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niche of the threatened
cold desert perennial
Ivesia webberi A. Gray
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Understanding the regeneration niche is of critical importance for the

conservation of rare plants, yet species-specific information is often lacking for

key components of the plant life cycle such as seed dormancy and germination.

We conducted a detailed study of the regeneration niche for Ivesia webberi, a

U.S. federally threatened forb that is endemic to the Great Basin Desert. Using

seeds collected from 11 populations across a span of years, we investigated seed

storage behavior, embryomorphology, and interannual and interpopulation seed

viability, while testing the efficacy of alternative nondestructive methods to

assess seed viability. We also studied the effects of various pre-incubation and

incubation treatments on germination rates, speed, and synchrony. An

examination of x-ray images showed that I. webberi have non-endospermic

seeds with spatulate embryos. We observed a significant reduction in seed

viability over three years, suggesting a recalcitrant storage behavior. Seed

viability exhibited significant interannual, but not interpopulation, variation

across 11 I. webberi populations. Both the x-ray and multispectral imaging are

promising nondestructive methods that can replace the widely used, but

destructive, tetrazolium test. Across all 68 germination treatments, seed

germination was higher, faster, and more synchronized under warmer cold-

stratified incubation temperatures. Seed germination was significantly increased

by pre-incubation chilling and reduced by pre-incubation heat treatments, while

pre-incubation and incubation light exposures had no effect. Both the seed

embryo morphology and germination experiments suggest physiological

dormancy in I. webberi. Results suggest that warmer and shorter winters, such

as are consistent with predicted climate change, could increase germination of I.

webberi seeds.
KEYWORDS

Ivesia webberi, seed viability, germination rate, multispectral imaging, cold
stratification, physiological dormancy
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1 Introduction

The seed is an important stage in the plant life cycle. It

determines regeneration, recruitment of new individuals into a

population, dispersal and new colonization events and gene flow

for many plants (Li et al., 2018; Infante-Izquierdo et al., 2020; Chen

K. et al., 2022); therefore, rates of seed mass evolution are strongly

associated with speciation rates in angiosperms (Igea et al., 2017).

Thus, understanding the regeneration niche, that is, various biotic,

genetic, climatic factors that drive flowering, pollination, seed

production, dormancy, dispersal, germination, and seedling

establishment (Grubb, 1977; Rosbakh et al., 2018), is important

for predicting plant population demography under global changes

and post-disturbance recovery (Rosbakh et al., 2018; Glison et al.,

2023). Regeneration niche studies can also be used to predict

phenology shifts under changing climate (Footitt et al., 2018;

Vázquez et al., 2024), and to identify factors driving high

mortality rates during the transition from seed to seedling and

across seedling life stages, as well as their impacts on recruitment

(Young et al., 2005; Jiménez-Alfaro et al., 2016; Valdez et al., 2019).

Seed dormancy is an adaptation strategy to ensure optimal

germination in favorable conditions (Baskin and Baskin, 2014).

Conditions that favor seed germination vary widely among plants,

depending on the type of dormancy, storage time, distribution

ecology, embryo morphology, and mating system, among others

(Kildisheva et al., 2020; Chen J.-Z. et al., 2022). Germination

requirements are highly species-specific (James et al., 2020;

Verhoeven et al., 2024). For example, over 70% of alpine plants

require cold stratification and light for seed germination

(Schwienbacher et al., 2011; Fernández-Pascual et al., 2021),

whereas, desert plants need water and temperature increases for

seed dormancy release (Baskin and Baskin, 2014). Some desert

plants germinate under broad dormancy-releasing treatments,

while spring germinators need cold stratification for optimal

germination (Forbis, 2010). Some plant species require fire or

chemical treatment in the gut of herbivores to break dormancy

(Cosyns et al., 2005; Milotić and Hoffman, 2016; Lamont et al.,

2019). Understanding the conditions associated with dormancy

release can optimize successful translocation for threatened

species and can be used to reliably predict how plant regeneration

and seedling recruitment would be impacted by global changes

(Copete et al., 2005; Herranz et al., 2010).

