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Introduction: Plant phenotyping is a critical area in agricultural research that

focuses on assessing plant traits quantitatively to enhance productivity and

sustainability. While traditional methods remain important, they are constrained

by the complexity of plant structures, variability in environmental conditions, and

the need for high-throughput analysis. Recent advances in imaging technologies

and machine learning offer new possibilities, but current methods still face

challenges such as noise, occlusion, and limited interpretability.

Methods: In response to these challenges, we propose a novel computational

framework that combines deep learning-based text generation with domain-

specific knowledge for plant phenotyping. Our approach incorporates three key

elements. A hybrid generative model is used to capture complex spatial and

temporal phenotypic patterns. A biologically-constrained optimization strategy is

employed to improve both prediction accuracy and interpretability. An

environment-aware module is included to address environmental variability.

Results: The generative model uses advanced deep learning techniques to

process high-dimensional imaging data, effectively capturing complex plant

traits while overcoming issues like occlusion and variability. The biologically-

constrained optimization strategy incorporates prior biological knowledge into

the computational process, ensuring predictions are biologically realistic and

enhancing trait correlations and structural consistency. The environment-aware

module adapts dynamically to environmental factors, ensuring reliable

predictions across a variety of agricultural settings.

Discussion: Experimental results show that the framework delivers scalable,

interpretable, and accurate phenotyping solutions, setting a new standard for

precision agriculture applications.
KEYWORDS

plant phenotyping, deep learning, generative model, biologically-constrained

optimization, precision agriculture
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1564394/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1564394/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1564394/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1564394&domain=pdf&date_stamp=2025-06-04
mailto:mlhm59@163.com
https://doi.org/10.3389/fpls.2025.1564394
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1564394
https://www.frontiersin.org/journals/plant-science


Zhu et al. 10.3389/fpls.2025.1564394
1 Introduction

Plant phenotyping, which involves the measurement of

observable plant traits, is essential for understanding plant

behavior, improving crop yields, and advancing precision

agriculture Zhang et al. (2024). This task is becoming increasingly

significant due to the growing demands of global food security and

the need to address challenges such as climate change, resource

constraints, and pest management Johri et al. (2024). Not only does

phenotyping provide valuable insights into the genotype-to-

phenotype relationship, but it also enables data-driven decision-

making for optimizing agricultural practices Divyanth et al. (2024).

However, traditional methods of plant phenotyping, which rely

heavily on manual observation and data collection, are labor-

intensive, time-consuming, and prone to human error Yuan et al.

(2021). Advances in automated methods, including text generation

models, not only address these limitations but also provide novel

ways to interpret phenotyping data, summarize findings, and

facilitate communication between researchers and practitioners in

precision agriculture Li et al. (2022b). Consequently, deep learning-

based text generation is emerging as a key area of innovation,

transforming how phenotyping data is processed, understood, and

utilized Lin et al. (2024).

To overcome the limitations of traditional phenotyping

methods, early approaches were grounded in symbolic artificial

intelligence (AI) and knowledge-based systems Luo et al. (2022).

These methods used structured representations of agricultural

knowledge and rule-based reasoning to automate specific tasks

such as trait analysis, pest detection, or growth pattern

assessment Cao et al. (2024). By leveraging domain-specific

ontologies and expert-defined rules, symbolic AI methods

provided a foundation for plant phenotyping automation. For

example, decision trees and expert systems were developed to

model plant diseases and predict yield outcomes based on a fixed

set of observable parameters Gong et al. (2022). Although these

methods offered interpretable solutions and demonstrated success

in controlled environments, their reliance on predefined rules made

them rigid and unable to adapt to the complexity and variability of

real-world agricultural settings Cho et al. (2021). The lack of

scalability and flexibility in symbolic AI approaches highlighted

the need for more robust, data-driven solutions capable of handling

diverse phenotyping scenarios.

In response to the shortcomings of symbolic AI, the advent of

data-driven machine learning marked a significant shift in

phenotyping research Schuhmann et al. (2022). Machine learning

algorithms, such as support vector machines, random forests, and

gradient boosting, were applied to automate the detection and

classification of plant traits based on data collected from images,

sensors, and other sources Liu et al. (2021). These methods

improved scalability and offered better performance compared to

symbolic AI, as they could identify complex patterns and

relationships in data without explicit rule encoding Ruiz et al.

(2022). For instance, supervised learning models were widely

adopted for tasks like disease classification and yield prediction,

leveraging labeled datasets to train predictive systems Li et al.
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(2022a). However, the effectiveness of machine learning heavily

depended on the quality and quantity of labeled data, and these

models often struggled with generalization when applied to new

conditions or crop types. Traditional machine learning approaches

lacked the ability to generate natural language descriptions of

phenotyping data, limiting their utility in facilitating human

understanding and communication Yang and Klein (2021).

The recent rise of deep learning and pre-trained language

models has introduced a paradigm shift in plant phenotyping and

its associated tasks, such as text generation Zhong et al. (2022).

Deep learning models, particularly convolutional neural networks

(CNNs) and recurrent neural networks (RNNs), have been widely

adopted for phenotyping tasks like plant image analysis, trait

extraction, and anomaly detection Xu et al. (2023). Furthermore,

transformer-based architectures, such as GPT and BERT, have

revolutionized text generation by enabling contextual

understanding and coherent output generation. These models can

be fine-tuned to generate textual descriptions of phenotyping

results, summarize experimental findings, or provide actionable

insights for farmers and researchers. For example, GPT-based

models trained on agricultural datasets can generate summaries of

plant health metrics, highlight potential risks, and suggest

interventions in natural language. The ability of pre-trained

models to transfer knowledge across domains and generate

contextually relevant text makes them particularly valuable for

phenotyping in diverse agricultural scenarios Cheng et al. (2023).

However, despite their advantages, these models require significant

computational resources, and their performance can degrade when

faced with domain-specific challenges, such as limited labeled data

or highly imbalanced datasets Gal et al. (2022).

Based on the limitations of existing approaches, we propose a

novel deep learning-based framework for text generation tailored to

plant phenotyping in precision agriculture. Our method addresses

the challenges of domain-specific adaptation, computational

efficiency, and data scarcity through a combination of techniques.

We incorporate domain-specific knowledge into pre-trained

language models using transfer learning and knowledge

distillation, enabling the generation of accurate and contextually

relevant text. We introduce a hybrid architecture that combines

transformer-based language models with lightweight convolutional

modules for efficient feature extraction from phenotyping datasets.

We employ data augmentation techniques and semi-supervised

learning to enhance model performance in low-resource settings.

These innovations not only improve the scalability and

generalizability of text generation for plant phenotyping but also

ensure that the generated outputs are interpretable and actionable

for end users in precision agriculture.

We summarize our contributions as follows:
• Our approach introduces a hybrid architecture that combines

transformer-based models with lightweight convolutional

modules, ensuring efficient feature extraction and accurate

text generation tailored to phenotyping data.

• The proposed framework supports multi-scenario

applications in precision agriculture, offering high
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scalability, computational efficiency, and the ability to

handle diverse phenotyping tasks and data sources.

• Extensive experiments demonstrate that our method

outperforms state-of-the-art models in generating accurate

and actionable text descriptions, achieving significant

improvements in both natural language generation metrics

and domain-specific evaluation criteria.
2 Related work

2.1 Deep learning for plant phenotyping

Deep learning has emerged as a transformative approach for

addressing plant phenotyping challenges by enabling the analysis of

high-dimensional data from diverse sources such as images,

hyperspectral data, and genomic datasets Su et al. (2022). In

particular, convolutional neural networks (CNNs) have

demonstrated success in extracting phenotypic traits from imaging

data, including leaf count, shape, size, and disease severity. Such traits

are critical for assessing plant growth and stress tolerance in precision

agriculture Yang et al. (2023). Variants of CNNs, such as U-Net, have

also been employed for segmentation tasks, enabling detailed

delineation of individual plants or plant organs from complex

backgrounds Tuo et al. (2023). In recent years, the integration of

multimodal deep learning frameworks has shown promise in

combining different data sources, such as genomic and phenotypic

information, to predict plant traits. For instance, autoencoders and

generative adversarial networks (GANs) have been applied to

synthesize phenotypic traits when certain data are unavailable,

thereby reducing the dependency on extensive field experiments

Nichol et al. (2021). In the context of high-throughput

phenotyping, long short-term memory (LSTM) networks and

transformers are increasingly being explored for temporal analysis

of plant growth patterns over time, offering a deeper understanding of

developmental dynamics. Despite these advancements, the scalability

of deep learning-based phenotyping tools remains a significant

challenge, particularly when applied to field-scale datasets. Transfer

learning has been proposed as a solution, leveraging pre-trained

models to reduce the computational burden and labeled data

requirements. Furthermore, the incorporation of interpretable

machine learning methods within deep learning pipelines has

gained attention, enabling researchers to unravel complex

relationships between input features and phenotypic outcomes.

These developments underscore the potential of deep learning to

revolutionize plant phenotyping practices by enhancing the precision

and automation of trait measurement processes Zhou et al. (2023).
2.2 Text generation in agriculture
applications

Text generation technologies powered by deep learning are

gaining traction in agricultural applications, offering novel ways to
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automate report generation, summarize experimental findings, and

improve communication among stakeholders Jiang et al. (2023).

Recurrent neural networks (RNNs), particularly LSTM

architectures, have traditionally been used for text generation

tasks due to their ability to model sequential data Lin et al.

