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Nutrient recycling and utilization
of Torreya grandis ‘Merrillii’ along
an age gradient
Aifei Fan1,2†, Songheng Jin1†, Yangzhou Tan1,2, Weiwei Huan2,
Wenjing Chen3, Xiaoyu Wang1 and Yini Han1*

1Jiyang College, Zhejiang A&F University, Zhuji, China, 2School of Forestry and Biotechnology,
Zhejiang A&F University, Hangzhou, China, 3School of Art and Design, Nanjing Vocational University
of Industry Technology, Nanjing, China
Introduction: The intrinsic relationships among plants, litter, and soil nutrient

characteristics, along with the responses of ecological stoichiometry to nutrient

utilization, are critical for understanding the mechanisms of nutrient cycling.

However, limited research in this area has constrained our comprehension of

nutrient dynamics within ecosystems.

Methods: To investigate the stoichiometric characteristics and nutrient

resorption traits of Torreya grandis plantations across various stand ages, as

well as their adaptive strategies and nutrient utilization mechanisms under local

growth conditions, we conducted a study in the T. grandis Forest Park. This study

examined five stand age groups: young (20 years), near-mature (50 years),

mature (80 years), over-mature (100 years), and thousand (1,000 years). We

measured the nutrient contents of soil, fresh leaves, and litterfall, and analyzed

their stoichiometric relationships and nutrient resorption characteristics.

Results: 1.The growth of T. grandis plantations was primarily limited by nitrogen

(N) during the early stages, transitioning to phosphorus (P) limitation with

increasing stand age, particularly in the over-mature stage. High C:N and C:P

ratios in leaves indicated low N and P use efficiency. 2.Leaf nutrient

concentrations remained relatively stable across different stand ages, whereas

nutrient concentrations in litterfall gradually declined, indicating an increase in

nutrient cycling efficiency. Meanwhile, soil nutrient accumulation showed a

gradual increase with stand development. T. grandis exhibited distinct nutrient

resorption strategies at different stand ages: phosphorus resorption efficiency

(PRE) was higher in young stands, whereas nitrogen resorption efficiency (NRE)

significantly increased in mature and over-mature stands. Furthermore, this

nutrient allocation mechanism influenced the nutritional content of T. grandis

seeds, highlighting the significant impact of stand age on seed quality. 3.The

nutrient characteristics of T. grandis plantations are influenced by both stand age

and soil nutrient availability.Management practices should prioritize the

supplementation of soil nutrients, particularly P, and the enhancement of

nutrient cycling efficiency.
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Discussion: This study offers a scientific foundation for the sustainable

management and production of T. grandis plantations in the region,

highlighting the importance of targeted soil nutrient management to improve

ecosystem productivity and sustainability.
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1 Introduction

Ecological stoichiometry investigates the mass balance of

multiple nutrient elements across scales, from individual organs

to entire ecosystems (Zhu et al., 2020). This approach has been

extensively applied to analyze ecosystem functions and nutrient

limitations, providing novel perspectives on the complex dynamics

of nutrient cycling within ecosystems (Bai et al., 2020). The

fundamental nutrient elements, including Carbon(C), nitrogen

(N), and phosphorus (P), are crucial for plant metabolism and

growth processes (Elser et al., 2010; Huang et al., 2019; Wang et al.,

2019). The stoichiometric ratios of these elements in various

ecosystem components are often used to describe key ecological

processes and explore the interdependence of elemental cycles

(Hattenschwiler and Jorgensen, 2010; Wang et al., 2020). These

ratios serve as effective tools for analyzing and interpreting the

relationships and variations between plants and their environments

within ecosystems (Zeng et al., 2016). They are frequently used to

identify nutrient limitation types, evaluate the coupling among

multiple nutrients, and assess plant adaptation to diverse

environmental conditions (Tian et al., 2019). Soil plays a crucial

role in nutrient supply, with the soil C:N:P ratio serving as an

indicator of soil fertility and influencing both nutrient absorption

and nutrient limitations in plants (Fan et al., 2015; Liu et al., 2016;

Bai et al., 2019). The C, N, and P status of leaves is closely linked to

essential aspects of plant growth, reproduction, and ecosystem

functioning. These traits can serve as indicators of how plants

utilize nutrients and respond to environmental changes (Qin et al.,

2019). Leaf stoichiometric characteristics are considered to reflect

plant genetic traits and their adaptations to specific environmental

conditions (Bai et al., 2020). Litterfall, as a nutrient reservoir (Xiao

et al., 2015), has a C:N:P ratio that significantly influences the

quality and rate of nutrient recycling within ecosystems (Xiao et al.,

2015; Zhang XM et al., 2017).

The C:N:P stoichiometry of soil and plants can indicate nutrient

limitations in ecosystems. Specifically, a high C:N ratio or low N:P

ratio is typically associated with N limitation, whereas high C:P or

N:P ratio often indicates P limitation. Furthermore, the C:N:P

stoichiometry of soil and plants is closely related to nutrient-use

efficiency in plants (Elser et al., 2010). When plant growth is

constrained by limited N or P availability, plants adopt adaptive

strategies, such as adjusting the C:N:P ratios at the organ level, to
02
address nutrient constraints (Ajmera et al., 2022; Huang et al.,

2023). Some plants adopt nutrient conservation strategies in low-P

environments, maintaining stable leaf P concentrations and P

allocation to adapt to nutrient-poor habitats (Fan et al., 2024).