Conservation scientists and managers have leveraged seed

dormancy for seed banking purposes. With over 1700 seed banks

in the world, seed banking is the oldest and most common ex situ

conservation strategy for species management and global food

security (Food and Agriculture Organization, 2010; Hay and

Probert, 2013; Potter et al., 2017; Dıéz et al., 2018; Liu et al.,

2018). Archived and conserved germplasms can then be used for

post-disturbance vegetative community regeneration, translocation

of threatened species to suitable habitats, as well as de novo crop

propagation (Engels and Ebert, 2021). Investigating the potential of

seed banks to manage wild populations of threatened species is

particularly warranted as such banks historically have focused on

plants of agricultural significance (Merritt and Dixon, 2011; Meyer
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et al., 2014; Abeli et al., 2019). A further conservation challenge

exists for species that produce recalcitrant seeds and hence may not

be suitable for seed banking (Berjak and Pammenter, 2008; Wyse

et al., 2018; Wyse and Dickie, 2018), comprising up to 10% of all

angiosperms and about 40% of species on the IUCN Red List of

Threatened Species.

Maintaining the viability of stored seeds is pivotal to successful

ex situ conservation; for example, studies showed that 38% of plant

re-introductions from seed banks were partially successful, while

31% failed completely (Abeli et al., 2019). Thus, monitoring seed

viability is essential in managing conservation seed banks. One

major limitation is that seed stocks of rare plants may be too low for

the periodic application of destructive methods such as tetrazolium

or seedling emergence tests (Abeli et al., 2019). Therefore, there is a

strong need for seed viability testing methods that are both reliable

and nondestructive (Baek et al., 2019). Non-destructive seed testing

methods, such as seed x-ray and multispectral imaging, reveal seed

properties that are indirectly used to infer seed viability. Seed x-rays

can also be used to visualize seed development, embryo

morphology, and potential pest and pathogenic damage from

which inferences are drawn about seed health, viability, and

storage behavior (Gagliardi and Marcos-Filho, 2011; Costa et al.,

2014). Likewise, multispectral imaging can be used to assess seed

health, moisture level, purity, fruit maturity, and detect pest damage

(Vresǎk et al., 2016; Boelt et al., 2018; Baek et al., 2019).

In this study, we described seed embryo morphology and

investigated seed viability and germination of Ivesia webberi A.

Gray (Webber’s Ivesia, or wire mousetail), a U.S. federally

threatened perennial herb belonging to the Rosaceae family. This

species has a narrow distribution in the Artemisia arbuscula steppe

in the western Great Basin Desert and northeastern foothills of the

Sierra Nevada Range and is currently found in 32 locations

(Figure 1) (Witham, 2000; Borokini et al., 2023). We asked the

following specific questions: (a) Do I. webberi seeds lose their

viability over time under ambient storage conditions? (b) Is there

a significant interannual and interpopulation variability in I.

webberi seed viability? If so, what proportion of this variation is

explained by climatic variables? (c) Can non-destructive methods

accurately predict viability of I. webberi seeds? (d) What treatments

enhance seed germination success and speed and improve

synchrony of I. webberi seed germination? (e) How will the

predicted mild winter and warmer spring seasons affect I. webberi

seed germination? An understanding of seed germination processes

in I. webberi will support management and conservation of this

federally threatened species.
2 Materials and methods

2.1 Ivesia webberi

Ivesia webberi regenerates in late winter or early spring, both

vegetatively from dormant root caudices and from seed

recruitment, which are produced from a mixed mating system

characterized by both selfing and outcrossing (USFWS, 2014;
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Borokini et al., 2021a). The species produces yellow capitate or sub-

capitate cyme inflorescences containing between five and 15 flowers

on each flowering stalk, which when fertilized, develop into light

brown colored, dry indehiscent achenes (Witham, 2000). The seeds

are small, between 1.9 and 2.5 mm, smooth and mottled, and

between three and eight seeds are produced per flower (Witham,

2000). However, seed dispersal is localized within rock crevices that

characterize the soil surface in all population sites (USFWS, 2014;

