
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Huajian Liu,
University of Adelaide, Australia

REVIEWED BY

Fei Gao,
Shanxi Agricultural University, China
Ravindra Yadav,
Devi Ahilya Vishwavidyalaya, India

*CORRESPONDENCE

Amna Ikram

amnaikram@gscwu.edu.pk

Amal H. Alharbi

ahalharbi@pnu.edu.sa

RECEIVED 27 January 2025
ACCEPTED 22 April 2025

PUBLISHED 22 May 2025

CITATION

Ikram A, Ikram S, El-kenawy E-SM,
Hussain A, Alharbi AH and Eid MM (2025)
A fuzzy-optimized hybrid ensemble
model for yield prediction in
maize-soybean intercropping system.
Front. Plant Sci. 16:1567679.
doi: 10.3389/fpls.2025.1567679

COPYRIGHT

© 2025 Ikram, Ikram, El-kenawy, Hussain,
Alharbi and Eid. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 22 May 2025

DOI 10.3389/fpls.2025.1567679
A fuzzy-optimized hybrid
ensemble model for yield
prediction in maize-soybean
intercropping system
Amna Ikram1*, Sunnia Ikram2, El-Sayed M. El-kenawy3,4,
Adil Hussain5, Amal H. Alharbi6* and Marwa M. Eid7,8

1Department of Computer Science and IT, Government Sadiq College Women University,
Bahawalpur, Pakistan, 2Department of Software Engineering, The Islamia University,
Bahawalpur, Pakistan, 3School of ICT, Faculty of Engineering, Design and Information and
Communication Technology (EDICT), Bahrain Polytechnic, Isa Town, Bahrain, 4Applied Science
Research Center. Applied Science Private University, Amman, Jordan, 5School of Electronics and
Control Engineering, Chang’an University, Xi’an, China, 6Department of Computer Sciences, College
of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi
Arabia, 7Faculty of Artificial Intelligence, Delta University for Science and Technology,
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Maize-soybean intercropping is a sustainable farming practice that optimizes

resource use efficiency and improves yield potential. Accurate yield prediction is

essential for effective agricultural management in such systems. This study

proposes a Fuzzy-Optimized Hybrid Ensemble Model (FOHEM), integrating

stacked ensemble machine learning algorithms with a fuzzy inference system

(FIS) to improve yield prediction. The dataset includes four intercropping

treatments: SM (sole maize), SS (sole soybean), 2M2S (two rows of maize with

alternating two rows of soybean), and 2M3S (two rows of maize with alternating

three rows of soybean). Key input features include environmental factors, soil

nutrients, and management practices across different treatments. The FOHEM

framework integrates the outputs of the FIS with a stacked ensemble model

comprising Random Forest (RF), Categorical Boosting (CatBoost), and Extreme

Learning Machine (ELM)). A genetic algorithm (GA) dynamically adjusts the

weights between FIS and the ensemble model, optimizing final prediction

while enhancing accuracy and robustness. Additionally, LIME and SHAP are

used for model interpretability, and identifying yield influencing factors. The

model is validated using performance metrics such as MSE, MAE, and R2. The

results demonstrated that proposed model significantly enhances yield

prediction accuracy, offering valuable insights for optimizing intercropping

systems. This study highlights the potential of integrating machine learning,

fuzzy inference and optimization techniques to advance precision agriculture

and decision-making in sustainable farming.
KEYWORDS

maize-soybean intercropping, yield prediction, fuzzy inference system, ensemble
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1 Introduction

Agriculture serves as the foundation of global food production

and plays a significant role in economic development. However,

providing food security for a growing population while maximizing

crop yield and maintaining environmental sustainability remains a

significant challenge. Sustainable farming practices such as

intercropping offer a promising solution by optimizing resource

utilization, improving soil fertility, and enhancing overall yield

stability (Toker et al., 2024). Additionally, agriculture contributes

in strengthening adaptation and mitigation efforts against climate

change (Bin Wu et al., 2014; Gao et al., 2020).

The existing monoculture agricultural system is one of the main

causes of food insecurity in developing countries, which are low

resilient to environmental and biotic pressures. According to recent

research, countries with great number of crop varieties and crop

groups have stronger inter-annual stability of total agricultural

production (Jabbar et al., 2020). Intercropping is a sustainable

agricultural technique where two or more crops are grown in the

same field at the same time and is used to enhance crop

productivity, improve soil fertility, and reduce environmental

risks (Stomph et al. , 2020; Raza et al. , 2022). Among

intercropping systems, maize-soybean intercropping is widely

used due to its ability to enhance nitrogen fixation, optimize land

use, and improve overall yield stability (see Figure 1). However,

accurate yield prediction in such complex systems remains

challenging due to interactions between crops, soil conditions,

and climate variability.

Existing AI-driven yield prediction models have been

extensively developed for monoculture systems, but there is a
Frontiers in Plant Science 02
significant lack of research on their applicability to intercropping

(see in Table 1). Although machine learning has significantly

improved predictive accuracy in agriculture, most studies have

focused on single crop systems, neglecting the complexities of

intercropping. The limitations of existing models have led to

several key research gaps, which are discussed in detail in section

2. These gaps include:
• Most predictive models are designed for monoculture,

failing to address the crop interactions and resource

competition inherent in intercropping.

• Existing machine learning models require extensive labeled

data for training, but intercropping systems have complex,

dynamic relationships that vary across regions, making it

difficult to apply these models universally.

• Existing models mostly rely on static feature weights,

assuming constant crop responses. In intercropping,

species interactions vary dynamically due to changing

nutrient uptake, root competition, and environmental

influences, which static models cannot capture.

• Statistical models, such as regression-based approaches,

struggle to adapt the nonlinear and dynamic nature of

intercropping, while deep learning models often lack

interpretability and adaptability, which are crucial in

agronomic contexts.
As highlighted in the literature review (Table 1), existing studies

have primarily focused on yield prediction using standalone

machine learning models or conventional statistical techniques.

However, these approaches lack adaptability to effectively capture
FIGURE 1

Maize-soybean intercropping is used to achieve crops, soil and environmental health (China-Pak Coop in Maize-Soybean Intercropping; Kumawat
et al., 2022).
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the dynamic crop interactions and environmental influences that

are integral to intercropping systems.

