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Rapid and accurate detection of the maturity state of litchi fruits is crucial for

orchard management and picking period prediction. However, existing studies

are largely limited to the binary classification of immature and mature fruits,

lacking dynamic evaluation and precise prediction of maturity states. To address

these limitations, this study proposed a method for detecting litchi maturity

states based on UAV remote sensing and YOLOv8-FPDW. The YOLOv8-FPDW

model integrated FasterNet, ParNetAttention, DADet, and Wiou modules,

achieving a mean average precision (mAP) of 87.7%. The weight, parameter

count, and computational load of the model were reduced by 17.5%, 19.0%, and

9.9%, respectively. The improved model demonstrated robust performance in

different application scenarios. The proposed target quantity differential strategy

effectively reduced the detection error for semi-mature fruits by 12.58%. The

results showed significant stage-based changes in the maturity states of litchi

fruits: during the rapid growth phase, the fruit count increased by 18.28%; during

the maturity differentiation phase, semi-mature fruits accounted for

approximately 53%; and during the peak maturity phase, mature fruits

exceeded 50%, with a fruit drop rate of 11.46%. In addition, YOLOv8-FPDW

was more competitive than mainstream object detection algorithms. The study

predicted the optimal harvest period for litchis, providing scientific support for

orchard batch harvesting and fine management.
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1 Introduction

Litchi is an important subtropical economic crop (Liang et al.,

2023; Wang et al., 2022b). China is the leading producer of litchi,

accounting for approximately half of the global annual production

(Xiong et al., 2023; Li et al., 2024). Moreover, litchi is characterized

by a high yield, a short harvesting period, concentrated market

timing, and challenges related to preservation (Liang et al., 2025).

Therefore, accurately assessing the maturity state of litchi fruits and

determining the optimal harvesting time is crucial for farmers.

Litchis that are harvested too early usually lack sufficient sweetness,

which reduces their market competitiveness, while late harvesting

may lead to overripe fruits or natural drop, thereby reducing the

income of fruit farmers. Thus, precise classification of the maturity

state is essential for determining the optimal harvest timing.

Traditionally, the maturity state and optimal harvest period of

litchi fruits are mainly determined by experienced farmers, who

visually assess the skin color of the fruit and the proportion of

mature fruits visible on the tree. Once a certain proportion of

mature fruits is reached, farmers consider it the right time to

harvest. However, this method, which relies on manual

experience, is not only time-consuming and labor-intensive, but

also subject to subjective bias, making it unsuitable for large-scale

orchards. Therefore, it is of great significance to develop accurate

and efficient litchi fruit maturity state detection technology.

With the development of agricultural digitization, UAV remote

sensing technology has become an essential tool for large-scale

orchard management due to its wide coverage, high imaging

efficiency, and strong adaptability (Hadas et al., 2019; Modica

et al., 2020; Wu et al., 2020; Zhang et al., 2021, 2023). Meanwhile,

the rapid development of deep learning technology has shown

excellent performance in the field of object detection, and it has

been widely applied in fruit detection and classification tasks in

orchards (Gao et al., 2020; Gené-Mola et al., 2020). Deep learning-

based algorithms are primarily divided into two categories: two-

stage algorithms, such as Region-Based Convolutional Neural

Network (R-CNN) (Girshick et al., 2014), Fast Region-Based

Convolutional Neural Network (Fast R-CNN) (Girshick, 2015),

and Faster Region-Based Convolutional Neural Network (Faster R-

CNN) (Ren et al., 2017), and one-stage algorithms, such as You

Only Look Once (YOLO) (Redmon et al., 2016) and Single Shot

MultiBox Detector (SSD) (Liu et al., 2016). However, two-stage

object detection algorithms are typically slower and cannot achieve

real-time detection (Lin et al., 2022; Ghasemi et al., 2022;

Bouguettaya et al., 2022; Wang et al., 2022b). In contrast, one-

stage object detection algorithms, represented by the YOLO series,

offer real-time detection capabilities and lower computational

resource requirements, making them more suitable for practical

applications (Lin et al., 2017; Zhao et al., 2019; Maity et al., 2021).

Currently, deep learning technology has been applied to various

fruit detection tasks, achieving remarkable results (Apolo-Apolo

et al., 2020; Vasconez et al., 2020; Liu et al., 2020; Nan et al., 2023).

For litchi fruit detection, some studies developed specialized models

based on improved YOLO algorithms. Li et al. (2022) improved the

YOLOv3-tiny network architecture and proposed the YOLOv3-
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tiny-Litchi algorithm for identifying densely distributed litchi fruits

in orchard environments, achieving an accuracy of 87.43%. Wu

et al. (2022) proposed the Lit-YOLO model based on YOLOv4,

achieving an accuracy of 85.45%. Li et al. (2024) proposed an

improved YOLOv7-Litchi algorithm by integrating multiple

modules, such as CNeB and CBAM, into YOLOv7, achieving a

precision of 94.60%. However, these studies primarily relied on

ground camera data, which struggled to fully cover the fruits at the

top of the tree canopy, and they had limitations in large-scale

orchard applications. In contrast, the exploration of UAV-based

litchi recognition methods has been limited, with only a few studies

reporting relatively low accuracy rates. For example, Xie et al.

(2022) used data collected from both ground cameras and UAVs

to propose an improved litchi fruit detection model, YOLOv5-litchi,

with a mean average precision (mAP) of 87.1%. Xiong et al. (2023)

developed the YOLOv5-TinyLitchi model for detecting litchi fruits

in UAV remote sensing images, achieving an average accuracy of

72.6% by optimizing the loss function and integrating the BiFPN

and SAHI modules.