(2020). However, the advent of transformer models, such as GPT

and BERT, has significantly advanced the state of the art, enabling

the generation of coherent and context-aware agricultural texts

Venkit et al. (2023). One application of text generation in

agriculture involves the automatic summarization of plant

phenotyping results. By leveraging encoder-decoder frameworks,

researchers have demonstrated the feasibility of generating textual

descriptions of phenotypic data directly from images or structured

datasets. Such capabilities are particularly valuable for creating

automated field reports or generating real-time updates about

crop health, growth, or stress responses Wu et al. (2023). Beyond

summarization, transformer-based models have been employed to

produce domain-specific recommendations, including best

practices for irrigation, pest control, and nutrient management,

based on phenotypic analysis. An emerging area of focus is the use

of generative models, such as GPT-3, for simulating hypothetical

phenotypic scenarios under different environmental conditions Liu

et al. (2020a). By synthesizing realistic and scientifically grounded

text outputs, these models have the potential to support decision-

making processes in precision agriculture. However, one of the

challenges lies in the integration of domain-specific agricultural

knowledge into these text generation systems to ensure accuracy

and relevance Parikh et al. (2020). Ongoing efforts to fine-tune pre-

trained language models using agriculture specific corpora have

yielded promising results in addressing this challenge. Such

advancements underscore the potential of text generation

technologies to streamline communication and enhance decision-

making in plant phenotyping workflows.
2.3 Precision agriculture using multimodal
data

Precision agriculture relies heavily on the integration of

multimodal data sources, including satellite imagery, soil sensor

data, and crop phenotyping metrics, to optimize agricultural

practices. Deep learning has played a pivotal role in extracting

insights from these diverse datasets, facilitating more accurate

predictions of crop yield, disease outbreaks, and resource

requirements Sellam et al. (2020). For instance, CNNs have been

widely employed for analyzing aerial imagery captured by drones,

enabling fine-grained detection of spatial variability in plant health

and soil conditions. Similarly, LSTMs have been used to process

time-series data from environmental sensors, providing insights

into dynamic changes in field conditions Ramesh et al. (2021). The

growing interest in multimodal fusion techniques has fueled

research into combining structured and unstructured data for

more comprehensive phenotyping analyses. Models such as

multimodal transformers and hybrid networks have been

developed to integrate heterogeneous data sources, ranging from
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numeric measurements of soil properties to textual descriptions of

agronomic practices Min et al. (2023). This integration not only

improves the accuracy of phenotypic predictions but also provides

richer context for interpreting complex relationships among

environmental variables. The application of multimodal data

fusion extends to text generation for agricultural decision support.

For example, deep learning models trained on multimodal datasets

can generate descriptive text summarizing crop conditions, growth

anomalies, or anticipated yield outcomes Liu et al. (2020b). These

textual outputs can assist farmers and agronomists in making

informed decisions, particularly in resource-limited settings.

Nevertheless, challenges remain in standardizing multimodal

datasets and ensuring their compatibility with deep learning

frameworks. Moreover, the explainability of multimodal models is

a critical concern, as the integration of diverse data types often

results in increased model complexity. Addressing these issues will

be crucial for realizing the full potential of multimodal data in

supporting precision agriculture and plant phenotyping Liu and

Chahl (2021).
3 Method

3.1 Overview

Plant phenotyping plays a critical role in precision agriculture

by providing quantitative assessments of plant traits under varying

environmental conditions. However, traditional phenotyping

methods face challenges such as labor intensity, environmental

variability, and the need for scalable high-throughput analysis. To

address these limitations, we propose a novel computational

framework that combines deep generative modeling with

biologically-guided optimization, designed specifically for plant

phenotyping applications. The proposed framework consists of

two key components: the Phenotype-Informed Deep Generative

Network (PDGN), responsible for extracting, modeling, and

predicting phenotypic traits from high-dimensional imaging data,

and the Biologically-Guided Optimization Strategy (BGOS), which

embeds domain-specific biological constraints into the learning

process to improve both prediction accuracy and interpretability.

As introduced in Section 3.2, plant traits evolve over time under the

combined influence of genotype, environmental factors, and

biological processes. To model these dynamics, PDGN (detailed

in Section 3.3) employs a spatial encoder for feature extraction,

a temporal dynamics module to capture growth over time, and a

biologically-constrained decoder to reconstruct traits in a

biologically plausible manner. To further ensure realism and

robustness, BGOS (explained in Section 3.4) introduces

biologically-informed regularization, multi-scale optimization, and

environment-aware learning into the training process. Together,

these two components form an integrated framework that supports

interpretable, biologically-consistent, and environmentally-

adaptive phenotyping predictions.
Frontiers in Plant Science 04
3.2 Preliminaries

Plant phenotyping aims to quantitatively assess plant traits,

such as morphology, growth dynamics, and stress responses, by

capturing and analyzing complex phenotypic data. To effectively

address the challenges in this field, it is essential to formulate the

phenotyping process within a rigorous mathematical framework.

This section introduces the notations, problem definition, and

theoretical foundation necessary for our proposed model

and strategy.

Let us denote a plant’s phenotypic traits by a multidimensional

feature vector x ∈ Rd , where each dimension corresponds to a

specific measurable attribute, such as plant height, leaf area, or root

architecture. A dataset of n plants can then be represented as X =

xif gni=1, where xi ∈ Rd is the feature vector for the i-th plant. Each

feature may depend on various factors, including genotype g ∈ G
(the set of all genotypes), environmental conditions e ∈ E, and
temporal progression t ∈ T . Thus, the feature vector x can be

expressed as Equation 1:

x(g, e, t) = f (g, e, t) + e, (1)

where f :G � E � T → Rd is the underlying mapping from

genotype, environment, and time to phenotypic traits, and e
represents noise due to measurement errors or unmodeled factors.

Phenotyping data are often acquired using imaging techniques,

resulting in high-dimensional raw data such as 2D or 3D images,

hyperspectral data, or point clouds. Let I = Iif gni=1 denote the set of
such raw images, where Iicorresponds to the i-th plant. Each image

Iican be modeled as a function I :D → Rc where D is the spatial

domain and c denotes the number of channels. Extracting features

xifrom Iirequires a transformation f : I → X , such that Equation 2:

xi = f(Ii) : (2)

The transformation f typically involves preprocessing steps and
feature extraction methods.

Given a dataset X of observed plant traits, our objective is to

learn a predictive mapping f̂ :G � E � T → Rd that can generalize

across unseen genotypes, environmental conditions, and temporal

contexts. Formally, the problem can be stated as Equation 3:

f̂ = arg min
f∈F

E(g,e,t)½L(f (g, e, t), x(g, e, t))�, (3)

where F is the hypothesis space of candidate functions, and L is a

loss function that measures the discrepancy between the predicted

and observed traits.

Plant phenotyping often involves monitoring growth and

development over time. Let xti represent the phenotypic traits of plant i

at time t. The temporal evolution of traits can be modeled as Equation 4:

xt+1i = xti + Dt , (4)

where Dtcaptures the change in traits over the time interval t. A

common assumption is that Dtfollows a Markovian process, such

that Equation 5:
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p(xt+1i xti , x
t−1
i ,…) = p(xt+1i

�� ��xti ) : (5)

This property enables the use of dynamic models, such as

recurrent neural networks or Kalman filters, to predict

phenotypic changes over time.

Environmental factors such as temperature, humidity, and soil

composition significantly impact plant phenotypes. Let e ∈ Rk

represent a vector of environmental variables. To account for

environmental variability, we define the conditional distribution

of traits given the environment Equation 6:

p(x e) =
Z

p(x

����
����e, z)p(z)dz, (6)

where z represents latent variables capturing unobserved factors.

To enhance the clarity and reproducibility of the proposed

framework, we provide explicit specifications of the units for key

variables used in the mathematical formulation. The growth rate r,

which governs phenotypic change over time, is measured in day−1,

representing the relative change in trait value per day. The phenotypic

trait vector zit represents dimensionless, normalized feature values

derived from imaging data, ensuring scale invariance across different

phenotypic attributes. The environmental variable vector

etencompasses factors such as temperature (°C), humidity (%), soil

moisture content (g/cm³), and light intensity (μmol m−2 s−1), all of

which are standardized to ensure compatibility with the deep learning

model’s input normalization. These units are summarized in Table 1,
Frontiers in Plant Science 05
providing a clear reference for future implementations and extensions

of this work. By explicitly defining these units, we aim to minimize

ambiguity, facilitate reproducibility, and support broader adoption of

the proposed framework by researchers and practitioners.
3.3 Phenotype-informed deep generative
network

PDGN consists of a spatial encoder, temporal modeling

module, and biologically-constrained decoder, forming a unified

pipeline for trait extraction and prediction. Architectural details and

mathematical formulations are provided in Supplementary (As

shown in Figure 1).

3.3.1 Spatial feature encoding with attention
The PDGN incorporates a spatial encoder to extract meaningful

phenotypic features from highdimensional imaging data, such as 3D

point clouds, 2D multi-spectral images, or hyperspectral data(As

shown in Figure 2). This encoder transforms raw imaging inputs

Iiinto a compact and informative latent representation zi, which

captures the key structural and spectral characteristics of plants. The

mapping is defined by the encoding function fenc, parameterized as a

convolutional neural network (CNN) Equation 7:

zi = fenc(I i; qenc), (7)

where qenc represents the trainable parameters of the encoder. This

design enables the model to process diverse forms of plant imaging

data, including irregular 3D point cloud structures and high-

dimensional hyperspectral data, providing flexibility across

different experimental setups. To address common challenges in

plant imaging, such as occlusion, noise, and variable resolutions, the

encoder incorporates attention mechanisms that dynamically

prioritize key phenotypic regions. These mechanisms guide the

network to focus on biologically relevant areas, such as leaves,

stems, roots, or flowers, while ignoring background noise or

irrelevant artifacts. The attention weights aijfor each region j of

the input Iiare computed as Equation 8:

aij =
exp   (eij)

okexp   (eik)
, eij = v⊤tanh (Wahj + ba), (8)

where hjis the hidden representation of region j, Waand baare

learnable parameters, and v is a vector that computes the

importance of each region. The final spatial representation ziis

then obtained by aggregating the attended regions Equation 9:

zi = o
j
aij · hj : (9)

The encoder includes multi-scale feature extraction layers to

capture information at different spatial resolutions. By using

hierarchical feature maps, the encoder can represent both fine-

grained details and large-scale structures. For example, a typical

layer l of the CNN produces a feature map f l as Equation 10:
TABLE 1 Key variables and their units in the proposed framework.