Witham, 2000). From field observations, there is no evidence to

suggest significant seed predation on I. webberi. Patch sizes vary

widely among known locations (Figure 1; Table 1) and are impacted

by invasive species and wildfires (USFWS, 2014; Borokini et al.,

2021b). Seedling emergence and age-class structure were reported

from field observations (Witham, 2000), but drought spells and

invasion by non-native weeds may impact natural seedling

recruitment (Borokini et al., 2021b). Moreover, local experts

reported limited success in germinating I. webberi seeds,

suggesting the likely importance of seed dormancy for this species.
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2.2 Seed viability analyses

2.2.1 Seed viability tests
Three seed viability tests were used in this study: (1) the

standard 2,3,5 triphenyl tetrazolium chloride test (hereafter

referred to as tetrazolium or TZ test); (2) X-ray imaging; and (3)

multispectral imaging. The TZ test is recognized by the Association

of Official Seed Analysts and the International Seed Testing

Association as a highly precise and accurate test of seed vigor

(Nurse and DiTommaso, 2005; Gosling et al., 2009; de Barros

França-Neto and Krzyzanowski, 2019). Seeds were imbibed in

water, cut, and soaked in tetrazolium solution. Healthy and live

seeds produce hydrogen ions, from the activity of dehydrogenase

enzymes, which reduces colorless tetrazolium to red triphenyl

formazan; the resulting red color indicates seed viability (de

Barros França-Neto and Krzyzanowski, 2022). All TZ tests were

carried out at the Idaho State Seed Laboratory, Boise, Idaho,

United States.
FIGURE 1

Global distribution of Ivesia webberi populations. Unit numbers follow the USFWS designations, circles represent the geographic center of extant,
mapped occurrences, and circles with same color indicate USFWS-designated subpopulations of the same population.
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X-ray imaging was conducted at the United States Forestry

Service (USFS) Bend Seed Extractory, Bend, Oregon, following

methods described in Gomes et al. (2016). X-ray images for each

seed were captured at a radiation intensity of 26 kV for 1.2 seconds,

using a digital Kubtec medical imaging Xpert 40 specimen

radiography system. A visual inspection of the seed x-ray images

was used to discriminate between viable and nonviable seeds. Seeds

with dark shadows in the x-ray images are indicative of filled and

matured embryos and were scored as viable (Figure 2). Conversely,

seeds with light or no shading in the x-ray images were considered

nonviable (Figure 2). Additionally, the seed x-ray imagery allowed

us to examine the internal seed tissues and describe the seed embryo

morphology, following published seed classification standards

(Martin, 1946; Atwater, 1980; Ellis et al., 1985).

Multispectral imaging was conducted at Skyway Analytics LLC,

Longmont, Colorado (https://getskywayanalytics.com/). Each seed

was placed in a 90 mm petri dish without cover, and digital images

were captured with a VideometerLab 3 instrument (Halkjaer Olesen

et al., 2011; Su and Sun, 2018). The multispectral images of 1280 ×

960 pixels were captured at 26 different spectral bands, covering the

visible (380–780 nm) and near-infrared (780–2500 nm) regions

(Huang et al., 2015; Boelt et al., 2018), to describe seed testa

chemical and spectral properties. Additionally, seed size, width,

length, shape, orientation, and color were also measured for

each seed.
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2.2.2 Effect of storage time on the viability of
Ivesia webberi seeds