To address these challenges, this study proposes a fuzzy-optimized

hybrid ensemble framework that combines fuzzy logic with stacked

ensemble machine learning. A genetic algorithm is further employed

to dynamically allocate weights between the fuzzy and machine

learning components, improving predictive accuracy and robustness

across different intercropping treatments (see Figure 2).
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LIME and SHAP are also applied for model interpretability and

transparency, enabling the identification of influential parameters

such as total biomass, residue biomass and soil organic carbon,

which provide valuable information for optimizing resource

allocation. The dataset includes four distinct treatment groups

based on density variations and planting patterns: SS (sole

soybean), SM (sole maize), 2M2S (two rows of maize alternating

with two rows of soybean), and 2M3S (two rows of maize

alternating with three rows of soybean). Selected features

encompass environmental practices pertinent to both sole and

intercrop conditions, ensured the reliable predictions.

In proposed work, the research questions are investigated

given below:
RQ1: How can integrating fuzzy inference system with

machine learning improve the accuracy and reliability of

yield prediction in intercropping systems compared to

traditional agronomic models?

RQ2: How can computational models accurately predict yield

for different intercropping treatments (SS, SM, 2M2S, and

2M3S) to support sustainable decision-making agriculture?

RQ3: How can optimization techniques (GA) and

interpretability methods (LIME and SHAP) improve the

accuracy, transparency, and adoption of AI-driven yield

prediction models in precision agriculture?
Accurate yield prediction in intercropping is essential for

optimizing input use and reducing economic risks. Traditional
TABLE 1 Summery of related work with research gap.

Study Approach Key Findings Research Gap

(Wang et al., 2021) Canopy modeling
in intercropping

Optimized light use efficiency Does not incorporate intercropping density variations for
yield prediction.

(Keerthika et al., 2024) Machine learning based
soil classification

Suggested sole and
intercrop combinations

Lacks real-time and dynamic yield prediction
for intercropping.

(Atamanyuk et al., 2023) Random sequence analysis High accuracy but lacks adaptability Does not integrate FIS to handle uncertainty in predictions.

(Azeem and Mai, 2024) LAI-GDD modeling Effective biomass prediction Lacks hybrid machine learning integration for
improved accuracy.

(Sadenova et al., 2021) Statistical yield modeling Strong correlation with official stats Does not handle real-time yield variability under intercropping.

(Lobell and Burke, 2010) Statistical vs process-based model Panel models predict temperature
effects well

Lacks soft computing and machine learning hybridization for
dynamic yield.

(Jabed and Azmi
Murad, 2024)

Machine learning for
yield prediction

RF, SVR, and GBM
improve accuracy

Does not incorporate uncertainty quantification techniques.

(Sharma et al., 2023) CNN, RF, XGBoost for yield RF performed well Lacks model explainability and interpretability techniques.

(Abdel-salam
et al., 2024).

Feature selection +
optimized SVR

Higher efficiency Does not integrate FIS for enhanced decision-making.

(Bhimavarapu
et al., 2023)

IOF with LSTM Reduced overfitting Lacks soft computing integration for uncertainty handling.

(Upreti et al., 2024) GA+ PSO for yield &
pest prediction

Higher pest detection accuracy Does not provide treatment specific yield predictions
for intercropping.

(Elbasi et al., 2023) Machine learning + IoT
sensor data

High accuracy Lacks explainability and interpretability for practical
decision-making.
FIGURE 2

Soft computing framework for proposed system.
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models lack adaptability required for complex cropping

interactions, making soft computing and hybrid ensemble models

valuable tools for agricultural decision-making.

The structure describes the literature review in section 2,

methodology used in proposed work presented in section 3,

Findings and Results of the model presented in section 4 and

discussion, limitations, future work and conclusion are presented in

section 5.
2 Literature review

Growing interest in sustainable agriculture has propelled

intercropping to the forefront of research, with a marked increase

in scientific studies dedicated to its potential. To effectively evaluate

productivity and resource use efficiency within these systems, a

robust conceptual framework is essential (Stomph et al., 2020). The

accurate prediction of yield remains essential for optimizing

intercropping because it reveals essential relationships between

crop species and environmental conditions and management

strategies. Predictive research models help identify essential

factors like light interception, nutrient dynamics and planting

density, enable scientists to create better resource management

strategies. The development of reliable yield prediction system

improves farm productivity and helps sustainable agriculture by

decreasing operational expenses while protecting the environment

(Chen et al., 2025). Traditional statistical models often fall short in

capturing the non-linear and uncertain relationships inherent in

such systems. The review investigates modern developments in

these fields while detecting research voids and emphasizing the

value of the proposed approach.
2.1 Yield prediction for different
intercropping patterns

Research on crop prediction and treatment optimization in

intercropping systems has yielded significant insights (Table 2). The

effect of canopy heterogeneity and border row proportions on light

interception and light use efficiency in maize-peanut strip

intercropping systems has been examined. The importance of

varying row configurations, such as M2p2, M4p4, M6p6, and

M8p8 is highlighted for enhancing light capture for better yield

outcomes (Wang et al., 2021). Additionally, suitable solecrop and

intercrop is suggested based on soil series by employing machine

learning algorithms (Keerthika et al., 2024).
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2.2 Traditional methods for yield prediction

With the growing global population, accurate wheat yield

prediction is crucial for agricultural planning. Traditional models,

like regression and mechanistic approaches, often overlook

stochastic factors such as weather and technology. Here we

introduced few studies based on traditional models to find

research gaps, which we discussed in Table 1. A flexible model is

developed by using random sequence analysis, achieving high

accuracy (1.79%-2.75% error) without constraints on production

or environmental parameters (Atamanyuk et al., 2023). Similarly

mathematical linking leaf area index (LAI) and growing degree days

(GDDs) have been developed to predict biomass production in arid

regions, demonstrating that Cubic polynomial models performed

best (Azeem and Mai, 2024). Furthermore, historical data and

mathematical modeling were applied to predict crop yields in

Kazakhstan, using a dynamic-statistical biomass model trained on

21 years of data (2000-2021). The model demonstrates strong

correlation with official statistics 0.84 and a cross-validation

correlation of 0.70, confirming its robustness against metrological

variability. While these models have proven effective, their reliance

on fixed mathematical relationships limits their adaptability,

necessitating more flexible, data-driven approaches (Sadenova

et al., 2021). The statistical models are also evaluated against

CERES-Maize model for predicting maize yield under climate

change in Sub-Saharan Africa (Lobell and Burke, 2010). These

models excel in precipitation predictions, while panel and cross-

sectional models better capture temperature effects, with accuracy

improving at broader spatial scales.
2.3 Integration of machine learning for
yield prediction in agriculture

Advancements in machine learning have significantly improved

yield prediction accuracy by addressing the limitations of

traditional statistical and empirical methods. Conventional

techniques struggle with the nonlinearity and complexity of

intercropping systems, necessitating the adoption of more

adaptive and data-driven approaches (Chen et al., 2025). Machine

learning optimizes crop selection and yield prediction by analyzing

soil and environmental data, enhancing decision-making in

farming. These models help farmers minimize losses and

maximize profits through precise yield estimation (Iniyan and

Jebakumar, 2022; Iniyan et al., 2023). Recent studies have

explored machine learning algorithms such as RF, support Vector
TABLE 2 Yield prediction across different intercropping patterns.