Furthermore, under N-limited conditions, plants may preferentially

mineralize inorganic N from the soil; under P-limited conditions,

they are more likely to enhance root exudation or modify root

architecture to acquire more P (Wang et al., 2022). Thus, examining

the C:N:P stoichiometric characteristics of the leaf-litter-soil

continuum is crucial for understanding nutrient limitations in

plants and nutrient cycling processes in terrestrial ecosystems

(Dong et al., 2020).

Stand age can significantly alter soil physicochemical properties,

microclimatic conditions, litterfall input, and root exudates. These

changes, in turn, influence microbial communities and soil enzyme

activities, making stand age a critical factor in determining soil

nutrient distribution (Hedo et al., 2016; Yesilonis et al., 2016). Due

to substantial differences in photosynthetic capacity and nutrient

demands at different growth stages, nutrient stoichiometry and

nutrient resorption in plantations often exhibit temporal variations

(Yan et al., 2018). Understanding how plant nutrient stoichiometry

and resorption efficiency change over time has been a major focus of

research, yet the findings remain inconsistent (Zhou et al., 2016).

For instance, studies have reported that the C:N ratio of plant

tissues in global secondary forests increases significantly with stand

development (Yang and Luo, 2011). However, research on the N

availability in developing Nothofagus solandri var. cliffortioides

(Hook. f.) Poole forests found no significant changes over time

(Clinton et al., 2002). In coastal Chinese plantations ofMetasequoia

glyptostroboides, the C:P and N:P ratios of young stands were

significantly lower than those of middle-aged stands (Zhang et al.,

2018). From young to mature stands, NRE and PRE gradually

increased (Sun et al., 2016) whereas both NRE and PRE remained

stable across different stand ages in Japanese larch (Larix kaempferi)

forests (Chang et al., 2017). Such discrepancies may stem from the

element-specific characteristics of nutrients or species-specific

responses of trees (Wang et al., 2014). Changes in the

concentrations of nutrients (C, N, and P) reflect the nutrient

uptake and utilization strategies of stands of varying ages and

their adaptability to environmental conditions (Yang and Luo,

2011). The relationships between plant stoichiometric ratios and

stand age have significant implications for plantation management
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and fertilization strategies. Consequently, exploring the interplay

between stand age and plant adaptability to diverse environmental

conditions is of considerable research value.

The leaf N:P ratio is widely recognized as a critical indicator for

diagnosing N or P limitations in terrestrial ecosystems (Zhang et al.,

2018). Previous studies have shown that during the chronological

development of artificial forests, such as Larix kaempferi,

Metasequoia glyptostroboides, and Robinia pseudoacacia, the leaf

N:P ratio significantly increased from below 14 to above 16,

indicating a shift from relative N limitation to relative P

limitation over time (Yan et al., 2018). These findings suggest

that, as stand age progresses in subtropical plantations, tree

growth likely transitions from N limitation to P limitation.

Similar nutrient limitation trends are also observed across

different ecosystems worldwide (Elser et al., 2007). In studies

related to nutrient limitations in the Amazon forest, it has been

observed that secondary forests growing on abandoned agricultural

lands initially exhibit N limitation. However, as forest succession

progresses, there is a gradual transition to P limitation. This

transition reflects the changes in N and P cycling associated with

forest development over time (Davidson et al., 2007). However,

research on this transition in subtropical plantations remains

limited, as tree growth in these ecosystems is often constrained by

low soil P availability. Moreover, the adaptive mechanisms of trees

to simultaneous N and P limitations remain unclear (Chang

et al., 2017).

Torreya grandis ‘Merrillii’, an endemic and rare nut tree species

in China, has been cultivated for over 1,000 years (Li et al., 2005).

To guide high-yield cultivation and promote the sustainable

development of the T. grandis industry, extensive research has

been conducted on cultivar improvement, seedling propagation,

and management practice (Yan et al., 2021).While some studies

have investigated soil nutrient conditions and the interaction

between T. grandis of various ages and soil nutrients (Zhang

et al., 2019; Dong et al., 2021), research on nutrient cycling

within the “leaf-litter-soil” continuum in T. grandis plantation

ecosystems is scarce. Nutrient availability has been identified as a

critical factor influencing both yield and quality in T. grandis

plantations. In recent years, the planting area of T. grandis has

expanded due to its high ecological and economic value.

Consequently, a large number of T. grandis stands at different

growth stages are present in the study region, yet the nutrient

utilization strategy, nutrient requirements, and the mechanism of

nutrient resorption in leaves and litter of T. grandis across different

stand ages remain unclear. It is generally believed that seed yield

and quality increase with stand age. From the perspective of

nutrient utilization and cycling, we hypothesize that the nutrient

utilization and transformation capacity of T. grandis do not decline

with increasing stand age, and we aim to explain this based on the

nutrient utilization and absorption mechanisms of T. grandis across

different stand ages. This study aims to elucidate the stoichiometric

characteristics, nutrient limitation patterns, nutrient resorption

efficiency, and nutrient cycling processes within the T. grandis

plantation ecosystem. To achieve this, leaf, litter, soil, and nut

samples were collected from T. grandis plantations spanning five
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age groups: 20 years (young), 50 years (near-mature), 80 years

(mature), 100 years (over-mature), and 1,000 years (ancient). The

nutrient contents and their dynamic changes were systematically

analyzed. The objectives of this study are: (1) To investigate the C,

N, and P contents and stoichiometric characteristics of leaves, litter,

and soil in T. grandis plantations; (2) To examine how the C, N, and

P contents and stoichiometry within the leaf-litter-soil continuum

vary with stand age; (3) To reveal the nutrient absorption and

utilization traits across different stand ages in T. grandis plantations.

