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EMSAM: enhanced multi-scale
segment anything model for
leaf disease segmentation
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Accurate segmentation of leaf diseases is crucial for crop health management

and disease prevention. However, existing studies fall short in addressing issues

such as blurred disease spot boundaries and complex feature distributions in

disease images. Although the vision foundation model, Segment Anything Model

(SAM), performs well in general segmentation tasks within natural scenes, it does

not exhibit good performance in plant disease segmentation. To achieve fine-

grained segmentation of leaf disease images, this study proposes an advanced

model: Enhanced Multi-Scale SAM (EMSAM). EMSAM employs the Local Feature

Extraction Module (LFEM) and the Global Feature Extraction Module (GFEM) to

extract local and global features from images respectively. The LFEM utilizes

multiple convolutional layers to capture lesion boundaries and detailed

characteristics, while the GFEM fine-tunes ViT blocks using a Multi-Scale

Adaptive Adapter (MAA) to obtain multi-scale global information. Both outputs

of LFEM and GFEM are then effectively fused in the Feature Fusion Module (FFM),

which is optimized with cross-branch and channel attention mechanisms,

significantly enhancing the model’s ability to handle blurred boundaries and

complex shapes. EMSAM integrates lightweight linear layers as classification

heads and employs a joint loss function for both classification and

segmentation tasks. Experimental results on the PlantVillage dataset

demonstrate that EMSAM outperforms the second-best state-of-the-art

semantic segmentation model by 2.45% in Dice Coefficient and 6.91% in IoU

score, and surpasses the baseline method by 21.40% and 22.57%, respectively.

Particularly, for images with moderate and severe disease levels, EMSAM

achieved Dice Coefficients of 0.8354 and 0.8178, respectively, significantly

outperforming other semantic segmentation algorithms. Additionally, the

model achieved a classification accuracy of 87.86% across the entire dataset,

highlighting EMSAM’s effectiveness and superiority in plant disease segmentation

and classification tasks.
KEYWORDS

segment anything model, parameter efficient fine-tuning, adapter tuning, leaf disease
segmentation, multi-task learning
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1 Introduction

Accurate segmentation of leaf lesions is essential for the early

diagnosis and precise management of crop diseases. The area,

shape, and distribution of lesions reflect disease severity and

guide subsequent prevention and control measures (Shoaib et al.,

2022). Manual segmentation of disease spots by plant pathology

experts is time-consuming, labor-intensive, and inefficient.

Moreover, this approach is prone to bias and requires significant

investment in human and material resources (Singh and Misra,

2017). Computer vision-based methods generally offer better

efficiency, consistency, and automation than manual

segmentation. They can capture complex feature details,

facilitating large-scale processing and analysis. Traditional

methods for plant disease segmentation employ edge detection,

thresholding, and region growing (Pang et al., 2011; Revathi and

Hemalatha, 2012; Wang et al., 2013). These methods are effective

for images with simple backgrounds and distinct disease spots.

However, they lack robustness when dealing with lesions that have

blurred boundaries, complex shapes, and varying sizes.

Deep learning models can automatically learn complex features,

showing strong robustness against noise and complex backgrounds,

making them efficient for lesion segmentation (Giménez-Gallego

et al., 2020). Models based on deep learning are primarily divided

into two categories: Convolutional Neural Network (CNN) and

Vision Transformer (ViT). CNN-based segmentation models, such

as U-Net (Ronneberger et al., 2015) and the DeepLab series (Chen

et al., 2018a), achieve precise segmentation of target regions. Liu

et al. (2022) used a U-Net model with DenseNet as the backbone to

segment three common rice leaf diseases, achieving a mean Dice

coefficient (mDice) of 0.86. Yuan et al. (2022) employed an

improved DeepLab+ model to segment grape leaf black rot,

introducing channel attention mechanisms and pyramid feature

fusion networks, resulting in a mean Intersection over Union

(mIoU) score of 0.85 on a custom orchard dataset. Pal and

Kumar (2023) proposed an AgriDet framework, which integrates

the Inception-Visual Geometry Group Network with a Kohonen-

based deep learning network to classify the severity of plant

diseases. Within this framework, a multi-variate Grab-Cut

algorithm is employed to achieve effective image segmentation

under complex background occlusion, significantly mitigating the

issue of background interference. Divyanth et al. (2023) proposed a

two-stage model combining U-Net and DeepLab+. It first extracts

leaves from the background, followed by disease spot extraction,

achieving an mIoU of 0.74 for corn leaf diseases. Although these

works have made progress in leaf disease image detection, CNNs

inherently lack global information perception. Pal et al. (2024)

proposed a novel framework for plant disease recognition, which

initially employs DeepLabV3 to accurately segment the diseased

plant regions. Additionally, the framework utilizes Bayesian Task

Augmentation-Model Agnostic Meta-Learning with multi-scale

spatial attention to optimize the network, enabling the model to

achieve exceptional performance even with limited datasets.

Experimental results on two datasets demonstrated outstanding

performance, with an accuracy rate of 99.1%, a sensitivity of 99.5%,
Frontiers in Plant Science 02
and a specificity of 98.7%. This limits their performance when

dealing with leaf disease spots that exhibit distributional differences.

Transformer architectures excel at global modeling, which improves

segmentation accuracy and helps handle complex disease regions

(Dosovitskiy et al., 2021). For instance, Jiang et al. (2023) employed

the Trans-Unet model to segment pine nematode disease,

employing a novel loss function based on precision and recall,

achieving an mDice Coefficient of 0.87. Yang et al. (2024) utilized

the Swin-Unet model, optimized with SENet modules to focus on

global target features, achieving an mDice Coefficient of 0.85 in corn

leaf disease segmentation tasks. However, these methods require

extensive annotated data and are less effective in handling blurred

boundaries. Additionally, task-specific models require targeted

training, limiting their adaptability and generalization to diverse

leaf disease segmentation scenarios.