I. webberi seeds were collected from the Unit 5 population in

August 2017, 2018, and 2019, when matured seeds were ready for

abscission (Figure 1). We used this population because it is the

largest (Table 1), thus minimizing the potential effect of seed

collection pressure on I. webberi populations. Empty seeds were

identified and removed using the finger pressure test. Remaining

healthy seeds (n = 50, 45, 50 for 2017, 2018, and 2019, respectively)

were stored in coin envelopes, under ambient conditions of 21°C

and 15% humidity. The healthy seeds collected in 2017, 2018, and

2019 were stored for two, one year, and three months, respectively,

following which TZ test was performed on seeds from each storage

time category. The viability (0 = non-viable, and 1 = viable) of

individual seeds collected between 2017 and 2019 was modeled as a

function of storage time, treated as a categorical variable with three

levels: 0, 1 and 2 years in storage, using logistic regression. A

Tukey’s HSD test was used to perform post-hoc pairwise

comparisons (Abdi and Williams, 2010).

2.2.3 Interannual and population-level differences
in the viability of I. webberi seeds

Between 50 and 100 seeds were collected from 11 I. webberi

populations of varying patch sizes (Table 1), in August of 2017 and

2018. Healthy seeds from these collections were stored under ambient
TABLE 1 Location, site, and population characteristics, and mean viability of the seed collections from 11 Ivesia webberi population sites in the
western Great Basin Desert, United States.

Unita Site
location

County
and State

Site
area
(m2)b

Abundance
estimatec

Sample
size 2017

Mean ± SE
viability 2017

Sample
size 2018

Mean ± SE
viability 2018

2 Near
Constantia

Lassen CA 7,700 100-999 31** 0.20 ± 0.07 40 0.00 ± 0.00

3 East of
Hallelujah
Junction

Lassen CA 1,400 115-130 31*** 0.68 ± 0.09 39 0.62 ± 0.08

5 Dog
Valley
Meadows

Sierra CA 289,700 100,000 25** 0.64 ± 0.10 45 0.53 ± 0.08

6 White
Lake Overlook

Sierra CA 54,900 10,000 30* 0.47 ± 0.09 45 0.64 ± 0.07

7 Mules Ear flat Sierra CA 1,400 <100 27 0.33 ± 0.09 35 0.83 ± 0.06

8 Ivesia flat Washoe NV 3,000 100,000 27 0.44 ± 0.10 26 0.46 ± 0.10

11 Hungry Valley Washoe NV 600 2,120 33 0.15 ± 0.06 38 0.63 ± 0.08

12 Black Springs Washoe NV 25,500 >500-1000 31* 0.52 ± 0.09 45 0.69 ± 0.07

13 Raleigh Heights Washoe NV 38,600 <100,000-
4,000,000

30 0.23 ± 0.08 44 0.66 ± 0.07

14 Dutch
Louie flat

Washoe NV 5,500 600,000-693,795 30 0.07 ± 0.05 41 0.68 ± 0.07

16 Dante
Mine Road

Douglas NV 2,300 3,179-36,500 30 0.23 ± 0.08 43 0.70 ± 0.07
aUSFWS unit designation for the I. webberi populations (see USFWS, 2014); bSite area was calculated from USFWS (2014); vAbundance estimate for each population was sourced from USFWS
(2014). ***p < 0.001, **p < 0.01, *p < 0.05 following results from the logistic regression to investigate statistical difference in seed viability across sampled populations in 2017 and 2018. The
viability of seeds collected in 2018 was not significantly different across sampled populations.
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conditions of 21°C and 15% humidity, for eight months in coin

envelopes. Storing the seeds for several months before viability testing

was done to allow the seeds an after-ripening period for full embryo

development if necessary (Baskin and Baskin, 2014). A post-

abscission ripening period is common for winter and spring annual

and perennial plants (Chantre et al., 2009; Forbis, 2010). Due to

limitations in seed collection from threatened species and many

empty seeds, sample sizes varied across sampled populations for the

2017 and 2018 collections (Table 1). We conducted the TZ test on the

seeds collected for this experiment. We conducted logistic regression

models and Tukey’s HSD post-hoc multiple comparisons to

investigate the effect of patch sizes on I. webberi seed viability. We

also conducted student’s t-test to investigate variation in the viability

of seeds collected in 2017 and 2018.

