loci, facilitating the identification of the strand from 
which mature crRNAs are produced. This adaptable technique 
effectively determines the transcribed strand of CRISPR loci 
making it a valuable tool for various tasks (Alkhnbashi et al., 
2014). However, CRISPRstrand focuses more on classification and 
annotation, and not on the experimental design and analysis. 
2.1 CRISPRDetect 

CRISPRDetect is a web-based tool that automatically detects, 
predicts, and refines CRISPR arrays in genomes. This enables 
precise detection of CRISPR arrays, their orientation, repeat-
spacer boundaries, and any substitutions, insertions, or deletions. 
Additionally, it provides a list of annotated cas genes. The tool is 
compatible with other analysis tools and can be utilized for target 
prediction. In a comparison of 3870 “good” arrays with predictions 
frontiersin.org 
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from other programs, such as PILER-CR and CRT, all programs 
identified 1782 common arrays. CRISPRDetect demonstrated the 
highest agreement with PILER-CR and CRT, identifying 1407 
additional arrays in common and 345 arrays more than other 
methods. CRISPRDetect primarily focuses on CRISPR arrays with 
less information about Cas proteins and could limit the 
classification of more diverse subtypes (Biswas et al., 2016). 
Unlike CRISPRDetect and CRISPI, which focus only on 
identifying CRISPR arrays, CRISPRminer and CRISPRBank 
(Zhang et al., 2018) use various programs to identify both 
CRISPR and Cas. These websites have different interfaces and 
tools, with CRISPRBank containing CRISPR cas genes and arrays 
from 2733 strains, while CRISPRminer provides a database that 
contains CRISPR and cas genes sourced from prokaryote genomes 
and classifies these systems into six types and identifies self-
targeting regions (Zhang et al., 2018). The CRISPR identification 
tool,  CRISPRidentify  (https://github.com/BackofenLab/  
CRISPRidentify), employs machine learning to identify and 
distinguish genuine CRISPR arrays from false ones in the 
genomic sequences with higher specificity. It uses various 
machine learning approaches such as Support Vector Machine, 
K-nearest Neighbours, Naive Bayes, Decision Tree, Fully Connected 
Neural Network, Random Forest, and Extra Trees classifiers to 
accurately investigate and distinguish true CRISPR arrays from false 
positives. This data-driven approach significantly enhances the 
precision and reliability of CRISPR array identification. This 
process involves three main stages: detection, extraction, and 
classification, using carefully curated datasets of confirmed 
CRISPR arrays as well as non-CRISPR sequences. The user 
receives a report with the detected CRISPR arrays together with 
Frontiers in Plant Science 03 
the annotation. The tool exhibits a significantly lower false positive 
rate compared to other methods, as it accurately identifies 
candidates for CRISPR arrays that haven’t been found by other 
tools in addition to those that have already been found (Mitrofanov 
et al., 2021). CRISPRidentify is capable of addressing common 
issues encountered by previously existing tools, including the 
existence of identical spacers inside the array for CRISPR array 
identification. CRISPRidentify distinguishes CRISPR arrays by 
focusing on arrays with a few repeated spacers, unlike other tools 
that do not assess spacer similarity. This makes CRISPRidentify 
more effective than CRT and CRISPRCasFinder, which do not 
perform this kind of evaluation (Mitrofanov et al., 2021). 
2.2 CRISPRdb and CRISPRCasdb 

The CRISPRdb database (http://crispr.upsud.fr/crispr) is a

monthly database that is updated using freshly released genome 
sequences. The software offers various tools to create a library of 
CRISPR arrays, align flanking sequences, search for similarities and 
analyse the structural organization (Grissa et al., 2007b). A new 
database called CRISPRCasdb makes both CRISPRs and Cas genes 
accessible. It is a feature of the CRISPR-Cas++ website, where users 
can download programs to analyse sequences that have been 
submitted. The database processes public whole genome 
assemblies using CRISPRCasFinder, a tool that finds cas genes 
and CRISPR arrays. Data recovery and BLAST searches against lists 
of spacers and repeats are accomplished by CRISPRCasFinder. The 
strains are arranged either taxonomically or alphabetically. 36,605 
full prokaryote genomes, comprising 36,052 bacteria and 553 
FIGURE 1 

CRISPR system-related bioinformatics tools for different applications. 
frontiersin.org 
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TABLE 1 List of bioinformatics tools and databases in CRISPR/Cas technique. 

Sr. no. Database Type of organisms Function Speed Limitations Website link Reference 

http://crispr.upsud.fr/crispr (Grissa et al., 2007b) 

https://bio.tools/crispi (Rousseau et al., 2009) 

http://crispr.otago.ac.nz/ Biswas et al., 2013 
CRISPRTarget/ 
crispr_analysis.html 

https://crispr.bme.gatech.edu/ Cradick et al., 2014 

http://cbi.hzau.edu.cn/crispr/ Lei et al., 2014 

https://github.com/ Prykhozhij et al., 2015 
SergeyPry/ 
CRISPR_MultiTargeter 

https://wge.stemcell.sanger.ac.uk/ (Hodgkins et al., 2015) 

http://crispr.dbcls.jp/ (Naito et al., 2015) 

http://crispr.otago.ac.nz/CRISP (Biswas et al., 2016) 
RDetect/ 
predict_crispr_array.html 

https://genomecrispr.dkfz.de/#!/ Rauscher et al., 2016 

https:// (Blin et al., 2016) 
crispy.secondarymetabolites.org/ 
#/input 

http://www.rgenome.net/ 
cas-database/ 

Park et al., 2016 

http://github.com/ 
boutroslab/caRpools 

(Winter et al., 2016). 

http://cistrome.org/crispr-focus/ Cao et al., 2017 

https://crispr.nrihub.org/ Jeong et al., 2017 

(Continued) 
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1 CRISPRdb Bacteria and Archaea Identifies CRISPRs and spacers, a 
visualization tool 

Moderate Limited to CRISPR arrays; does 
not design guide RNA 

2 CRISPI Bacteria and Archaea A relational database to identify NA Limited to few organisms 
the CRISPR and CAS in 
personal sequences 

3 CRISPR target Bacteria, Archaea, Predictions and analysis of Moderate not updated frequently 
Plants, Animals, Fungi, etc. crRNA targets 

4 COSMID Human, mouse, Caenorhabditis Identify and Validate Slow limited experimental 
elegans, and Rhesus macaque, etc. CRISPR/Cas Off-target Sites, results 

allows custom genome input 

5 CRISPR-P Plants sgRNA designing tool Fast Plant-focused 

6 CRISPR Human, Oryza sativa japonica, sgRNA designing tool from a set Moderate Limited batch processing 
multitargeter Gallus gallus, Mus musculus, of similar sequences 

Arabidopsis thaliana 

7 WGE Mouse and Humans CRISPR sites in any genome, Fast Limited to human and 
Visual guide design with genome mouse genomes 
browser integration 

8 CRISPRdirect Any organism with a 
genome sequence 

Design sgRNA with reduced off-
target sites 

Moderate Basic scoring system 

9 CRISPRDetect Detects CRISPR arrays Fast No off-target predictions 
and spacers 

10 GenomeCRISPR Mouse & Humans Database for CRISPR/ 
Cas9 screens 

Fast Limited species 

11 CRISPy-web Bacteria, Archaea Design sgRNA for CRISPR/ Fast Limited species 
Cas systems 

12 Cas Database Arabidopsis thaliana, Drosophila 
melanogaster, human, mouse, etc. 

gRNA library design tool for 
Cas9 nucleases 

Fast Focus on Cas systems only 

13 caRpool Human, Mouse To analyse CRISPR/Cas9 screens Moderate Requires R knowledge 