The findings of this study aim to provide scientific support for the

management and conservation of T. grandis plantations in

the region.
2 Materials and methods

2.1 Study area

The study site is located in the National T. grandis Forest Park

(119°53′01″~120°32′08″ E, 29°21′24″~29°59′05″ N), at the foothills
of Kuaiji Mountain in Zhaojia Town, Zhuji City, Zhejiang Province.

This area is situated in the inland area of central Zhejiang and falls

within the subtropical monsoon climate zone, characterized by

typical hilly and mountainous climate features. The average

annual temperature is 16.3°C, with an average annual

precipitation of approximately 1373.6 mm, and the average

number of precipitation days per year is about 158.3. The soil

types in the study area are mainly hilly red soil and river valley plain

paddy soils, with a sandy loam texture. The study site has been used

for the cultivation and management of T. grandis artificial forests

for many years.
2.2 Sampling and measure methods

The study site is located in a plantation area of T. grandis, which

has been managed using the same management practices for

decades. The site has a rich age gradient composition, and this

study selected five age gradients young, near-mature, mature, over-

mature, and thousand in relatively flat areas with similar altitudes

for sampling and analysis. Plant Sampling: Three representative T.

grandis trees of similar growth in each age group were randomly

selected. Fresh and senescent leaves were collected from the middle

of the canopy, stored in refrigerated conditions, and transported to

the laboratory for measurements of fresh and dry weights. Soil

Sampling: In each age group, three soil sampling points were

randomly placed along a diagonal line within the planting area.

After removing the surface litter, soil samples were collected from

the 0–10 cm and 10–20 cm soil layers, stored in refrigerated

conditions, and transported to the laboratory. After removing

roots and stones, the samples were air-dried and passed through

a 2 mm sieve. Dried leaf and air-dried soil samples were ground into

fine powders for the determination of C, N, and P concentrations.

Fruit Sampling: Ten fully mature and non-cracked fruits (with seeds

intact) were randomly collected from the upper middle part of the
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south side of each tree canopy. After being washed, the outer aril of

T. grandis seeds was manually removed. The seeds were then

subjected to blanching at 90°C for 30 minutes using an oven,

followed by drying at 60°C for 24 hours until a constant weight

was achieved for further parameter analysis.
2.3 Chemical element measurement

The C and N contents in plant samples, as well as the N content

in soil, were determined using an elemental analyzer (Vario

MACRO cube, Elementar, Germany) based on the combustion

method (Dieckow et al., 2007). SOC content was determined using

the potassium dichromate external heating method by Heanes

(Heanes, 2008). Plant P and soil TP and AP contents were

measured using the molybdenum blue colorimetric method

(Nelson and Sommers, 1982) All chemical analyses were

performed with three sample replicates, and the concentrations of

C, N, and P in the samples were expressed as mass concentrations.

Measurement of content indicators in T. grandis Seeds: The samples

were dried to constant weight (the difference between two

consecutive measurements did not exceed 0.002 g), shelled, and

then the seeds were ground evenly for subsequent analysis. The oil

content was determined using the GB/T 14772-2008; protein

content was measured using the GB 5009.5-2010 “Determination

of Protein in Foods”; fatty acid components were determined using

GB 5009.168-2016 “Determination of Fatty Acids in Foods”.
Frontiers in Plant Science 04
The protein content of seeds was determined using the Kjeldahl

method in accordance with GB 5009.5-2016 (Yang, 2009).
2.4 Data analysis

The soil C, N, and P contents represent the soil organic carbon,

total nitrogen, and total phosphorus content, respectively. The C, N,

and P stoichiometric ratios are expressed as mass ratios, namely C:

N, C:P, and N:P. The abbreviations for green leaves, senescent

leaves, and soil are G, L, and S, respectively.

The nutrient contents and stoichiometric ratios of leaves, litter,

and soil of T. grandis were analyzed using Repeated-Measures

Analysis of Variance (ANOVA) using the SPSS Statistics 26

software (SPSS Inc., Chicago, IL, USA). All of the treatment means

were compared for any significant differences using Duncan’s

Multiple Range Test (DMRT) or Welch’s ANOVA to determine

the trends in the variations of C, N, and P, their stoichiometric

characteristics, and the nutrient content of seeds across different ages.

Pearson correlation analysis was conducted on the C, N, P, and C:N:P

ratios in leaves, litter, and soil, as well as nutrient resorption.

Redundancy Analysis (RDA) was conducted using CANOCO 5.0

software to investigate the relationships between leaf-litter-soil C, N,

P stoichiometric ratios and soil physicochemical properties. Linear

regression was applied to analyze nutrient resorption rates of N and P

in leaves. Data plotting was performed using Origin 2021 software

(Origin Lab Inc., Northampton, MA, USA).
FIGURE 1

The variation trends of C, N, and P nutrient contents (a–c) and the C:N:P stoichiometric ratios (d–f) in the green leaves of T. grandis across different
stand ages. Different letters indicate significant differences in leaf nutrient content among different stand ages (P < 0.05). Data without significant
differences were not specifically labeled.
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3 Result

3.1 Nutrients contents and stoichiometric
characteristics of leaf

The leaf C, N, and P contents in the study area ranged from

334.42 ± 60.6 to 427.68 ± 36.15 g/kg, 11.75 ± 0.08 to 14.37 ± 1.07 g/kg,

and 1.06 ± 0.22 to 1.46 ± 0.3 g/kg, respectively (Figures 1a–c). The

contents of C, N, and P in leaves exhibited an initial increase followed

by a decrease with stand age; however, no significant differences were

observed among different stand ages (P > 0.05; Table 1). Similarly, the
Frontiers in Plant Science 05
C:N:P ecological stoichiometric ratios did not show significant

differences across stand ages (P > 0.05; Table 1), but similar

variation trends were observed across the entire age range.
3.2 Nutrients contents and stoichiometric
characteristics of litter