Traditional models designed for specific tasks often have limited

adaptability and generalization when applied to diverse leaf disease

segmentation scenarios. In contrast, the Segment Anything Model

(SAM), pre-trained on extensive image datasets, shows exceptional

generalization performance. This enables SAM to adapt more

effectively and generalize across various leaf disease segmentation

tasks. Its efficiency in segmenting targets with both sparse and dense

prompts makes it a promising solution for overcoming the

limitations of task-specific models, thereby enhancing the

versatility and performance in agricultural applications (Kirillov

et al., 2023). SAM excels in generalization, performing well in

simple natural image segmentation tasks without the need for

retraining. However, for specialized tasks such as plant disease

segmentation, SAM typically requires fine-tuning to achieve

optimal performance (Zhang and Jiao, 2023). Since its release,

SAM has garnered significant attention, with applications in

medical imaging (Cheng et al., 2023; Wu et al., 2023; Ma et al.,

2024), remote sensing (Osco et al., 2023; Wang et al., 2023; Gui

et al., 2024), and plant disease segmentation. In the field of plant

disease segmentation, Zhang et al. (2023) fine-tuned SAM on a

tobacco leaf dataset, achieving an mIoU of 0.84 across different

growth stages. Moupojou et al. (2024) employed a two-stage

framework where SAM first segments all recognizable objects in

an image, and then a self-constructed classification network

performs image classification, resulting in a 10% improvement in

classification accuracy compared to traditional classification

networks. Balasundaram et al. (2025) used SAM to segment

diseased tea leaf areas. These segments were processed by a

custom CNN for feature extraction, followed by classification,

achieving 95.06% accuracy. The above studies use SAM to

segment diseases in private datasets, not open datasets, making it

difficult to comprehensively evaluate SAM’s segmentation

performance on plant diseases. Moreover, Transformer-based

SAM faces challenges in capturing fine details, showing

limitations in tasks that require fine-grained segmentation, such

as blurred boundaries, camouflaged objects, and fragmented

features (Zhang et al., 2024). Plant disease images often exhibit

these traits, with lesions of low severity showing blurred boundaries

and fragmented, fine-grained features. Directly applying SAM to

leaf disease segmentation yields unsatisfactory results, as shown in
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Figure 1. Figure 1A shows segmentation using point prompts,

where foreground points mark disease spots, and background

points mark leaves and other areas. However, achieving better

results requires precise point settings, significantly reducing

efficiency. Figure 1B illustrates box prompts, using a bounding

box to segment leaves. While box prompts segment the leaf, they fail

to isolate disease spots. Figure 1C shows automatic segmentation

results, distinguishing foreground from background but missing

detailed disease regions. resulting masks lack any semantic

information. As a result, to enhance SAM’s performance in the

leaf disease monitoring field, it often requires fine-tuning with high-

quality plant disease segmentation images. This highlights the need

for fine-tuning large vision models to adapt them for specific

segmentation tasks.

To enable SAM to better learn domain-specific knowledge,

parameter-efficient fine-tuning techniques are considered the

most effective solutions (Xu et al., 2023). Chen et al. (2023b)

proposed SAM-Adapter, integrating domain-specific information

or prompts into SAM via efficient adapters. This approach

facilitates the adaptation to downstream tasks. Zhang and Liu

(2023) proposed SAMed, which fine-tunes SAM’s image encoder

using Low-Rank Adaptation (LoRA). This method achieves

performance comparable to state-of-the-art semantic

segmentation techniques in various medical image segmentation

tasks. Li et al. (2023) developed an agriculture-specific SAM

adapter, improving the Dice Coefficient by 41.48%. However,

these fine-tuning methods still fail to allow SAM to perform

effectively with complex features. The main reason for these

issues is that plant disease images differ significantly in feature

details and distribution from SAM’s training images. The unclear

boundary and irregular shape of a lesion in a plant disease image

pose significant challenges for SAM. These challenges can be

summarized as follows: (1) Leaves with mild disease severity often

have indistinct boundaries, resulting in minimal differences

between the foreground and background. (2) Lesion areas vary

widely, ranging from large clusters to fragmented distributions, or a

combination of both. (3) The absence of label information in SAM’s

training data prevents the use of individual small lesions for disease
Frontiers in Plant Science 03
type classification. These challenges significantly constrain the

model’s ability to effectively segment leaf disease regions with

complex features.

In response to these challenges, we propose the Enhanced

Multi-Scale SAM (EMSAM), a framework designed to improve

SAM’s performance in complex disease segmentation tasks.

EMSAM achieves fine-grained segmentation of leaf disease

images by focusing on the following key objectives: (1) Adapting

the base model specifically for plant disease segmentation. (2)

Integrating multi-scale feature modeling to effectively capture

lesion characteristics. (3) Combining global feature extraction

with local detail capture to improve sensitivity to disease-specific

features. (4) Jointly optimizing segmentation and classification in

the decoding stage using a unified loss function. The main

contributions of this study include:
1. Development of the EMSAM framework, which integrates

more efficient adapter tuning techniques to enhance its

performance in plant disease segmentation. The framework

improves SAM’s ability to handle disease images with

blurred boundaries and complex shapes.

2. Design of the Multi-Scale Adaptive Adapter (MAA): The

MAA module captures multi-scale pyramid features to

extract disease features at various scales, improving the

model’s segmentation precision and robustness. This is

achieved with minimal trainable parameters, enabling

efficient parameter tuning.

3. Introduction of an efficient feature fusion mechanism:

Combining a Local Feature Extraction Module (LFEM)

with the Feature Fusion Module (FFM), EMSAM

incorporates cross-branch and channel attention

mechanisms to optimize the integration of CNN and ViT

features, achieving a balance between global and local

feature representation.

4. Incorporation of a lightweight classification head and a

joint loss function: This enables EMSAM to accurately

segment lesion regions while predicting disease categories,

significantly enhancing the practical utility of the model.
FIGURE 1

(A) Segmentation with SAM’s point prompts. (B) Segmentation with SAM’s box prompts. (C) SAM automatically segments everything.
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5. We conduct the first comprehensive evaluation of SAM and

EMSAM on the PlantVillage dataset, which is the well-

known open plant disease image dataset, establishing a

comparable baseline for future research in plant

disease segmentation.
The remainder of this paper is organized as follows: Section 2

provides a detailed description of the dataset construction and

EMSAM architecture. Section 3 describes the experimental setup

and analyzes the results. Section 4 discusses the implications and

significance of the study and summarizes the overall research.

2 Materials and methods

2.1 Dataset and construction method

The dataset employed in this study is the widely recognized

PlantVillage dataset, which is extensively utilized in the field of

plant disease segmentation (Hughes and Salathe, 2016). Comprising

a total of 54,306 plant leaf images, the dataset is organized into 12

categories of healthy leaves and 26 categories of diseased leaves.