Contribution (citation, year) Intercrop Treatment (crop prediction focus)

Canopy heterogeneity with border-row proportion affects light interception and use efficiency in
maize-peanut strip intercropping (Wang et al., 2021) (2021)

Maize-peanut Border row proportion (M2p2, M4p4,
M6p6, M8p8)

Crop and suitable intercrop suggestion based on soil series using machine learning algorithms
(Keerthika et al., 2024) (2024)

Multiple crops Soil classification and solecrop/
intercrop prediction.
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Regression (SVR), Gradient Boosting Machines (GBM), and Neural

Networks (NN) for yield prediction demonstrating improvements

in predictive performance (Jabed and Azmi Murad, 2024). In

another study, machine learning algorithms such as Decision

Tree, RF, XGBoost, CNN, and LSTM were applied to enhance

food security through yield prediction. RF performed well, while

CNN minimized the overall loss, making them the most effective

models for reliable yield prediction (Sharma et al., 2023). A novel

crop yield prediction framework was introduced that integrates a

hybrid feature selection approach with an optimized SVRmodel. By

employing K-means clustering, the FMIG-RFE feature selection

method, and an improved Crayfish Optimization Algorithm

(ICOA) for SVR hyper parameters tuning, the model achieved

superior accuracy and efficiency, outperforming state-of-the art

methods (Abdel-salam et al., 2024). Furthermore, performance

records from Uniform Soybean Tests (UST) were used to develop

an LSTM-based model incorporating pedigree data and weekly

weather parameters for genotype response prediction. This model

outperformed SVR-RBF, LASSO, and the USDA yield prediction

model. Additionally, a temporal attention mechanism enhanced

interpretability, offering valuable insights for plant breeders.
2.4 Soft computing approaches for yield
prediction

The combination of machine learning and soft computing

techniques significantly improves the predictive power of yield

estimation models by integrating interpretability, adaptability, and

dynamic optimization. The data-driven AI algorithms are utilized

for maize yield prediction in maize-legume intercropping systems,

utilizing soft computing techniques with machine learning

algorithm such as symbolic regression and fuzzy logic are

implemented with genetic algorithms, which resulted in higher

accuracy (Agboka et al., 2022) (2022). An ANFIS-MOGA approach

has been applied to optimize agricultural sustainability by

simultaneously improving energy efficiency, economic returns,

and environmental impact in canola to evaluate land suitability

for wheat cultivation in northwestern Iran. This method identified

53.79% of land as highly suitable, with slope, soil depth, and salinity

as key limiting factors (Seyedmohammadi and Navidi, 2022). Fuzzy

systems offer interpretability and robustness, which are essential for

complex intercropping scenarios where multiple environmental
Frontiers in Plant Science 05
and agronomic factors interact (Val et al., 2025). Yield prediction

has also been explored from an energy perspective, focusing on fault

detection, systems commissioning, and efficiency evaluation in

agricultural production. Studies have examined ANN and ANFIA

for modeling energy use and predicting output energy, detailing

data collection, energy analysis, and model design (Nabavi-

Pelesaraei et al., 2021).
2.5 Optimization techniques for yield
prediction

Optimizing techniques play a crucial role in enhancing crop

yield prediction accuracy by mitigating underfitting and overfitting

issues. An Improved Optimizer Function (IOF) integrated with

LSTM improves model performance by refining weight adjustments

and convergence. Compared to eight standard models IOF-LSTM

achieves lower RMSE and MAE, outperforming CNN, RNN, and

standard LSTM in crop yield prediction (Bhimavarapu et al., 2023).

An intelligent agricultural optimization system integrating deep

learning and hybrid optimization techniques is used to enhance

crop yield prediction and pest detection. By combining GA and

Particle Swarm Optimization with CNNs, RNNs, LSTMs, and

GANs, the proposed method achieves superior accuracy, reducing

MSE in yield prediction and improving pest detection accuracy

from R2 0.93 to 97.5%, outperforming conventional models in

efficiency and scalability (Upreti et al., 2024). Machine learning

with IoT sensor data is integrated to optimize crop production and

decision making, achieving 99.50% accuracy with Bayes Net. The

findings enhance yield prediction, disease detection, and cost

efficiency, promoting sustainable agriculture (Elbasi et al., 2023).
2.6 Research GAP

Despite advancements to yield prediction for intercropping

systems, there are several limitations still persisting (see Table 3).

Traditional statistical and process based models struggle to capture

the non-linear and dynamic interactions between crops, soil

conditions, and climate variability. Existing machine learning

models improve prediction accuracy but lack interpretability,

making it difficult for farmers to understand influential factors.

Additionally, most studies do not integrate optimization techniques
TABLE 3 Research gaps and FOHEM contributions.

Research Gap Existing Limitation FOHEM’s Solution

Uncertainty in yield prediction
Machine learning models lack soft computing
for handling variability.

Integrates FIS with ensemble learning for better uncertainty management and
robust predictions.

Limited adaptability to
intercropping treatments

Yield models do not consider SS, SM, 2M2S and
2M3S variations.

FOHEM incorporates for treatment-specific predictions, optimizing yield
estimates across different cropping densities.

Lack of interpretability
Machine learning models are black box
without explainability.

Implements LIME & SHAP to enhance interpretability and provide transparent
decision-making support.

Inefficient optimization
Standard models face overfitting and
underfitting issues.

Uses GA to optimize model weights, fine tune FIS rules, and enhance
model generalization.
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to fine tune model performance and overcome the issues like

overfitting or underfitting. There is also limited research on

hybrid approaches that combine fuzzy inference systems with

machine learning to handle uncertainties in intercropping

systems. This study addresses gaps by proposing FOHEM that

enhances prediction accuracy, incorporates interpretability

methods (LIME and SHAP), and optimizes model performance

using GA.
3 Material and methods

This study proposes a soft computing framework that integrates

fuzzy logic with machine learning for yield prediction in agriculture.

The framework employs fuzzy rule generation for handling

uncertainty, followed by a stacked ensemble machine learning

approach for enhanced predictive accuracy. GA is utilized for

optimizing the dynamic weights assignment of the components of

proposed model FOHEM.
3.1 Description of experimental area and
dataset

The dataset is acquired from the Department of National

Research Center of Intercropping (NRCI) at The Islamia

University of Bahawalpur, Pakistan (https://nrci.iub.edu.pk) (Raza

et al., 2021; Raza et al., 2022). It is based on historical yield records

for maize-soybean intercropping for both solecrop and intercrop

scenarios, collected from 2018 to 2020. This experimental initiative

was conducted at research farms located in Tehsil Khairpur Tame

Wali and District Bahawalpur, South Punjab, Pakistan. Dataset is

based on four treatments: SS, SM, 2M2S and 2M3S as shown in

Table 4 (Raza et al., 2019), based on 28 parameters and 225 records.