The C, N, and P contents in the litter within the study area ranged

from 442.15 ± 19.16 to 504.92 ± 46.59 g/kg, 7.55 ± 1.39 to 9.66 ± 0.51

g/kg, and 0.58 ± 0.05 to 0.78 ± 0.04 g/kg, respectively (Figures 2a–c).
FIGURE 2

The C, N, and P nutrient contents (a–c) and the litter C:N:P stoichiometric ratios (d–f) of Torreya grandis leaf litter and their variation trends across
different stand ages. Different letters indicate significant differences in leaf litter nutrient content among different stand ages (P < 0.05). Data without
significant differences were not specifically labeled.
TABLE 1 Significance tests were conducted on the C, N, and P contents and the C:N:P ecological stoichiometry of Torreya grandis leaves, litter,
and soil.

Index Leaf Litter Soil-10cm Soil-20cm

DF F P F P F P F P

C 4 1.65 0.236 0.906 0.496 1.294 0.336 2.994 0.073

N 4 4.91 0.019 1.884 0.19 2.300 0.130 3.532 0.048

P 4 2.313 0.129 10.769 0.001 2.001 0.170 4.515 0.024

C:N 4 1.641 0.239 0.939 0.48 0.964 0.468 0.976 0.463

C:P 4 2.383 0.121 2.353 0.000 6.702 0.007 4.353 0.027

N:P 4 2.219 0.14 3.261 0.059 6.723 0.007 5.484 0.013
P-values < 0.05 were marked in bold.
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With increasing stand age, the C and N contents in the litter exhibited

an overall declining trend, though no significant differences were

observed among different stand ages (P > 0.05; Table 1). However, the

P content in the litter was significantly higher in the near-mature

forest than in the mature forest (P < 0.05).

The C:N, C:P, and N:P ratios in the litter ranged from 48.5 to 57.31,

651.09 to 799.09, and 11.39 to 15.20, respectively (Figures 2d–f), with

no significant differences in the C:N:P ecological stoichiometric ratios

across stand ages (P > 0.05; Table 1). Overall, the nutrient contents and

stoichiometric ratios in the litter exhibited similar trends with stand

age, demonstrating a highly consistent pattern.
3.3 Nutrients contents and stoichiometric
characteristics of soil

The contents of soil C, N, and P generally increased with stand age

and exhibited significant differences (P < 0.05; Table 1). In the 10 cm

soil layer, the C, N, and P contents ranged from 17.12 ± 2.05 to 27.95 ±

12.44 g/kg, 2.09 ± 0.08 to 3.28 ± 0.96 g/kg, and 0.27 ± 0.08 to 1.45 ± 0.73

g/kg, respectively (Figures 3a–c). In older T. grandis stands (mature,

over-mature, and thousand), the soil C, N, and P contents were

significantly higher than those in the 20-year-old stands (P < 0.05).

In the 20 cm soil layer, the C, N, and P contents ranged from

14.59 ± 0.83 to 26.75 ± 9.24 g/kg, 2.03 ± 0.14 to 3.11 ± 0.77 g/kg, and

0.36 ± 0.22 to 1.86 ± 0.79 g/kg, respectively. Similarly, in stands with

greater stand ages (mature, over-mature, and thousand), nutrient

contents were higher and significantly higher than those in the

young stands. (P < 0.05) (Figure 3d).

The soil C:P and N:P ratios exhibited a consistent increasing

trend with stand age (Figures 3e, f), with significant differences
Frontiers in Plant Science 06
observed among different stand ages (P < 0.05; Table 1). However,

the soil C:N ratio did not show significant differences across stand

ages (P > 0.05, Figure 3d).
3.4 Reabsorption of nutrients in leaves

The results of the study (Figure 4) indicate that NRE varies

significantly across different stand ages (P < 0.05), while PRE does not

show significant differences (P > 0.05). As stand age increases, the

resorptionmechanisms for N and P in T. grandis plantations differ. In

the young stand stage of T. grandis plantations, N resorption

efficiency is relatively low but gradually increases with stand age.
3.5 Relationship among nutrient contents
of leaf, litter, and soil

The nutrients C, N, and P exhibited the most significant

correlations within the 20 cm soil layer (P < 0.01) (Table 2). Leaf

C was positively correlated with N (P < 0.05). Litter P was correlated

with soil C and N in the 10 cm layer (P < 0.05) and with C, N, and P

in the 20 cm layer (P < 0.01). In the nutrient content of litter and

soil stoichiometric ratios, Litter P was significantly correlated with

the soil N:P ratio in the 20 cm soil layer (P < 0.01) (Figure 5). Soil N

in the 10 cm layer was positively correlated with leaf C:N and C:P.

In the soil-litter stoichiometric ratios, soil C at 20 cm negatively

correlated with litter C:P (P < 0.05). Litter P showed a significant

negative correlation with soil nutrients (P < 0.01). Soil C was

positively correlated with C:N, while soil N and P were negatively

correlated with C:P and N:P (P < 0.01). PRE was positively
FIGURE 3

The variation trends of soil C, N, and P nutrient contents (a–c) and soil C:N:P stoichiometric ratios (d–f) across different forest ages in the 10-20 cm
soil layer. Different letters indicate significant differences in soil nutrient content among different stand ages within the same soil layer (P < 0.05).
Data without significant differences were not specifically labeled.
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correlated with leaf and soil nutrients, but negatively correlated with

litter nutrients. NRE was positively correlated with stand age, while

PRE had a weaker correlation.