Notably, all disease types have been diagnosed by plant pathology

experts, ensuring the accuracy and reliability of the data. The

images are in RGB format, with a uniform resolution of 256x256

pixels, facilitating consistent preprocessing and analysis.

We employ the “EISeg” tool (Hao et al., 2022) from Baidu’s

PaddlePaddle framework for pixel-level annotations of disease

lesion areas, saving the annotated data in PNG format. For our

study, we annotated 200 images per category across 26 diseased leaf

categories, following these criteria:
1. Diversity of Lesion Characteristics: Images were selected to

capture variations in lesion shapes, sizes, color patterns,

and spatial distributions, ensuring representation of early to

late disease stages.

2. Class Balance: Each category was strictly limited to 200

images to prevent model bias toward overrepresented classes.
The resulting dataset, named the PlantVillage Segmentation

Dataset (PSD), contains 5,200 images (26 classes × 200 images)

split into a training set (4,160 images) and a test set (1,040 images)

with an 8:2 ratio. Table 1 details the category distribution and

annotation statistics.

The PSD includes images displaying various lesion

distributions: some with small, fragmented lesions; others with

large, concentrated lesions; and some exhibiting a combination of

both characteristics. These complex shapes reflect the irregularity of

lesion area distributions on leaves, posing higher demands on

models tasked with leaf disease segmentation. Figure 2 illustrates

selected annotated images from the PSD, showcasing original

images alongside their corresponding grayscale ground truth

masks. The first-row features images with fragmented disease spot

distributions, the second row shows images with mixed fragmented

and concentrated distributions, and the third row displays images

with concentrated disease spots.
tiers in Plant Science 04
To demonstrate the model’s capability in segmenting leaves

with varying levels of disease severity, we adopt the leaf disease

severity classification method proposed by Ji and Wu (2022),

utilizing the Percentage of Infections (POI) as a baseline metric.

The infection percentage is calculated using Equation 1:

POI = (Da=Ta)� 100

        = (Pi=Pt)� 100
(1)

Where Da and Ta denote the mutilated leaf area and the total

leaf area, respectively, Pi and Pt denote the pixel size of the diseased

spot area and the pixel size of the total leaf area, respectively. Based

on this metric, disease severity is categorized into three levels: light

(0< POI ≤ 0.2), moderate (0.2< POI ≤ 0.5), and severe (0.5< POI ≤

1). Utilizing these three severity levels, we further subdivide the test

set to facilitate more detailed experimental validation.
2.2 Overall architecture of EMSAM

For the task of plant leaf disease segmentation and classification,

we propose the Enhanced Multi-scale SAM (EMSAM), as

illustrated in Figure 3. The EMSAM architecture comprises three

primary components: an image encoder, SAM’s prompt encoder,

and a hybrid decoder. The image encoder is responsible for fusing

global and local features, SAM’s prompt encoder is responsible for

generating the prompt embedding, and the hybrid decoder

concurrently handles classification and segmentation tasks. The

image encoder consists of two branches: a ViT branch forming the

Global Feature Extraction Module (GFEM) and a CNN branch

comprising the Local Feature Extraction Module (LFEM). The
TABLE 1 Category information of the PSD.

Class
ID

Class name Class
ID

Class name

1 Apple scab 14 Potato early blight

2 Apple black rot 15 Potato late blight

3 Apple cedar rust 16 Squash
powdery mildew

4 Cherry powdery mildew 17 Strawberry leaf scorch

5 Corn cercospora
leaf spot

18 Tomato bacterial spot

6 Corn rust 19 Tomato early blight

7 Corn northern
leaf blight

20 Tomato late blight

8 Grape black rot 21 Tomato leaf mold

9 Grape black measles 22 Tomato septoria
leaf spot

10 Grape leaf blight 23 Tomato spider mites

11 Orange citrus greening 24 Tomato target spot

12 Peach bacterial spot 25 Tomato mosaic virus

13 Pepper bacterial spot 26 Tomato yellow leaf curl
frontiersin.org
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GFEM employs stacked ViT blocks to extract global features, with

most parameters frozen during training. Only the parameters

related to the MAA integrated into the ViT blocks are fine-tuned.

The LFEM leverages convolutional modules and multi-scale feature

extraction techniques to capture local features, thereby enhancing

sensitivity to edges and textures. The global and local features are

subsequently fed into the FFM. The FFM employs cross-branch

attention mechanisms and progressively integrated Squeeze-and-

Excitation (SE) blocks (Hu et al., 2018) to facilitate effective

interaction and weighted fusion, resulting in comprehensive

feature representations. In the decoding phase, the Mask-Class

Hybrid Decoder integrates the fused features from the image

encoder with the prompt embeddings from SAM’s Prompt

Encoder. A lightweight linear layer acts as the classification head,

responsible for predicting mask confidence, Intersection over

Union (IoU) tokens, and label identifiers.

2.2.1 Multi-scale adaptive adapter in ViT block
Although SAM excels in natural scene segmentation, it

necessitates fine-tuning for specific downstream tasks. The image

encoder of SAM, which employs stacked ViT blocks, results in a
Frontiers in Plant Science 05
large number of trainable parameters, thereby limiting performance

and increasing the risk of overfitting, particularly when training

data are scarce. To address these challenges, adapter tuning offers an

efficient and cost-effective approach to adapt pre-trained models

(Sung et al., 2022). Consequently, we design the MAA to efficiently

adapt SAM for the leaf disease image domain. The detailed

architecture of MAA is illustrated in Figure 4.

Within the GFEM, each ViT Block comprises amulti-head attention

mechanism and an MLP layer, with layer normalization applied before

each sublayer. In our architecture, we insert two MAAs into each ViT

Block as trainable parameters, while freezing the remaining components

to preserve the pre-trained weights. These MAAs incorporate depthwise

separable convolutions, enabling a lightweight design that significantly

reduces the training cost while enhancing the model’s adaptability to the

specific task of leaf disease segmentation.