14 CRISPR-FOCUS Human & Mus musculus Webserver for efficient 
screening experiments 

Fast Limited cell types 

15 CRISPRcloud Human, Mouse Reanalysis pooled CRISPR 
screens datasets 

Moderate Limited visualization 
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TABLE 1 Continued 

Sr. no. Database Type of organisms Function Speed Limitations Website link Reference 

http://crispor.tefor.net/ (Concordet and Haeussler, 2018) 

http://github.com/ 
crisprlab/CRISPRdisco 

Crawley et al., 2018 

http://www.rgenome.net/ (Park and Bae, 2018) 
cpf1-database/ 

http://pickles.hart-lab.org Lenoir et al., 2018 

https://github.com/ Li et al., 2020 
bioinfomaticsCSU/ 
MultiGuideScan 

http://crispr.hzau.edu.cn/ 
CRISPR-Local/ 

(Sun et al., 2019) 

https://github.com/ 
pinellolab/DrugThatGene 

Canver et al., 2019 

https:// 
crisprcas.i2bc.paris-saclay.fr/ 

(Pourcel et al., 2020) 

https://github.com/ (Yang et al., 2022) 
boweny920/AcaFinder 

http://bcb.unl.edu/AcrFinder (Yi et al., 2020) 

https://github.com/ 
veeneman/PINCER 

(Veeneman et al., 2020) 

https://bio.tools/AsCRISPR (Zhao et al., 2020). 

https://github.com/ 
RoyRabinowitz/CrisPam 

(Rabinowitz et al., 2020) 

https://github.com/ 
CRISPRlab/CRISPRclassify 

(Nethery et al., 2021) 

(Continued) 
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16 CRISPOR Human, Mouse, Rat, Fly, Worm, 
Zebrafish, Plants, etc. 

Guide RNA selection for 
genome editing 

Fast Limited to fewer organism 

17 CRISPRdisco Bacteria, Archaea Predicts CRISPR arrays Moderate Limited to fewer organism 

18 Cpf1-Database Arabidopsis thaliana, tomato, Selecting guide RNA for Moderate Cpf1-specific 
banana, human, mouse, CRISPR-Cpf1 
zebrafish, etc. 

19 PICKLES Human, Mouse Database for pooled CRISPR 
knockout libraries 

Fast Data-centric, not design-centric 

20 Multiguidescan Multiple organisms Design guide RNA libraries from Fast Batch runs only 
large genomes 

21 CRISPR Local Human, Model organisms Designing sgRNA in plants Fast More efficient for Batch runs 

22 DrugThatGene Human Identification of small molecules, 
pathways and protein complexes 
from 

Moderate Niche use-case 

CRISPR screens 

22 CRISPRCasdb Bacteria, Archaea Provide access to CRISPR and 
Cas genes 

Fast Cas-centric 

23 AcaFinder Bacteria, Archaea For anti-CRISPR Moderate Acas that do not have Acrs in 
associated genes proximity, miss out, novel Aca 

are found based on the similarity 
to known sequence 

24 AcrFinder Bacteria, Archaea Acr-Aca (Acr-associated Moderate relies on Aca references, requires 
regulator) operon that genomes have complete 
prediction program CRISPR-Cas systems 

25 PINCER Bacteria, Archaea CRISPR screening using efficient 
cleavage at protein residues 

Moderate Limited to human and mouse 

26 AsCRISPR Human Allele-specific sgRNA designing Fast Focused on allele-specific targets 

27 CrisPAM Bacteria, Archaea SNP-derived PAM analysis tool Fast SNP-Derived PAM only 

28 CRISPRclassify Bacteria, Archaea Repeat-based classification of 
CRISPR systems 

Moderate Uses BLAST and 
HMM alignments which miss 
out a 
substantial proportion of 
CRISPR loci in metagenomes 

http://crispor.tefor.net/
http://github.com/crisprlab/CRISPRdisco
http://github.com/crisprlab/CRISPRdisco
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TABLE 1 Continued 

Sr. no. Database Type of organisms Function Speed Limitations Website link Reference 

o 
to 

http://bcb.unl.edu/AcrDB (Huang et al., 2021) 

ems 

https:// 
sgrnascorer.cancer.gov/dbguide 

(Gooden et al., 2021) 

https://rna.informatik.un
freiburg.de/CRISPRloci/ 

(Alkhnbashi et al., 2021) 

https://sourceforge.net/ 
projects/crisprvi/ 

(Sun et al., 2022) 

http:// (Cai et al., 2022) 
design.rxnfinder.org/ 
biosynstrain/ 

https://github.com/cabbi
bio/CROPSR 

(Müller Paul et al., 2022) 

all https://github.com/ Zhu and Cheng, 2022 
albertwcheng/JACKIE2 

https://github.com/Lyn- Zhu and Cheng, 2022 
666/anti_CRISPR 

m 

https:// 
ccsm.uth.edu/CRISPRoffT/ 

Wang et al., 2025 

http://cbi.hzau.edu.cn/CRISPR2/. Liu et al., 2017 

ly 
ing 

http://www.deepcrispr.net/ Chuai et al., 2018 

https://github.com/lyotvincent/ Sun et al., 2024 
CRISPR-M 

3 https://proj.cse.cuhk.edu.hk/ Li et al., 2023 
aihlab/AcrNET/), 

(Continued) 
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remain unclassified 

29 AcrDB Bacteria, Archaea, Virus Anti-CRISPR operons in 
prokaryotes and viruses 

Moderate It misses Acr proteins that d
not need Aca regulators, fail
identify anti-CRISPRs in 
genomes with incomplete 
or without CRISPR–Cas sys

30 dbGuide Human, Mouse A database of functionally 
validated gRNA sequences 

Fast Restricted to few organisms,

31 CRISPRloci Bacteria, Archaea Comprehensive annotation of 
CRISPR-system 

Moderate Limited input size 

32 CrisprVi Prokaryote genome Visualize and analyse 
CRISPR sequences 

Moderate Visualization only 

33 SynBioStrainFinder Synthetic biology strains microbial strain database with Fast Synthetic strains only 
(Bacteria, Yeast) information related to 

strain CRISPR/Cas system 

34 CROPSR Plants Genome-wide sgRNA design and 
validation tool 

Moderate Issues with the long 
compute times 

35 JACKIE Genome file Evaluates off-target sites and Moderate Bulk-focused, not ideal for s
their numbers, strong batch scale or simple edits. 
processing capabilities. 

36 PreAcrs Genome and Identifies antiCRISPR proteins Moderate does not 
Metagenome projects provide a visual and user

friendly website, one algorith

37 CRISPRoffT Human & Mouse Comprehensive database for 
off-targets 

Moderate Not a prediction tool 

38 CRISPR-P 2.0 Plants sgRNA design Fast Plant-focused 

39 DeepCRISPR On-/Off-target (Cas9) deep-learning model to predict 
off target detection 

Moderate Limited interpretability, mai
substitution mismatch hand

40 CRISPR-M Off-target (Cas9 with indels) Predicts off-target for target sites Moderate Requires large memory; 
with mismatches and indels AlphaFold integration is 

time-consuming 

41 AcrNET Anti-CRISPR protein anti-CRISPR (Acr) proteins Moderate Limited to short sequences; 
protein prediction, predicts their per file 
specific types 
 

t

 

m

n
l

≤

http://bcb.unl.edu/AcrDB
https://sgrnascorer.cancer.gov/dbguide
https://sgrnascorer.cancer.gov/dbguide
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archaea, are available in CRISPRCasdb. The application includes 
two primary programs: CRISPRCasFinder and Database Tools. 
CRISPRCasFinder identifies CRISPRs and cas genes within 
genomic sequences, whereas Database Tools retrieves metadata, 
prokaryotic genomes, and taxonomy from the NCBI site. 
Additionally, the application supports BLAST searches of direct 
repeats and spacers available in the database. CRISPRCasdb 
presents analysed genomes in alphabetical lists or taxonomic 
classifications, allowing users to discover interesting CRISPR-Cas 
systems. Filters on CRISPR arrays and Cas presence/absence allow 
for relevant information selection (Pourcel et al., 2020). 
CRISPRCasdb also provides more comprehensive information of 
types and sub-types in comparison to CRISPRdb. 
 