As indicated by the RDA analysis results, soil physicochemical

properties (AP, AK, pH, Ca, andMg) accounted for 50.9% of the total

variation in the data (Figure 6a), with axes 1 and 2 accounting for

43.14% and 1.54%, respectively. AP had a much greater influence on

leaf, litter, and soil C:N:P ratios than pH, AK, Ca, and Mg. However,

axis 1 and axis 2 explained 43.58% and 1.83% of the total variation,

respectively (Figure 6b), with AP and AK again having a significantly

greater impact on the C:N:P ratios than pH, Ca, and Mg.
3.6 Seeds nutrient composition at different
forest ages

With increasing stand age, the nutrient composition in

T. grandis seeds initially declines and then stabilizes (Table 3),
Frontiers in Plant Science 07
with significant differences observed across different stand ages (P <

0.05). Among the primary nutrients, the concentration of crude fat

exhibits significant variation with stand age, peaking in the mature

forest. Furthermore, all nutrient components reach higher levels in

the near-mature or mature forests, except for ginsenoside acid.
4 Discussion

4.1 Nutrient characteristics and
stoichiometric differences

C、N and P are key limiting nutrients for plant growth. In most

terrestrial ecosystems, these three elements play important roles in

regulating plant growth, reproduction, and metabolism (Reich et al.,

1997; Han et al., 2005). Leaf C (374.69 ± 55.21 g/kg) content in our

research is significantly lower than averaged values reported in

coniferous forests (484.5 g/kg) (Tang et al., 2018), global plant
FIGURE 4

The linear regression curve of nutrient resorption in T. grandis leaves. Panel (a) represents the total nitrogen nutrient reabsorption rate, and panel (b)
represents the total phosphorus nutrient reabsorption rate.
TABLE 2 The correlation between C, N, and P nutrient contents in green leaves, litter, and soil.

Item Leaf Litter Soil-10cm Soil-20cm

C N P C N P C N P C N P

Leaf C 1

N 0.575* 1

P 0.329 0.386 1

Litter C 0.418 0.1 -0.254 1

N 0.039 -0.354 0.057 0.007 1

P -0.054 -0.279 -0.364 0.454 -0.011 1

Soil-10cm C -0.404 -0.079 0.268 -.546* -0.229 -.611* 1

N -0.414 0.121 0.154 -0.486 -0.393 -.607* 0.911** 1

P -0.511 -0.143 -0.075 -0.418 -0.171 -0.368 0.536* 0.671** 1

Soil-20cm C -0.196 0.032 0.193 -.557* 0.004 -.739** 0.707** 0.764** 0.661** 1

N 0.096 0.368 0.432 -0.354 -0.318 -.696** 0.750** 0.775** 0.479 0.764** 1

P -0.154 -0.032 0.35 -0.346 -0.114 -.696** 0.536* 0.479 0.643** 0.568* 0.571* 1
fron
*Correlation is significant at the 0.05 level; **Correlation is significant at the 0.01 level.
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communities (461.60 g/kg) (Elser et al., 2000) and Chinese forests

(455.00 g/kg) (Tang et al., 2018). At the same time, the leaf N (13.07

± 1.19 g/kg) and P (1.19 ± 0.22 g/kg) concentrations are lower than

the global and Chinese plant community averages (18.6 g/kg and

1.21 g/kg) (Han et al., 2005). The soil C (20.56 ± 6.10 g/kg) contents

in the T. grandis plantation is lower than the global (25.71 g/kg) and

national (29.51 g/kg) averages (Tian et al., 2010; Tao et al., 2016).

The soil in the study area is sandy loam, which has a low C retention
Frontiers in Plant Science 08
capacity, potentially affecting the soil C accumulation (Lal, 2004).

The soil P (1.09 ± 0.73 g/kg) contents in the T. grandis plantation is

higher than the national (0.56 g/kg) averages (Sun et al., 2019).

Although a certain amount of P is present in the study area, it is

typically bound to iron, aluminum, or calcium compounds in the

soil, making it difficult for plants to absorb, limiting for plant uptake

(Hinsinger, 2001), resulting in low P availability to T. grandis. High

N deposition in the subtropical region and fertilization by farmers
FIGURE 5

Pearson correlation heatmap of C, N, P contents and ratios, soil physicochemical properties, and nutrient resorption in the “leaf-litter-soil”
continuum of T. grandis plantations. Here, G, L, and S represent green leaves, litter leaves, and soil, respectively. * indicates significant correlation at
the 0.05 level (P < 0.05, two-tailed); ** indicates significant correlation at the 0.01 level (P < 0.01, two-tailed); *** indicates significant correlation at
the 0.001 level (P < 0.001). Panel (a) represents soil at 10 cm depth, and panel (b) represents soil at 20 cm depth.
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contribute to N accumulation in the soil (Zhu et al., 2015), leading

to a slightly higher soil N content (2.58 ± 0.60 g/kg) than global

(2.1g/kg) and national (2.3 g/kg) averages (Tian et al., 2010). In

addition, soil C:P is used to reflect the effective availability of P

(McGroddy et al., 2004), while soil N:P is commonly used to assess

N and P nutrient limitations (Imaya et al., 2010). In this study, the

average soil C:P and N:P ratios were 28.47 and 3.60, respectively,

both lower than the national average levels (C:P ≈ 61.0, N:P ≈ 5.1)

(Liu et al., 2010). The low C:P ratio may indicate P limitation in the

ecosystem, which is likely due to N fixation causing P deficiency

(Bell et al., 2014). Thus, high N and low P are the primary factors

contributing to the significant changes in the soil C:P and N:P ratios

in this region. The nutrient uptake by plants in the Chinese fir

plantation is limited due to soil nutrient constraints. Under nutrient

limitations, plants tend to adjust the nutrient content in their leaves

to reduce competition with other species. For instance, some studies

have indicated that in low-P soils, plants optimize resource use by

adjusting nutrient allocation between roots and leaves, thereby

reducing the N and P content in leaves (Li et al., 2016). As an

economically valuable species, T. grandis demonstrates distinct

ecological adaptability and nutrient utilization strategies

compared to other conifers like pines or firs. These differences

likely result in variations in leaf C, N, and P concentrations,
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reflecting unique adaptive mechanisms developed through long-

term evolutionary processes (Wang et al., 2011b).