Traditional Adapter structures include a down-sampling linear

layer (Down), a ReLU activation function, and an up-sampling

linear layer (Up). In our design, to obtain multi-scale features and

optimize adapter-tuning, we add a Multi-Scale Pyramid Feature

Module (MSPM) after the ReLU activation function. Thus, the

adapter tuning process can be represented by Equation 2:
FIGURE 2

A selection of images showing areas of lesions labeled with EISeg.
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f Ri = t(UP(MSPM(ReLU(Down(finput))))) (2)

Where finput denotes the input features, which are sequentially

processed through a linear down-sampling layer and a ReLU

activation function. The processed features are then transformed

into f Ri ∈R D
r�W�H within the Multiscale Pyramid Feature Module

(MSPM) for subsequent multi-scale spatial information processing,

while r represents a reduction factor introduced to decrease the

dimensionality of the input features. t denotes the reshaping

operation applied to the input features, where the global features

are decomposed into multiple sub-features to enable parallel

processing of information at different scales or across

distinct regions.

In the MSPM, to enhance the utilization efficiency of multi-scale

features, we employ four global average pooling layers (AP) to

extract multi-scale features, denoted as f Ri,j ∈R D
4�r�W�H .

Subsequently, simple 1×1 convolution layers are designed to

generate dynamic weights WD,j. These dynamic weights allow

each input feature to dynamically adjust the importance of each

scale based on its content, effectively avoiding the fixed contribution

of features at each scale. This process is formally represented by

Equations 3, 4, and 5:

WD,j = DW(AP(f Ri )), 1 ≤ j ≤ 4 (3)

f Ri,j = AP(f Ri ) · WD,j, 0 < WD,j < 1 (4)

f Ri,j = BI(C1(f
R
i,j )) (5)

Where the dynamic weights WD,j ∈ (0, 1) are constrained

within a reasonable range using the Sigmoid activation function.
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C1 defines a convolutional layer with a kernel of 1×1 and a kernel of

3×3 depthwise separable convolution with GELU activation

function. BI is a bilinear interpolation-based upsampling method

that restores downsampled features to their original resolution.

Next, we concatenate the multi-scale features f Ri,j ∈R D
r�W�H ,

representing the processed multi-scale spatial information in

Equation 6:

fi = C3( f Ri,1, f
R
i,2, f

R
i,3, f

R
i,4,C2(f

R
i )

h i
) (6)

Where C2 defines a 3×3 depthwise separable convolutional layer

with a GELU activation function, optimizing the overall feature

information extraction capability. ½·� represents the process of

channel-wise concatenation of features from different scales. C3

defines a 1×1 convolutional layer, which is applied to impose weight

control on the channel dimension of the output feature, acting on

the concatenated feature map and facilitating the fusion of global

channel weights.

Finally, the entire MSPM output is mathematically represented

by Equation 7:

fo = t
h
fi
i

(7)

Where t ½·� similarly represents the operation of reshaping the

features to match the input feature dimensions. This design enables

EMSAM to fine-tune the ViT blocks efficiently, minimizing the

training cost.

2.2.2 Enhanced detail feature image encoder
Traditional segmentationmodels relying exclusively on CNN or ViT

often face challenges in effectively capturing both global and local
FIGURE 3

Overall architecture of the proposed EMSAM. It enhances the multi-scale fine-grained image processing capability of SAM through four novel
modules: MAA, LFEM, FFM, and mask-category hybrid decoder.
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information, particularly when dealing with the complex and irregular

feature distributions characteristic of leaf disease images (Ngo et al.,

2024). To address these limitations, we introduce the Enhanced Detail

Feature Image Encoder, as depicted in Figure 5. This encoder consists of

two key components: the GFEM, designed to capture global contextual

information, and the LFEM, focused on extracting boundary and

detailed features. By integrating these modules, the encoder

significantly enhances the model’s feature extraction capabilities,

thereby improving segmentation performance.

In the GFEM, we inherit the ViT framework from SAM and

incorporate the MAA in each ViT Block. The MAA module,

through depthwise separable convolutions and the multi-scale

pyramid feature module (MSPM), optimizes the ViT’s ability to

capture global information specific to leaf disease images. This

process can be expressed by Equation 8:

foutput = MAA(finput)

         ¼Up(MSPM( Re LU(Down(finput)))
(8)
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Additionally, the GFEM leverages multi-head self-attention

mechanisms to effectively aggregate critical information globally,

enabling the model to capture the overall characteristics of diseased

leaves. In the N-th ViT Block, the entire process is given in Equations 9,

10 and 11:
FG = LN(FG,N−1) (9)

F
0
G,N = MAA(Attention(FFM(FG))) + FG,N−1 (10)

FG,N = MLPSAM(LN(F
0
G,N )) +MAA(LN(F

0
G,N )) + F

0
G,N (11)

Where FG denotes the input to the FFM, FG,N and FG,N−1

represent the output features of the N-th and (N-1)-th ViT

Blocks, respectively, F
0
G,N represents the intermediate parameters

within the ViT Block, and FFM denotes the feature fusion module.

In the LFEM, a multi-layer convolutional structure comprising

four convolutional groups and a max-pooling convolution group is

employed to precisely capture detailed features. The input features
FIGURE 4

Detailed structure of the proposed MAA module.
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first undergo a 3×3 convolution to extract core features while

maintaining computational stability. A parallel branch incorporates

a dilated convolution to expand the receptive field and capture larger-

scale local features. Post addition, a 1×1 convolution reduces

computational load through channel compression and performs

nonlinear feature mapping. Each convolutional layer is followed by

a Batch Normalization layer to normalize outputs, thereby

accelerating the training process and enhancing model performance

and stability. ReLU activation functions are applied to all

convolutional layers. To match the spatial resolution of the

GFEM’s output feature maps, the final stage employs N 3×3

convolutions with Layer Normalization and GELU activation. This

process is illustrated in Equations 12, 13, and 14:

F
0
L = MP(Conv1(Fin)) (12)

FL = Conv3(MP(o
2

n=1
Convn(F

0
L))) (13)

FL,N = Conv4(MP(FL)) (14)

Where FL represents the portion of the LFEM features input to

the FFM. F
0
L denotes the intermediate features during the processing

stage. MP refers to the max-pooling operation, which is used to

downsample feature maps while retaining prominent local features.

Notably, FL,N and FG,N maintain identical spatial resolutions. Thus,
Frontiers in Plant Science 08
the combined output from the image encoder can be expressed by

Equation 15:

Fout = FG,N + FL,N (15)
2.2.3 Feature fusion module
To effectively integrate global and local features from the image

encoder, we designed the Feature Fusion Module (FFM), as

depicted in Figure 6. This module balances global and local

features, enabling the model to learn the diverse distributions of

disease spots in leaf images. To enhance feature flexibility, we

incorporated a SE Block into the FFM. The SE Block adjusts

channel-wise feature weights, emphasizing key features. The

weight adjustment progressively increases over training epochs,

guided by an epoch-based scaling factor, ensuring the model

adapts to the influence of the SE Block.