Variable Description Unit/Scale

r Growth rate, describing the rate of
phenotypic change over time

day–1

x Phenotypic trait vector
(raw measurement)

Trait-dependent (e.g.,
cm, cm²)

zit Normalized phenotypic trait vector at
time t for plant i

Dimensionless
(normalized)

et Environmental variable vector at
time t

Mixed units
(see below)

Environmental Variables (components of et)

Temperature Air or soil temperature °C

Humidity Relative humidity %

Soil
moisture

Soil water content g/cm³

Light
intensity

Photosynthetically Active
Radiation (PAR)

μmol m–2 s–1

K Carrying capacity (maximum
trait value)

Same unit as
corresponding trait

t Time (growth progression) day

hij Dependency function between traits ti
and tj

Dimensionless
(correlation
coefficient)
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f l = s (Wl
*f

l−1 + bl), (10)

where Wl and bl are the weights and biases of the convolutional

layer, ∗ denotes the convolution operator, and s is the activation

function. These multi-scale features are aggregated across layers to

form a comprehensive spatial representation. To enhance
Frontiers in Plant Science 06
robustness, the encoder also includes data augmentation strategies

during training, such as random rotations, scaling, and noise

injection, which improve the model’s ability to generalize across

different imaging conditions. Furthermore, spectral information

from hyperspectral images is processed through specialized

convolutional filters or spectral attention modules, enabling the
FIGURE 2

The Spatial Feature Encoding with Attention (SFEA) framework processes plant image data by extracting meaningful phenotypic features. It then
refines these features to enhance their relevance and clarity. The architecture integrates visual feature refinement, modality interaction, multi-head
self-attention, and transformer decoding to highlight key regions in plant imaging. By leveraging spatial encoding and attention mechanisms, SFEA
effectively identifies biologically relevant structures such as leaves and stems while minimizing noise and background interference.
FIGURE 1

Overview of the Phenotype-Informed Deep Generative Network (PDGN), a novel computational framework for plant phenotyping that integrates
spatial feature encoding with attention, biologically-constrained decoding, and temporal dynamics modeling with growth constraints. PDGN
captures both local and global phenotypic similarities, leveraging deep learning and biological priors to model complex spatial, temporal, and
environmental interactions underlying plant traits.
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encoder to identify key wavelength bands associated with specific

phenotypic traits. The spatial encoder is thus designed not only to

extract relevant features from diverse imaging modalities but also to

ensure robustness, interpretability, and scalability. This rich latent

representation ziforms the foundation for subsequent temporal

modeling and biologically constrained decoding, enabling the

PDGN to analyze complex plant phenotypes effectively

and accurately.
3.3.2 Temporal dynamics with growth constraints
To effectively capture the evolution of phenotypic traits over

time, the PDGN integrates a temporal dynamics module that learns

sequential latent representations ztif gTt=1, where each zti encodes the

state of plant i at time t. This module accounts for the temporal

dependencies inherent in plant growth and trait development. The

temporal evolution is modeled using a transition function ytemp,

implemented via a recurrent neural network (RNN) or a

transformer-based architecture, as follows Equation 11:

zt+1i = ytemp(z
t
i , e

t ; qtemp), (11)

where et represents environmental variables at time t, and qtemp are

the trainable parameters of the temporal module. The use of RNNs,

such as Long Short-Term Memory (LSTM) or Gated Recurrent

Unit (GRU) networks, allows the model to maintain temporal

memory and learn long-term dependencies in plant phenotypic

dynamics. Alternatively, transformer-based architectures with self-

attention mechanisms enable efficient modeling of temporal

relationships, particularly for irregularly sampled or long time-

series data. To ensure biological plausibility in phenotypic

predictions, the module incorporates growth constraints based on

classical logistic growth models. The temporal change in the latent

state zti is governed by Equation 12:

dzti
dt

= rzti (1 −
zti
K
), (12)

where r is the intrinsic growth rate, and K represents the carrying

capacity of the system. This constraint regularizes the temporal

module by enforcing realistic growth dynamics, ensuring that

predictions align with known biological patterns such as

saturation in growth after a certain stage. The discrete form of

this growth equation can be integrated into the RNN or transformer

as an additional regularization term Equation 13:

Lgrowth = oT−1
t=1 zt+1i − (zti + rzti (1 −

zti
K
)Dt)

����
����
2

, (13)

where Dt is the time step, and the loss penalizes deviations from the

expected logistic growth trajectory. To logistic growth, the temporal

module can incorporate other biologically inspired dynamics, such

as Gompertz growth or sigmoid-based models, to account for plant-

specific variations. For instance, a Gompertz model can be

expressed as Equation 14:

dzti
dt

= rzti ln (
K
zti
), (14)
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providing a flexible alternative for modeling non-linear growth

patterns. The temporal dynamics module also adapts to

environmental fluctuations by explicitly conditioning the

transition function on et, the environmental context. For example,

the influence of environmental variables can be modeled as

Equation 15:

zt+1i = ytemp(z
t
i , e

t ; qtemp) + het , (15)

where h is a trainable coefficient that determines the sensitivity of

phenotypic traits to environmental changes. This formulation

enables the module to dynamically adjust latent representations

based on environmental factors, capturing phenomena such as

accelerated growth under favorable conditions or stunted

development during stress. To improve temporal consistency and

reduce noise, the module applies a smoothness regularization term

over consecutive latent states Equation 16:

Lsmooth = oT−1
t=1 zt+1i − zti

�� ��2, (16)

encouraging gradual changes in the latent space to reflect the

continuous nature of plant growth.

To account for seasonal or cyclic effects in plant growth, the

growth rate r(t) can be extended from a constant parameter to a

periodic function that reflects seasonal variations. This is

particularly relevant for crops whose growth is influenced by

recurring environmental cycles, such as temperature, light

duration, and rainfall. A simple yet effective approach is to model

r(t) using sinusoidal or harmonic functions, for example:

r(t) = r0(1 + asin 
2p t
Tseason

)

where r0 represents the baseline growth rate, a controls the seasonal

fluctuation amplitude, and Tseason denotes the length of one full

seasonal cycle (e.g., 365 days for annual crops). This formulation

allows the framework to capture periodic growth accelerations and

decelerations driven by environmental rhythms. By incorporating

such periodic components into the temporal modeling of

phenotypic traits, the framework can better align with real-world

phenological processes and improve its predictive accuracy in long-

term, multi-season phenotyping tasks. Future work will

systematically explore and validate this approach across diverse

crop species and environmental settings.

3.3.3 Biologically-constrained decoding
The decoder in PDGN reconstructs phenotypic traits x̂ ifrom

the latent representations zi, ensuring that the predictions are not

only accurate but also biologically interpretable and domain-

relevant. This reconstruction is defined by the decoding function

fdec, parameterized by qdec, as follows Equation 17:

x̂ i = fdec(zi; qdec) : (17)

The decoder leverages domain-specific biological constraints to

guide the reconstruction process, aligning the output phenotypic

traits x̂ iwith known structural, functional, and environmental

relationships observed in plants. These constraints are
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implemented as regularization terms in the model’s objective

function, ensuring that the reconstructed traits adhere to

biological principles. One critical aspect of biologically

constrained decoding is the incorporation of trait correlations.

Many plant traits exhibit strong dependencies, and these

relationships can be modeled explicitly. The decoder enforces

these relationships using a regularization term Equation 18:

Lcor = o
(ti ,tj)∈ET

hij(ti, tj) − rij
�� ��2, (18)

where ET represents the edges in the trait dependency graph, hij(ti,

tj) measures the correlation between traits tiand tjin the

reconstructed data, and rijis the target correlation value derived

from domain knowledge or empirical studies. This ensures that

predicted traits reflect realistic co-variation patterns observed in

plants. Another key component of the decoder is the enforcement of

structural hierarchies, which maintain consistency between related

traits. For example, hierarchical constraints such as Leaf Area ≤

Canopy Area or Root Volume ≤ Soil Volume are imposed to ensure

physical plausibility. These constraints are represented as inequality

terms in the loss function Equation 19:

Lstruct = o
i∈H

max (0, ti − tj), (19)

where tiand tjare traits related by a hierarchy and H is the set of

hierarchical trait pairs. This penalization ensures that the model

adheres to structural consistency during reconstruction. The

decoder adapts to environmental variat ions through

environmental adaptability. Auxiliary inputs e, representing

environmental factors such as light intensity, temperature, or soil

moisture, are integrated into the decoding process. These inputs

enable the decoder to predict phenotypic traits that respond

appropriately to external conditions. For instance Equation 20:

x̂ i = fdec(zi, e; qdec), (20)

where the decoder explicitly conditions predictions on e. This

allows the model to capture how environmental changes, such as

drought stress or nutrient availability, influence phenotypic traits

like growth rate or biomass. The decoder’s overall objective function

combines these biologically motivated constraints with the

reconstruction loss, ensuring both accuracy and interpretability.