In the field of fruit maturity detection, deep learning techniques

have made significant progress in research on fruits such as apples,

strawberries, and blueberries. Yang et al. (2023) proposed a

strawberry maturity detection and grading model, LS-YOLOv8s,

which improved the accuracy by 0.5% compared to the original

YOLOv8s. Chen et al. (2024) introduced a multi-task deep

convolutional neural network (MTD-YOLO) for grading the

maturity stages of tomato fruits, achieving a detection accuracy of

86.6%.Wang et al. (2022a) proposed a detail semantic enhancement

model, DSE-YOLO, for multi-stage strawberry fruit detection,

achieving a mAP value of 86.58%. Tian et al. (2019) used

YOLOv3 to detect three maturity stages of apples, improving the

F1 score from 0.793 to 0.817 by adjusting network resolution and

adding CNN layers. Liu et al. (2023) added a MobileNetv3 network

fused with CBAM, proposing a YOLOv5-based blueberry ripeness

detection algorithm, achieving a mAP of 78.3%. However, research

on litchi fruit maturity detection has been relatively limited. Wang

et al. (2022b) replaced the backbone network of YOLOv5 with

ShuffleNetv2 and integrated the CBAM attention mechanism to

perform two-class detection of litchi fruits (immature and mature),

achieving an accuracy of 92.4%. Similarly, Xiong et al. (2023)

developed the YOLOv5-TinyLitchi model, focusing on two-class

detection of litchi fruits, achieving an accuracy of 72.6%. However,

these studies were limited to simple maturity classification and

overlook the transition phase of semi-mature fruits, making it

difficult to achieve a fine-grained evaluation of the dynamic

maturity of fruits. Additionally, this classification approach had

limited capability for dynamically monitoring fruit maturity in

large-scale orchards, making it difficult to meet the needs of

modern orchard management.

To address the above issues, this study proposed a litchi

maturity state detection method based on UAV remote sensing

technology and the improved YOLOv8 model (YOLOv8-FPDW).

By integrating FasterNet, ParNetAttention, DADet, and Wiou

modules, YOLOv8-FPDW achieved accurate classification and

detection of litchi fruits at different maturity states (immature
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fruits, semi-mature fruits, and mature fruits). Additionally, the

incorporation of a target quantity differential strategy further

enhanced detection accuracy and the ability to assess the growth

dynamics of the fruits. This study provides technical support for

harvesting planning and precision management in litchi orchards.
2 Materials and methods

2.1 Data collection

The remote sensing images used in this study were collected

from the Sanzhen orchard in Zengcheng, Guangzhou (23°14’1.39’’N

- 113°44’21.14’’E) (see Figure 1), where the primary varieties grown

are Xianjinfeng and Guiwei. The data collection spanned from May

20, 2023 (Node 1), June 1, 2023 (Node 2), June 14, 2023 (Node 3), to

June 19, 2023 (Node 4), corresponding to different growth stages of

the litchi. The remote sensing images were captured by a

PHANTOM 4 RTK drone (DJI, Shenzhen, Guangdong) at a

height of 6 meters above the tree canopy, with the camera

oriented vertically toward the canopy. The resolution of the

images was 5472×3648 pixels (aspect ratio of 1.5), and the

automatic exposure mode was employed. The ground sampling

distance (GSD) ranged from 0.19 to 0.25 cm/pixel. Image capture

took place between 9:30 AM and 5:30 PM, resulting in a total of 608

remote sensing images.
2.2 Image annotation and dataset
production

The collected remote sensing images exhibited distinct

morphological and color differences in litchi fruits at various

growth stages (see Figure 2). To construct a dataset for litchi fruit

maturity detection, 100 images were equally randomly selected

from each growth stage, resulting in an initial dataset of 400

images. The original image size of 5472×3648 pixels was deemed
Frontiers in Plant Science 03
unsuitable for model training, so the images were cropped into

smaller patches of 1800×1200 pixels (aspect ratio 1.5). Background

images without litchi fruits were removed, and a final dataset

containing 1126 images was created. Based on the color changes

of the litchi fruit peel and the extended BBCH-scale (Wei et al.,

2013), the maturities of the fruits were categorized into three stages:

immature fruits (BBCH 703-709, litchi1), semi-mature fruits

(BBCH 800-807, litchi2), and mature fruits (BBCH 808-809,

litchi3), as shown in Supplementary Figure S1 in the

Supplementary Material. The BBCH-scale provides a standardized

system for categorizing the phenological stages of litchi fruits, where

stages 703-709 correspond to immature fruits, 800-807 to semi-

mature fruits, and 808-809 to mature fruits, based on color changes

in the fruit peel and overall fruit development. The images were

manually annotated using the Python-based LabelImg software.

After annotation, the dataset was randomly divided into a training

set (900 images), a validation set (113 images), and a test set (113

images) in a ratio of 8:1:1.

The dataset included a total of 50,703 annotated targets, with

18,655 litchi1 targets, 13,065 litchi2 targets, and 18,983 litchi3

targets. According to the definition standard by Li et al. (2018), a

target was classified as a small object when its aspect ratio relative to

the entire image was less than 0.1. Figure 3 displays the size

distribution of the targets in the dataset, where most litchi fruits

have an aspect ratio smaller than 0.05 relative to the whole image

(highlighted by red box in Figure 3G). This indicates that small

objects constitute a large proportion of our dataset.
2.3 Overview of YOLOv8 architecture and
key components

YOLOv8 is an improved model in the YOLO object detection

series. The network structure of YOLOv8 consists of three parts: the

backbone network, the neck network, and the head network, which

are responsible for feature extraction, feature fusion, and object

detection, respectively. The backbone network optimizes gradient
FIGURE 1

Location of data collection. (A) Detailed map of Guangdong Province. (B) Aerial view of Sanzhen Fruit Orchard.
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propagation and computational efficiency through the C2f module,

thereby enhancing the feature hierarchy representation ability. The

neck network uses the PAFPN structure, which enhances the

integration of multi-scale information through bottom-up and

top-down feature fusion. It also introduces the SPPF module to

reduce computational load and improve detection efficiency. The

head network adopts an anchor-free mechanism and a decoupled

design, with independent classification and regression tasks,

optimizing detection accuracy and convergence speed.
2.4 Development and architectural design
of the YOLOv8-FPDW model