Soil analysis was performed in laboratory, while weather data was

collected using a weather station to ensure accurate environmental

monitoring. For further methodological details, referenced studies

provide a comprehensive description.

3.1.1 Model structure
The proposed yield prediction model (see Figure 3) is structured

as follows:

Input Layer:

The model uses several agricultural features by considering

expert knowledge and previous studies based on yield prediction

(Stratton et al., 2022). We categorized the parameters into

three groups:
Fron
• Soil parameters: Soil organic carbon, soil percentage

nitrogen, soil percent carbon, soil carbon to nitrogen

ratio, bulk density, manganese, phosphorus, potassium

and soil pH etc.

• Crop related variables: Total biomass, transpiration, crop

nitrogen uptake, yield per plant and crop biomass etc.
tiers in Plant Science 06
• Management parameters: Treatment type, nutrient

management practices, pest management practices and

residue biomass etc.
The dataset was synthetically generated using expert-defined

parameter ranges, ensuring controlled variability and realistic

data representation.

GA-optimized Features Selection and Engineering

A GA-based approach is used to enhance the efficiency of

feature selection and transformation (da S. Bohrer and Dorn,

2024). Traditional feature selection techniques, such as correlation

analysis and RF features importance provide initial insights into

relevant variables. To overcome these limitations, GA was

employed for both feature selection and feature engineering,

ensuring an optimized feature set that maximized predictive

accuracy while minimizing overfitting risks.

In the GA-based feature selection process, the algorithm was

designed to identify the most relevant subset of features while

minimizing redundancy and preserving or improving predictive

accuracy. Each candidate solution was encoded as a binary

chromosome where a “1” denoted feature inclusion and a “0”

indicated exclusion. The fitness of each chromosome was

evaluated based on the model’s predictive performance. Beyond

feature selection, GA was also applied feature engineering to explore

optimal transformations and interactions among the selected

variables. The engineered features were generated through

mathematical operations such as polynomial expansions,

logarithmic scaling, and interaction term construction. The fitness

function ensured that only feature transformations that positively

contributed to model performance were retained.

The GA was implemented with the following key parameters for

both features selection and feature engineering:
• Population size: 100

• Crossover rate: 0.8

• Mutation rate: 0.02

• Selection strategy: Tournament selection

• Stopping criteria: Convergence of fitness values after

50 generations.
In each iteration, tournament selection was used to select the

best-performing feature subsets or transformations. Selected

solutions underwent crossover operations (rate: 0.8) to exchange

genetic material, ensuring diversity in potential solutions. Mutation

(rate: 0.02) was applied to introduce small random changes,

allowing for exploration of new feature subsets or transformations

(Hassanat et al., 2019).

The optimization process continued until the fitness values

converged after 50 generations, ensuring that the best-performing

features and transformations were selected. This automated

approach reduced the need for manual feature selection and

engineering, leading to a more efficient and robust predictive model.

The parameters settings were determined based on both prior

literature and empirical experimentation.
frontiersin.org
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Population Size: A population size of 100 strikes a balance between

maintaining genetic diversity and ensuring computational efficiency.

Recent studies have demonstrated that such size is effective in exploring

the solution space without incurring excessive computational costs

(Yuan et al., 2018; Haupt, 2000).

Crossover Rate: A crossover rate of 0.8 facilitates effective

recombination of genetic material promoting exploration of new

solutions while preserving high-quality traits from parent solutions.

This rate has been recommended in recent literature for its efficacy

in diverse optimization problems (Hassanat et al., 2019).

Mutation Rate: Setting the mutation rate at 0.02 introduces

necessary variability into the population helping the algorithm a

void local optima without disrupting convergence. Studies have

found this rate to be effective in maintaining a balance between

exploration and exploitation (Hassanat et al., 2019).

Selection Strategy and Stopping Criteria: Tournament selection

is known for maintaining diversity and preventing premature

convergence. The stopping criterion of 50 generations was

determined based on preliminary experiments, which showed that
Frontiers in Plant Science 07
fi tness va lues typica l ly s tabi l ized within this range ,

indicating convergence.

These parameters choices were further validated through

preliminary testing on our dataset, confirming their suitability in

achieving robust and efficient feature selection and engineering.

Fuzzy Rule Generation Layer

Fuzzy rules are generated based on expert knowledge and

features selection by GA. The features selected by GA were

chosen as inputs for membership function design because they

demonstrated the highest impact on yield variability. By optimizing

feature selection with a yield prediction objective, GA ensures that

the fuzzy rules built from these variables are quietly relevant and

enhance prediction reliability (Aditya Shastry and Sanjay, 2021;

Altarabichi et al., 2023). The aim is to represent the qualitative

aspects of agriculture that can influence yield. Each fuzzy rule can be

expressed mathematically (Equations 1-5) as follows:

If X1 is A1 AND X2 is A2

Then Y is B
FIGURE 3

Framework of proposed model.
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where,
Fron
• X1, X2 are input features (selected features)

• A1, A2 are the fuzzy sets corresponding to these features.

• Y is predicted yield.

• B is the fuzzy set of the yield.
This can be formally represented as:

Y = B   if   min(mA1(X1)� mA2(X2)) (1)

where,
• (mA1(X1) and mA2(X2) are the membership functions of the

fuzzy sets A1 and A2, respectively, for the input X1 and X2.

• The main function is used in fuzzy logic to combine

multiple fuzzy sets.
The fuzzy sets Ai (i=1, 2…) can be defined using membership

functions. For example, a triangular membership function can be

defined as:

mA  (X) =

0,   if  x < 0

x−a
b−a −,   if  a ≤ x < b

c−x
c−b −,   if  b ≤ x ≤ c

0, if  x ≥ c

,

8>>>>><
>>>>>:

(2)

where,
• a, b, c are the parameters that define the triangular shape of

the membership function.

• The function value ranges from 0 to 1 as a, b, and c.
Yield Prediction Layer

In machine learning yield prediction layer evaluates predictions

from ensemble learning models, specifically RF, CatBoost and ELM.

These models process the original input features independently to

generate yield predictions (Hussain et al., 2024; Ikram et al., 2025).