Research indicates that in the T. grandis plantation continuum

(leaf-litter-soil), N and P concentrations are higher in the leaves than

in the litter and soil. As the primary sites of assimilation and

metabolism, leaves accumulate nutrients by fixing C and

synthesizing organic compounds through photosynthesis (Zhang

et al., 2018). Therefore, the N content in leaves exceeds that in the

litter and soil. Before senescent leaves fall, plants resorb someN and P

back into living organs (such as branches or roots) to minimize

nutrient loss, leading to significantly lower N and P concentrations in

the litter compared to the leaves (Killingbeck, 1996). Litter

decomposition is a key nutrient source for the soil, but its nutrient

input is somewhat reduced. As the primary metabolic organ, leaves

retain higher levels of N and P. Through nutrient resorption, T.

grandis lowers the N and P concentrations in the litter and soil,

resulting in relatively lower nutrient content in the soil.

The growth rate hypothesis suggests that the C:N and C:P ratios

are often inversely related to plant growth rate, reflecting vegetation

productivity to some extent (Wang et al., 2011b). In this study, the

average C:N and C:P ratios for T. grandis leaves were 28.7 ± 3.55 and

322.49 ± 57.43, respectively. These values are lower than those (C:N

(40.4) and C:P (728.0)) for subtropical artificial evergreen coniferous
FIGURE 6

The relationship between ecological stoichiometry of leaf-soil-litter C:N:P and soil physicochemical properties. AK, available potassium; AP, available
phosphorus; Ga, exchangeable calcium; Mg, exchangeable magnesium. Panel (a) represents redundancy analysis in the 10 cm soil layer, and panel
(b) represents redundancy analysis in the 20 cm soil layer.
TABLE 3 Nutrient composition and crude fat content of seeds at different stand ages.

Tree age
Nutrient components Fatty acid composition in crude fat

Crude fat Crude protein OA LA LIA S11EA AUA

Young 45.8 ± 2.09a 11.5 ± 0.1b 36.65 ± 2.01b 39.14 ± 1.69a 0.46 ± 0.02a 0.63 ± 0.03c 8.34 ± 0.3a

Near-mature 45.53 ± 3.01a 12.7 ± 1.04ab 42.14 ± 1.27a 34.46 ± 1.34b 0.44 ± 0.01ab 0.76 ± 0.06ab 7.84 ± 0.09a

Mature 39.97 ± 4.1a 13.73 ± 0.59a 44.11 ± 1.61a 31.93 ± 1.49b 0.42 ± 0.03b 0.86 ± 0.03ab 8.19 ± 0.64a

Over-mature 43.43 ± 2.85a 11.93 ± 1.3b 41.33 ± 1.53a 34.72 ± 1.74b 0.42 ± 0.02b 0.73 ± 0.07bc 7.9 ± 0.19a

Thousand 40.17 ± 4.45a 11.53 ± 0.61b 41.66 ± 1.87a 34.68 ± 1.36b 0.43 ± 0.01ab 0.67 ± 0.02c 7.71 ± 0.45a
OA, oleic acid; LA, linoleic acid; a-LIA, a-linolenic acid; S11EA, cis-11-Eicosenoic acid; AUA, auropic acid. Different lowercase letters indicate significant differences at P < 0.05 level.
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forests in China (Wang et al., 2011b), indicating that T. grandis

plantations, when faced with nutrient limitations, demonstrate

adaptability to nutrient stress by optimizing nutrient absorption

and allocation strategies, leading to more efficient use of N and P

(Zhang et al., 2017). Previous studies have shown that the leaf N:P

ratio in plant biomass reflects the relative N or P limitation at the

community level (Güsewell, 2004). Previous findings suggest that an

N:P ratio > 16 indicates P limitation, while an N:P ratio < 14 indicates

N limitation. At intermediate values, plant growth is constrained by

both N and P, depending on specific plant conditions (Reich, 2005;