To enhance the detection performance of litchi fruits at

various stages of maturity while reducing computational

complexity, this study developed an improved version of the

YOLOv8 model, termed YOLOv8-FPDW (see Figure 4). The

model integrated several optimization modules to boost both

feature extraction and object detection capabilities. First, the

FasterNet module, which combines partial convolution (PConv)

and pointwise convolution (PWConv), improves feature

extraction efficiency and extends the receptive field. Next, the

ParNetAttention mechanism integrates fuses from different

resolutions and employs structural reparameterization
Frontiers in Plant Science 04
techniques to enhance model performance. Additionally, the

DADet detection head, which combines depthwise separable

convolution and the ShuffleNet module, further enhances

detection accuracy. Finally, the Wiou loss function is integrated

to optimize bounding box regression, improving both localization

precision and model generalization. Subsequent sections will

prov ide more de ta i l ed implementa t ion aspec t s and

theoretical explanations.

2.4.1 Addition of the FasterNet module
FasterNet (Chen et al., 2023) is a lightweight neural network

designed to maintain high speed and low computational cost while

enhancing feature extraction capabilities and expanding the

receptive fie ld (see Supplementary Figure S2 in the

Supplementary Material). The network performs multi-stage

feature extraction to assist in the target detection task, with the

Faster Block being its core component. The Faster Block employs a

combination of PConv and PWConv, structured as an inverted

residual block. PConv reduces computation and memory

requirements by convolving only a subset of input channels,

significantly improving computational efficiency. PWConv, on the

other hand, expands the number of channels and utilizes shortcut

connections to enhance feature diversity and robustness. This

design enables FasterNet to achieve high-quality feature

extraction with low computational complexity.
FIGURE 2

Remote sensing images of litchi fruits at different growth stages. (A) Data as of Node 1 (May 20). (B) Data as of Node 2 (June 1). (C) Data as of Node
3 (June 14). (D) Data as of Node 4 (June 19).
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2.4.2 Integration of the ParNetAttention module
ParNetAttention (Goyal et al., 2022) is a lightweight attention

mechanism (see Supplementary Figure S3 in the Supplementary

Material). This module effectively integrates features of different

resolutions through a multi-branch parallel structure.

ParNetAttention optimizes feature representations during the

training phase using structural reparameterization techniques and

reduces computational cost during the inference phase.

Furthermore, the downsampling module of ParNetAttention

combines Squeeze-and-Excitation (SE) modules with average

pooling layers to further compress the number of parameters

while retaining the critical information necessary for target

detection. This mechanism not only enhances the ability of the

model to focus on features in multi-object scenarios but also
Frontiers in Plant Science 05
improves its ability to perform fine-grained detection of

target regions.

2.4.3 Design of the DADet detection head
To optimize the classification and localization performance of

litchi fruit detection, an improved detection head, DADet

(Decoupled-ATSS Detection), was designed (see Supplementary

Figure S4 in the Supplementary Material). DADet employs

depthwise separable convolutions (DWConv) and the ShuffleNet

module, which reduce the number of parameters and

computational load while enhancing both classification and

bounding box regression performance. Specifically, the detection

head splits the feature map into a classification branch and a

regression branch. The classification branch focuses on target
FIGURE 3

Distribution and dimensions of litchi fruits in the dataset. (A) Target distribution frequency along the horizontal axis. (B) Distribution of targets in the
image, with x and y representing the horizontal and vertical positions of the targets, respectively. (C) Target distribution frequency along the vertical
axis. (D) Relationship between target width and its horizontal position. (E) Relationship between target width and its vertical position. (F) Histogram of
target widths, showing the distribution of target widths in the dataset. (G) Relationship between target height and its horizontal position.
(H) Relationship between target height and its vertical position. (I) Relationship between target height and width, with the red rectangle indicating
the size range of most targets. (J) Histogram of target heights, showing the distribution of target heights in the dataset.
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category identification, using DWConv to reduce computational cost,

while the regression branch optimizes bounding box coordinates and

improves efficiency with ShuffleNet. Additionally, DADet integrates

the ATSS (Adaptive Training Sample Selection) strategy, which

adaptively selects positive and negative samples, further improving

the detection accuracy of the model.

2.4.4 Addition of the Wiou loss function
Wiou (Tong et al., 2023) is a loss function designed for bounding

box regression (BBR), aimed at improving the localization performance

of target detection models through a dynamic focusing mechanism.

Traditional BBR loss functions often weaken the localization ability of

the model when dealing with low-quality samples. In contrast, Wiou

utilizes a dynamic non-monotonic focusing mechanism that evaluates

anchor box quality based on anomaly scores rather than the IoU value.

This allows for more reasonable gradient distribution. This mechanism

reduces the negative impact of low-quality samples, while preventing

excessive competition among high-quality samples, effectively enhancing

the generalization ability and localization accuracy of the model.
2.5 Slicing aided hyper inference

SAHI is a slicing-aided inference method designed to address

the challenge of detecting small targets in high-resolution images,
Frontiers in Plant Science 06
while also optimizing memory utilization (Akyon et al., 2022).

During inference, the original high-resolution image is first

divided into multiple overlapping slices (PI1, PI2,…, PIL), with

each slice resized while maintaining its aspect ratio. Each slice is

then individually input into the target detection model for forward

inference to detect small targets. Additionally, the original image is

also processed for large target detection. Finally, the results from the

slice inference and the original image inference are merged into a

unified-scale final detection result using Non-Maximum

Suppression (NMS) algorithm. In the NMS phase, only prediction

boxes with confidence scores above a predefined matching

threshold are retained, and redundant boxes are removed. For

further details, refer to Supplementary Figure S5 in the

Supplementary Material.
2.6 Training environment and evaluation
indicators

This study conducted model training and testing under the

Ubuntu 18.04.5 operating system, with hardware configurations

including 64GB of memory, an NVIDIA GeForce RTX 3090 GPU,

and a 64-bit Linux system. Model building and training were

implemented using Python3.7.13, Pytorch1.9.1, and CUDA11.1.