To investigate the effect of climatic conditions on I. webberi seed

viability across the two years of collection (2017 and 2018), we

calculated seasonal actual and potential evapotranspiration (AET

and PET, respectively), climatic water deficit (CWD), and annual

water content (AWC), heatload and topographic variables

(elevation, slope, and cosine aspect) for 2017 and 2018. AET,

PET, CWD, AWC and heatload were calculated using the

Thornthwaite water balance model (Lutz et al., 2010; Dilts, 2015;

Dilts et al., 2015) based on monthly PRISM climatic averages

(1971–2019 at 800 m resolution; PRISM Group, 2007), USDA

SSURGO soil data (USDA, 2013), and a digital elevation model.

Correlated variables were removed using Pearson correlation

coefficient (-0.6 < r < 0.6) and the remaining predictor variables

(summer AET 2017 and 2018, cosine aspect, slope, and heat load)

were used to fit a multivariate multiple linear regression on the

mean seed viability for 2017 and 2018 seed samples, following

which Type II MANOVA Pillai post-hoc test was conducted.
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2.2.4 Estimating the reliability of non-destructive
x-ray and multispectral imaging to discriminate
between viable and non-viable I. webberi seeds

The total number of seeds (n = 441) collected in 2018 (described

in 2.2.3 above) were used to investigate the potential of non-

destructive seed testing methods (Table 1). X-ray images of the 441

seeds were taken first, followed by multispectral imaging and the TZ

test. The 42 continuous variables derived from the multispectral

imaging and binary scoring of the x-ray imageries were considered

the predictor variables, while the binary scoring of the TZ test was

used as the response variable. However, as large portions of the

electromagnetic spectrum were likely to be redundant with respect to

seed viability indicators, this resulted in unnecessary data

multidimensionality (Chen Z. et al., 2014; Baek et al., 2019).

Therefore, we used the variable reduction feature implemented in

the Boruta R package (Kursa and Rudnicki, 2010) and the backward

stepwise recursive feature elimination algorithm in the caret R

package (Kuhn, 2008) to reduce the predictor variables to three

predictor variables. These three uncorrelated variables – seed x-ray

imagery, seed width, and seed spectral reflectance at 690 nm – were

used to build the final model for seed viability.

We fitted a random forest classification model (ntree = 500,

mtry = 2) to the three selected variables using the party R package

(Hothorn et al., 2006) with supporting utility functions written by

KTS. Variable importance was assessed as the loss of predictive

accuracy (Gini statistic) when random permutations of each

predictor variable were performed for randomly drawn samples

(Cutler et al., 2007). Partial dependence plots were used to illustrate

the relationship between each of the three predictors and seed

viability (Friedman, 2001). We used a 10-fold cross validation to

assess overall predictive performance (Cutler et al., 2007), using the

area under the receiver operating characteristic curve (AUC; ROCR

package in R; Sing et al., 2005) as the primary performance metric

(Fielding and Bell, 1997).
2.3 Seed germination analyses

2.3.1 Seed imbibition test
Seeds previously harvested in 2016 in the USFWS designated

unit 7b (Table 1) and stored by the Nevada Department of Forestry

were used for the seed germination experiments. First, we

conducted a seed imbibition test to determine if the seed testa is

permeable to water. Six replications of 50 healthy seeds were dried,

weighed, and placed on moistened filter paper in petri dishes, while

being kept at room temperature (Kildisheva et al., 2018). Seed

weight was measured at time 0, representing initial seed mass (Wd),

and at 1, 2, 4, 8, 24, 48, 72 and 96-hour intervals. Measurement was

stopped at 96 hours when seed germination was observed. Seeds

were weighed to the nearest 0.001 g using a Sartorius CPA225D

semi-micro digital analytical laboratory balance. Percentage mass

increase (%Ws), indicating seed weight increase, was calculated as:

%Ws = ½(Wi –Wd)=Wd� � 100
FIGURE 2

Plate of x-ray imagery of Ivesia webberi seeds showing filled and
unfilled embryos. Shaded seeds represent filled seeds indicating
matured embryo, while unfilled seeds are considered empty with
immature or no embryo.
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where Ws = increase in seed mass, Wi = mass of seeds after a

given interval of imbibition, and Wd = initial mass of seeds

(Hidayati et al., 2000). The result of the imbibition test was

shown as a plot of percentage seed mass increase over time.
2.3.2 Seed germination experimental designs
Using a three-factorial experiment, we conducted seed

germination trials testing the effect of pre-incubation and

incubation temperature and light exposure on germination

success, speed, and synchrony of I. webberi seeds. These pre-

incubation and incubation treatments mimic natural conditions

that I. webberi seeds are subjected to post-abscission from parent

plant in summer and winter months, prior to germination in early

spring (Forbis, 2010). A power analysis (df = 3 at p < 0.05 and model

explanatory power of at least 50% of the variance in the data)

indicated that the use of 100 seeds for each treatment is sufficient for

the seed germination experiments. For each treatment, we had four

replicates (petri dishes) of 25 seeds each.

In the first phase, I. webberi seeds were subjected to factorial

treatment combinations of pre-incubation temperature [i.e., cold

moist (1°C), warm dry, and warm moist exposure (30°C for 14

hours, and 15°C for 10 hours)] and light exposure (either 12-hour

light exposure or complete darkness) for four weeks, following

which the seeds were incubated under cold stratification (5°C for 12

hours and 1°C for 12 hours in a 24-hour day cycle) in either 12-hour

light or 24-hour darkness (Supplementary Table 1, treatments 3-

18). We included two controls, none of which underwent pre-

incubation treatments, but were incubated under 12-hour light or

24-hour darkness (Supplementary Table 1, treatments 1-2).

Additional treatments included factorial combinations of seeds

soaked in different concentrations of gibberellic acids, potassium

nitrate solutions, and a mixture of both growth hormones

(Supplementary Table 1, treatments 19-34). Incubation by cold

stratification is widely reported for germinating alpine and

subalpine plants (Porceddu et al., 2013; Baskin and Baskin, 2014;

Mondoni et al., 2015). We confirmed the importance of cold

stratification for I. webberi in two trial germination investigations

prior to this study. Light exposures were done with fluorescent

lamps and a photosynthetic photon flux density of 19 to 22 mmol/

m2/s, while seeds subjected to total darkness were covered with

double layers of aluminum foil. All 34 treatment combinations were

incubated for 12 weeks, while the petri dishes were kept

continuously moist, and germination recorded weekly. A seed was

considered to have germinated when radicle emergence, of at least 2

mm in length, was observed.

The second phase of seed germination experiments

(Supplementary Table 1, treatments 35-68) was similar to the first

phase, except that pre-incubation cold moist exposure was

maintained at 2°C, while the 12-week incubation temperature was

maintained at 15°C for 12 hours, and 2°C the remaining 12 hours,

representing predicted climatic conditions of mild winter and

warmer spring seasons. Moreover, 50 seeds were selected and

subjected to TZ test before the first and second germination

experiment phases to check for possible differences in seed
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viability, given that the second experiment phase started three

months after the first phase ended. Seed germination experiments

were conducted at United States Department of Agriculture

(USDA) Agricultural Research Service (ARS) Seed Laboratory,

Reno, Nevada.

2.3.3 Effect of light vs darkness on Ivesia webberi
seed germination

Two statistical analyses were conducted to test the effect of 12-

hour incubation light exposure vs total darkness on seed

germination. The bivariate data, containing germination of seeds

exposed to 12-hour incubation light and those in total darkness, was

subjected to relative light germination percentage (RLGP) test to

evaluate light requirement for I. webberi seed germination (Milberg

et al., 2000; Wang et al., 2009):

RLGP = Pl=(Pd + Pl),

where Pl is percentage germination in light, and Pd is

percentage germination in darkness. RLGP ranges from 0 to 1

indicating preference for germination in darkness and light,

respectively. Even though RLGP gives us a single value to

compare germination success between light and dark treatments,

it does not produce tests of significance. Therefore, we ran Fisher’s

2-proportion test of equality (Fisher’s Exact probability test) to test

for significant difference in seed germination for 12-hour light and

total darkness treatments. The Fisher Exact probability test is a non-

parametric technique for comparing proportions, testing the null

hypothesis that the probabilities of success in two groups are the

same. Both the RLGP analysis and the Fisher’s Exact test were

conducted separately for the first and second germination

experiment phases and both phases combined.