Fan et al., 2015). Relying solely on the N:P ratio to assess nutrient

limitations in plant biomass production is insufficient; additional

criteria are necessary. For instance, N limitation is indicated when N

concentrations in green leaves fall below 20 g/kg, while P limitation

occurs when P concentrations are below 1 g/kg (Zeng et al., 2017). In

this study, the leaf N:P ratio was 11.25, with leaf N concentrations

below 20 g/kg and P concentrations below 1 g/kg at 100 years

(Figure 1). These results indicate that T. grandis plantations are

primarily N-limited. During the fast-growing phase, N availability in

the plantation is lower than in young and old forests, suggesting N as

a limiting factor for growth. As the plantation matures, N limitation

may shift to a combined N and P limitation. Under P-limited

conditions, plants enhance P re-use by improving root absorption

efficiency and increasing leaf P resorption, resulting in lower P

content in senescent leaves (Liu et al., 2020). Moreover, the N:P

ratios in both green and senescent leaves showed significant

correlations with the P concentrations in both leaf types (Figure 5),

consistent with previous research indicating that P limitation

increases during the development of the plantation (Yan et al.,

2018; Deng et al., 2019). The C:N and C:P ratios in litter can also

reflect the supply of N and P in the soil (Tong et al., 2021).Studies

have shown that nutrient release from litter reaches a critical

threshold when the C:N ratio falls below 40 and the C:P ratio falls

below 600, indicating effective release of N or P from litter (Parton

et al., 2007). In this study, the average C:N ratio in the litter was 54.97

± 8.92, above the C:N release threshold, while the C:P ratio averaged

719.13 ± 96.5, exceeding the C:P release threshold. These results

suggest that the N and P content in T. grandis litter is not effectively

released. It is inferred that the joint limitation of N and P in the

growth of T. grandis may be due to the ineffective release of N from

litter and the deficiency of P in the soil.
4.2 The influence of stand age on nutrients
and stoichiometry

This study found that there were no significant differences in leaf

C content across different stand ages, possibly due to the influence of

environmental factors in the study area, and that leaf C content

exhibits relatively stable characteristics. However, the contents of N

and P were significantly affected, indicating that T. grandis

plantations exhibit different ecological adaptation strategies at

various developmental stages (Zhang et al., 2019). Although stand

age has no significant effect on leaf N and P contents, their levels

fluctuate with increasing stand age and reach the highest values in
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mature forests. In contrast, the C, N, and P contents in litterfall

decrease with stand development, reflecting a conservative nutrient

utilization strategy adopted by T. grandis during stand succession (He

et al., 2024). The highest nutrient content in mature forests suggests

that T. grandis plantations have increased organic matter in leaves

and greater C storage capacity during the transition from young to

mature forests. Another possible explanation is changes in

photosynthetic characteristics, as plant age can influence

photosynthetic performance (Bielczynski et al., 2017). The

nutritional composition of T. grandis seeds (Table 3) also shows

that fat and protein contents are higher in the mature forests range

compared to other stand ages. It gradually stabilizes with increasing

stand age, consistent with our hypothesis, the nutrient acquisition

and transformation capacity of Chinese fir did not decline with

increasing stand age. Soil C, N, and P contents increase with forest

age, primarily due to litter decomposition and nutrient release.

Additionally, as tree growth progresses, the rise in root exudates

fosters soil organic matter formation, enhancing the storage of C, N,

and P in the soil (Shi et al., 2021). Although the nutrient content of

litter did not differ significantly with increasing stand age, the N and P

contents in the litter exhibited an overall decreasing trend, while the

C:N and C:P ratios showed an increasing trend as stand age increased,

indicating a slower decomposition rate of litter in older forests,

leading to a slower rate of nutrient replenishment to the soil (Yuan

et al., 2024). Although nutrient concentrations in the litter decline

with increasing stand age, the total amount of litter increases, which,

through the cumulative effect, replenishes the soil nutrients (Li et al.,

2023). As stand age increases, T. grandis maintains leaf nutrient

stability through resorption mechanisms, while nutrient release and

accumulation in the litter supply nutrients to the soil. The coupling of

leaves, litter, and soil sustains the dynamic balance of the T. grandis

plantation ecosystem.

This study found that the variation in leaf C:N:P ratios at

different stand ages may be related to changes in nutrient demand

during the growth of T. grandis. Although leaf C:N:P ratios do not

differ significantly among stand ages, the rapid growth rate in the

mature stand stage results in the lowest leaf C:P and N:P ratios (Pan

et al., 2020). After reaching the mature forest stage, as growth rate

slowed down, C:P and N:P ratios slowly increased, which aligns

with the growth rate hypothesis theory, as confirmed by previous

studies (Chen et al., 2018; Tong et al., 2019; Wu et al., 2020).

Therefore, during the young and mature forest stages, T. grandis

gradually reduced the C:N, C:P, and N:P ratios in the leaves through

enhanced nutrient recovery efficiency and optimized nutrient

allocation (Figures 1d, f). In contrast, during the over-mature

forest stage, as nutrient competition intensified, soil nutrient

supply became inadequate, and adjustments in nutrient uptake

and utilization strategies occurred, leading to an increase in these

ratios. Litter C:N and C:P ratios are typically used to reflect the

efficiency of N and P utilization and plant growth rate. Studies have

shown that the C:N:P ratios of litterfall do not differ significantly

among stand ages. However, with increasing stand age, the C:N and

C:P ratios of litterfall in T. grandis plantations increase, while the N:

P ratio decreases but exhibits an increasing trend in the mature

stand stage. This suggests that as stand age increases, growth enters
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a more stable phase, and nutrient demands for N and P decrease,

leading to a relative reduction in their concentrations in the litter.

However, the C content in the leaf was higher during the mature

stage, causing the C content in the litter to increase, which in turn

led to an upward trend in the litter C:N and C:P ratios with

increasing stand age (Gartner and Cardon, 2004). Furthermore, as

stand age increased, soil C:P and N:P ratios showed a downward

trend. This was mainly due to the slow accumulation of P in the

litter and the gradual insufficiency of soil P supply with increasing

stand age, which resulted in the limited availability of P in the soil,

thus leading to a decrease in the soil C:P and N:P ratios (Cleveland

and Liptzin, 2007). Based on the above results, the growth of

Torreya is constrained by both N and P. In the early stages, N is

the primary limiting factor, but as the stand develops, the limitation

shifts to N and P co-limitation, with P becoming the dominant

constraint in older stands. The results also indicated (Figure 5) that

the soil C:P and N:P ratios were negatively or significantly

negatively correlated with soil P content, suggesting that changes

in soil P across different stand ages were the primary cause of the

variations in soil C:P and N:P ratios (Liu et al., 2023).
4.3 Nutrient resorption characteristics at
different stand ages