All models and additional modules in this study were implemented
FIGURE 4

The network structure of YOLOv8-FPDW.
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and integrated within this environment. In accordance with the

requirements of the YOLOv8 network, images were resized to a

resolution of 1280×1280 pixels as input for the model. The training

process involved 200 epochs with a batch size of 4, and all other

hyperparameters fol lowed the default sett ings of the

official implementation.

The evaluation metrics for this study includemAP, model weight,

number of parameters (Parameters), and computational load

(GFLOPs). Among these metrics, mAP is the primary metric for

assessing target detection accuracy. The calculation formulae are

detailed in Equations 1–4. Model weight measures the storage size of

the model (in MB). Smaller models are advantageous for deployment

in resource-constrained environments (such as mobile devices or

UAV platforms). Parameters reflect the complexity of the model,

with fewer parameters reducing both storage demands and training

costs. GFLOPs (Floating Point Operations Per Second) quantify the

computational load, indicating the consumption of computational

resources by the model.

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

AP(K) =
Z 1

0
P(R)dR (3)

mAP = o
Q
1 AP(K)

Q
(4)

In the formulae, TP represents the number of true positive

samples predicted by the model, FP represents the number of false

positive samples predicted by the model, and FN represents the

number of false negative samples predicted by the model.
3 Experimental results and analysis

3.1 Ablation experiment of the improved
model

To assess the individual contribution of each additional module

in the YOLOv8-FPDW model to the detection performance, we
Frontiers in Plant Science 07
conducted a systematic ablation study on a litchi detection dataset

with different maturity states. Using the original YOLOv8 model as

the baseline, we progressively integrated modules such as FasterNet,

ParNetAttention, DADet, and Wiou into the baseline model,

creating multiple improved models. A comprehensive comparison

of their performance was conducted, and the experimental results

are shown in Table 1. The mAP@0.5 of the YOLOv8-FPDW

algorithm reached 87.7%, representing an increase of 2.7% over

the original YOLOv8 algorithm (85.0%). The detailed functions of

each module and their roles in improving the algorithm were

further analyzed in the following subsections.
3.1.1 Contribution of FasterNet module to
detection performance

After integrating the FasterNet module into the YOLOv8

model, the mAP@0.5 increased from 85.0% to 86.3% (see

Table 1). The improvement in detection accuracy was due to the

fact that FasterNet enhanced the feature expression capability

through efficient feature extraction and expanded receptive field,

thereby improving detection performance. Additionally, this

module optimized the lightweight design of the model, reducing

the weight from 6.3MB to 5.6MB (a decrease of 11.1%), and

decreasing the Parameters and GFLOPs by 12.3% and 7.4%,

respectively. This lightweight design significantly reduced

computational load and storage requirements, making it suitable

for resource-limited agricultural scenarios.
3.1.2 Contribution of ParNetAttention to
detection performance

After integrating the ParNetAttention module, the mAP@0.5 of

the improved model increased by 0.6%, reaching 85.6% (see

Table 1). This module enhanced the ability of the feature map to

extract key information through an attention mechanism, thereby

improving the detection accuracy of the model. Although the

introduction of ParNetAttention slightly increased the weight of

the model (by 1.6%) and parameter count (by 1.5%), and GFLOPs

increased from 8.1 to 8.6, the improvement in detection

performance indicated that this computational overhead was well

worth the trade-off. It also demonstrated that ParNetAttention is a

lightweight module, effectively focusing on target areas and

suppressing background noise, which improved the performance

of model in detecting litchi fruits in remote sensing images.
TABLE 1 Performance comparison of original YOLOv8 model and YOLOv8 integrated with various modules.

Model AP@0.50 AP@0.95 Weight Parameters GFLOPs

YOLOv8 85.0 65.4 6.3Mb 3006233 8.1

v8+FasterNet 86.3 67.2 5.6Mb 2636825 7.5

v8+ParNetAttention 85.6 66.3 6.4Mb 3051737 8.6

v8+ DADet 85.6 66.2 5.9Mb 2759801 7.3

v8+Wiou 85.8 66.2 6.3Mb 3006233 8.1

YOLOv8-FPDW 87.7 67.6 5.2Mb 2435897 7.3
Bold values indicate the optimal results in each column.
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3.1.3 Combined effect of DADet to detection
performance

After integrating the DADet module into the YOLOv8 model,

the mAP@0.5 increased from 85.0% to 85.6% (see Table 1). This

performance improvement was attributed to the more refined

decoupling design of classification and regression tasks in the

DADet module. Additionally, by incorporating DWConv and

ShuffleNet, computational redundancy was reduced, and feature

expression efficiency was enhanced. In terms of lightweight design,

the DADet module significantly optimized the resource

requirements of the model, reducing model weight, parameter

count, and GFLOPs by 6.3%, 8.2%, and 9.9%, respectively. This

design balanced high detection performance while lowering

resource demand, making the model more suitable for resource-

constrained and rapid-response agricultural applications.

3.1.4 Contribution of Wiou to detection
performance

After introducing theWiou loss function into the YOLOv8model,

the detection accuracy improved by 0.8% (see Table 1). This increase

in accuracy was due to the dynamic non-monotonic focus mechanism

of the Wiou module, which optimized the anchor box regression

process. Unlike the traditional IoU loss function, Wiou dynamically

adjusted gradient gain distribution, thereby improving the robustness

and localization performance of the model. Moreover, the

introduction of Wiou did not increase the model weight,

Parameters, or computational complexity, demonstrating that the

performance improvement was achieved without consuming

additional resources. The design of Wiou made it suitable for fine-

grained classification tasks in litchi maturity detection.