In the FFM, the Cross-Branch Attention (CBA) replaces theMulti-

head Attention in the original transformer block. These two are

essentially the same in nature, except that the keys (K) and values

(V) input to the CBA are derived from the local feature extraction

module. To emphasize the interaction between different branches, we

refer to this module as Cross-Branch Attention. We first apply CBA to

interact between global features FG and local features FL. Using query

(Q), key, and value, CBA uncovers effective complementary

information across different branches, given in Equations 16 and 17:
FIGURE 5

Image encoder with enhanced detail features.
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Q = WqFG,   K = WkFL,   V = WvFL (16)

CBA(Q,K ,V) = Softmax
QKTffiffiffi

d
p

� �
V (17)

WhereWq,Wk, andWv are the learnable weight matrices, while

d represents the feature dimension used to scale the inner product.

For the initially interacted features, we employ the SE Block to

implement dynamic weight adjustment. The SE Block dynamically

adjusts the importance of global and local features based on training

epochs, enhancing the adaptability and robustness of the model’s

information processing. The operations of the SE Block can be

expressed by Equations 18 and 19:

S = s (W2d (W1z) · aepoch) (18)

FSE = S · CBA(Q,K ,V) (19)

Where z represents the global average pooling result of the

feature vector. s and d denote the Sigmoid and ReLU activation

functions, respectively. W1 and W2 correspond to the weights of

fully connected layers. aepoch   is a dynamic coefficient associated

with the training epochs, controlled by an incremental function in

the form of exponential growth, expressed as follows:

aepoch = 1 − e−b ·current epoch (20)

In the above equation, current epoch represents the current

training epoch, and b is a hyperparameter controlling the

growth rate.

2.2.4 Mask-class hybrid decoder
Although the SAMmask decoder effectively generates segmentation

masks through multi-layer cross-attention mechanisms, it lacks the

ability to provide class-specific predictions. To enhance disease

segmentation efficiency, which requires both precise lesion delineation

and accurate disease type classification, we introduce the Mask-Class

Hybrid Decoder. This architecture integrates classification

functionalities into the SAM mask decoder, as shown in Figure 7.

The SAM mask decoder utilizes self-attention and bidirectional

cross-attention to extract interactive features between image and
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prompt embeddings. These features are processed by an upsampling

convolution module to produce binary segmentation masks.

However, this approach does not offer class-specific predictions. To

address this, we propose adding a lightweight classification head to

the existing mask decoder architecture. This head consists of two fully

connected layers preceded by a global average pooling layer for

dimensionality reduction. By projecting the image embeddings

through these layers, we obtain class probability distributions

corresponding to the generated segmentation masks. The

lightweight design ensures minimal additional training overhead

while enabling concurrent classification tasks effectively.
2.3 Loss function and model
evaluation metrics

2.3.1 Loss function
To simultaneously optimize the performance of segmentation

and classification tasks, we define a joint loss function Ljoint , which

comprises three components: segmentation loss Lmask, IoU loss

LIoU , and classification loss Lcls. These components are linearly

combined as follows:

Ljoint = lmask · Lmask + lIoU · LIoU + lcls · Lcls (21)

Here, lmask, lIoU , and lcls are the weights assigned to each

loss component.

The segmentation loss Lmask serves as the primary objective

function, focusing on the precision of boundary delineation and the

consistency of segmented regions. We adopt a combination of Dice

Loss and Binary Cross-Entropy (BCE) Loss for the segmentation

loss, optimizing both the overlap rate of target regions and pixel-

level classification accuracy, as illustrated in Equation 22:

Lmask = a · LDice + b · LBCE (22)

Dice Loss emphasizes the overlap between the target region and

the prediction, addressing the imbalance between foreground and

background areas, which is suitable for segmentation tasks like lesion

segmentation where the foreground area is relatively small. BCE Loss

measures the correctness of each pixel classification, suitable for
FIGURE 6

Architecture of the FFM.
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scenarios where the foreground and background are relatively

balanced. Dice Loss and BCE Loss are defined below, respectively,

as shown in Equations 23 and 24:

LDice = 1 −
2oN

i=1yibyi
oN

i=1(yi)
2 +oN

i=1(byi)2 (23)

LBCE = −
1
No

N

i=1
½yi log (byi) + (1 − yi) log (1 − byi)� (24)

Where ŷi and yi represent the predicted value and the ground

truth value of the i-th pixel, respectively.

IoU loss LIoU aims to further enhance the model’s prediction of

the overlap ratio between the predicted and ground truth regions,

effectively focusing on boundary information. This process is

illustrated in Equation 25:

LIoU = 1 −
P ∩ Gj j
P ∪ Gj j (25)

Where P represents the number of pixels in the predicted

region, G denotes the number of pixels in the ground truth

region, P ∩ Gj j and P ∪ Gj j correspond to the number of pixels

in the intersection and union of the predicted and ground truth

regions, respectively.
The classification loss Lcls extends the capability of the

segmentation task by optimizing the prediction of class labels

through cross-entropy loss, as shown in Equation 26:

Lcls = −o
C

i=1
xi log (bxi) (26)

Where C is the number of classes, xi and x̂i are the true label and

the predicted label for class c, respectively.

2.3.2 Model evaluation metrics
To evaluate the performance of EMSAM in leaf disease image

segmentation and classification tasks, we employ three categories of

evaluation metrics: Dice Coefficient (Dice), Intersection over Union

(IoU), and Accuracy (Acc).
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The Dice is a metric used to measure the overlap between the

predicted segmentation and the ground truth, reflecting the model’s

ability to accurately predict the foreground regions. The expression

is given by Equation 27:

Dice =
2 · P ∩ Gj j
Pj j + Gj j (27)

The IoU is a metric that measures the ratio of the intersection to

the union between the predicted results and the ground truth

segmentation. Compared to the Dice Coefficient, IoU places greater

emphasis on strict matching of boundary regions, making it suitable

for evaluating the model’s precision in delineating the boundaries of

diseased areas. The equation is given by Equation 28:

IoU =
P ∩ Gj j
P ∪ Gj j (28)

Acc refers to the proportion of correctly classified labels for a given

instance averaged over the total number of labels (including both

predicted and actual values). The calculation equation is given by

Equation 29:

Acc =
TP + TN

TP + TN + FP + FN
(29)

Where TP (True Positives) and TN (True Negatives) represent

correctly predicted positive and negative instances, respectively,

while FP (False Positives) and FN (False Negatives) represent

incorrectly predicted instances.