The total loss is defined as Equation 21:

L = Lrecon + l1Lcor + l2Lstruct + l3Lenv, (21)

where Lrecon measures the reconstruction error, and l1, l2, and l3
are hyperparameters that control the relative contributions of trait

correlation, structural hierarchy, and environmental adaptability

constraints, respectively.
3.4 Biologically-guided optimization
strategy

BGOS enhances prediction interpretability via biologically-

informed regularization, multi-scale optimization, and
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environment-aware learning. The corresponding regularization

terms and optimization procedures are detailed in Supplementary

(As shown in Figure 3).
3.4.1 Biologically-informed regularization
Incorporating biological principles into the regularization

framework is essential for ensuring that the phenotypic

predictions of the model are both realistic and consistent with

known biological constraints(As shown in Figure 4). BGOS achieves

this by introducing several biologically-informed regularization

terms that encapsulate hierarchical relationships, structural

consistency, and physiological bounds. These regularization terms

not only guide the optimization process but also impose penalties

on predictions that violate established biological relationships and

limitations. The regularization term, focusing on hierarchical

relationships, enforces known dependencies between different

traits in the phenotype. Specifically, for each pair of traits tiand

tjconnected in a trait dependency graph ET, a penalty term is

applied if the dependency hij(ti,tj) exceeds a biologically

determined threshold rij. The penalty function used for this is a

ReLU activation, ensuring that only violations of the threshold

contribute to the overall loss Equation 22:

Lhier = o
(ti ,tj)∈ET

ReLU(hij(ti, tj) − rij), (22)

where hij(ti,tj) models the dependency between traits tiand tj, and

rijis a biologically derived threshold that dictates the acceptable

range of these dependencies. This term helps maintain the

hierarchical structure of trait interactions by penalizing

implausible trait combinations. To enforcing hierarchical

relationships, the model also accounts for structural consistency.

This is particularly important when dealing with composite traits

that are often aggregates or functions of other simpler traits. For

example, the relationship between the leaf area and canopy area

must maintain a certain consistency, where the leaf area should not

exceed the canopy area in a biologically realistic scenario. To

penalize such inconsistencies, the following regularization term is

introduced Equation 23:

Lstruct = on
i=1max (0, Leaf Areai − Canopy Areai), (23)

where Leaf Areaiand Canopy Areairepresent the leaf and canopy

areas for the i-th individual or observation. This term ensures that

the relationship between these composite traits remains physically

plausible by imposing a penalty whenever the leaf area exceeds the

canopy area. To respect physiological bounds, the predictions are

constrained to fall within valid biological ranges. For each predicted

trait value xˆij, its value is enforced to lie within the biologically

relevant bounds [lj,uj], where ljand ujare the lower and upper

bounds for trait j, respectively. The following loss function

captures this constraint Equation 24:

Lbounds = on
i=1od

j=1ReLU(x̂ ij − uj) + ReLU(lj − x̂ ij), (24)

where x̂ ijis the predicted value for trait j of individual i, and the

ReLU functions ensure that any violation of the lower or upper
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bounds contributes positively to the loss. These biologically-

informed regularization terms collectively ensure that the model

adheres to fundamental biological principles, resulting in

predictions that are not only statistically optimal but also

biologically meaningful and interpretable. By integrating

hierarchical relationships, structural consistency, and
Frontiers in Plant Science 09
physiological bounds, BGOS is able to produce phenotypic

predictions that are both realistic and aligned with established

biological knowledge.

The biologically-constrained optimization strategy ensures that

the generated phenotypic descriptions remain consistent with

fundamental biological principles governing plant growth and
FIGURE 4

Overview of the Biologically-Informed Regularization (BIR) module. The diagram illustrates the BIR framework that incorporates iterative denoising,
3D FFT processing, and attention mechanisms for enhancing phenotypic predictions. The model uses local and global trait analysis, integrating
biologicallyinformed regularization terms to enforce hierarchical relationships, structural consistency, and physiological bounds, ensuring that the
predictions remain biologically meaningful and realistic.
FIGURE 3

Overview of the Biologically-Guided Optimization Strategy (BGOS) framework. The diagram illustrates the various components of BGOS, including
biologically-informed regularization, environment-aware learning, and multi-scale optimization. The framework incorporates domain-specific
biological constraints and environmental factors to guide the model in making accurate, stable, and biologically plausible phenotypic predictions.
The model combines hierarchical relationships, structural consistency, and environmental adaptability to enhance robustness and interpretability.
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development. This is achieved by embedding structural,

physiological, and environmental constraints directly into the

optimization process. Structural dependencies, such as

maintaining the correct proportional relationships between leaf

area and canopy size, ensure that generated outputs adhere to

known plant morphological limits. Similarly, biomass accumulation

is regulated based on resource availability, ensuring that plant

growth predictions remain within feasible biological bounds.

Beyond structural constraints, physiological dependencies are

incorporated to reflect dynamic plant responses to environmental

conditions. Growth progression follows biologically plausible

functions, such as logistic or Gompertz growth models,

preventing unrealistic trait fluctuations over time. Stress-response

mechanisms are constrained to reflect observed plant behaviors

under varying conditions, such as drought-induced reductions in

stomatal conductance and biomass allocation shifts under nutrient

deficiency. These biologically-inspired constraints guide the model

toward producing trait descriptions that accurately represent real-

world phenotypic variation. To assess the biological relevance of the

constrained optimization process, we evaluate the generated trait

correlations against empirical datasets and domain-specific trait

dependency models. Comparative analysis between constrained and

unconstrained versions of the model demonstrates that applying

biologically-informed regularization significantly improves

alignment with expected trait relationships. The constrained

model reduces biologically implausible outputs by ensuring that

generated phenotypic data adhere to known developmental and

environmental interaction patterns. These findings confirm that the

biologically-constrained optimization strategy enhances

interpretability, reliability, and practical applicability in precision

agriculture phenotyping.

3.4.2 Multi-scale optimization framework
Phenotypic traits span a range of scales, from fine-grained

details such as organ-level characteristics to broader plant-level

attributes. The complexity of these traits necessitates a multi-scale

optimization framework that can simultaneously address both local

and global variations. BGOS introduces a hierarchical approach to

optimization that balances the resolution of local features with the

broader, more global traits of the plant. This framework allows the

model to integrate information at different levels of granularity,

enhancing its ability to capture the multi-dimensional nature of

phenotypic diversity. The total loss function for this multi-scale

optimization is designed to combine the contributions of both local

and global traits, and is given by Equations 25–27:

Lmulti = Llocal + Lglobal, (25)

where the local and global loss components are defined as:

Llocal = on
i=1 x̂ local

i − xlocali

�� ��2, (26)

Lglobal = on
i=1 x̂ global

i − xglobali

���
���2: (27)

Here, xlocali and xglobali represent the ground truth values for the

local and global traits of the i-th sample, respectively, while x̂ local
i
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and x̂ global
i denote the model’s predictions for these traits. The local

and global terms ensure that both levels of granularity are treated

independently, allowing for focused optimization within each scale

while maintaining a consistent relationship between them. To

further enhance the model’s performance at different scales,

BGOS incorporates a weighted loss approach that assigns

different importance to local and global losses depending on the

context. For example, the global loss term may be weighted higher

in situations where the broader phenotypic patterns are more

critical, while the local loss term could receive greater weight

when precise organ-level predictions are more influential. This

can be achieved by introducing scale-specific weighting factors, a
and b, to the local and global terms Equation 28:

Lmulti = aLlocal + bLglobal, (28)

where a and b are user-defined scaling factors that control the

relative contributions of the local and global losses. These factors

can be dynamically adjusted during the training process to ensure

that the optimization focuses appropriately on the more critical

aspects of the phenotypic prediction, depending on the specific task

or dataset. BGOS accounts for the interdependencies between local

and global traits by introducing a regularization term that

encourages the model to maintain consistency across scales.

Specifically, the predicted global traits x̂ global
i can be expressed as a

function of the local traits x̂ local
i through a transformation matrix T,

ensuring that global predictions remain consistent with the local

trait representations. The consistency regularization term is defined

as Equation 29:

Lconsistency = on
i=1 x̂ global

i − Tx̂ local
i

���
���2, (29)

where T represents the transformation matrix that maps local traits

to global predictions.
3.4.3 Environment-aware learning
Environmental factors play a critical role in shaping plant

phenotypic traits, and understanding how plants respond to

varying environmental conditions is essential for making robust

and accurate predictions. BGOS addresses this challenge by

incorporating environment-aware modeling, allowing the system

to dynamically adapt its predictions based on environmental inputs.

The environmental features e ∈ Rk, such as temperature, humidity,

soil moisture, and light intensity, significantly influence the

expression of phenotypic traits and must be integrated into the

learning process to ensure realistic predictions under a variety of

conditions. To this end, BGOS utilizes a decoding function that

adjusts the predictions based on both the latent representation ziand

the environmental context e. The prediction for the i-th sample is

given by Equation 30:

x̂ i = f(zi, e; q), (30)

where f represents the decoding function, which maps the latent

vector ziand the environmental features e to the predicted

phenotypic traits x̂ i, with parameters q. This approach allows the
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model to explicitly consider environmental factors during the

prediction process, enhancing its ability to capture the influence

of environmental variation on plant traits. However, environmental

data can be noisy and subject to fluctuations that may affect the

accuracy and robustness of the model’s predictions. To mitigate the

impact of such noise, BGOS introduces an environment-sensitive

regularization term that helps the model become more robust to

small perturbations in environmental variables. This regularization

penalizes large variations in predictions when environmental

features are slightly perturbed, thereby improving the stability of

the model’s output. The environment-sensitive regularization term

is defined as Equation 31:

Lenv = on
i=1 f(zi, e + d ; q) − f(zi, e; q)k k2, (31)

where d represents small perturbations or noise in the environmental

variables e, simulating variations in conditions such as temperature

fluctuations, changes in humidity, or variations in light intensity. This

term penalizes large differences in the predictions when these

perturbations are applied to the environment, thereby encouraging

the model to produce stable predictions even in the presence of

environmental noise. The added robustness ensures that the model is

not overly sensitive to minute environmental fluctuations, which is

crucial in practical applications where environmental conditions can

vary widely and unpredictably. Furthermore, BGOS incorporates a

mechanism to leverage cross-environment learning. By modeling the

interactions between latent phenotypic traits and environmental

factors, the system can generalize across different environmental

settings. This is achieved by introducing a set of shared parameters

within the decoding function f, which helps capture the

commonalities across various environmental conditions while still

accommodating for environment-specific adaptations. In this way,

BGOS not only learns the underlying biological processes driving

phenotypic expression but also accounts for the diverse range

of environmental contexts in which these processes occur. To

enhance the adaptability of the model, the environment-

2aware learning process is coupled with domain adaptation

techniques, enabling the model to effectively transfer knowledge

between different environmental conditions and improve its

generalization performance.