3.1.5 Comprehensive performance analysis of the
YOLOv8-FPDW model

The mAP@0.5 of YOLOv8-FPDW reached 87.7%, representing

a 2.7% improvement over the original YOLOv8 (see Table 1;

Supplementary Figure S6 in the Supplementary Material). This

performance enhancement was due to the combined effect of the

FasterNet, ParNetAttention, DADet, and Wiou modules. FasterNet

improved feature extraction efficiency, reducing the model size and

complexity, while ParNetAttention enhanced feature expression
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capability. DADet optimized the detection head design, and Wiou

improved localization accuracy through its dynamic focusing

mechanism. The weight of the improved model was reduced to

5.2MB (a 17.5% decrease), while the parameter count and

computational load were reduced by 19.0% and 9.9%,

respectively, achieving both model lightweighting and efficiency.

To validate the feature extraction capability of the improved model,

we compared the visualized feature maps before and after the

modification, as shown in Figure 5. It was found that the

improved model extracted more prominent features compared to

the original YOLOv8 model.
3.2 Comparative analysis of model
performance across scenarios

3.2.1 Sensitivity analysis of the model to fruit
distribution density

To evaluate the detection performance of the model before and

after improvement under different target distribution densities, we

randomly selected litchi canopy overhead images from low

(Figure 6A1), medium (Figure 6B1), and high (Figure 6C1)

density scenarios for testing, with target counts of 86, 200, and

293, respectively. The detection results were summarized in Table 2.

In the low-density scenario, the error rate for litchi2 detection using

YOLOv8 was 10.2% (Figure 6 A2), while YOLOv8-FPDW reduced

it to 5.1% (Figure 6 A3), with errors for litchi1 and litchi3 remaining

within one target. In the medium-density scenario, YOLOv8

showed a higher false detection rate, with litchi1, litchi2, and

litchi3 having error rates of 20.0%, 10.0%, and 9.7%, respectively

(Figure 6 B2). In contrast, YOLOv8-FPDW significantly reduced

the false detection rates to 0%, 6.5%, and 3.7% (Figure 6 B3). In the

high-density scenario, the performance of YOLOv8 significantly

decreased, with no detections for litchi1 and detection rates for

litchi2 and litchi3 showing high omission rates of 22.9% and 5.4%,

respectively (Figure 6 C2). In contrast, YOLOv8-FPDW exhibited

stronger robustness, reducing the error rates to 0%, 16.67%, and

1.65% (Figure 6 C3). Overall, YOLOv8-FPDW outperformed

YOLOv8 in detection performance across different distribution

densities, particularly in medium and high-density scenarios.
FIGURE 5

Comparison of visualization feature maps. (A) Test image. (B) Feature map of the YOLOv8 model. (C) Feature map of the proposed model.
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3.2.2 Performance comparison in diverse
lighting and weather conditions

To evaluate the adaptability of model in complex environments,

three typical scenarios-strong light (Figure 7A1), low light

(Figure 7B1), and rainy weather (Figure 7C1)-were selected to

compare the detection performance of the original YOLOv8 and

YOLOv8-FPDW models. The results were shown in Table 3 and

Figure 7. In the strong light scenario, YOLOv8 exhibited a high

missed detection rate of 24.4% for litchi3, while YOLOv8-FPDW

reduced this rate to 17.8%, and the error for litchi1 decreased from 3

to 0. In the low light scenario, YOLOv8 had error rates of 11.1% and

22.4% for litchi2 and litchi3, respectively, while YOLOv8-FPDW

reduced these to 4.4% and 6.9%. In the rainy weather scenario, the

error rates of YOLOv8 for all three types of targets were 14.3%,

33.3%, and 6.2%, while the improved model reduced these rates to

0%, 20%, and 1.0%, respectively. Notably, the improved model

significantly reduced errors in detecting litchi1 and litchi3. Overall,

YOLOv8-FPDW demonstrated higher robustness and detection

accuracy in all three complex scenarios.
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3.3 Analysis of detection results for litchi at
different maturity stages

To investigate the distribution of litchi fruit maturity at different

growth stages, the YOLOv8-FPDW model was used to perform

inference on raw remote sensing images from Node 2 (June 1),

Node 3 (June 14), and Node 4 (June 19). Due to the large size of the

original images (5472×3648), the SAHI algorithm was employed to

perform slice-based inference. The detection results, as shown in

Figure 8 and Table 4, revealed the distribution characteristics and

dynamic changes of litchi fruits at various growth stages.
1. Early Rapid Development Stage (Node 2): As shown in

Figures 8A–C and Table 4, in the three randomly selected

images, all litchi fruits were immature (litchi1), with

quantities of 837, 1123, and 1358 fruits, respectively.

2. Maturity State Differentiation Stage (Node 3): As shown in

Figures 8D–F and Table 4, significant differentiation in the

maturity state of the litchi fruits occurred during this stage.

Litchi2 became the predominant category (51.42%, 63.75%,
FIGURE 6

Detection results on litchi images with different distribution densities: (A1, B1, C1) original images showing low, medium, and high-density litchi
distribution, respectively; (A2, B2, C2) detection results using the YOLOv8 algorithm; (A3, B3, C3) detection results using the YOLOv8-
FPDW algorithm.
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Fron
and 64.84%), litchi1 was the secondary category (47.69%,

28.02%, and 14.74%), and litchi3 had a low proportion

(0.89%, 8.22%, and 22.17%). These data revealed a dynamic

transformation trend of litchi fruit from immature (litchi1)

to semi-mature (litchi2) states, and there were differences

in the maturation process of the three trees.
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3. PeakMaturity Stage (Node 4): As shown in Figures 8G–I and

Table 4, the maturity of litchi fruits continued to progress,

with the proportion of litchi1 significantly decreasing to

26.92%, 7.33%, and 6.33%. Litchi2 and litchi3 became the

main components. On average, the proportions of litchi2

and litchi3 were similar, at 43.31% and 43.17%, respectively.
TABLE 2 Test results on litchi images with different distribution densities before and after model improvement.