For optimal output, the ensemble outputs are compared with

predictions from the FIS. A GA dynamically optimizes weights

based on performance metrics, combining the FIS and ensemble

predictions. The final model output is calculated as:

Ŷ =oN
i=0wi � (f i(X)) (3)

where,
• N is the number of components of FOHEM, including the

FIS and the stacked ensemble learners.

• Wi are the weights assigned to each component of

the FOHEM.

• Fi (X) is the prediction from ith component for input

features X.
GA is applied to dynamically optimize the weights of the

components of FOHEM (FIS and stacked ensemble learning),
tiers in Plant Science 08
ensuring the best possible yield prediction. The optimization

process can be described as follows:
• Initialization: A population of candidate solutions is

generated, where each individual represents a set of

weight assigned to the components of FOHEM.

• Fitness function: The optimization process can be described

as follows:
Fitness =oN
i=0Ŷ (treatmenti, locationi) (4)

where, N is the total number of treatments and Ŷ is

predicted yield.
• Selection, Crossover, Mutation: The best performing

solutions (weight sets) are selected for reproduction.

These solutions undergo crossover and mutation to

explore new solutions.

• Termination: Iterations continue until the convergence

criterion is met, which is typically the achievement of the

best fitness (optimal weight set for FOHEM components).
Final Weighted Output

Once the GA has completed its optimization process, it returns the

optimal weights w1 and w2. These weights are then applied to the FIS

and ensemble outputs to compute the final combined prediction.

Ŷ Final =   (w1 � YFIS) + (w2 � YEnsemble) (5)

This integrated output Ŷ Final is the final prediction for crop

yield, which benefits from the strengths of both the fuzzy based

approach and machine learning based approach.

3.1.2 Algorithm of proposed model
The proposed model follows this structured algorithm as shown

in Algorithm 1:
ALGORITHM 1 FOHEM Algorithm for Yield Prediction.

No
of
steps

Process Details

1
Input
data
acquisition

-Collect datasets from NRCI department.
-Features selection and engineering performed
by GA.

2
Fuzzy
rule
generation

-Define fuzzy sets for selected features based on
expert knowledge and dataset analysis.
-Create fuzzy rules using (2).

3

Stacked
ensemble
model
training

-Train multiple base learners (RF, CatBoost, ELM)
using selected features.
-Generate predictions from each learner.

4
Integration
of predictions

-Combine outputs from FIS and stacked ensemble
models using a weighted average.

(Continued)
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4 Results section

The results of this study are presented in a structured manner,

starting with a treatment-wise comparison of yield predictions for

both locations. This is followed by an evaluation of the performance

of the FIS and stacked ensemble learning model. Afterward, the

optimization of dynamic weights for FOHEM using GA is discussed.

The interpretability of the model is further enhanced through the use

of LIME and SHAP, allowing for a better understanding of the

influential parameters. Finally, the integrated model’s overall

performance is validated by comparing existing models.

The yield performance analysis in Figure 4 highlights the

advantages of intercropping over sole cropping, particularly in

resource utilization and stability across different locations. The

maize-dominant treatment (SM) exhibited higher yields compared

to soybean alone (SS) reaffirming maize’s resilience and adaptability

to local conditions. However, intercropping treatments 2M2S and

2M3S demonstrated competitive productivity, with yields

approaching those of sole maize while offering diversification

benefits. A trend observed is the location based variation in yields,

where Khairpur consistently outperformed Bahawalpur across all

treatments. This suggests site-specific influences such as soil

properties, microclimate variations, and management practices.

Additionally, the yield stability in intercropped treatments indicates

a potential buffering effect against environmental stress, reinforcing

intercropping’s role in sustainable yield optimization.
FIGURE 4

Treatment wise average yield (tons/ha) comparison across each location.
ALGORITHM 1 Continued

No
of
steps

Process Details

-Use GA to improve model performance and
dynamically assigning weights to FIS and stacked
ensemble machine learning according to their
performances in FOHEM prediction.

5 Optimization

-Initialize a population of candidate solution, where
each individual represents a set of weights for the
components of FOHEM.
-Define a fitness function to evaluate the
performance of each solution.
-Apply GA to dynamically optimize the weights of
the components of FOHEM, ensuring improved
yield prediction accuracy.
-Terminate when convergence is reached.

6 Prediction
Once the optimal weights identified, predictions are
made for the test data, combining the outputs from
the two models.

7
Model
interpretability

Use LIME and SHAP for interpretability:
-SHAP for global insights into feature importance.
-LIME for local explanations of
parameter predictions.

8
Final
yield
prediction

The final yield predictions are produced, with
performance evaluation and insights from SHAP
and LIME to understand the model’s decision
making process.
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Overall intercropping outperformed sole cropping, particularly for

soybean, suggesting better resource utilization and complementary

growth patterns. The histogram in Figure 5 reveals distinct yield

variations across different treatment-location combinations. The

2M2S treatment demonstrating the highest yield stability across

locations. This suggests that structured row arrangements contribute

to better nutrient distribution and efficient space utilization. The

distribution patterns across treatments indicate that yield variability

is strongly influenced by planting strategies. The relatively lower yield

of SS emphasizes its sensitivity to environmental and soil constrains,

while intercropping appears to mitigate these limitations. Furthermore,

location-specific factors contribute to yield differences, underscoring

the need for tailored agronomic management practices to

maximize productivity.
Frontiers in Plant Science 10
Unlike RF-based feature ranking, which prioritize features

based on individual performance, GA optimizes feature selection

holistically, ensuring that the chosen variables contribute maximally

to yield prediction accuracy. The GA-based feature selection and

engineering process demonstrated significant improvements in

predictive performance and feature efficiency. The feature

selection optimization progress is given in Figure 6a, showed that

the initial fitness values remained relatively low during early

iterations. However, as the algorithm evolved, the selected

features subsets demonstrated steady improvements in model

performance, ultimately reaching a final optimized fitness. This

increase in predictive accuracy confirmed that the GA-selected

features provided better model generalization compared to

traditional feature selection techniques.
FIGURE 6

Genetic Algorithm (GA)-based optimization: (a) feature selection progress, and (b) feature engineering progress.
FIGURE 5

Yield distribution across each treatment.
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Similarly, the feature engineering optimization, presented in

Figure 6b, highlighted how GA systematically identified the most

important transformations and interactions. The fitness values

exhibited a progressive upward trend, indicating that the
Frontiers in Plant Science 11
engineered features significantly contributed to error reduction

and improvement in R2. The GA-engineered features

outperformed traditional methods in predicting errors while

improving model robustness thus enhancing the model’s
FIGURE 7

Membership functions for total_biomass and M_residue_biomass across treatments and locations: (a) SM at Khairpur, (b) 2M2S at Bahawalpur,
(c) 2M3S at Khairpur, and (d) SS at Bahawalpur. These graphs highlight the variations in total_biomass and M_residue_biomass under different
conditions showing how Khairpur treatments exhibit higher biomass and residue levels compared to Bahawalpur.
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reliability for yield prediction. These approaches ensured that the

selected features were not only statistically relevant but also

functionally meaningful in the context of yield prediction. The

optimization process produced a stronger and more efficient

solution for modeling agricultural intercropping systems that also

provided scalability. The GA-selected features formed the basis for

developing the membership functions because they demonstrated

the highest impact on yield results.