2.3 CRISPRloci 

The CRISPRloci (https://rna.informatik.un-) server represents a 
significant advancement in CRISPR locus prediction, using a 
sophisticated Machine Learning technique. It accurately predicts 
and evaluates all potential CRISPR loci, offering precise assessments 
of CRISPR array orientation, definition of CRISPR leaders, and cas 
genes annotation. This tool provides comprehensive information 
about the CRISPR array, including Cas subtypes, repeat structure, 
orientation, virus-host interactions and self-targets. To enhance 
accuracy, CRISPRloci generates multiple candidates for each region 
of the genome and employs a data-driven approach to eliminate 
incorrect identifications, resulting in robust filtering of inaccurate 
candidates while maintaining sensitivity and specificity. CRISPRloci 
is an efficient tool aimed at enhancing the identification and 
representation of CRISPR arrays within genomic DNA. Notably, 
CRISPRloci can autonomously manage the complete deletion of 
spacers regardless of their position and can identify truncated 
repeat sequences. Leveraging the Cas boundary tool for analysing 
protein sequence input for CRISPR cassette boundaries, 
CRISPRloci employs CRISPRcasIdentifier (Padilha et al., 2020) to
classify and predict potentially missing proteins. Moreover, it 
simulates potential virus-host interaction by the identification of 
protospacer regions within provided viral sequences, helping in 
studying of evolutionary aspects of viral targets (Alkhnbashi et al., 
2021). Along with the support of a wide range of organisms for 
comparative analysis, it lacks functional analysis. The tool shows a 
significant improvement in detecting CRISPR-Cas interference 
modules when compared with CRISPRCasFinder. In particular, it 
improved the detection of single-module cassettes by 16% and the 
identification of multiple interference modules by more than 60%. 
The tool’s enhanced sensitivity and accuracy are demonstrated by 
this notable improvement, especially when it comes to detecting 
intricate CRISPR-Cas architectures that are frequently overlooked 
by traditional detection pipelines. 
2.4 CrisprVi 

Two computational tools, CRISPRviz (Nethery and Barrangou, 
2019) and CRISPRStudio (Dion et al., 2018), offer interactive 
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analysis capabilities for CRISPR sequences. CRISPRviz enables 
prediction, visualization, and manipulation of CRISPR sequences, 
utilizing MinCED which extracts CRISPR direct repeats and spacers 
and facilitates visual comparison of sequence graphics. However, it 
may generate confusing colour and symbol combinations for 
complex scenarios, and its reliance on MinCED for the detection 
of CRISPR impacts visualization accuracy. In contrast, 
CRISPRStudio solely presents spacers graphically and does not 
offer sufficient functionalities (customizing visualization colours 
CROPSR) for users to manipulate and analyse DRs/spacers. 
CrisprVi (https://sourceforge.net/projects/crisprvi/) is a  Python
package designed to visualize CRISPR direct repeats and spacers, 
offering features such as genomic order, IDs, and coordinates. It 
includes components like a GUI for visualization, a command 
parser, and local databases for storage. Unlike other tools such as 
CRISPRviz and CRISPRStudio, CrisprVi emphasizes interactivity 
and provides basic statistics on CRISPR and consensus sequences 
from input strains. This user-friendly tool supports researchers in 
exploring and analysing CRISPR sequences, facilitating the study of 
novel CRISPR-Cas systems in prokaryotes (Sun et al., 2022). 
3 Database for AntiCRISPR proteins 

3.1 Anti-CRISPRdb and Anti-CRISPRdb v2.2 

Prokaryotes have an antiviral system called CRISPR-Cas that is 
extensively used for genome editing. Anti-CRISPR proteins are used 
to regulate Cas nuclease activity in CRISPR-Cas genome editing, 
ensuring safer and more controlled editing processes. These 
proteins, found in prophages can inhibit the CRISPR-Cas systems 
of their hosts. They were first identified by Bondy-Denomy et al. 
(2013), demonstrating anti-I-F activity in a Pseudomonas 
aeruginosa phage, marking a significant discovery in the field. 
Anti-CRISPR proteins block CRISPR-Cas systems, potentially 
enhancing gene editing precision. A comprehensive collection of 
these proteins is available in the anti-CRISPRdb, an online database 
facilitating easy access to protein sequences, coding regions, source 
organisms, taxonomy, and more. Users can browse, download, and 
upload data related to anti-CRISPR proteins through its user-
friendly interface, enabling efficient research and application 
(http://guolab.whu.edu.cn/anti-CRISPRdb/) (Dong et al., 2018). 

More details on mechanisms, inhibitory stages, the inhibitory 
ability for Acr-Cas/Acr-CRISPR systems, and the Acr neighbour 
estimate are available in the updated version, Anti-CRISPRdb v2.2. 
More entries and families are included, both from recent literature 
as well as via homologous alignment. Anti-CRISPRdb v2.2 
incorporates the prediction of Acr neighbours, enabling users to 
identify new Acrs from these candidates. To motivate the 
advancement of prediction tools, the revised database now 
contains experimental data on the inhibitory strength and stage 
for Acr-Cas/Acr-CRISPR (Dong et al., 2022). 
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3.2 AcrDB 

Researchers developed the online database AcrDB (http:// 
bcb.unl.edu/AcrDB) by  using  AcrFinder  (http://bcb.unl.edu/ 
AcrFinder), a novel software for predicting Acr-Aca (Acr
associated regulator) operons (Huang et al., 2021). They analysed 
more than 19,000 genomes from prokaryotes and viruses for this 
purpose. The database depends on CRISPR-based self-targeting 
techniques and homology search. AcrDB is a comprehensive 
database featuring 39,799 Acr-Aca operons containing Aca or Acr 
homologs, making it the largest collection of its kind. The database 
offers a user-friendly web interface equipped with various options to 
browse, search and download. Unlike focusing solely on individual 
Acr protein families, AcrDB emphasizes the genomic context of Acr 
and Aca candidates. It integrates data from three independent 
programs, each employing unique data mining algorithms for 
robust validation. AcrDB covers computationally predicted Acr-
Aca operons across more than 7,000 RefSeq genomes of prokaryotes 
and their viruses (Huang et al., 2021). AcrDB being a specialized 
database, limits itself to providing experimental data and tools for 
functional validation of the Acr proteins. Also, it fails to find Acr for 
organisms other than prokaryotes with incomplete CRISPR/Cas 
systems (Yin et al., 2019). 