Image
Litchi1 Litchi2 Litchi3

Detected Real Error rate Detected Real Error rate Detected Real Error rate

A2 4 5 20.0% 53 59 10.2% 23 22 4.5%

B2 5 3 66.7% 70 63 11.1% 121 134 9.7%

C2 0 2 100.0% 37 48 22.9% 230 243 5.3%

A3 4 5 20.0% 56 59 5.1% 21 22 4.5%

B3 3 3 0 67 63 6.3% 129 134 3.7%

C3 2 2 0 40 48 16.7% 237 243 2.5%
FIGURE 7

Detection results on litchi images in different scenes: (A1, B1, C1) original images are strong light, weak light, and rainy scenes, respectively; (A2, B2,
C2) detection results using the YOLOv8algorithm; (A3, B3, C3) detection results using the YOLOv8-FPDWalgorithm.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1568237
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liang et al. 10.3389/fpls.2025.1568237
3.4 Analysis and validation of target
quantity differential strategy

3.4.1 Impact of target quantity differential
strategy on detection results

To address the issue of lower detection accuracy for litchi2

compared to litchi1 and litchi3 (80.5%, 91.3%, and 91.4%,
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respectively, see Supplementary Table S1 in the Supplementary

Material) in the improved YOLOv8-FPDWmodel, a target quantity

differential strategy was proposed for calibration. By estimating the

number of litchi2 fruits indirectly, based on the difference between

the total number of targets detected by the YOLOv8-FPDW-all

model and the number of litchi1 and litchi3 detected by the

YOLOv8-FPDW model, calibration was performed. The
FIGURE 8

Detection results of the maturation state of litchi fruits at different growth stages: (A–C) are data from Node 2; (D–F) are data from Node 3; (G–I)
are data from Node 4.
TABLE 3 Test results on litchi images in different scenarios before and after model improvement.

Image
Litchi1 Litchi2 Litchi3

Detected Real Error rate Detected Real Error rate Detected Real Error rate

A2 6 3 100.0% 62 59 5.1% 34 45 24.4%

B2 4 4 0 100 90 11.1% 45 58 22.4%

C2 6 7 12.3% 20 15 33.3% 91 97 6.2%

A3 3 3 0 62 59 5.1% 37 45 17.8%

B3 4 4 0 86 90 4.4% 62 58 6.9%

C3 7 7 0 18 15 20.0% 98 97 1.0%
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calibrated detection results were shown in Supplementary Table S2

in the Supplementary Material, which displayed the distribution

and proportion of litchi targets in different maturity states at Node 3

(Figures 8D–F) and Node 4 (Figures 8G–I).

After calibration of the data for Node 3, both the number and

proportion of litchi2 targets changed significantly. In Figure 8D, the

number of litchi2 increased from 345 to 382, and its proportion rose

to 53.95%. In Figures 8E, F, the proportions of litchi2 were adjusted

from 63.75% and 64.84% to 66.19% and 63.05%, respectively. The

calibration results indicated that litchi2 still dominated the total

number of fruits at this stage.

For the data at Node 4, after calibration, the characteristics of

litchi entering the peak maturity period became evident, with a

significant increase in the proportion of litchi3. In Figure 8H, the

number of litchi2 was calibrated to 418, and its proportion

increased to 41.76%. The proportion of litchi3 rose to 50.55%,

indicating that most of the fruits had matured. In Figures 8G, I, the

proportion of litchi3 was calibrated to 39.68% and 44.21%, while the

proportion of litchi1 increased to 27.78% and 6.53%, respectively.

On average, the proportion of litchi2 was lower than that of litchi3,

with values of 42.48% and 47.22%, respectively.

3.4.2 Validation of target quantity differential
strategy effectiveness

To verify the effectiveness of the differential strategy in

improving the detection accuracy of litchi2 targets, we compared

the performance of the YOLOv8-FPDW model with the YOLOv8-

FPDW-all model based on the differential strategy in detecting the

number of litchi2 targets. The experiment utilized 20 randomly

selected test images, and the number of litchi2 targets detected by

both methods was compared with the true values. The results were

shown in Supplementary Table S3 in the Supplementary Material.

The data in Supplementary Table S3 indicated that the

differential strategy improved the detection accuracy of litchi2

targets by adjusting the model output. For test images 7 and 12,

for example, the error rates for YOLOv8-FPDW were 14.29% and

27.27%, respectively, whereas the differential strategy

significantly reduced the error rates to 5.71% and 4.55%. By

indirectly estimating the number of litchi2 targets, the differential
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strategy minimized errors caused by ambiguous classification

boundaries, bringing the detection results closer to the true

values. Overall, the average detection error for litchi2 targets

across the 20 test images decreased by 12.58% compared to the

YOLOv8-FPDW model.
3.5 Distribution characteristics of litchi
maturity state at different growth stages

To quantify the distribution of litchi fruit maturity states at

different growth stages, this study randomly selected 20 remote

sensing images from Node 3 and Node 4, and analyzed the dynamic

changes in maturation states based on the YOLOv8-FPDW model

combined with the target differential strategy. The related results

were shown in Supplementary Tables S4 and S5 in the

Supplementary Material.

Supplementary Table S4 showed that the average proportions of

litchi1, litchi2, and litchi3 were 29.39%, 52.83%, and 17.78%,

respectively, indicating that most of the litchi fruits were in the

semi-mature stage, with a low proportion of mature fruits. It was

noteworthy that litchi2 occupied more than 50% in most images,

with the highest proportion reaching 70.18% (Test Image 8),

reflecting the rapid transition of litchi from immature (litchi1) to

semi-mature (litchi2) states.