For example total_biomass, together with M_residue_biomass

and transpiration proved to be essential yield-determining factors,

which were included in the fuzzy systems. These membership

functions are designed to capture their non-linear effects on yield

prediction. The FOHEM model combines FIS with ensemble

learning to effectively manage yield prediction uncertainties
Frontiers in Plant Science 12
through stacked ensemble learning. The fuzzy logic component

accurately modeled the uncertainties, and improved prediction

reliability, specifically for treatment with high variability.

The few fuzzy membership functions of M_residue_biomass

and total_biomass for various treatments (SM, SS, 2M2S and 2M3S)

across two locations (Khairpur and Bahawalpur) are presented in

Figure 7. The membership functions for total biomass indicate three

categories: low (0–10 tons), medium (5–20 tons), and high (15–20

tons). The 2M2S and 2M3S treatments in Khairpur show higher

biomass values, while Bahawalpur, especially under the SS

treatment, exhibits lower biomass levels. Similarly, the

M_residue_biomass graphs show categories ranging from low (0–

4000 kg/ha) to high (6000–10000 kg/ha). Khairpur consistently

shows higher residue_biomass, particularly in the SM and 2M3S

treatments, whereas Bahawalpur shows lower residue values, with

the SS treatment showing no residue biomass. These graphs

highlight the impact of treatment and location on biomass

production and residue levels, offering insights for optimizing

intercropping systems. Hence, the fuzzy classification approach

effectively captures uncertainty and variability in biomass data,

offering a more adaptable framework for analyzing intercropping

systems. This method enhances decision-making by providing a

gradual and interpretable categorization of biomass levels rather

than relying on rigid, predefined thresholds.

The graph in Figure 8 illustrates the predicted yield for the SM

treatment in Khairpur using a FIS. The membership functions low,

medium, and high yield are defined based on the yield range, low

yield for values below 7.5 tons/ha, medium yield for values between

7.5 and 9 tons/ha, and high yield for values above 9 tons/ha up to 10

tons/ha. The predicted yield of 8.3 tons/ha falling within the
FIGURE 8

Predicted yield for SM treatment in Khairpur based on the FIS, with low, medium, and high yield categories defined. The predicted yield of 8.3 tons/
ha falls within the medium yield range (7.5 to 9 tons/ha).
TABLE 4 Nomenclature.

Variable Name Description

M_residue_biomass maize residue biomass

bulk_density bulk density

LAI Leaf area index

total_biomass Total biomass

SM Sole maize

SS Sole soybean

2M2S Two rows of maize alternating with two rows
of soybean

2M3S Two rows of maize and three rows of soybean
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medium yield range is highlighted by a vertical dashed line. The

shaded area under the curve indicates the aggregation of fuzzy rule

outputs, showing the degree of membership across different yield

categories. This graph provides a clear visualization of the yield

prediction for this specific treatment and location.

The top three best performing algorithms were selected as the

base models in the stacked ensemble for FOHEM (see Table 5).

These models were chosen based on their ability to minimize errors

while maintaining strong predictive performance.

RF was selected for its outstanding performance in terms of MSE

(0.0563) and R2 (0.9958). As an ensemble method it uses multiple

decision trees which are highly effective for capturing complex

nonlinear relationships and avoiding overfitting. Its ability to model

high dimensional and varied structure data makes it an ideal base

model for this task. The lowMSE andMAE indicate that RF produces

highly accurate predictions with minimal residual error.

CatBoost is another strong performer showing MSE (0.0802)

and R2 (0.9935). It is particularly effective with categorical data and

use gradient boosting framework, which is effective in capturing
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hidden patterns and interactions in the data. CatBoost’s robustness

to noisy data and its relatively low MAE, highlight its ability to

maintain consistent prediction accuracy across varying data

conditions. The slightly higher error values compared to RF

suggest that CatBoost may be more sensitive to data distribution

changes, but it still remains a top performer.

ELMwas included for its exceptional speed and ability to handle

non-linear data effectively. It achieved an R2 of 0.98650, with an

MSE of 0.16212. However, its MAE of 0.21945 indicates slightly

higher average error in individual predictions compared to RF and

CatBoost. Unlike traditional neural networks, ELM employs single

layer feedforward architecture with randomly assigned weights,

allowing for rapid training while maintaining high accuracy. The

relatively higher MSE suggests that while ELM is effective in

generalization, it may struggle slightly with capturing finer

variations in the data.

These results are also represented in Figure 9.

A comparative analysis of other models further highlights the

importance of selecting base learners with the lowest error values.
FIGURE 9

Performance comparison of various algorithms: (a) MSE, (b) MAE and (c) R2.
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For instance, KNN and MLR showed higher MSE values of 0.17838

and 0.10319, respectively, indicating that they introduced greater

variance in their predictions. Similarly, MLP Regressor, SVR, and

TabNet displayed significantly larger errors, with TabNet and a

general neural network model producing extremely high MSE
Frontiers in Plant Science 14
values of 50.8463 and 345.59571, respectively. These high errors

demonstrate their poor generalization capabilities in this specific

yield prediction task.

The selection of RF, CatBoost, and ELM as base models was thus

driven by their ability to minimize both systematic and random
FIGURE 10

Individual performance of base learners in stacked ensemble learning with FIS and proposed model FOHEM. The graphs (a-c) illustrated the MSE,
MAE and R2.
FIGURE 11

Dynamic weight optimization of the hybrid model FOHEM using GA. (a) Fitness graph. (b) Optimized weight allocation.
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errors, ensuring robust performance in the stacked ensemble. The

relatively low MSE and MAE values across these models indicate

reduced variance and bias in their predictions, making them suitable

components for further optimization within FOHEM.
Frontiers in Plant Science 15
The results are also visually summarized in Figure 9, which

clearly shows the superior performance of RF, CatBoost, and ELM

compared to other models.