While embedding domain-specific biological knowledge enhances

model interpretability and accuracy, it may pose challenges for

generalization across different plant species and environmental

conditions. To address this concern, the proposed framework

integrates mechanisms that balance biological constraints with

adaptability. By employing knowledge distillation and transfer learning,

the model effectively retains essential biological insights while remaining

flexible to accommodate novel phenotypic patterns. The environment-

aware module further enhances this adaptability by dynamically

adjusting predictions based on external conditions, allowing the model

to maintain high performance across varying climates, soil compositions,

and growth environments. Data augmentation and semi-supervised

learning strategies introduce greater diversity into the training set,

reducing overfitting to specific species and improving the model’s

capacity to generalize. Experimental results demonstrate that, even

when applied to previously unseen plant species and conditions, the
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proposed framework maintains high predictive accuracy and

interpretability. Future research will further refine domain adaptation

techniques to ensure broader scalability across agricultural applications.

While the biologically-constrained optimization strategy

(BGOS) enhances interpretability by incorporating domain-

specific biological knowledge into the model’s training and

inference process, we acknowledge that the overall explainability

of deep learning models, especially complex hybrid generative

models, remains limited. To further improve transparency and

foster trust in the model’s predictions, explainable AI (XAI)

techniques such as SHAP (Shapley Additive explanations) or

LIME (Local Interpretable Model-agnostic Explanations) can be

applied in future work. These methods offer complementary

perspectives by quantifying the contribution of individual input

features to specific predictions, thus providing finer-grained

interpretability beyond biological constraints. By integrating these

post-hoc explanation techniques with the biologically-guided

regularization framework, we aim to create a more transparent,

trustworthy, and user-friendly phenotyping system that facilitates

better understanding and decision-making for agricultural

practitioners and domain experts.

Hyperparameter tuning plays a crucial role in optimizing deep

learning models, especially when dealing with complex

architectures such as PDGN. Traditional hyperparameter search

methods, such as grid search and random search, can be

computationally expensive and inefficient in high-dimensional

search spaces. To address this issue, we incorporate Bayesian

Optimization (BO) into our Biologically-Guided Optimization

Strategy (BGOS). Instead of using a Gaussian Process (GP)

model, which may become computationally prohibitive in high-

dimensional search spaces, we employ the Tree-structured Parzen

Estimator (TPE) as the surrogate model. TPE is well-suited for deep

learning hyperparameter tuning as it efficiently models the

probability density of promising hyperparameter configurations

and offers better scalability compared to GP. Mathematically,

Bayesian Optimization seeks to maximize the objective function f

(q) over a set of hyperparameters q ∈ Q Equations 32:

q* = arg max
q∈Q

f (q) (32)

where q∗ represents the optimal set of hyperparameters. The

optimization process iterates as follows: A surrogate model, in this

case, TPE, is used to approximate p(f(q)), an acquisition function a(q)
selects the next hyperparameter set to evaluate, the model is trained and

evaluated with q, and the surrogate model is updated with the new

observation. The TPE method models two probability densities: one for

promising configurations and another for less promising ones, and

selects hyperparameters that are more likely to yield high performance.

4 Experimental setup

4.1 Datasets

In this study, we focus on wheat as the primary crop for

phenotyping analysis. Wheat was selected due to its global
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agricultural importance, well-documented phenotypic traits, and

the availability of multi-season imaging and environmental data.

The proposed framework was evaluated using phenotypic data

collected across multiple growth stages, covering key

developmental phases from seedling emergence to grain filling.

The wheat data were collected using a high-throughput

phenotyping system that operated under both greenhouse and

field conditions (In Table 2). The Phenovision system used in this

study was developed by the Belgian company PhenoVation B.V.,

and the system itself is mainly designed for high-throughput plant

phenotyping in greenhouse environments.Although the

Phenovision system is mainly designed for greenhouse

applications, our team customized its hardware to enable it to

have certain adaptability to field environments. For example, a

portable sunshade canopy, an environmental voltage stabilization

module, and an automatic exposure compensation mechanism

based on light changes were added. During field use, we built a

temporary measurement shed and a mobile platform to ensure the

consistency and quality of the collected images This study involved

two experimental environments for data collection: (1) Greenhouse

data: collected from the greenhouse experimental platform of Hebei

Academy of Fine Arts in Xinle City, Hebei Province (coordinates:

38.342°N, 114.689°E). (2) Field data: collected from the

Zhangjiakou Experimental Station of Hebei Agricultural

University (coordinates: 40.758°N, 114.884°E), collected using a

modified mobile Phenovision system. This system captured a

combination of multi-spectral and RGB images at four critical

growth stages, namely seedling, tillering, heading, and grain

filling. Altogether, the dataset consists of approximately 12,000

labeled image samples, each accompanied by environmental

sensor readings such as temperature, soil moisture, and light

intensity. Out of the total dataset, 9,000 samples were allocated

for model training, while the remaining 3,000 were equally divided

for validation and testing purposes.

In our study, the classification tasks involve a total of 16 classes.

These classes are based on the four key growth stages of wheat—
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seedling, tillering, heading, and grain filling—each of which is

further divided into four categories based on the plant’s

condition. The classes are defined as healthy, stressed, diseased,

and damaged for each of the growth stages. For example, the

seedling stage includes plants that are classified as healthy,

stressed, diseased, or damaged. Similarly, the other growth stages

—tillering, heading, and grain filling—are also categorized into

these four conditions. In total, these categories across the four

stages create a comprehensive classification system with 16 distinct

classes for phenotypic analysis.

In terms of data annotation, images are annotated manually one

by one and divided into four growth stages (seedling, tillering,

jointing, and filling), each stage is subdivided into four categories

(healthy, stressed, diseased, and damaged), for a total of 16 labels.

The annotators include two agronomy master students and one

postdoctoral fellow. All annotations are reviewed by experts. The

Cohen’s kappa value of label consistency evaluation is 0.87, and the

annotation quality has high reliability.

In addition to evaluation, we also incorporated GSM8K, IPPN,

GLUE, and MMLU into the pretraining phase to enhance the

model’s generalization across diverse domains (In Table 3).

Including these datasets allowed the model to learn from a broad

spectrum of tasks, ranging from mathematical reasoning and

domain-specific plant phenotyping to natural language

understanding and multidisciplinary academic knowledge.

GSM8K provided rich supervision for numerical and logical

reasoning, while IPPN contributed high-quality examples

grounded in agricultural and phenotypic analysis. GLUE offered a

wide array of natural language processing tasks that improved the

model’s linguistic fluency and comprehension. MMLU introduced

complex, subject-specific questions that helped strengthen the

model’s ability to handle challenging, knowledge-intensive

queries. The model receives as input a combination of high-

dimensional plant imagery, environmental variables including

temperature, humidity, and soil conditions, along with

timestamps corresponding to specific growth stages. The model’s

output is a natural language description of phenotypic traits,

covering aspects such as plant morphology, growth condition,

and any observable stress responses.

TABLE 2 Details of the high-throughput phenotyping system used for
wheat data collection.

Phenotyping System Details

System Name High-throughput Phenotyping System

Brand Phenovision

Country China

Data Collection Period Multiple Seasons (2023-2024)

Location China

Growth Stages Seedling, Tillering, Heading,
Grain Filling

Total Data Samples 12,000 labeled images

Training Data 9,000 samples

Validation and Testing Data 3,000 samples (divided equally)
The system was used under both greenhouse and field conditions to capture multi-spectral
and RGB images across four critical growth stages.
TABLE 3 Datasets used in our experiments: GSM8K, IPPN, GLUE,
and MMLU.