Supplementary Table S5 showed that the average proportion of

litchi3 increased to 52.88%, a 35.1% increase from the previous

node, indicating that most of the fruit had reached the mature stage.

The proportions of litchi1 and litchi2 decreased to 7.31% and

39.82%, respectively. In individual images, the proportion of

litchi3 exceeded 50% in most cases, with Test Images 10 and 12

reaching 63.35% and 59.83%, respectively. However, in Test Image

13, the proportion of litchi3 was 47.36%, indicating variability in the

maturity progression across the trees.

Based on the data from these two nodes, it was evident that the

maturation process of litchi accelerated significantly within 5 days.

The average proportion of immature fruit (litchi1) decreased from

29.39% to 7.31%, while the proportion of mature fruit (litchi3)

increased from 17.78% to 52.88%. Approximately 22% of litchi1
TABLE 4 Detection results of litchi fruit at different growth stages.

Image Litchi1 Proportion Litchi2 Proportion Litchi3 Proportion Overall

A 837 100% – – – – 837

B 1123 100% – – – – 1123

C 1385 100% – – – – 1358

D 320 47.69% 345 51.42% 6 0.89% 671

E 276 28.02% 628 63.75% 81 8.22% 985

F 151 14.74% 664 64.84% 227 22.17% 1024

G 70 26.92% 90 34.62% 100 38.46% 260

H 77 7.33% 467 44.48% 506 48.19% 1050

I 31 6.33% 249 50.82% 210 42.86% 490
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transitioned to litchi2, and 33% of litchi2 further transitioned to

litchi3, indicating that litchi had entered the peak maturity stage.
3.6 Dynamic analysis of fruit ripening on
individual trees at different growth stages

To verify whether the maturity dynamics of litchi fruits based

on remote sensing images could be applied to the analysis of the

maturity states on individual trees, this study randomly selected 20

trees and conducted long-term tracking analysis of fruit count and

maturity state distribution using the YOLOv8-FPDW model

combined with the target quantity differential strategy (relevant

data are shown in Figure 9 and Supplementary Table S6 in the

Supplementary Material).

The results showed that the ripening dynamics of individual

trees were highly consistent with the patterns observed in remote

sensing image analysis. At Node 1, the average fruit count per tree

was 651, and all the fruits were immature (litchi1). By Node 2, the

average fruit count increased to 770, an 18.28% growth, mainly due

to the differentiation of the second batch of litchi flowers, which

replenished the number of fruits. At this stage, the fruits were still

primarily litchi1, with no obvious differentiation in ripening states.

At Node 3, the fruit ripening states showed clear differentiation, and

the average fruit count stabilized at 771, indicating that the

differentiation of the second batch of litchi flowers had been

basically completed. At this stage, the average proportions of
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litchi1, litchi2, and litchi3 were 40.45%, 52.82%, and 6.73%,

respectively, with litchi2 becoming the dominant category,

consistent with the proportion of litchi2 (52.83%) observed in

remote sensing images. At Node 4, the tree entered the peak

ripening period, and the average fruit count dropped to 682, a

reduction of 11.46%, primarily due to physiological fruit drop (e.g.,

insufficient nutrition of small fruits) and physical drop caused by

continuous rainfall. At this stage, the proportions of litchi1, litchi2,

and litchi3 were 9.04%, 38.89%, and 52.06%, respectively, which

closely matched the proportions in remote sensing images (7.31%,

39.82%, and 52.88%).

The long-term tracking study of individual trees further

confirmed the regularity and applicability of the ripening dynamics

observed in remote sensing image analysis. The ripening dynamics of

litchi showed significant stage-based changes: during the rapid growth

period (Node 1 to Node 2), the fruit count increased significantly;

during the maturation differentiation period (Node 2 to Node 3), the

proportion of semi-mature fruit (litchi2) increased rapidly and

became dominant; during the peak ripening period (Node 3 to

Node 4), the proportion of mature fruits (litchi3) surpassed 50%,

marking the transition to the harvestable state for most litchi fruits.

According to expert advice, the optimal harvest time was when the

proportion of mature fruits (such as the varieties Xianjinfeng and

Guiwei) approaches 65%. Based on the current ripening trend, it was

predicted that the best harvest time for litchi would be around June 23,

and the actual harvest period (from June 22 to June 26) further

validated the accuracy of this prediction.
FIGURE 9

Average Fruit Count per Individual Tree at Different Growth Stages.
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4 Discussion

4.1 Comparative analysis with mainstream
detection models

The investigation above demonstrated that the YOLOv8-FPDW

model achieved a 2.7% improvement in mAP@0.5, along with

reductions in model weight (17.5%), parameter count (19.0%), and

computational complexity (9.9%). These improvements resulted from

the integration of modules such as FasterNet, ParNetAttention,

DADet, and Wiou, which improved feature extraction, focused on

key regions, optimized the detection head, and enhanced localization

accuracy. The reductions in model weight and complexity enable

more efficient deployment of the model in resource-constrained

agricultural environments, such as mobile devices and low-cost

platforms. The detection error rates of YOLOv8-FPDW were

reduced by 55.56%, 5.36%, and 2.93% for litchi1, litchi2, and litchi3,

respectively, in varying densities, and 37.63%, 6.67%, and 9.10% in

complex conditions, demonstrating its potential for agricultural

applications. Additionally, the proposed target quantity differential

strategy significantly improved the detection accuracy of litchi2,

reducing the error rate by 12.58%, providing valuable insights for

similar maturity classification tasks in agricultural scenarios where

targets are in transitional stages and difficult to classify accurately.