The discovery of Acrs can be sped up by using machine learning 
to recognize the new Acrs from protein sequences. PreAcrs (https:// 
github.com/Lyn-666/anti_CRISPR) is a unique machine-learning 
predictor that can directly detect anti-CRISPR proteins from 
provided protein sequences. PreAcrs considerably predict 
accurately anti-CRISPR proteins and surpass other previous 
approaches (Zhu et al., 2022). It provides annotation of Acr 
proteins specifying their targets and mechanism of inhibition and 
offers better visualization to show their interaction with CRISPR 
systems. Experimental validation lacks which may limit the tool’s 
efficiency in some cases. A new web-based server was created for 
type II CRISPR-Cas discovery, Acr prediction, and the analysis of 
significant CRISPR-related molecular processes. CRISPRimmunity 
(http://www.microbiome-bigdata.com/CRISPRimmunity/index/) 
offers a thorough co-evolutionary view of the CRISPR-Cas and anti-
CRISPR systems. Experimental validation of the cleavage activity of 
several recently discovered class 2 CRISPR-Cas loci utilizing 
CRISPRimmunity has been conducted in vitro (Zhou et al., 2023). 
CRISPRimmunity makes it simple to use for further data mining 
and experimental design by providing catalogues of pre-identified 
CRISPR systems that can be browsed, resources or databases that 
can be downloaded, an in-depth tutorial, graphical interface, and 
results that can be exported and accessed in machine-readable 
formats (Zhou et al., 2023) which were lacking in other tools like 
AcrDB (Huang et al., 2021) and PreAcrs (Zhu et al., 2022). 

AcrNET (https://proj.cse.cuhk.edu.hk/aihlab/AcrNET/), 
introduced as a deep learning framework for predicting anti-
CRISPR (Acr) proteins, mitigates significant shortcomings of 
previous methodologies by utilizing transformer learning 
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algorithm to solve data scarcity and enhance generalizability. 
AcrNET surpasses earlier models restricted by minimal datasets 
and inadequate predictive accuracy by proficiently classifying input 
protein sequences as Acrs and predicting their specific types.

AcrNET enhances predictive performance and minimizes 
dependence on lengthy biological validation by integrating 
structural information via transformer-based algorithm on huge 
protein  databases,  thereby  generating  useful  sequence  
representations. The workflow is enhanced by integrating 
techniques such as AlphaFold and protein–protein docking 
simulations to predict Acr–CRISPR-Cas interactions, yielding 
significant insights including docking locations and energies 
before experimental validation. Despite existing computational 
limitations on input size and the resource-intensive nature of 
AlphaFold, the study underscores the promise of integrating deep 
learning with structural bioinformatics to expedite Acr discovery 
and reduce off-target effects in genome editing (Li et al., 2023). 
4 Databases for CRISPR screens 

CRISPR/Cas9 system has emerged as an efficient technique for 
genetic screening in mice, humans, and zebrafish, among other 
organisms. The rapid development of CRISPR/Cas9-derived 
functional data is based on its accessibility. Resources like 
CrisprGE (http://crdd.osdd.net/servers/crisprge/) (Kaur et al., 
2015) and  WGE (https://wge.stemcell.sanger.ac.uk/) (Hodgkins 
et al., 2015) have been developed to understand and design 
CRISPR experiments. Nevertheless, there hasn’t been a database 
that compares screening outcomes throughout the entire genome. A 
database called GenomeCRISPR (https://genomecrispr.dkfz.de/#!/) 
is used for CRISPR/Cas9 high-throughput screening studies. It 
includes information on the 700,000-single guide RNAs that were 
utilized in approximately 500 research studies conducted in 421 
distinct human cell lines. The search for genes or genomic regions is 
among the data mining techniques offered by GenomeCRISPR. 
Users can compare the outcomes of several screens or the effects of 
various sgRNAs on the target gene by using phenotypic and genome 
views. However, it is restricted to human cell lines only. CaRpools 
(http://github.com/boutroslab/caRpools), an R package tailored for 
CRISPR/Cas9 screens, enables intuitive exploration and analysis of 
pooled screening data. It includes features like biological insights, 
links to external databases, detailed screening-related information, 
and reports. CaRpools supports customization with new hit-calling 
methods and efficient sgRNA designs. Its transparent analysis 
reports aid in creating databases for CRISPR/Cas9 screens and 
simplify dataset meta-analyses (Winter et al., 2016). caRpool is 
user-friendly for both beginners and experts, including the 
comprehensive screening and can be extended to develop new 
algorithms for hits and export efficient sgRNA designs to 
other databases. 

CRISPR screens based on the CRISPR/Cas system enables 
efficient and cost-effective genome-wide gene function analysis. A 
web-based tool called CRISPR-FOCUS (http://cistrome.org/crispr

focus/) discovers single-guide RNAs (sgRNAs) based on efficiency, 
Frontiers in Plant Science 09
conserved sequence specificity, genome variations, and SNP for use 
in CRISPR screen experiments (Shukla et al., 2022). In addition, 
CRISPR-FOCUS offers additional essential sequences in the 
construct together with pre-defined positive and negative control 
sgRNAs. The features allow users to directly synthesize gRNA 
according to CRISPR-FOCUS output. It can design up to 30 
sgRNAs for each 1000 target genes and takes about twenty 
seconds. CRISPR-FOCUS offers a high throughput method for 
designing sgRNA libraries, allowing users to effectively carry out 
targeted screen experiments aimed at different genes (Cao et al., 
2017). CRISPRcloud (https://crispr.nrihub.org/) is designed for 
analysing pooled screening data, processing raw next-generation 
sequencing files, and presenting results through a secure web 
platform. It supports the extraction, clustering, and analysis of 
data from pooled CRISPR screening experiments, enabling quick 
reanalysis of datasets (Jeong et al., 2017). Later, PinAPL-Py (http:// 
pinapl-py.ucsd.edu) was developed with improvement in terms of 
automatic extraction of sgRNA, flexibility and customization as per 
experimental needs, comprehensive workflow and sequence 
quality control (Spahn et al., 2017). PinAPL-Py can be preferred 
over the CRISPR cloud when working with large datasets. CRISPR/ 
Cas9 functional genomic screens are essential for discovering drug 
targets, but their sensitivity can be limited by guide RNAs that fail to 
effectively disrupt gene function. A recent study reanalysed CRISPR 
tiling data using a comprehensive feature database to identify 
optimal guides and targets for predicting activity. These findings 
were integrated into a unified guide design algorithm to enhance the 
sensitivity of genome-wide CRISPR libraries. This led to the 
development of the ProteINConsERvation (PINCER) (https:// 
github.com/veeneman/PINCER) genome-wide CRISPR library, 
which optimizes enzymatic efficiency while targeting conserved 
protein regions. By leveraging evolutionary conservation, PINCER 
improves protein hit identification, reduces false positives, and 
enables the discovery of high-confidence hits. Findings indicate 
that PINCER outperforms other genome-wide CRISPR libraries in 
effectiveness (Veeneman et al., 2020). 
5 Tools for classification of CRISPR 
systems 

CRISPRmap is a tool designed to analyse the structure and 
sequence conservation of CRISPRs using an extensive dataset of 
repeat sequences. It identifies key features of CRISPR-Cas systems, 
including, RNA structure motifs, and cleavage sites and relates Cas 
subtypes and evolution of CRISPR. The comprehensive overview by 
CRISPRmap allows for inferences about CRISPRs within the same 
sequence families and helps to identify potentially novel and highly 
divergent CRISPR-Cas systems (Lange et al., 2013). Detecting and 
classifying CRISPR-Cas systems in metagenomic data is essential 
for understanding their various genome editing applications, but for 
that computational issues still remain. A main problem is the 
complex and variable nature of metagenomic data, as the 
sequence data is from various unidentified organisms with 
different genomic structure. This makes the identification of 
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CRISPR arrays and associated Cas genes a challenge as reference 
genomes are not available for identification (Nielsen et al., 2014). 
Also, the short contigs, a result of fragmented assemblies within 
metagenomics, prevent recovery of all CRISPR arrays or Cas 
operons which limits further evolutionary studies (Lam and Ye, 
2019). Another problem is false positives due to tandem repeats 
present within microbial genomes and often increase chances of 
misunderstood as CRISPR arrays, especially when working with 
poor quality sequence datasets (Zhang and Ye, 2017). Overcoming 
these hurdles is likely to involve integrating better assembly 
approaches with better CRISPR identification algorithms and 
machine learning frameworks that are resistant to noisy, and 
taxonomically heterogeneous datasets. 