By employing these metrics, we can comprehensively assess

both the segmentation and classification performance of the

EMSAM model.
3 Results and analysis

3.1 Experimental setup

The hardware configuration for our experiments is as follows:

CPU - Intel® Core™ i7-13700KF @ 5.4GHz, GPU - NVIDIA
FIGURE 7

Architecture of the Mask-class hybrid decoder.
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GeForce RTX 3090 (24GB), and memory - 32GB Samsung DDR5

5600MHz (16GB×2). The experimental environment is set up on an

Ubuntu 20.04.6 LTS 64-bit operating system, using Python 3.11 as

the programming language, PyTorch 2.0.1 as the deep learning

framework, CUDA Toolkit version 12.2, and cuDNN version 8.9.0.

During training, the primary parameter settings are as follows:

we select the ViT-b image encoder as the pre-trained model, with an

input image size of 256×256 pixels. The patch size for the patch

embedding block is set to 16, and the windowed attention size is

14×14. The batch size is set to 4, and the total number of training

epochs, including those for comparative experiments, is 200. The

training process utilizes the AdamW optimizer with an initial

learning rate of 0.0005, adopting an exponential decay learning

rate scheduling strategy. The learning rate at the t-th iteration is

defined as: lr(t) = lr0 · exp( − kt). Where lr(t) refers to the learning

rate at the t-th iteration, lr0 is the initial learning rate at the start of

training, k is the decay rate constant, and t represents the current

training iteration number. This setup facilitates rapid convergence

in the early stages of training, helping the model quickly locate a

favorable region in the parameter space and avoid over-reliance on

local minima. As training progresses, the learning rate gradually

decreases, reducing the step size of model updates, which aids in

fine-tuning model parameters and effectively prevents oscillations

and overfitting in the later stages of training.
3.2 Comparison with state-of-the-
art methods

We compare EMSAM with six other models to evaluate its

effectiveness in segmenting diseased leaf regions. The models include

SAMUS (Lin et al., 2024) and MedSAM (Ma et al., 2024) (SAM

extensions), Swin-Unet (Cao et al., 2023) and Trans-Unet (Chen et al.,

2021) (ViT-based), DeepLabv3+ (Chen et al., 2018b) (ResNet-based),

and HRNet-48 (Wang et al., 2021) (HRNet-based). The comparison

focuses on three key metrics: Dice coefficient, IoU score, and the

backbone networks utilized by each model. These metrics collectively

assess the feature extraction and segmentation effect of eachmodel. The

quantitative experimental results are presented in Table 2.
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From Table 2, it is evident that EMSAM outperforms all other

models on the PSD. Leveraging deep CNN-ViT feature fusion,

EMSAM effectively captures both global and local features,

highlighting the efficacy of combining CNN and ViT for plant

disease segmentation. Models relying solely on ViT, such as

MedSAM and Trans-Unet, exhibit lower Dice and IoU scores due

to insufficient attention to local features. While DeepLabv3+

achieves an IoU of 0.6504, its ResNet-50 backbone struggles with

fine-grained boundary information. Swin-Unet and Trans-Unet

show relatively lower performance, indicating room for

improvement in segmenting complex disease images. HRNet-48,

with Dice and IoU scores of 0.6911 and 0.5643 respectively,

demonstrates advantages in multi-scale feature extraction but still

falls short of EMSAM’s overall performance. Notably, EMSAM

achieves the highest Dice coefficient of 0.7925, surpassing the

second-best model, DeepLabv3+, by 2.45%, and outperforming

the lowest-performing Swin-Unet by 31.92%. This underscores

EMSAM’s superior overall match quality for segmented regions,

particularly in boundary detection and small region segmentation.

Additionally, its IoU of 0.6987 surpasses DeepLabv3+ and Swin-

Unet by 6.91% and 35.84%, respectively.

This study compares EMSAM with SOTA methods in terms of

total parameters, learnable parameters, and floating-point

operations (FLOPs), as detailed in Table 3. EMSAM has a total of

589.6M parameters and 133.9M learnable parameters,

demonstrating its ability to capture complex features. Its

computational cost of 322.5G FLOPs is higher than that of

smaller models such as DeepLabv3+ and Swin-Unet but

significantly lower than larger models like MedSAM and Trans-

Unet. As a transformer-based model, EMSAM has the highest

overall parameter count among these models. However, the

adoption of parameter-efficient fine-tuning techniques and

lightweight module designs helps keep the number of learnable

parameters at a moderate level. Overall, EMSAM achieves a balance

between accuracy and model complexity by maintaining sufficient

representational capacity while optimizing parameter efficiency and

computational cost. This makes it particularly suitable for

challenging segmentation tasks involving ambiguous lesion

boundaries and diverse morphological variations.
TABLE 2 Experimental results comparing EMSAM and SOTA methods.

Method Backbone Dice IoU

SAMUS CNN + SAM 0.7076 0.6336

MedSAM SAM 0.6448 0.5134

DeepLabv3+ Resnet-50 0.7730 0.6504

Swin-Unet
Swin

Transformer
0.5395 0.4483

Trans-Unet Vit-b 0.5882 0.4984

HRNet-48 HRNet-48 0.6911 0.5643

EMSAM CNN + SAM 0.7925 0.6987
The bold values indicate the optimal data metrics achieved by the model under the current
experimental setup.
TABLE 3 Comparison of EMSAM and SOTA methods in terms of model
parameters, learnable parameters, and training resource consumption.