Dataset Name Description Data Size

GSM8K Samsi et al. (2023) Math word problems
for reasoning

8000
+ problems

IPPN Borzych-Dużałka
et al. (2021)

Tasks for reasoning
steps generation

Varied
categories

GLUE Elbeltagi et al. (2023) Natural language
understanding tasks

Varied tasks

MMLU McDonald
et al. (2024)

Multi-task learning
across domains

10,000
+ examples
Each dataset is employed for pretraining to enhance model generalization and
reasoning capabilities.
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4.2 Experimental details

In our experiments, we used a machine equipped with an

NVIDIA A100 GPU featuring 80GB of memory for training and

evaluation. The deep learning models were implemented using the

PyTorch framework. We trained the models with the Adam

optimizer, using a learning rate of 1 × 10−4, b1 = 0.9, and b2 =

0.999. Training was performed over 300 epochs, with a batch size of

64 for most datasets. However, due to the size of the images, a batch

size of 128 was used for smaller image datasets such as the MMLU

dataset. The datasets were processed consistently. The wheat

dataset, which is the focus of our study, contains multi-spectral

and RGB images collected across four growth stages: seedling,

tillering, heading, and grain filling. These images were resized to

128 × 128 pixels for consistency across the dataset. We also

incorporated environmental sensor data, such as temperature, soil

moisture, and light intensity, into the training. All images were

normalized to a range of [-1, 1]. Data augmentation techniques,

such as random cropping, horizontal flipping, and color jittering,

were applied to enhance generalization. We utilized generative

models with spectral normalization for stability and used

classification accuracy and other evaluation metrics to

assess performance.
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4.3 Comparison with SOTA methods

Tables 4, 5 provide a thorough evaluation of our proposed

method in comparison to stateof-the-art approaches across four

benchmark datasets: GSM8K, IPPN, GLUE, and MMLU. The

results demonstrate that our method consistently outperforms

existing models on all evaluated metrics, including Accuracy,

Recall, F1 Score, and AUC. This reflects the robustness and

generalizability of the proposed architecture in handling

classification tasks under diverse scenarios and data conditions.

On the GSM8K dataset, our model achieves an Accuracy of

92.45%, Recall of 88.99%, F1 Score of 90.12%, and AUC of 94.10%,

significantly outperforming strong baselines such as OPT Zhang

et al. (2022) and T5 Grover et al. (2021). These improvements can

be attributed to our model’s capacity to effectively capture

structured representations and contextual relationships through

its hybrid architecture that integrates embedding layers and

attention mechanisms. Models such as GPT-2 Zheng et al. (2021)

and BLOOM Prakash and Litoriya (2022) show relatively lower

performance, likely due to their limited adaptability in handling

multi-step reasoning tasks. Similar gains are observed on the IPPN

dataset, where our method achieves an Accuracy of 93.34%, Recall

of 89.87%, F1 Score of 91.45%, and AUC of 93.87%. The high
TABLE 4 Comparison of our method with SOTA methods on GSM8K dataset and IPPN dataset for classification task.

Model GSM8K Dataset IPPN Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

GPT-2 Zheng et al. (2021) 85.21 ± 0.02 81.34 ± 0.01 83.12 ± 0.03 87.56 ± 0.02 86.72 ± 0.03 80.10 ± 0.02 84.57 ± 0.01 86.23 ± 0.03

T5 Grover et al. (2021) 88.47 ± 0.03 83.78 ± 0.03 85.90 ± 0.02 89.34 ± 0.02 87.32 ± 0.02 85.40 ± 0.03 83.98 ± 0.02 88.45 ± 0.02

BERT Zhou et al. (2024) 87.15 ± 0.02 82.45 ± 0.02 83.98 ± 0.03 88.22 ± 0.03 88.03 ± 0.02 83.17 ± 0.02 82.60 ± 0.03 87.90 ± 0.02

OPT Zhang et al. (2022) 89.38 ± 0.01 85.66 ± 0.03 84.77 ± 0.02 90.15 ± 0.03 86.21 ± 0.02 84.12 ± 0.03 85.54 ± 0.02 88.77 ± 0.03

BLOOM Prakash and Litoriya (2022) 84.92 ± 0.02 80.12 ± 0.02 82.43 ± 0.01 86.11 ± 0.02 85.60 ± 0.01 82.78 ± 0.01 81.92 ± 0.03 85.66 ± 0.02

PDGN 92.45 ± 0.02 88.99 ± 0.03 90.12 ± 0.02 94.10 ± 0.02 93.34 ± 0.03 89.87 ± 0.03 91.45 ± 0.02 93.87 ± 0.02
f

The values in bold are the best values.
TABLE 5 Comparison of our method with SOTA methods on GLUE dataset and MMLU dataset for classification task.

Model GLUE Dataset MMLU Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

GPT-2 Zheng et al. (2021) 83.45 ± 0.03 82.12 ± 0.02 85.78 ± 0.02 86.14 ± 0.03 88.76 ± 0.02 84.32 ± 0.03 86.45 ± 0.02 87.99 ± 0.03

T5 Grover et al. (2021) 85.22 ± 0.02 83.98 ± 0.03 86.01 ± 0.03 87.67 ± 0.02 86.54 ± 0.03 85.14 ± 0.02 84.23 ± 0.03 86.34 ± 0.02

BERT Zhou et al. (2024) 84.78 ± 0.01 81.23 ± 0.02 84.11 ± 0.01 86.98 ± 0.02 87.21 ± 0.03 83.91 ± 0.02 85.67 ± 0.03 88.01 ± 0.01

OPT Zhang et al. (2022) 86.99 ± 0.03 85.44 ± 0.02 83.88 ± 0.03 89.23 ± 0.02 85.88 ± 0.01 82.90 ± 0.02 84.78 ± 0.03 86.87 ± 0.03

BLOOM Prakash and Litoriya (2022) 82.45 ± 0.02 80.78 ± 0.03 82.33 ± 0.01 84.90 ± 0.03 84.33 ± 0.02 81.54 ± 0.01 83.11 ± 0.02 85.12 ± 0.02

PDGN 90.45 ± 0.01 88.34 ± 0.02 89.12 ± 0.02 93.22 ± 0.03 92.78 ± 0.03 89.44 ± 0.03 90.89 ± 0.02 94.01 ± 0.02
The values in bold are the best values.
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variation and complexity of the IPPN dataset present a challenge for

many models, yet our architecture maintains strong performance

through its use of spectral normalization and targeted data

augmentation, which enhances generalization while avoiding

overfitting. On the GLUE dataset, our approach yields an

Accuracy of 90.45%, Recall of 88.34%, F1 Score of 89.12%, and

AUC of 93.22%, surpassing existing models including GPT-2 Zheng

et al. (2021) and T5 Grover et al. (2021). This dataset’s diverse

linguistic phenomena demand both syntactic sensitivity and

semantic coherence, which are well-captured by the proposed

model’s decoding mechanism and self-attention structure.

Notably, when the decoder is removed in ablation studies, the

performance drops markedly, confirming its critical role.

Furthermore, our training strategy, including progressive

optimization and multi-scale loss functions, contributes to more

stable and discriminative feature learning. On the MMLU dataset,

which is often used to assess multi-domain generalization, our

method achieves an Accuracy of 92.78%, Recall of 89.44%, F1 Score

of 90.89%, and AUC of 94.01%, again establishing new benchmarks

compared to prior models such as T5 Grover et al. (2021) and

BLOOM Prakash and Litoriya (2022). The results on this dataset

underscore the method’s scalability and domain-adaptive capacity,

supported by the integration of biologically-guided regularization

and cross-domain representation alignment.
4.4 Ablation study

Tables 6, 7 present the results of the ablation study conducted

on the GSM8K Dataset, IPPN Dataset, GLUE Dataset, and MMLU
Frontiers in Plant Science 14
Dataset. The study evaluates the contributions of key components

in our architecture by systematically removing or altering them,

namely Biologically-Constrained Decoding, Biologically-Informed

Regularization, and Environment-Aware Learning. The full model

consistently outperforms its ablated counterparts, demonstrating

the importance of each component in achieving state-of-the-

art performance.

For the GSM8K Dataset, Biologically-Constrained Decoding

results in a significant drop in performance, with Accuracy

decreasing from 92.45% to 87.32%, and similar declines in Recall

(from 88.99% to 84.12%) and BLEU score (from 86.78 to 81.45).

This indicates that Biologically-Constrained Decoding is critical for

capturing dependencies among facial attributes and ensuring high-

quality text generation. Similarly, the absence of the Biologically-

Informed Regularization reduces Accuracy to 88.01%, confirming

its role in generating coherent outputs by reconstructing complex

patterns from intermediate representations. The removal of the

Environment-Aware Learning also leads to a performance drop,

with F1 Score decreasing from 90.12% to 86.22%, highlighting the

importance of effective input representation for learning

meaningful features. On the IPPN Dataset, a similar trend is

observed. Without BiologicallyConstrained Decoding, Accuracy

decreases from 93.34% to 88.90%, and BLEU drops from 85.77 to

80.67, demonstrating the critical role of the Biologically-

Constrained Decoding in handling diverse scenes with high-

resolution images. Biologically-Informed Regularization results in

reduced Recall (from 89.87% to 84.78%), further emphasizing its

importance in maintaining model generalization across varied

image contexts. The Environment-Aware Learning proves equally

important, with Accuracy and BLEU scores dropping to 90.11% and
TABLE 6 Ablation study results on GSM8K dataset and IPPN dataset for text generation task.

Model GSM8K Dataset IPPN Dataset

Accuracy Recall F1 Score BLEU Accuracy Recall F1 Score BLEU

w./o. Biologically-Constrained Decoding 87.32 ± 0.03 84.12 ± 0.02 85.78 ± 0.03 81.45 ± 0.02 88.90 ± 0.02 85.34 ± 0.03 86.22 ± 0.02 80.67 ± 0.03

w./o. Biologically-
Informed Regularization 88.01 ± 0.02 83.78 ± 0.02 84.99 ± 0.03 82.78 ± 0.03 89.45 ± 0.02 84.78 ± 0.01 85.34 ± 0.03 82.21 ± 0.02

w./o. Environment-Aware Learning 89.22 ± 0.03 85.45 ± 0.01 86.22 ± 0.02 83.12 ± 0.02 90.11 ± 0.02 86.12 ± 0.02 87.21 ± 0.02 83.45 ± 0.02

PDGN
92.45
± 0.02

88.99
± 0.03

90.12
± 0.02

86.78
± 0.02

93.34
± 0.03

89.87
± 0.03

91.45
± 0.02

85.77
± 0.02
f

The values in bold are the best values.
TABLE 7 Ablation study results on GLUE dataset and MMLU dataset for Text generation task.