Traditional approaches typically depend on identifying adjacent 
Cas genes to detect CRISPR loci and rely on BLAST and HMM 
alignments, which often leave many CRISPR loci in metagenomes 
unclassified (Nethery et al., 2021). But a new machine learning 
approach called CRISPR classify (https://github.com/CRISPRlab/ 
CRISPRclassify) was created that solely uses repeat sequences to 
find and group CRISPR loci, without utilizing Cas genes. This 
method finds unclassified loci that other methods miss and shows 
important properties of CRISPR repeats that can be used to classify 
subtypes. CRISPR classify uses a one-vs-all (OVA) binarization 
approach, where for each subtype of CRISPR-Cas, an independent 
XGBoost classifier is trained based on binary classifications. This 
facilitates learning and better discrimination for subtypes, 
particularly for complex or borderline cases (Mitrofanov et al., 
2021). The CRISPR classify pipeline includes three steps: identifying 
CRISPR arrays, extracting features, and classifying with a stratified 
model (Nethery et al., 2021). One key strength of CRISPR classify is 
that it classifies systems using just repeat sequences, thereby 
eliminating any need for dependence on Cas gene annotations. 
The repeat-based classification XGBoost outperformed all other 
nonlinear models and deep learning models and had strong 
generalizability, such that performance stayed even for repeat 
sequences that were largely divergent from training data. This is 
good for the potential for discovery of new occurrences of CRISPR 
loci in uncharacterized or in metagenomic data. 
6 Guide-RNA design and off-target 
identification tools 

CRISPR/Cas9-based genome editing has emerged as a 
significant milestone in the molecular field, enabling precise 
modifications to diverse genomes (Saraswat and Ranjan, 2022). 
Initially evolved in prokaryotes as a defence mechanism against 
bacteriophage infections, this system has found extensive use in the 
workflows of genome engineering. The spCas9 endonuclease from 
Streptococcus pyogenes is particularly prevalent in these 
applications. To employ Cas9 effectively, efficient single-guide 
RNAs (sgRNAs) need to be designed for the target gene. 
Importantly, for this information about PAM sequence is 
also required. 
Frontiers in Plant Science 10 
The sequence length of the PAM motif varies among different 
Cas protein variants, with distinct recognition sites. For example, 
the widely used SpCas9 (Streptococcus pyogenes) recognizes the 3 bp 
NGG PAM, while SaCas9 (Staphylococcus aureus) requires the 
longer NNGRRT sequence. Other Cas9 orthologs, such as 
NmCas9 and StCas9 recognizes NNNNGATT and NNAGAAW, 
respectively. In contrast, Cas12a (also known as Cpf1) and other 
type V effectors recognize T-rich PAMs (e.g., TTTV) while type VI 
Cas13, which targets RNA and not DNA, does not require a PAM at 
all. This diversity in PAM recognition sites has functional role in 
genome editing applications as the shorter PAMs (SpCas9 like 
SpCas9-NG or SpRY) covers broader genome. At the same time, 
precise PAM requirements can enhance targeting specificity and 
reduce off-target effects. PAM variability is also reflective of host 
genome adaptation in naturally occurring CRISPR-Cas systems. 
Thus, understanding and exploiting PAM sequence diversity is 
fundamental to optimizing CRISPR-based tools for research. For 
PAM identification, CrisPam (https://github.com/RoyRabinowitz/ 
CrisPam), a computational tool, has been developed, which 
facilitates allele-specific targeting using CRISPR-Cas systems. 
Researchers who want to focus on PAM sequences related to the 
recognition of CRISPR systems can find CrisPAM a valuable tool. 
The tool scans sequences to detect multiple PAMs generated by 
both reference and variant sequences. Successful targeting occurs 
when at least one PAM is created by the variant nucleotide, 
ensuring specific binding of the Cas enzyme to the variant allele. 
CrisPam streamlines the design of guide RNAs for precise targeting 
of the allele and explores a diverse array of unique PAMs from 
different Cas enzymes (Rabinowitz et al., 2020). 

Inaddition, an efficient gRNAsynthesis requires feweroff-targets for 
which several tools have been developed. The Cas-OFFinder is a tool 
designed to detect potential off-target sites for Cas9 RNA-guided 
endonucleases. It can be accessed for free either as a command-line 
program or via a website. This tool allows searches in any sequenced 
genome without restrictions on PAM sequences or the number of 
mismatches. Cas-OFFinder enhances genome editing precision by 
addressing off-target mutation concerns. Unlike other tools such as 
TagScan (Cradick et al., 2011), Bowtie (Langmead, 2009), and 
CUSHAW (Liu et al., 2012), it does not limit the number of 
mismatches in its searches. It also considers the variability in PAM 
recognition by differentCas9 proteins for amore thoroughoff-target site 
search. It applies to a wide range of organisms, ensuring quick and 
comprehensive identification of potential off-target sites (Bae et al., 
2014). Another tool to address the concern of off-target cleavage is 
COSMID (CRISPR Off-target Sites with Mismatches, Insertions, and 
Deletions), available at http://crispr.bme.gatech.edu. Based on the user-
provided guide strand and specified parameters, COSMID scans 
genomes to identify potential off-target sites with the designated 
number of mismatched bases and insertions or deletions compared 
to the guide strand. What sets COSMID apart is its exhaustive 
genomic search for off-target sites due to changes in base pair 
(mismatches, deletions, and insertions), and also provides primers 
for later experimental work. TagScan algorithm is used by COSMID 
which helps in minimizing run times when performing for 
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exhaustive genome searches. The run times without primer design 
off takes averaged 4 seconds (Cradick et al., 2014). 

CHOPCHOP, simplifies the selection and design of optimal 
TALEN and CRISPR/Cas9 target sequences across various 
organisms. It accepts diverse inputs, predicts off-target effects, and 
offers interactive visualization and primer design to streamline 
genome engineering (Montague et al., 2014). CHOPCHOP can 
process multiple gene inputs, provides a dynamic graphical display 
aiding in the easy selection of optimal target sites, and is particularly 
useful for designing two sgRNAs. The tool automatically generates 
primers and visualizes restriction sites, therefore simplifying the 
genome engineering process. CHOPCHOP v2 brings significant 
enhancements to improve target accuracy and efficiency. It supports 
various CRISPR effectors and allows custom-length sgRNAs. 
Recognizing the importance of comprehensive off-target analysis, 
CHOPCHOP v2 identifies off-targets considering three mismatches 
(Labun et al., 2016). With the increased cutting efficiency and 
specificity, the CHOPCHOP v3 upgrade improves CRISPR 
research by addressing the issue of off-target mutagenesis. For 
improved data analysis, it interfaces with the UCSC browser and 
offers visual output for target quality comprehension. More than 
200 genomes are currently supported by CHOPCHOP, which also 
offers gene annotations for genomic targets and three 
transcriptomes (human, mouse, and zebrafish) for RNA 
knockdown. Additionally, it expands its functionality to target 
RNA with Cas13 and other DNA targeting modes, making it a 
more versatile and powerful tool for genome editing (Labun et al., 
2019). Another tool, CRISPR-ERA is for designing sgRNAs for 
CRISPR-based editing, repression, and activation (gene regulation 
studies). It employs a fast algorithm to identify sgRNA binding sites 
across the genome, assessing their efficiency and specificity using 
published data (Liu et al., 2015). Beyond its core functions, CRISPR
ERA is also suitable for plant-related CRISPR applications, genome 
imaging, and synthetic circuit design (Kiani et al., 2014). E-CRISP 
uses a rapid indexing method to identify target sequences that 
match the guide RNA (gRNA), ensuring efficient binding site 
discovery. It evaluates off-target effects and target-site similarity 
with the Bowtie2 alignment program, guaranteeing specific gRNA 
designs. Currently supporting more than 50 organisms, including 
plant species as well. E-CRISP can be expanded to include more 
species (Heigwer et al., 2014). However, the tool has limitations 
with a longer loading time when compared to other tools like 
CHOPCHOP and CRISPR-ERA. 