Method
Total

params (M)
Learnable
params (M)

FLOPs
(G)

SAMUS 514.3 85.3 300.1

MedSAM 357.7 29.3 177.3

DeepLabv3+ 209.6 209.6 118.7

Swin-Unet 114.3 114.3 142.9

Trans-Unet 461.2 461.2 492.1

HRNet-48 197.9 197.9 167.2

EMSAM 589.6 233.9 322.5
fr
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Figure 8 demonstrates that EMSAM achieves refined pixel-level

segmentation, effectively capturing both global and local features

while maintaining the integrity of disease regions and preserving

superior boundary details. Compared to EMSAM, SAMUS exhibits

difficulties in detecting small lesions, while MedSAM’s sensitivity to

noise results in false boundary delineations. In the first row,

representing small and fragmented lesions, EMSAM outperforms

the other models with accurate segmentation. In the second row,

depicting large and concentrated lesions, EMSAM excels in

preserving boundary details, while DeepLabv3+, although robust

in segmenting large areas, struggles with fine-grained precision. In

the third row, depicting mixed feature distributions, EMSAM

accurately segments disease regions while avoiding noise, unlike

HRNet-48, which exhibits noticeable lesion adhesion.
3.3 Analysis of segmentation ability for
different disease severity levels

To validate EMSAM’s adaptability in segmenting leaf diseases

across different severity levels, we reclassified the test set based on

the disease severity classification method outlined in Section 2.1,
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categorizing the leaves into light, moderate, and severe severity

levels. A detailed analysis of each model’s performance under these

conditions is presented in Table 4, showing the Dice and IoU scores

for different models across the three severity levels.

Under light disease conditions, DeepLabv3+ achieves the highest

Dice score of 0.7564 and IoU of 0.6372, significantly outperforming

other models and demonstrating superior fine feature capture.

EMSAM follows closely, exhibiting high stability, while Swin-Unet

records the lowest performance with an IoU of 0.3195, indicating

challenges in handling small lesion areas. In medium disease

conditions, EMSAM achieves Dice and IoU scores of 0.8354 and

0.7365, respectively, outperforming MedSAM, which shows a

relatively lower IoU of 0.5213, highlighting limited robustness in

moderately complex lesions. For severe disease conditions, EMSAM

maintains its leading performance with Dice and IoU scores of 0.8187

and 0.7342, respectively, showcasing strong adaptability and

generalization in complex scenarios Figure 9 presents visual

segmentation outcomes across varying disease severity levels,

revealing model performance disparities. MedSAM and Swin-Unet,

sensitive to foreground-background discrepancies, exhibit poor

performance on leaves with ambiguous boundaries. In light disease

scenarios, CNN-based models such as DeepLabv3+ and HRNet-48
FIGURE 8

Visualization of different models on the self-constructed the PSD.
TABLE 4 Comparison of model performance at three disease levels.

Method
Dice IoU

Light Moderate Severe Light Moderate Severe

SAMUS 0.6361 0.7898 0.6979 0.5928 0.6545 0.6536

MedSAM 0.6757 0.6139 0.6446 0.5142 0.5213 0.5047

DeepLabv3+ 0.7564 0.7759 0.7839 0.6372 0.6714 0.6426

Swin-Unet 0.4678 0.4769 0.6738 0.3195 0.3842 0.6412

Trans-Unet 0.6521 0.7354 0.6862 0.4357 0.5306 0.5288

HRNet-48 0.7128 0.6925 0.6682 0.5782 0.5567 0.5579

EMSAM 0.7236 0.8354 0.8187 0.6254 0.7365 0.7342
The bold values indicate the optimal data metrics achieved by the model under the current experimental setup.
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excel at capturing small lesion areas, while EMSAM demonstrates a

more balanced performance. For medium severity cases, EMSAM

performs notably well, whereas MedSAM struggles with indistinct

lesion boundaries. Under severe disease conditions, Trans-Unet and

SAMUS experience over-segmentation due to heightened sensitivity

to complex backgrounds, hindering performance improvement.
3.4 Impact of different hyperparameter
settings on model performance

In Section 2.2.3, after introducing the SE Block, we design a

dynamic coefficient aepoch   to control the growth process of Epoch-

based Num, as expressed in Equation 20. Additionally, in Section

2.2.1, we introduce a joint loss function Ljoint to simultaneously

cater to segmentation and classification tasks, as defined in

Equa t i on 21 . The s e equa t i on s in t r oduc e two new

hyperparameters to EMSAM: the growth rate control parameter

b and the weights l for the loss component. To investigate the

impact of dynamic and fixed parameter settings on model

performance, we designed relevant experiments and visualized

key training indicators, as shown in Figure 10. The left plot
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shows the Dice score variation over epochs, while the right plot

shows the loss variation over epochs. In this experiment, we selected

three values (0.1, 0.5, and 0.9) to control the influence of the SE

block on the training process. When aepoch  =0.1, the SE block has a

relatively minor effect on the overall model training, allowing the

Dice score to increase rapidly in the early training phase while

maintaining relatively high segmentation accuracy in later stages.

Moreover, the overall training process remains stable. In contrast,

when aepoch  =0.9, the SE block exerts a much stronger influence on

the model training, leading to significantly lower Dice scores

compared to other settings. This suggests that an excessively

strong influence from the SE block during the early training

phase can cause the model to become overly sensitive to its

effects, making the optimization process too slow to adapt to

later-stage loss variations. Consequently, the model fails to fully

leverage the feature representations learned in the early stages,

which ultimately compromises performance.

The experimental results in Figure 10 indicate that dynamically

adjusting the influence of the SE block during training is essential

for achieving a better balance between convergence speed and final

accuracy. To observe the effects of the dynamic parameter b on

model performance during training, we experiment with different
FIGURE 9

Visualization of the model when confronted with different disease degree classes.
FIGURE 10

The impact of a fixed aepoch on model performance.
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values for each and conduct training sessions to identify the

appropriate hyperparameter settings. Figure 11 illustrates the

impact of varying b values on the model’s loss function and

Dice Coefficient.

As shown in the figure above, different values of b have a

significant impact on the model’s early convergence speed and the

final stable value. When b = 0:4, the convergence speed is the

fastest, but the final loss value is higher than those of other

hyperparameter settings, which suggests that the model may

converge too quickly, leading to underfitting. In contrast, b = 0:1

and b = 0:2 exhibit lower final loss values. Considering the effect of

different b values on the Dice, b = 0:2 contributes more effectively

to optimizing the model’s performance, striking a good balance

between training efficiency and segmentation performance. Table 5

presents the effects of different weight settings for the three

components of the joint loss function Ljoint on model performance.