In Figure 10, graphs (a, b, c) compare the performance of the

stacked ensemble model and the FIS using three metrics: MSE,

MAE and R2. The stacked ensemble model consistently

outperforms the FIS across all evaluation metrics, demonstrating

lower error values (MSE and MAE) and a higher R2 of 0.9893. This

superior performance highlights the effectiveness of combining

multiple base learners to enhance prediction accuracy and model

generalization. The integration of fuzzy logic with ensemble

learning provides a hybrid approach that uses the strengths of

methodologies, improving model robustness and reliability. While

FIS contributes to capturing nonlinear interactions, the stacked

ensemble further refines predictions by reducing residual errors.

These findings underscore the advantages of hybrid modeling

techniques in complex yield prediction scenarios.

The Figure 11a illustrates the GA fitness performance for

optimizing dynamic weights is an integrated system combining a

FIS and stacked ensemble learning algorithms. The optimization

process demonstrates enhanced total yield performance through the

fitness metric across 50 generations. The optimization process starts
FIGURE 12

Comparison of performances of different treatments across two locations (Khairpur and Bahawalpur) using MSE, MAE, RMSE and R2.
TABLE 5 Model selection for stacked ensemble learning for FOHEM.

Model MSE MAE R²

RF 0.03625 0.16963 0.99575

CatBoost 0.05016 0.20364 0.99354

ELM 0.16212 0.21954 0.98650

KNN 0.17838 0.29829 0.98562

MLR 0.10319 0.26133 0.98185

MLP Regressor 0.87895 0.75830 0.92692

SVR 1.08413 0.76281 0.90986

TabNet 50.8463 6.25442 -3.23051

Neural Network 345.59571 14.83937 -26.84757
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from a low initial fitness value before GA uses its optimization

capabilities to enhance the weight distribution. The 30th generations

marks the point where GA achieves its objective of enhancing

model prediction capability as fitness growth accelerates. The

highest fitness value obtained during the last generation

demonstrates that dynamic weight optimization successfully

enhances model reliability and accuracy. The dynamic weight

distribution mechanism enables FIS and stacked ensemble to

work together effectively for yield prediction by using their

individual strengths. The GA-driven optimization proves its

efficiency at enhancing hybrid model performance which results

in a reliable predictive accuracy solution for agronomic

applications.

The weight allocation process adapts its approach according to

treatment-location combinations as shown in Figure 11b. The FIS
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model and stacked ensemble receive different levels of importance

because each model performs best at different conditions.

Treatments in Bahawalpur and Khairpur exhibit distinct

allocation patterns, indicating that GA optimally balances the

contributions of both models to maximize yield prediction

accuracy. This adaptive approach strengthens model reliability

through a mechanism which allows the most dependable

predictor to determine the final yield estimates.

The FOHEM model exhibits varying levels of prediction

accuracy across different treatment-location combinations given

in Figure 12. The SM treatment in Khairpur shows the highest error

values (MSE, MAE, and RMSE), indicating greater variability in

yield predictions. This suggests that factors influencing maize yield

in this region contribute to higher prediction deviations.

Conversely, SS treatment achieves the lowest errors ,

demonstrating strong model accuracy and stable yield

predictions. A clear trend emerges in RMSE values, where higher

errors for SM reinforce its greater prediction variance, while lower

values for SS confirm its consistency. The R2 scores further highlight

the model’s predictive reliability, with SS achieving near perfect

alignment with observed data. However, the lower R2 for SM in
FIGURE 13

Performance evaluation of FOHEM based on actual vs. predicted yield (tons/ha) across intercropping treatments and locations (Bahawalpur and
Khairpur). The top row displays results for treatments SS (left) and SM (right), while the bottom row shows 2M2S (left) and 2M3S (right).
TABLE 6 Overall performance of FOHEM.

Model MSE MAE RMSE R2

FOHEM
(Proposed model)

0.014277 0.239168 .119485 0.9892
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Khairpur indicates areas where model refinement may be necessary.

These insights underscore the importance of optimizing both

treatment and location to enhance predictive precision in

agricultural yield modeling.
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Table 6 showing that the model explains nearly all the variance

in the yield data.

Overall, these results confirm the effectiveness of the FOHEM

model in predicting agricultural yields, providing reliable estimates

across different treatments and geographic locations.

The relationship between actual and predicted yields for

different intercropping treatments across two locations is given in

Figure 13. Each subplot represents a specific treatment SS, SM,

2M2S and 2M3S. The data points are two colors representing each

location. Similarly each marker shape showing crops in each

treatment. A regression line is included in each graph to indicate

the ideal correlation between actual and predicted values. Most data

points closely align with this line, demonstrating a high prediction

accuracy of approximately 99%, indicating that the model effectively

captures yield variations. However, some deviations are observed,

particularly in the lower yield range, suggesting localized

inconsistencies in model performance across different treatments

and locations. The decision to present scatter plots separately for

each treatment enhances the interpretability of results, allowing for
FIGURE 14

Feature importance analysis based on LIME.
FIGURE 15

Feature importance analysis based on SHAP.
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a more detailed assessment of model performance in various

intercropping scenarios.

In Table 7, the results of five-fold cross-validation for the

proposed model with R2 are presented for each fold. The model

demonstrates high predictive performance, with R2 values

consistently close to 0.99 across all validation folds. The mean R2

score of 0.9873 indicates strong generalization ability, confirming

the robustness and reliability of the model in predicting yield within

the intercropping systems. These results validate the effectiveness of

the integrated machine learning and FIS approach, minimizing the

risk of overfitting while ensuring accurate yield estimation.

The LIME and SHAP analysis highlights influential features

that have positive and negative effects on the prediction of crop

yield. Such techniques give interpretability through feature

importance and contribution, which gives a deeper understanding

of how each of the input variables affects the result. total_biomass is

the most important positive effect with values greater than 13.09

influencing the yield positively. Residue_ biomass also plays an

important role in showing that management of crop residues in a

right manner enhances the soil health and yield capacity.

Furthermore, the features such as PMC, soil_pH and water_pH

are positively influencing the prediction. On the negative side, the

highest impact is associated with high iron content, which might be

toxic. Similarly, a low LAI and higher clay content negatively affect

yield by reducing plant growth efficiency and limiting root

penetration. These findings highlight the importance of biomass

and nutrient management, while monitoring soil toxicity to

enhance crop yield. The graph (Figures 14 and 15) visually

represents these influences, with positive and negative

contributions, clearly illustrated.