2.3.4 Effect of pre-incubation and incubation
treatments on Ivesia webberi seed germination

Using the germination records from all pre-incubation and

incubation treatments and controls (treatments 1-18, 35-52,

Supplementary Table 1), we fitted separate generalized linear

mixed models (GLMMs), holding incubation temperature and

incubation light exposure, as random effects to investigate the

effects of pre-incubation and incubation treatments on seed

germination success. We also fitted baseline GLMMs including all

68 treatments to study the effects of the growth hormones used in

the experiments, with incubation temperature and incubation light

exposure as random effects. While our research questions focus on

investigating the effects of treatments that mimic natural conditions

(light and temperature), we used the baseline model as a reference

and to test for the effects of growth hormones.

2.3.5 Effects of pre-incubation and incubation
treatments on Ivesia webberi seed germination
time and synchrony

We investigated the effect of the 68 pre-incubation and

incubation treatments on the timing of seed germination in I.

webberi. Many species of perennial forbs growing in desert
frontiersin.org

https://doi.org/10.3389/fpls.2025.1568951
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Borokini et al. 10.3389/fpls.2025.1568951
ecosystems experience shortened generation times and exhibit

germination bet hedging strategies. Using functions implemented

in GerminaR R package (Lozano-Isla et al., 2019), we calculated

mean germination time (MGT) and synchronization index Z

(Supplementary Table 1). The mean germination time is defined

as the time required for the seeds to germinate during the

experiments (Ranal et al., 2009; Lozano-Isla et al., 2019), and is

calculated as:

MGT =o(n� d)=N,

where n is the number of newly germinated seeds each day, d is

the number of days from the beginning of the experiment, and N is

the total number of germinated seeds at the end of the experiment

(Ellis and Roberts, 1981). Germination synchronization index Z

evaluates the degree of overlap in the germination of two seeds

under the same treatment (Ranal et al., 2009; Lozano-Isla et al.,

2019). Lower Z values indicate synchronized germination, while

higher values indicate asynchronous germination, indicative of bet

hedging strategy. We tested the effects of all pre-incubation and

incubation treatments on mean germination time (MGT) and

synchronization index Z (SYN), for the two germination

experiment phases separately and collectively, using analysis of

variance (ANOVA) tests. All data analyses were conducted in R

statistical software and RStudio interface (R Core Team, 2024;

RStudio Team, 2024).
3 Results

3.1 The effect of storage time on the
viability of I. webberi seeds

The viability of I. webberi seeds decreased with storage time

(Figure 3); seeds stored for three months had 86% viability, while

seeds stored for one and two years had 53% and 34% viability
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respectively. There were significant pairwise differences in seed

viability between seeds stored for three months and those stored

for one year (z = -3.33, p < 0.001) and two years (z = -4.91, p <

0.001) respectively.
3.2 Population-level and interannual
difference in the viability of I. webberi
seeds

The viability of seeds collected in 2017 showed variation among

populations (c2 = 45.0, df = 10, p < 0.001) with significant

differences among sampled populations exhibiting the highest

seed viability (units 3 and 5) and those with the lowest seed

viability (units 2, 11, and 14; Table 1). However, the viability of I.

webberi seeds collected in 2018 showed no significant differences

among the 11 populations. This contrasting result for 2017 and

2018 may be attributed to interpopulation variability in seed

viability, which was higher for the 2017 collections (mean = 0.36,

SD = 0.48, CV = 135%) than for the 2018 collections (mean = 0.59,

SD = 0.49, CV = 83.5%).