The WGE database provides comprehensive resources for 
CRISPR research in mouse and human exons. It includes pre
computed off-target data and enables easy scoring and viewing of 
off-target sites, facilitating quick identification of high-quality 
CRISPR sites through filtering. WGE also features tools for 
generating and displaying gene targeting vectors directly in its 
genome browser, alongside gene models and protein translations. 
The system is versatile, supporting customization for any genome 
and is open-source and expandable (Hodgkins et al., 2015). Off-
Spotter enhances gRNA design by rapidly and thoroughly 
identifying potential off-target sites with up to 5 mismatches. It 
offers extensive annotations, flexible target sequence input, and 
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detailed transcriptomic data. Users can interactively explore 
different gRNA options, ensuring specificity through histograms 
and improving the experience with sorting and navigation features. 
This precision makes it highly effective for targeted genetic 
engineering applications (Pliatsika and Rigoutsos, 2015). 

While numerous tools exist for designing sgRNAs in popular 
model organisms, only a few cater to non-model organisms. 
CRISPy-web (http://crispy.secondarymetabolites.org/) is a user

friendly tool based on CRISPy, enabling sgRNA design for any 
microbial genome provided by the user. With CRISPy-web, 
researchers can conveniently select a genomic region of interest 
and scan it for potential sgRNAs. The tool conducts a check for 
potential off-target matches and visually displays the resulting 
sgRNA sequences, which can be exported to text files for further 
analysis (Blin et al., 2016). A tool, CRISPick (https:// 
portals.broadinstitute.org/gppx/crispick/public), ranks and selects 
candidate CRISPRko (CRISPR Knockout) sgRNA sequences for 
given targets, aiming to maximize on-target activity and minimize 
off-targets. It uses a preferred scoring system tailored to the enzyme 
and CRISPR mechanism for evaluating guides. Genome sequences 
from humans, mice, and rats are present (Doench et al., 2016). 
6.1 CRISPR-Local 

CRISPR-Local is a local tool designed for high-throughput 
single-guide RNA (sgRNA) design in plants and other organisms. 
It considers genetic variation and is optimized for generating 
genome-wide sgRNAs. The tool operates on two main principles: 
first, the “one-for-all” strategy constructs a comprehensive sgRNA 
database efficiently, generating and storing all possible sgRNAs for a 
given reference or user-defined genome locally; second, it retrieves 
or designs applicable hits by integrating data from whole genome 
sequencing and mRNA sequencing. CRISPR-Local offers several 
advantages over other sgRNA design tools, including the ability to 
design guide RNA for non-reference varieties, target multiple genes 
simultaneously, and operate offline with command-line and 
graphical user interface modes. It also allows for the export of 
multiple formats for future analysis (Sun et al., 2019). 
6.2 Cas-Database and Cpf1-Database 

Cas-Database (http://www.rgenome.net/cas-database/) is a

web-based tool designed for generating optimal sgRNA sequences 
for Cas9 nucleases from Streptococcus pyogenes (SpCas9), specifically 
for genome-scale screening. It enables users to select multiple optimal 
target sequences from a vast array of genes simultaneously. The tool 
supports 12 different organisms and features a user-friendly interface 
with various filtering options (Park et al., 2016). Type V CRISPR
Cpf1 endonucleases are effective for genome editing in vivo across 
various organisms, similar to the earlier type II CRISPR-Cas9 system. 
However, there is a shortage of web-based tools that can efficiently 
select gRNAs from numerous potential genome-wide target sites. The 
Cpf1-Database (http://www.rgenome.net/cpf1-database/) addresses
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this gap by offering a tool for constructing genome-wide gRNA 
libraries specifically for the Lachnospiraceae bacterium LbCpf1 and 
the Acidaminococcus sp. bacterium AsCpf1. A simple method for 
creating gRNAs for AsCpf1 nucleases at the genome scale is offered 
by the Cpf1-sgu Database. This web interface makes it easy to retrieve 
the data, and the robust collection function makes it quick and simple 
to construct gRNAs for thousands of genes (Park and Bae, 2018). 
Both Cas-Database and Cpf1-database currently support sgRNA 
design in twelve different organisms: Arabidopsis thaliana, grapes, 
tomato, banana, and soybean, Drosophila melanogaster, human,  rat,  
mouse, pig, zebrafish and Caenorhabditis elegans (Park and 
Bae, 2018). 

The crisprSQL (http://www.crisprsql.com) is a new database 
platform designed for assessing off-target cleavage in CRISPR/Cas 
experiments. This platform offers insights into cutting-edge 
technologies driving transgenics, aids in guiding RNA design for 
genome engineering, and provides a transparent foundation for 
modelling CRISPR/Cas off-target DNA cleavage. Gene IDs attached 
to the data enable high-resolution analysis, informing knockout 
screens and functional genomics. It specifically details interactions, 
gene identities and epigenetic markers (Störtz and Minary, 2021). 
The effective targeting of sequences is crucial for any experimental 
success. Existing design tools often focus on specific elements, but 
Jackie and Albert’s Comprehensive K-mer Instances Enumerator 
(JACKIE) (https://github.com/albertwcheng/JACKIE2) offers a

broader approach. It identifies all single- and multicopy sites in 
the target genome, making it suitable for large-scale genome 
designs. JACKIE can be integrated into genome browsers for an 
intuitive web-based graphical interface. It employs fast algorithms 
to evaluate off-target counts, allowing for the identification of 
designs with low off-target probabilities among millions of 
sequences within a practical time frame which is 100-fold more 
efficient than most popular tools. JACKIE offers comprehensive k-
mer enumeration in the target genome and rapid evaluation of off-
target effects (Zhu et al., 2022). 
7 Experiments-based guide RNA 
design tools 

The development of genome engineering with CRISPR 
technology has revolutionized our understanding of genomic 
functions. GuideScan, an open-source software, helps to build 
customized gRNA databases for any target genome, aiding in the 
design of both paired and single gRNA libraries. GuideScan allows 
users to customize target sequences for different CRISPR 
endonucleases by adjusting three parameters: the PAM, its position 
relative to a target sequence, and the gRNA length. However, due to 
its serial processing, GuideScan is computationally intensive for 
designing CRISPR gRNA libraries from large genomes (Perez et al., 
2017). MultiGuideScan (https://github.com/bioinfomaticsCSU/ 
MultiGuideScan) addresses this challenge by implementing 
parallel  processing  of  GuideScan ’s  multiple  processes.  
Frontiers in Plant Science 12 
MultiGuideScan accelerates gRNA library design by 9–12 times 
compared to GuideScan, enabling efficient design of guide RNA 
libraries from large genomes (Li et al., 2020). Another tool, the 
dbGuide database, provides a repository of experimentally validated 
guide RNA sequences for CRISPR/Cas9 knockouts in humans and 
mice. Accessible via a user-friendly HTML interface, it utilizes data 
tables and JavaScript libraries to display information in both 
graphical and tabular formats. For more information, visit https:// 
sgrnascorer.cancer.gov/dbguide. Notably, the database includes 
over 4000 guide RNA sequences validated through direct 
amplicon sequencing or manually from more than 1000 
publications, making it a valuable resource. The framework 
supports ongoing updates with new, experimentally validated 
guide RNA sequences for CRISPR/Cas9 knockouts. It also 
includes sequences from various gene editing systems, different 
species, and other functions such as gene activation and repression, 
base editing, and more (Gooden et al., 2021). 