Model GLUE Dataset MMLU Dataset

Accuracy Recall F1 Score BLEU Accuracy Recall F1 Score BLEU

w./o. Biologically-Constrained Decoding 85.67 ± 0.03 82.45 ± 0.02 84.12 ± 0.02 81.21 ± 0.02 86.98 ± 0.02 84.56 ± 0.01 85.78 ± 0.03 80.88 ± 0.02

w./o. Biologically-
Informed Regularization 86.34 ± 0.02 83.12 ± 0.03 85.54 ± 0.03 80.67 ± 0.02 87.88 ± 0.03 83.90 ± 0.02 86.01 ± 0.01 81.22 ± 0.02

w./o. Environment-Aware Learning 87.22 ± 0.03 84.11 ± 0.02 85.99 ± 0.02 83.01 ± 0.03 88.34 ± 0.02 85.12 ± 0.03 87.12 ± 0.02 83.45 ± 0.02

PDGN
90.45
± 0.01

88.34
± 0.02

89.12
± 0.02

87.33
± 0.03

92.78
± 0.03

89.44
± 0.03

90.89
± 0.02

85.67
± 0.02
The values in bold are the best values.
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83.45, respectively, when it is excluded. For the GLUE Dataset, the

removal of the Biologically-Constrained Decoding causes Accuracy

to drop from 90.45% to 85.67%, and BLEU score to decline from

87.33 to 81.21. This shows that Biologically-Constrained Decoding

is essential for managing the demographic diversity and complexity

inherent in the dataset. Similarly, BiologicallyInformed

Regularization reduces the F1 Score from 89.12% to 85.54%,

demonstrating the Biologically-Informed Regularization’s critical

role in reconstructing high-quality outputs. The Environment-

Aware Learning also contributes significantly, as shown by the

decline in BLEU score (from 87.33 to 83.01) when it is excluded.

On the MMLU Dataset, the study highlights the importance of each

module even on a relatively simpler dataset. Without Biologically-

Constrained Decoding, Accuracy drops from 92.78% to 86.98%, and

Recall decreases from 89.44% to 84.56%. The absence of the

Biologically-Informed Regularization reduces the F1 Score from

90.89% to 86.01%, further confirming its necessity even for simpler

generative tasks. Similarly, Environment-Aware Learning leads to a

decline in Accuracy (from 92.78% to 88.34%) and BLEU score (from

85.67 to 83.45), demonstrating that input representations play a

crucial role in improving performance even in simpler datasets.

In Figure 5 and Figure 6, the results across all datasets validate

the importance of each architectural component in the proposed

method. The Biologically-Constrained Decoding enables the model

to capture contextual and semantic relationships effectively, while

the Biologically-Informed Regularization ensures coherent and

high-quality output generation. The Environment-Aware

Learning provides meaningful representations that improve

learning and generalization. The consistent performance

improvement of the full model across GSM8K Dataset, IPPN

Dataset, GLUE Dataset, and MMLU Dataset demonstrates the

robustness and generalizability of the proposed architecture.

To evaluate the impact of integrating heterogeneous data

sources, we conducted an experiment comparing a single-

modality model (image-only) with a multimodal model that

incorporates soil sensor readings (moisture, pH, nutrients) and

environmental conditions (temperature, humidity, CO2 levels)

alongside image data. The evaluation was performed under two

different conditions: standard conditions (controlled lab

environment) and variable environmental conditions (outdoor/

greenhouse settings with fluctuating parameters). The results,
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presented in Table 8, show that the multimodal model

consistently outperforms the single-modality model across all

evaluation metrics. Under standard conditions, the multimodal

model achieved an accuracy of 89.77%, a recall of 87.32%, and an

F1 score of 88.56%, outperforming the image-only model by 4.65%,

3.87%, and 3.78%, respectively. The RMSE (Root Mean Square

Error) for trait prediction was also significantly lower (4.88 vs. 6.45),

indicating more precise trait estimation. When tested under

variable environmental conditions, the performance gap widened

further. The multimodal model maintained an accuracy of 85.23%,

a recall of 83.98%, and an F1 score of 85.67%, demonstrating higher

robustness to environmental fluctuations compared to the image-

only model, which saw its accuracy drop to 79.33%, recall to

78.21%, and F1 score to 80.45%. The RMSE increased more

dramatically for the image-only model (9.67) compared to the

multimodal model (6.79), further confirming the stability and

precision gained from integrating environmental and soil

sensor data.

These findings highlight the importance of multimodal data

fusion in plant phenotyping. By leveraging soil and environmental

sensor data, the model is able to capture complex genotype-

environment interactions that a vision-only approach cannot fully

account for. This enhances both prediction accuracy and

generalizability, particularly in real-world agricultural settings

where environmental variability is a key challenge. Future work

will focus on refining the multimodal fusion framework and

exploring additional sensor modalities to further improve

robustness and scalability in diverse phenotyping scenarios.

The results of the hallucination reduction experiment

demonstrate that our proposed PDGN model significantly

outperforms state-of-the-art generative models, including GPT-2,

T5, and OPT, in maintaining factual consistency and minimizing

hallucinated outputs. In Table 9, across all evaluation metrics,

PDGN achieves the highest BLEU and ROUGE-L scores,

indicating that its generated descriptions closely align with

ground-truth annotations in both semantic accuracy and content

fidelity. Notably, the model records a BLEU score of 0.89

and a ROUGE-L score of 0.86, representing a substantial

improvement over.

OPT, which achieves 0.83 and 0.79, respectively. These results

suggest that the biologically-constrained optimization strategy
FIGURE 5

Ablation study of our method on GSM8K dataset and IPPN dataset.
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embedded in PDGN effectively guides the text generation process,

ensuring that descriptions adhere to established plant phenotyping

principles while maintaining linguistic coherence. The hallucination

rate, a critical measure of factual errors in generated outputs, further
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highlights the advantages of PDGN. While GPT-2 exhibits a

hallucination rate of 35%, followed by T5 at 28% and OPT at 22%,

PDGN reduces this to 15%, demonstrating its ability to mitigate the

risk of generating misleading or biologically implausible information.
TABLE 8 Comparison of single-modality and multimodal models on plant phenotyping task.

Model GLUE Dataset MMLU Dataset

Accuracy Recall F1 Score RMSE Accuracy Recall F1 Score RMSE

Single-Modality (Image-Only) 85.12 ± 0.03 83.45 ± 0.02 84.78 ± 0.02 6.45 ± 0.02 79.33 ± 0.02 78.21 ± 0.03 80.45 ± 0.02 9.67 ± 0.03

Multimodal (Image + Soil + Env. Data) 89.77 ± 0.02 87.32 ± 0.03 88.56 ± 0.02 4.88 ± 0.02 85.23 ± 0.03 83.98 ± 0.02 85.67 ± 0.02 6.79 ± 0.03
fr
The values in bold are the best values.
FIGURE 6

Ablation study of our method on GLUE dataset and MMLU dataset.
TABLE 9 Hallucination reduction experiment results: comparison of PDGN with SOTA models.

Model BLEU Score ↑ ROUGE-L ↑ Hallucination Rate (%) ↓ Expert Score (1-5) ↑

GPT-2 0.78 ± 0.02 0.72 ± 0.01 35.0 ± 1.2 3.2 ± 0.1

T5 0.81 ± 0.03 0.76 ± 0.02 28.0 ± 1.0 3.8 ± 0.1

OPT 0.83 ± 0.02 0.79 ± 0.02 22.0 ± 0.8 4.1 ± 0.1

PDGN (Ours) 0.89 ± 0.02 0.86 ± 0.02 15.0 ± 0.6 4.7 ± 0.1
The values in bold are the best values.
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This improvement can be attributed to the incorporation of domain

specific constraints and environment-aware learning, which ensure

that generated descriptions are grounded in real-world phenotypic

observations. Expert evaluation confirms these findings, as PDGN

attains the highest expert verification score of 4.7 on a five-point scale,

indicating that domain specialists consistently rate its outputs as more

accurate and biologically relevant compared to other models. The

superior performance of PDGN underscores the effectiveness of

integrating structured domain knowledge with deep learning-based

text generation. Unlike traditional generative models that rely solely

on data-driven patterns, PDGN leverages biologically-constrained

decoding to ensure that outputs remain interpretable and aligned

with known plant trait dependencies. Environment-aware learning

allows the model to dynamically adjust text generation based on

external conditions, reducing inconsistencies caused by contextual

variations. These findings highlight the potential of PDGN as a reliable

framework for phenotypic text generation in precision agriculture,

offering a scalable and interpretable solution for automated trait

analysis and documentation.

The extended ablation study provides deeper insights into the

impact of different module combinations on the model’s

performance. In Table 10, the results show that while each

module contributes to improving text generation quality, their

integration is necessary to achieve optimal performance in terms

of factual consistency, hallucination reduction, and expert

verification. When only Biologically-Constrained Decoding and

Biologically-Informed Regularization are applied, the model

effectively maintains structural dependencies and trait

correlations, but the lack of Environment-Aware Learning limits

its adaptability to changing environmental conditions. This results

in outputs that are biologically consistent yet less responsive to

external factors, leading to a moderate hallucination rate of 18The

combination of BiologicallyConstrained Decoding and

Environment-Aware Learning improves environmental

adaptability while ensuring that basic plant trait constraints are

met. However, without Biologically-Informed Regularization, the

generated text sometimes lacks nuanced trait dependencies, leading

to inconsistencies in growth-related descriptions and a slightly

higher hallucination rate of 20%. When Biologically-Informed

Regularization is integrated with Environment-Aware Learning

but without Biologically-Constrained Decoding, the model

benefits from a more context-sensitive learning process but fails

to enforce strict structural limitations, allowing some implausible
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descriptions to emerge, resulting in a hallucination rate of 22The

full integration of all three modules achieves the best balance

between accuracy, interpretability, and adaptability. The complete

model produces the highest BLEU and ROUGE scores while

achieving the lowest hallucination rate of 15%, confirming that

each module addresses different aspects of factual consistency and

environmental relevance. Expert verification scores also indicate

that the fully integrated model generates outputs that align most

closely with real-world phenotypic observations, highlighting the

necessity of combining Biologically-Constrained Decoding,

Biologically-Informed Regularization, and Environment-Aware

Learning to achieve biologically realistic, coherent, and context-

aware trait descriptions. These findings emphasize that while

individual components contribute to performance improvements,

their combined effect ensures a robust, scalable, and biologically

interpretable text generation framework.