From Table 5, it is evident that the weights lmask and lIoU
positively influence segmentation performance, while the Acc

metric does not exhibit a clear monotonic trend, instead

fluctuating based on the weight combinations. Setting lmask = 0:6,

lIoU = 0:2, lcls = 0:2 effectively balances the weight distribution

between segmentation and classification tasks, resulting in notable

performance improvements for the model.
3.5 Ablation study

In EMSAM, the core components are the proposed MAA,

LFEM, and FFM. Table 6 presents ablation experiment results on

the PSD, analyzing the contributions of these components. The

baseline model, shown in the first row, employs traditional adapter
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tuning for SAM transfer (Chen et al., 2023a). The second row

incorporates MAA for adapter tuning, validating its effectiveness in

extracting multi-scale information. The third row introduces LFEM

as an efficient detail feature supplement, utilizing standard cross-

modal attention for information fusion. The fourth row further

incorporates an SE-based attention mechanism into the

information fusion process to prevent detail loss during

feature integration.

To illustrate the contributions of EMSAM’s core components,

we present a visual analysis of segmentation performance across

different model configurations. Figure 12 provides a visual

comparison of segmentation outcomes for EMSAM’s core

components: MAA, LFEM, and FFM. The baseline model shows

notable limitations in segmenting complex lesion regions,

particularly in capturing boundary details and detecting small

lesions. Incorporating the MAA module substantially improves

segmentation performance, enabling more effective extraction of

multi-scale features compared to traditional adapter tuning

methods. Adding the LFEM further enhances the model’s ability

to process details and boundaries, leading to more precise local

feature extraction, particularly in small lesion areas and at lesion

edges. Incorporating the FFM module effectively integrates features

from the CNN and ViT branches, resulting in the best overall

segmentation performance for both lesion area segmentation and

boundary detail capture.

The ablation study demonstrates that the introduced

components (MAA, LFEM, and FFM) each significantly improve

segmentation performance. MAA enhances multi-scale feature

extraction in complex lesion regions, LFEM boosts local feature

extraction and boundary processing, and FFM facilitates efficient

channel-level feature fusion between CNN and ViT branches.

Collectively, these modules synergize to elevate the model’s

segmentation capabilities, particularly in handling complex and

detailed disease regions.
4 Conclusion

In this study, we propose EMSAM to address the challenges of

blurred boundaries and complex shapes in leaf disease images. Built

upon the SAM architecture, EMSAM achieves superior performance
FIGURE 11

Effect of different hyperparameter settings on the training process.
TABLE 5 Effect of different Loss weights on model performance.

lmask lIoU lcls Dice IoU Acc

0.4 0.3 0.3 0.7059 0.6257 0.8672

0.5 0.3 0.2 0.7433 0.6328 0.8637

0.6 0.3 0.1 0.7813 0.6893 0.7932

0.6 0.2 0.2 0.7925 0.6987 0.8786
The bold values indicate the optimal data metrics achieved by the model under the current
experimental setup.
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over state-of-the-art segmentation algorithms on the PSD,

demonstrating robust generalization across varying disease severities

and diverse scenarios. The MAA, specifically designed for leaf disease

image processing, efficiently captures blurred boundary features

through a multi-scale information extraction module. The LFEM

employs lightweight convolutional groups to extract fine-grained

features, complementing the global information captured by ViT

blocks and enabling balanced attention to both global and local

features. The FFM uses SE blocks to dynamically balance the weights

between CNN and ViT branches, effectively reducing redundancy.

Lastly, a lightweight classification head in the decoder integrates

segmentation and classification tasks for efficient multi-task learning.

Despite the promising performance of EMSAM in leaf disease

segmentation, several limitations need to be acknowledged: (1) The

study primarily relies on the PlantVillage dataset, which, while widely

used in plant disease research, consists of images captured in

controlled environments with simple and uniform backgrounds.

This limits the model’s ability to generalize to real-world

agricultural settings where lighting variations, occlusions, and
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complex backgrounds pose additional challenges. Future work

should evaluate EMSAM on diverse field datasets to enhance its

robustness and applicability. (2) Although EMSAM integrates

parameter-efficient tuning techniques, the inclusion of MAA, FFM,

and attention mechanisms increases computational overhead

compared to standard CNN-based approaches. The additional

FLOPs and memory requirements may hinder real-time

deployment on edge devices with limited resources. Future

optimizations, such as knowledge distillation or pruning, could help

reduce inference costs while maintaining performance. To further

enhance the capabilities of EMSAM, future research could explore two

primary avenues. Firstly, expanding the training dataset to encompass

a broader range of plant species and environmental conditions would

likely bolster the model’s generalization across diverse scenarios.

Secondly, exploring more efficient multi-task learning paradigms

could optimize performance on auxiliary tasks without increasing

model complexity, thereby enhancing both primary and auxiliary task

outcomes. These directions hold the potential to significantly advance

the effectiveness and applicability of EMSAM in real-world settings.

Overall, EMSAM presents innovative research directions and

technical frameworks to enhance image processing in leaf disease

segmentation, advancing the development of more efficient and

accurate disease detection solutions.

In addition to its demonstrated superiority in leaf disease

segmentation, the proposed EMSAM framework exhibits

considerable potential for broader real-world applications. The

integration of multi-scale adaptive modules and hybrid feature

extraction—combining CNN-based local detail capture with ViT-

based global context modeling—enables EMSAM to effectively

handle images characterized by blurred boundaries and complex
TABLE 6 Analysis of ablation experiments on the PSD.

MAA LFEM FFM Dice IoU

✕ ✕ ✕ 0.6117 0.5284

✓ ✕ ✕ 0.7782 0.6824

✓ ✓ ✕ 0.7870 0.6928

✓ ✓ ✓ 0.7925 0.6987
Symbol ✕ represents the baseline configuration excluding the module, whereas symbol ✓
demonstrates that its inclusion induces statistically significant alterations in
model performance.
FIGURE 12

Visualization comparison of EMSAM’s core components.
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object shapes. Consequently, this methodology is not only well-

suited for plant disease detection in precision agriculture but can

also be readily adapted to other challenging segmentation tasks. For

instance, its robust performance in delineating fine structures

makes it a promising candidate for medical image analysis (e.g.,

tumor or lesion segmentation), remote sensing applications (e.g.,

land cover mapping), and industrial quality control (e.g., defect

detection). The modular design and parameter-efficient tuning

strategy further facilitate customization for domain-specific

requirements, even in scenarios with limited annotated data.
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