The genome-wide approach in the CRISPR experiment design 
reduces validation time via PCR and minimizes computational 
overhead. A novel machine learning program has been built to 
address issues with existing tools in guiding repetitive or A/T-rich 
genomic regions. This scoring model significantly enhances 
prediction accuracy, even in non-crop genomes (Müller Paul et al., 
2022). CROPSR (https://github.com/cabbi-bio/CROPSR) presents 
new techniques and workflows for conducting CRISPR/Cas9 
knockout experiments, focusing on simplifying the design, 
assessment, and validation of gRNA sequences, especially in crop 
research. This standalone tool, with minimal dependencies and a 
modular structure, is designed for use on supercomputers. It can 
create extensive, searchable databases with essential genome-wide 
data for CRISPR experiments, including PCR validation by 
providing primer pairs. CROPSR outperformed other tools like 
CHOPCHOP md CRISPR-P for designing gRNA for each gene with 
a score  ≥ 0.8. The score cutoff was defined according to the 
algorithm. The improved scoring model in CROPSR marks a 
significant improvement over existing methods (Müller Paul 
et al., 2022). Advanced CRISPR tools like the Synthego design 
tool streamline the process of designing guide RNAs (gRNAs). One 
can select from more than 120,000 genomes and 8,300 species to 
create gRNAs for gene knockout with minimal off-target impacts 
and view the positions of your sequences within the gene or validate 
guides designed using other tools (https://www.synthego.com/ 
products/bioinformatics/crispr-design-tool) (Synthego design 
tool, 2024). 

A recent study showed that CRISPRoffT is a complete online 
resource that brings together experimentally anticipated and 
confirmed off-target data from different CRISPR technologies, Cas 
enzyme variants, sgRNA designs, and human and mouse cell types. 
This platform now collects more than 226,000 guide–off-target 
combinations, including 8,840 experimentally validated off-
targets. It is the largest such library to date. For each guide 
sequence and gene, CRISPRoffT lets you compare different 
experimental circumstances, technologies, and Cas/gRNA 
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combinations. This gives you useful information on off-target 
behaviour. CRISPRoffT is a very important tool for improving 
gRNA design and making off-target prediction algorithms more 
accurate and reliable. It does this by giving precise information 
about the state of on-target and off-target sites (Wang et al., 2025). 
 

8 Machine learning-based tools for 
on/off-target efficiency 

CRISPOR (http://crispor.tefor.net/) is an online tool designed 
to aid CRISPR–Cas9 genome editing. It identifies guide RNAs in a 
given sequence and ranks them based on potential off-target effects 
and predicted on-target efficiency. The tool provides comprehensive 
features, including guide RNA selection, cloning, and expression, 
and also provides primers for evaluating guide activity and possible 
off-target effects. CRISPOR displays the input sequence graphically 
with potential guide targets and offers detailed information for each 
target, such as position, sequence, efficiency, and out-of-frame 
scores. It also integrates with the UCSC Genome Browser for 
interactive visualization and annotations. Recent updates include 
support for genome-wide CRISPR screens, custom oligonucleotide 
synthesis for guide cloning, and the designing of NGS primers to 
detect off-target mutations (Concordet and Haeussler, 2018). 
Another tool, DeepCRISPR is an innovative deep-learning model 
that simultaneously predicts CRISPR sgRNA on-target knockout 
efficiency and genome-wide off-target profiles. It starts with 
unsupervised pre-training on hundreds of millions of unlabelled 
sgRNA sequences to learn rich sequence representations, followed 
by fine-tuning a convolutional neural network with experimentally 
verified on- and off-target data. DeepCRISPR outperforms state-of
the-art tools consistently with varied human datasets. Its modular 
design makes it easily expandable to incorporate more advanced 
architectures, improved feature engineering, and higher-quality 
training data, leading to continuous enhancement as larger 
CRISPR screening and off-target detection data sets are obtained 
(Chuai et al., 2018). 

A recent study created a predictive pipeline to find possible off-
target sites and cleavage efficiency for CRISPR-Cpf1 nucleases, 
specifically AsCpf1 and LbCpf1. Cpf1’s recognizes a T-rich PAM 
that enhances its specificity, and therefore indicates its potential for 
precise genome editing. The  main  objective is to get more on-target 
activity and fewer off-targets. For that, a multilayer perceptron (MLP)

based classifier using both sequence- and base-dependent binding 
energy features. The training data included both types of data: 
experimental (positive data) and computationally predicted (negative 
off-target pairs). The models accurately predicted cleavage efficiency 
and identifies various factors, including mismatch distribution and the 
melting temperature of the non-seed region. It further highlights other 
factors such as PAM binding energy, GC content, dinucleotide 
frequencies, and mismatches in seed and trunk regions, which 
offers insights into Cpf1 off-target activity (Kesarwani et al., 2023). 
CRISPR-M (https://github.com/lyotvincent/CRISPR-M) is a deep

learning architecture designed to improve the prediction of 
CRISPR-Cas9 off-target effects, particularly for target sites with 
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mismatches and indels. It uses a unique encoding scheme and a 
multi-view architecture that merges convolutional neural networks 
and bidirectional LSTM layers into a three-branch network. The 
method has consistently outperformed previous methodologies in 
assessing datasets like CIRCLE and GUIDE_I, demonstrating 
robust generalization and predictive precision. The architecture’s 
ability to simulate the impacts of mismatch/indel sites and sequence 
characteristics is also validated through visual analysis. This study 
represents a significant advancement in sgRNA off-target prediction 
(Sun et al., 2024). DeepCRISTL (https://github.com/OrensteinLab/ 
DeepCRISTL) is a deep learning model designed to predict on-
target efficiency for CRISPR-Cas9 editing by utilizing high-
throughput datasets (CRISPRon and DeepHF). It uses transfer 
learning (TL) to refine these features with functional or 
endogenous data pertinent to specific cellular contexts, including 
human, Zebrafish, and mouse. DeepCRISTL exhibits enhanced 
efficacy compared to current methodologies. Its architecture 
enables effective adaptation to smaller, context-specific datasets, 
contingent upon the adequate correlation between source and target 
data. Moreover, saliency map analyses demonstrated that the 
features acquired by DeepCRISTL possess biological significance 
(Elkayam et al., 2024). Similarly, CrnnCrispr is also a deep learning 
method for the prediction of CRISPR/Cas9 on-target activity. It 
uses four advanced deep learning models such as DeepSpCas9, 
TransCrispr, DeepCas9, and CRISPRont. It can help models when 
training data is limited (Zhu et al., 2024). 