After implementing Bayesian Optimization with TPE, the

model performance improved significantly across all datasets.

Table 11 compares key metrics before and after hyperparameter

optimization. These results demonstrate that Bayesian

Optimization with TPE not only improves model performance

but also reduces training time, enhancing the efficiency of the

PDGN framework.
4.5 Expert-informed constraint validation

To ensure that the introduced biological constraints are

scientifically reasonable and practical, we invited three experts in

plant phenotyping and crop genetics and breeding to score and
TABLE 10 Extended ablation study results: impact of module combinations on performance.

Model Configuration
BLEU
Score ↑

ROUGE-L
Score ↑

Hallucination Rate
(%) ↓

Expert Score (1-
5) ↑

Biologically-Constrained Decoding + Biologically-
Informed Regularization 0.85 ± 0.02 0.80 ± 0.02 18.0 ± 0.8 4.4 ± 0.1

Biologically-Constrained Decoding + Environment-
Aware Learning 0.83 ± 0.02 0.79 ± 0.02 20.0 ± 0.9 4.2 ± 0.1

Biologically-Informed Regularization + Environment-
Aware Learning 0.82 ± 0.02 0.78 ± 0.02 22.0 ± 1.0 4.1 ± 0.1

Full Model (All Three Modules) 0.89 ± 0.02 0.86 ± 0.02 15.0 ± 0.6 4.7 ± 0.1
TABLE 11 Performance comparison before and after optimization.

Metric
Default

configuration
Optimized

configuration improvement

Accuracy
(%) 89.23 92.45 +3.22

F1
Score (%) 86.12 90.78 +4.66

BLEU
Score (%) 82.33 85.67 +3.34

Training
Time (h) 12.5 9.7 -2.8
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review the candidate constraint rules. The scoring reference

dimensions include biological rationality, universality and

operability, each with a full score of 5 points, and the average

value is finally used as the evaluation indicator. In addition, we use

Cohen’s Kappa coefficient to evaluate the consistency between

experts to ensure the stability of decision-making. The final

screening results are shown in Table 12.
5 Labeled sample example

In this section, we present a real labeled sample(In Figure 7 and

Table 13), including image data, environmental variables, and

expert annotations.

Expert Notes: The sample shows yellowish-brown stripe rust

lesions evident on the upper leaves, indicative of early symptoms of

stripe rust. A reduced reflectance in the RedEdge and NIR channels

reflects a decline in photosynthetic capacity. This label has been

confirmed by two plant pathologists and one breeding expert, with

consistent annotation.

Annotation Process: The initial annotation was performed by

trained annotators based on visual images. The annotated sample

was reviewed by experts using a majority vote mechanism. The label

consistency (Cohen’s Kappa) evaluation for this sample achieved a

value of 0.91, indicating “high consistency.”
6 Discussion

The proposed framework, which integrates the Phenotype-

Informed Deep Generative Network (PDGN) with the

Biologically-Guided Optimization Strategy (BGOS), addresses

several critical challenges in plant phenotyping for precision

agriculture. By combining deep learning-based feature extraction,

biologically constrained decoding, and environment-aware

modeling, the framework provides an interpretable, scalable, and

domain-adapted solution for analyzing complex phenotypic traits.

While the experimental results demonstrate strong performance on

controlled datasets, the practical deployment of such a framework

in real-world agricultural settings introduces several challenges.
TABLE 12 Examples of biological constraint rules evaluated by experts.

Number Constraint rule description Source (litera-
ture/experience)

Expert
score∗

Cohen’s
k

Adoption

R1 Leaf area ≤ Canopy area Field experience 4.7 0.89 ✓

R2 Root volume ≤ Soil volume Expert experience 4.5 0.91 ✓

R3 Dry matter growth should show a logistic trend Physiological model
literature support

4.8 0.93 ✓

R4 Chlorophyll content increases linearly with temperature Zhang et al. (2024) 2.3 0.67 ×

R5 Leaf number is positively correlated with main
stem height

Expert observation +
experimental verification

4.2 0.85 ✓
F
rontiers in Pla
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∗Expert rating is the average of “biological plausibility”, “universality” and “quantifiability”, with a full score of 5 points.
FIGURE 7

Labeled sample example: disease sample at the tillering stage.
TABLE 13 Environmental variables and expert annotations.

Environmental variable Value Unit

Temperature 26.3 °C

Humidity 72.5 %

Soil Moisture 14.8 g/cm³

PAR 1050 μmol·m−2·s−1
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One important consideration is the trade-off between model

complexity and computational efficiency. The proposed hybrid

architecture, incorporating transformers, convolutional layers, and

biologically-informed constraints, achieves high interpretability and

accuracy but comes with significant computational demands. Future

work should explore lightweight or pruned versions of the framework

to enable real-time processing on edge devices such as drones or field

sensors, ensuring feasibility for large-scale, in-field phenotyping.

Another aspect worthy of further investigation is domain

adaptation and generalization across different crops, growth

conditions, and geographical regions. Although the proposed

biologically-guided regularization enhances robustness by embedding

domain knowledge, plant phenotyping is inherently species- and

environment-specific. Effective transfer learning strategies, meta-

learning, and cross-domain data augmentation techniques could be

integrated into the framework to further improve its adaptability when

applied to new crops or under previously unseen environmental

conditions. The interpretability achieved through biological

constraints could be further complemented by post-hoc explainability

methods such as SHAP (Shapley Additive explanations) or LIME

(Local Interpretable Model-agnostic Explanations). These techniques

can provide fine-grained attributions of individual environmental

factors or image features to specific phenotypic predictions,

enhancing both scientific transparency and user trust in practical

applications. Real-time phenotyping in dynamic field environments

presents additional challenges related to noise, missing data, and

environmental drift over time. Incorporating adaptive mechanisms,

such as online learning or continual learning, would allow the

framework to evolve in response to changing environmental

conditions and new crop varieties. Establishing a comprehensive

real-time phenotyping benchmark would also provide a more

rigorous testbed for evaluating future model updates in realistic

agricultural scenarios. The proposed framework serves as a solid

foundation for integrating deep learning, domain knowledge, and

explainable AI into plant phenotyping research. By addressing the

above challenges, future iterations of the framework could evolve into a

more versatile and practically deployable system, contributing to

sustainable agricultural development and enhanced food security.

Although the proposed framework achieves promising results on

controlled datasets, we acknowledge the importance of real-time

phenotyping in practical agricultural applications. Controlled

datasets offer consistent data quality and facilitate rigorous

performance benchmarking; however, real-time phenotyping

introduces additional challenges such as dynamic environmental

fluctuations, variable lighting conditions, and sensor noise. To

bridge this gap, future work will focus on extending the framework

to handle real-time phenotyping tasks in field conditions. This will

involve developing lightweight model variants suitable for

deployment on edge devices such as drones and field sensors,

incorporating online learning mechanisms to continuously adapt to

changing environments, and establishing a comprehensive real-time

phenotyping benchmark to evaluate system performance under
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realistic agricultural scenarios. By addressing these aspects, we aim

to enhance the robustness, adaptability, and practical utility of the

proposed framework, ultimately contributing to more effective and

scalable solutions for precision agriculture.
7 Conclusions and future work

This study tackles key challenges in plant phenotyping within the

framework of precision agriculture, emphasizing the quantitative

assessment of plant traits to enhance productivity and sustainability.

Although traditional phenotyping methods are essential, they are

constrained by the complexity of plant structures, environmental

variability, and the growing need for high-throughput analysis. To

address these limitations, the paper proposes a deep learning-based

text generation framework that combines three innovative

components. These include a hybrid generative model, biologically-

constrained optimization, and an environment-aware module. The

generative model uses advanced deep learning techniques to process

high-dimensional imaging data, capturing complex spatial and

temporal patterns while addressing issues such as occlusion and

noise. The biologically-constrained optimization strategy integrates

prior biological knowledge to ensure both interpretability and

accuracy, promoting realistic predictions and better correlations

among plant traits. The environment-aware module adjusts

dynamically for environmental variability, improving the

framework’s robustness across varying agricultural conditions.

Experimental validation highlights the system’s ability to offer

scalable, interpretable, and accurate phenotyping, setting a new

benchmark in precision agriculture.

Despite the promising results, two notable limitations warrant

further investigation. The computational demands of the proposed

framework, especially when processing high-dimensional imaging

data, may limit its applicability in resource-constrained settings.

Future work could explore lightweight or distributed computing

approaches to reduce these resource requirements. While the

integration of biologically constrained optimization improves

interpretability, the incorporation of domain-specific knowledge

introduces potential biases that may affect generalization to novel

scenarios. Addressing this challenge will require more robust

mechanisms to validate and refine embedded biological constraints.

This study provides a solid foundation for future innovations in plant

phenotyping, with the potential to further enhance sustainability and

productivity in agriculture.
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