To provide a comprehensive understanding of the difference

between proposed model FOHEM and the existing model

(Agboka et al., 2022) based on use of Symbolic Regression (SR)

as machine learning model, Fuzzy system and GA as soft

computing techniques, a detailed comparison is given in

following Table 8.
5 Discussion

The results of this study highlighted the significant

advancement in yield prediction for maize-soybean intercropping
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systems through the integration of innovative methodologies such

as stacked ensemble learning, FIS, and GA optimization. This

integration is based on the strengths of both approaches. FIS is

designed to capture expert knowledge and rule-based decision

making, while machine learning models excel at identifying

complex patterns and nonlinear relationships in data. This hybrid

framework ensures that data-driven learning is enhanced by

domain-specific reasoning, leading to a more interpretable and

reliable yield prediction systems. GA was chosen to optimize

membership functions by selecting features that contribute most

significantly to yield prediction. This approach ensures that the

fuzzy system is built upon variables that only show high correlation

with yield but also enhance decision making in agronomic contexts.

The findings highlight that intercropping treatment outperforms

sole cropping across different locations, with treatments such as 2M2S

and 2M3S shows higher productivity. This demonstrated the advantages

of intercropping in optimizing resources and using complementary

growth patterns between crops. The study employed advanced

explainability tools, LIME and SHAP, to provide interpretability of

the model and identify influential parameters such as total biomass,

residue biomass and PMC, which positively impact yield. Conversely,

the analysis revealed that factor like excessive iron and clay content were
TABLE 7 Comparative analysis of FOHEM with prior model (Agboka
et al., 2022).

Fold R2 score

1 0.9853

2 0.9881

3 0.9865

4 0.9892

5 0.9874

Mean R2 0.9873
TABLE 8 Comparative analysis of FOHEM with prior model (Agboka
et al., 2022).

Aspect FOHEM Prior model

Model
complexity

Moderate: combines
FIS, GA and ensemble
machine
learning models.

Moderate: Uses interpretable
mathematical equations, optimized
by GA, to establish relationships
between climatic and edaphic
variables and maize yield.

Adaptability Highly adaptable:
Dynamically adjust
weights to optimize
performance across
treatment groups.

Limited adaptability:
Designed for general agro
ecological systems, not specific
to treatments.

Interpretability High: Uses LIME and
SHAP for feature
importance and
decision making.

Moderate: Relies on inherent
simplicity for model interpretation.

Predictive
accuracy

R2: 0.9892.
Exceptional accuracy
for diverse treatments.

R2 >0.9 High accuracy but focused
on generalized predictions.

Scope
of application

Treatment specific
yield prediction

Regional maize yield prediction for
generalized cropping systems like
maize-legume intercropping (MLI)
and push-pull technology (PPT)

Performance
on treatments

Higher performance in
intercropping systems,
accommodating
planting density and
pattern variations.

Perform well for monocropping
and general agro ecological systems
but lacks treatment-level nuance.

Usability for
decision
making

High: Provides effective
solutions for specific
practices in
intercropping systems.

Moderate: Suitable for broad policy
level guidance but lacks treatment-
specific insights.
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found to hinder yield predictability, emphasizing the need for targeted

soil and management strategies. The fuzzy logic system proved effective

for managing agricultural data uncertainties and variations that

naturally occur.

The FOHEM model outperformed individual machine learning

models such as RF, CatBoost, and ELM by achieving lower error

rates such as MSE, MAE, RMSE and higher R2 values. The

performance enhancement of FOHEM resulted from FIS and GA

optimization which dynamically adjusted component weights to

optimize adaptation across different treatment scenarios. A

comparative analysis with existing studies revealed that FOHEM

achieves approximately 5% higher R2, which proves its enhanced

predictive accuracy and adaptability.
5.1 Practical implication and application

Beyond accuracy improvements, the FOHEM model holds

significant practical implications and real world application potential.

It functions as an advanced decision-support systems for optimizing

intercropping strategies by predicting yield outcomes under varying

conditions. By incorporating FIS, it effectively mitigates uncertainty

and ensures reliable yield predictions even under fluctuating

environmental conditions. The model facilitates precise decision-

making regarding soil fertility, nutrient balance, and resource

management, enabling efficient agricultural planning. Although

FOHEM is not currently integrated with real time sensors, mobile

applications, or cloud-based platforms, its architecture is lightweight

enough to be adapted into desktop-based platforms. These could be

used by agronomists, researchers, and extension workers for offline

decision support in regions with limited connectivity or computing

resources. With further development, FOHEM’s framework can be

incorporated into mobile or web based applications to deliver

actionable insights to farmers and policymakers, improving

accessibility and facilitating evidence-based crop management. These

advancements position FOHEM as a valuable tool for sustainable

agriculture, supporting farmers and policymakers in improving yield

efficiency and resource utilization.
5.2 Limitations and future work

Despite its advantages, the FOHEM model has certain limitations.

One key limitation is its geographic and climatic scope, as the model

was trained on data from semi-arid regions of Pakistan. Consequently,

its generalization ability to other climatic zones such as tropical,

temperate, or arid regions has not yet been validated. Environmental

and soil characteristics in these zones can differ substantially, which

may affect the model’s predictive accuracy.

Future research will involve expanding the dataset to include

diverse agro-ecological zones and conducting cross-regional

validation to ensure robust performance and broader

applicability. Furthermore, future work will focus on integrating

real-time data acquisition through sensor-based soil analysis.
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Deploying in-field sensors for parameters such as soil moisture,

nutrient concentrations, pH, and temperature will allow the

FOHEM model to operate on dynamic, real-world data streams,

enhancing its prediction reliability and enabling more timely and

site-specific decision support for farmers.

Moreover, the continued refinement of the fuzzy inference

system will further strengthen decision-making capabilities under

variable and uncertain environmental conditions. By addressing

these limitations and advancing its real-time adaptability, the

FOHEM model can evolve into a more scalable, practical, and

impactful tool for optimizing intercropping systems and promoting

sustainable agricultural practices.
6 Conclusion

This study reveals the proposed FOHEM model can accurately

estimate yields of maize-soybean intercropping systems by

integrating fuzzy logic; stacked ensemble learning and GA based

weight optimization. By combining human expertise and data-

driven learning, the model enhances predictive accuracy while

maintaining interpretability and reliability. The model effectively

captures yield dynamics across various intercropping treatments SS,

SM, 2M2S and 2M3S, validating its adaptability and precision in

supporting sustainable agricultural decision making. The dynamic

weight optimization using GA, enables the system to automatically

adjust contributions from each base learner, ensuring consistently

improved predictions under varying conditions. The integration of

LIME and SHAP, as state of the art explainability techniques, allows

the model to be explainable by pointing out the features that have

an impact on the yield prediction, thus improving the trust and

transparency in the decision making process. The FOHEM model’s

robust performance, evaluated by its lower error metrics MSE,

MAE, RMSE and higher R2 values, validates its utility in handling

complex agricultural data and making precise predictions across

diverse treatment scenarios. This adaptability and accuracy make it

a valuable decision support tool for farmers and policy makers,

promoting sustainable agricultural practices through effective

decision making.
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