Toufikuzzaman et al. (2024) introduced the CRISPR-DIPOFF suite 
(https://github.com/tzpranto/CRISPR-DIPOFF), an interpretable 
deep learning model, that precisely predicts CRISPR-Cas9 off-
target sites. It work on recurrent neural networks (RNNs) 
optimized through genetic algorithms, and only uses sequence 
data. Using Integrated Gradients to interpret the model was 
important because it showed two separate sub-regions within the 
sgRNA seed region, which gave us new information about why off-
target effects happen. While the work focused solely on substitution 
mismatches and excluded structural or energy-based comparisons, 
there is the need to expand future studies to include other Cas 
variants (e.g., Cas12, Cas13), indel mismatches, broader genomic 
contexts, and diverse benchmark datasets from various species and 
cell types to improve generalizability and robustness. 

The RNAS-sgRNA (https://github.com/shehlarafiq5/RNAS

sgRNA) model, a hybrid framework integrating neural 
architecture search (NAS) with recurrent neural networks (RNN), 
provides a reliable method for predicting the on-target efficacy of 
CRISPR/Cas9 sgRNAs. By automating architecture optimization 
via NAS, the model diminishes manual tuning while proficiently 
analysing sgRNA sequences represented as binary matrices. RNAS
sgRNA demonstrated superior performance across various datasets 
and cell lines, when compared area under the receiver operating 
characteristic curve (AUROC), with an average AUROC 
enhancement of 14.74% compared to DeepCRISPR. The model 
exhibited robust performance on smaller datasets via transfer 
learning, highlighting its potential applicability in personalized 
medicine and genome-wide contexts where data is frequently 
scarce (Rafiq and Assad, 2025). 
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9 Some other recent tools 

DrugThatGene (DTG) (https://github.com/pinellolab/ 
DrugThatGene) is an online tool designed to help translate 
functional genomics findings for potential treatments. It helps in 
the analysis of therapeutic targets identified using functional genetic 
screens. By submitting a list of genes, users can use DTG to 
automatically identify small molecules and access supporting 
information from various databases. DTG also aids in recognizing 
common biological pathways and protein complexes, thus speeding 
up the identification of small molecules from extensive CRISPR 
screen data (Canver et al., 2019). Additionally, “WeReview: CRISPR 
Tools” is an online platform offering a comprehensive, up-to-date 
repository of computational tools for designing CRISPR/Cas 
experiments. Researchers can search for tools that meet their 
specific needs and suggest modifications or new tools through the 
website (Torres-Perez et al., 2019). 

CRISPR-Cas systems enable allele-specific gene editing, offering 
a personalized treatment approach for autosomal dominant 
disorders by targeting and correcting disease-causing alleles. 
AsCRISPR (https://bio.tools/AsCRISPR) facilitates the design of 
sgRNAs for allele-specific genome engineering, taking into 
account factors like allele discrimination, efficiency, and off-target 
effects, providing a comprehensive and user-friendly platform 
(Zhao et al., 2020). Recent prime editing (PE) technology uses 
prime editing guide RNA (pegRNA) to direct a fusion protein, 
along with nCas9 and reverse transcriptase, to specific genomic sites 
for precise editing. Designing PEs is more complex than using single 
gRNAs with CRISPR nucleases or base editors, and analysing high-
throughput sequencing data post-PE requires special consideration 
of PEs’ unique features. To solve these complexities, two user-
friendly web tools, PEDesigner and PE-Analyzer, have been created. 
PEDesigner helps select pegRNA by providing extension sequences, 
target sequences, and nicking gRNA sequences. PE-Analyzer 
evaluates PE results, summarizing data related to mutations in 
tables and interactive graphs (Hwang et al., 2021). SpacePHARER 
(CRISPR Spacer Phage–Host Pair Finder) (https://github.com/ 
soedinglab/spacepharer) is a fast and sensitive tool for predicting 
relationships between phage and host by identifying phage genomes 
matching CRISPR spacers in different data (genomic or 
metagenomic). It can compare phages at the protein level, adjust 
its scoring system for very short sequences, and combine evidence 
from multiple matches to reduce false positives. Run time for 
SpacePHARER is 12 min to process the dataset which is 47 times 
faster than BLASTN search (575 min) (Zhang et al., 2021). 
SynBioStrainFinder (http://design.rxnfinder.org/biosynstrain/) is

the latest tool developed to integrate CRISPR/Cas gene-editing 
system information with genome sequences and data to form a 
comprehensive database of microbial strains. SynBioStrainFinder is 
a publicly available resource that offers an easy-to-use interface for 
searching, exploring, and visualizing comprehensive data on 
microbial strains at http://design.rxnfinder.org/biosynstrain/. The 
quick strain information query system integrates modules to create 
a curated and accessible platform. It has retrieved 1426 records of 
Frontiers in Plant Science 14 
CRISPR/Cas-based gene editing from 157 microbial strains. The 
database also includes 773,298 strain-related compounds and 
139,499 genome sequences (Cai et al., 2022). 
10 Conclusion 

Today, the CRISPR tools are diverse, functional, highly specialized, 
with difficulty in scalability, and ease of use. These resources provide 
researchers with valuable support in designing, executing, and analysing 
genome editing experiments, enabling more efficient and precise 
modifications of the genetic code. From comprehensive databases of 
validated guide RNA sequences to user-friendly web-based tools for 
primer design and outcome analysis, the landscape of genome editing 
resources continues to expand and evolve. CRISPOR, CHOPCHOP and 
DeepCRISPR offer robust features for gRNA design and are excellent 
choices for many users. For users focused on ease of use and visual tools, 
CHOPCHOP is a great option, while CRISPOR is highly reliable for 
detailed off-target analysis and supports a wide range of organisms. 
Ultimately, the best tool depends on specific requirements andworkflow 
preferences. Many tools are limited by specific species (primarily human 
or plant), by dated datasets, or by a focus on specific Cas  proteins  such  
as SpCas9 but not on emerging variants such as Cas12a, Cas13, or anti-
CRISPR. Off-target prediction remains the biggest challenge, with 
limited validation. Various tools are developed based on machine 
learning algorithms, often restricted to a fewer Cas variant and 
limiting their practical applications. There are functional annotation 
gaps in CRISPR technology present in terms of limited understanding of 
the roles, mechanisms, and biological functions of newly discovered 
CRISPR-Cas systems, particularly those identified through 
metagenomic and bioinformatic approaches. These gaps are 
particularly evident in a typical system, where little experimental data 
exists to confirm computational predictions. Because of the 
uncertainties surrounding their activity, PAM preferences, and off-
target behaviour, many CRISPR variants are therefore unreliable for 
use in genome editing applications. Current CRISPR technology has 
limitations due to its lack of integration with experimental validation, 
affecting the reliability and translational potential of computational 
predictions. In silico tools can predict guide RNA efficiency, PAM 
recognition, and off-target effects, but they are rarely linked with 
standardized or high-throughput experimental workflows. This gap 
between functional verification and computational design causes 
uncertainty in editing results. Therefore, integrated platforms that 
combine automated experimental validation pipelines are needed. For 
the future CRISPR tools,  there should be a focus on  unifying platforms  
that handle multiple types of Cas, greater organism coverage, and design 
facilitated by artificial intelligence for improved guide RNA specificity 
and reduction of off-targets. Also, combining computational tools with 
experimental methods provides the most comprehensive understanding 
of CRISPR experiments. These advancements not only accelerate 
research progress but also hold promise for various applications in 
biotechnology, medicine, greater scalability for throughput experiments, 
and inclusion of real-time CRISPR screening results will further close 
the gap between research, synthetic biology, and therapy. As the field of 
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genome editing continues to grow, the continued development and 
refinement of these databases and tools will be crucial for unlocking the 
full potential of genetic engineering and realizing its benefits for society. 
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