Compared to fresh leaves, the N and P content in senescent leaves

of T. grandis plantations of various ages significantly decreased,

reflecting the plant’s nutrient resorption characteristics (He et al.,

2023). During the young stage (Figure 4), plants support rapid

growth by enhancing PRE, whereas in the mature to overmature

stages, as soil N availability decreases, plants rely more on improving

NRE to sustain growth (Callesen, 2004). Since the N recycling process

is influenced by both environmental conditions and the plants’

physiological characteristics traits (Mediavilla et al., 2014; Sun et al.,

2016), NRE is likely regulated by the overall plant-soil system rather

than solely by soil N concentration. The T. grandis plantation adjusts

its nutrient conservation and utilization strategies as stand age

changes. To maximize N and P use efficiency, older stands exhibit

a more conservative P utilization strategy, achieved by increasing PRE

and reducing leaf P concentration. In contrast, their N utilization

strategy also becomes more conservative but through a different

mechanism: enhancing NRE without lowering leaf N concentration.

This phenomenon is consistent with previous studies on plant

nutrient acquisition strategies along sand dune succession

sequences (Hayes et al., 2014). Furthermore, total soil N shows a

positive correlation with NRE, PRE, and the N:P ratio, and a negative

correlation with N and P concentrations in senescent leaves

(Figure 5). This indicates that the relationship between total soil N

and leaf nutrient status (e.g., nutrient resorption and leaf nutrient

concentrations) is closer, supporting the view proposed by previous

studies that soil N has a positive effect on P resorption in the leaves of

T. grandis plantations (Craig et al., 2015). The close interaction

between plants and soil is critical for nutrient cycling and tree growth.

Across all stand ages, the PRE is always higher than the NRE

(Figure 4), indicating that sustained P resorption within plants is more
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P than N resorption (Reed et al., 2012). The reasons for this disparity

are as follows: Firstly, P has a higher reactivation ability compared to N.

Studies have shown that P resorption occurs throughout the leaf’s

entire lifespan, while N resorption mainly happens during leaf

senescence prior to litterfall (Achat et al., 2018). Secondly, there is a

lack of external P input in the Torreya forest, but a significant amount

of external N input occurs through atmospheric N deposition. In

subtropical regions, there is a large amount of N deposition, and

experiments simulating N deposition in larch plantations have shown

that external N input reduces leaf NRE (Sun et al., 2016). Thirdly,

plants invest more photosynthates and energy to acquire soil-available

P, while N bioavailability largely depends on soil microbial activity. Soil

microbes mineralize organic N into inorganic N, which roots can

absorb directly without energy expenditure. In contrast, only a small

fraction of inorganic P is mineralized from organic forms, with most

being rapidly adsorbed onto mineral surfaces or bound in inorganic

precipitates (e.g., Fe, Al, or Ca) (DeLuca et al., 2015; Wu et al., 2020).

Therefore, plants adopt a more conservative strategy for internal P

cycling, which differs from the strategy used for N cycling (Reed et al.,

2012). This divergence reflects the distinct strategies plants utilize for P

and N resource acquisition.

Additionally, the nutrient allocation in T. grandis plantations is

also reflected in the nutrient composition of its seeds. The oil, protein,

starch, and other nutritional components, as well as the fatty acid

composition of T. grandis seeds, are critical indicators influencing seed

quality. The higher the protein and oil content, and the lower the

starch content, the more delicate and crisp the seed’s texture becomes

(Fang et al., 2021). According to the research on crude fat and crude

protein, it was found that these components were relatively higher in

near-mature and mature stands (Table 3). This trend aligns with the

leaf C, N, and P nutrient contents, suggesting that during these two age

stages, the accumulation of nutrients in the plants is greater, thus

enabling sufficient nutrient allocation to the seeds. With increasing

stand age, the nutrient composition of T. grandis gradually stabilizes

without significant decline. This phenomenon can be attributed to the

development of an efficient N and P uptake and nutrient allocation

mechanism during its growth. Similar phenomena have been observed

in other studies, where the leaves and root systems of T. grandis

exhibited efficient N and P uptake and allocation capacities in trees

older than 500 years (He et al., 2024). The stability of this mechanism

plays a crucial role in maintaining the effective accumulation and

redistribution of nutrients throughout the long-term growth of T.

grandis. Therefore, the growth and quality of T. grandis, influenced by

stand age, nutrient content, and their relative ratios, are important

factors in determining the nutritional composition of the seeds.
5 Conclusions

This study reveals the significant influence of stand age on the

C:N:P stoichiometry, nutrient dynamics, and ecological adaptability

of T. grandis plantations. Nutrient concentrations in leaves, litter,

and soil exhibit distinct patterns during stand development,

reflecting shifts in nutrient limitation and allocation strategies.

Young stands are primarily N-limited, transitioning to N-P co-
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limitation as the stand matures, with P limitation becoming more

pronounced in overmature forests. T. grandis enhances PRE during

the early stages and relies on higher NRE in overmature stands,

demonstrating its conservative nutrient utilization strategy.

Moreover, the nutrient composition of seeds is closely associated

with leaf nutrient dynamics, indicating a tight coupling between

nutrient allocation and seed quality. Overall, the growth and

nutrient dynamics of T. grandis plantations are influenced by

stand age and soil nutrient supply. Future management should

prioritize soil P supplementation and improved nutrient cycling

efficiency to promote sustainable development and enhance the

ecological and economic value of plantations.
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