Further analysis was conducted to compare the performance of

the YOLOv8-FPDW algorithm with five mainstream detection

algorithms: YOLOv5s, YOLOv7 (Wang et al., 2023), YOLOv8n,

YOLOv10n (Wang et al., 2024), and YOLOv11n (Khanam and

Hussain, 2024) (as detailed in Table 5). To ensure a fair

comparison, the same training configuration (e.g., number of

training epochs, batch size) was used, with other hyperparameters

set to the default values of each algorithm.

Compared to the mainstream algorithms, YOLOv8-FPDW

demonstrated clear advantages. In terms of recognition accuracy,

YOLOv8-FPDW improved by 3.2%, 2.5%, and 2.8% over YOLOv5s

(84.5%), YOLOv10n (85.2%), and YOLOv11n (84.9%), respectively. In

terms of model lightweighting, YOLOv8-FPDWhad the smallest model

weight at 5.2 MB. Regarding computational complexity (GFLOPs),

YOLOv8-FPDW required only 7.3 GFLOPs, which represented a

reduction of 11.0% and 12.3% compared to YOLOv8n (8.1 GFLOPs)

and YOLOv10n (8.2 GFLOPs), respectively, indicating lower

computational resource demands. Although it required slightly more
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GFLOPs than YOLOv11n (6.5 GFLOPs), the recognition accuracy of

YOLOv8-FPDW was significantly higher than that of YOLOv11n

(84.9%). In conclusion, the YOLOv8-FPDW model achieved a good

balance between accuracy, model lightweighting, and computational

complexity, making it suitable for deployment on mobile devices.
4.2 Limitations and challenges in practical
application

Although the YOLOv8-FPDW model was more competitive than

mainstream detection algorithms in detecting litchi fruits at different

maturity stages, some limitations occurred for the proposed approach in

practical application. First, the detection accuracy might decrease when

images were collected at a much strong or weak sunlight condition. This

issue could be mitigated through additional preprocessing techniques,

such as illumination correction and image enhancement. Second, due to

the perspective limitations of drone imaging, parts of fruits on the sides

of tree canopy could not be captured in drone-based remote sensing

images. By integrating data from both drones and ground sensors, it

would have been possible to detect fruits on both the top and sides of the

canopy, and providing a method for counting the total number of fruits

on the outer canopy. Additionally, parts of litchi fruits located within the

inner canopy were completely hidden by foliage and could not be

detected by the UAV-based approach. This limitation was a common

challenge of visual detection techniques and could have caused an

underestimation of the total fruit count per tree and lower the yield

estimation accuracy. Ground verification methods, such as manual

counting, could be used to calibrate the model outputs and establish the

correlation between visible fruits and total yield.
4.3 Future research directions

In the future, we will further optimize the litchi maturity detection

method to improve the applicability and accuracy of the model. At the

image level, we aim to develop higher-precision and more robust

artificial intelligence models to adapt to fruit detection tasks in natural

environments. Additionally, we intend to investigate the adaptability of

the model at higher flight altitudes, combining super-resolution

reconstruction techniques to enhance its detection capability in low-

resolution images. At tree level, new approaches will be developed to
TABLE 5 Performance comparison of YOLOv8-FPDW with mainstream detection algorithms.

Method mAP@0.5(%) mAP@0.95(%) Weight GFLOPs

YOLOv5s 84.5 58.6 14.8Mb 15.8

YOLOv7 86.5 59.5 75.0Mb 105.1

YOLOv8n 85.0 65.4 6.3Mb 8.1

YOLOv10n 85.2 60.1 5.9Mb 8.2

YOLOv11n 84.9 61.2 5.6Mb 6.5

YOLOv8-FPDW 87.7 67.6 5.2Mb 7.3
Bold values indicate the optimal results in each column.
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estimate the total fruit count of a tree, such as the systematic sampling

method proposed by Wulfsohn et al. (2012), which includes both the

fruits at outer and inner tree canopy. Furthermore, we will establish

machine learning regression models linking the total number of fruits

and the number identified by the dronemethod, providingmore precise

individual tree-level yield estimates for orchard management. At the

orchard level, we will integrate the drone-based fruit counting method

with the established machine learning regression models to develop

high-precision orchard yield estimation methods. By incorporating the

dynamic distribution characteristics of fruit maturity within the region,

orchard management strategies can be optimized.
5 Conclusion

This study proposed a litchi fruit maturity state detection

method based on UAV remote sensing technology and YOLOv8-

FPDW. The YOLOv8-FPDW model demonstrated significant

advantages, with a 2.7% improvement in detection accuracy,

reaching 87.7%, and achieved reductions in model weight,

parameter count, and computational complexity by 17.5%, 19.0%,

and 9.9%, respectively. The improved model showed strong

robustness across various scenarios. The introduced differential

strategy significantly enhanced the detection accuracy for litchi2,

reducing the error by 12.58%. Analysis of remote sensing images

revealed the stage-wise dynamic changes in the maturity state of

litchi fruits. From Node 3 to Node 4, the proportion of litchi1

dropped significantly from 29.39% to 7.31%, the proportion of

litchi2 decreased from 52.83% to 39.81%, while the proportion of

mature fruits (litchi3) rapidly increased to 52.88%. Long-term

tracking of individual trees further confirmed this trend. During

the rapid growth phase, the fruit count increased by 18.28%. In the

maturity differentiation phase, litchi2 became the dominant

category, accounting for approximately 53% of the total. During

the maturity peak phase, the proportion of litchi3 exceeded 50%,

and the fruit drop rate reached 11.46%. Additionally, compared

with mainstream object detection algorithms, YOLOv8-FPDW

demonstrated superior detection accuracy and model weight

efficiency. Future work will focus on enhancing the adaptability of

the YOLOv8-FPDW model to diverse orchard environments and

integrating advanced methods, such as super-resolution

reconstruction, to improve detection accuracy for low-resolution

targets, supporting more precise orchard management.
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