The viability of I. webberi seeds showed significant interannual

variability (student’s t = -2.5, df = 19.9, p = 0.02) between 2017 and

2018. Broadly, seed viability was lower in 2017 than in 2018; for

example, only three populations had ≥50% seed viability in 2017

collections, in contrast to nine populations in 2018 (Table 1). These

significant differences could be attributed to an overall positive

effect of summer 2017 AET (Pillai test statistic = 0.87, F = 13.83, p =

0.02) and negative effect of heatload (Pillai test statistic = 0.85, F =

10.99, p = 0.03; see Supplementary Table 2) on the two-year

seed viability.
3.3 Reliability of seed testa spectral
properties and x-ray imagery to predict I.
webberi seed viability

TZ test results showed 260 of the 441 individual seeds collected

in 2018 as viable. Simple t-tests for viable and nonviable seeds

conducted between mean values for seed x-ray, seed width, and

spectral reflectance at 690 nm were significantly different at p < 0.01

(Supplementary Table 3). The Random Forest model had high

model performance and prediction (accuracy = 0.82, specificity =

0.93, AUCtrain = 0.91, AUCtest = 0.81; Figures 4a, b). Seed x-ray

imagery contributed the most to the model, followed by seed width

and 690 nm seed spectral reflectance (Figure 5). Univariate partial

dependence plots showed that the probability of I. webberi seed

viability increases with decreasing seed testa spectral reflectance at

690 nm (Figure 6a), filled seeds in the x-ray imagery (Figure 6b) and

lower seed width values (Figure 6c). Moreover, a significant inverse

relationship between seed area and viability for seeds collected in

2018 was observed, although this relationship was nonsignificant

for the 2017 seed collections (see Supplementary Result 1;

Supplementary Figure 1).
FIGURE 3

A plot of the predicted viability trends through time based on
logistic regression for Ivesia webberi seeds stored between 2017
and 2019.
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3.4 Seed imbibition test

Within a few hours of soaking seeds in water, the seed weight

increased, indicating water penetration and absorption through the

seed testa (Figure 7), suggesting that mechanical or chemical

scarification is not required for seed dormancy release.
3.5 Assessment of light requirement for I.
webberi seed germination

We recorded 419 and 372 seed germinations under light and dark

treatments, respectively for the first experiment phase (5/1°C). The

second phase (15/2°C) resulted in 498 and 522 germination counts for
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light and dark treatments, respectively. However, the Relative Light

Germination Percentage (RLGP) analysis showed no distinct light

requirement for seed germination in I. webberi. RLGP values were 0.52

and 0.49 for seed germination experiments under 5/1°C and 15/2°C

incubation temperatures, respectively. Overall, RLGP was 0.51 for both

phases of seed germination experiments combined. There was no

significant difference (p > 0.05) between seed germination counts for

experiments under light or darkness for both experimental phases, thus

supporting the RLGP results.
3.6 Effects of pre-incubation and
incubation treatments on I. webberi seed
germination

In the first experimental phase, with an incubation temperature of

5/1°C, we recorded 791 germinations out of 3400 seeds while the

second phase with 15/2°C incubation temperature resulted in 1020

seed germinations. The generalized linear mixed model (GLMM;

incubation temperature as random effect) showed that all pre-

incubation treatments (light exposure, chilling temperature, and heat

treatment) except incubation light, had significant effects (p < 0.05) on

seed germination (Table 2). Among all pre-incubation treatments, I.

webberi seeds chilled for four weeks produced the highest germination,

while seeds subjected to heat treatments performed poorly in both

germination phases (Supplementary Table 1).

A separate GLMM with incubation light exposure as a random

effect (12-hour light vs 24-hour darkness) showed that all pre-

incubation treatments and incubation temperatures significantly

affected I. webberi seed germination (p < 0.05; Table 3). Seeds have

higher germination rates under 15/2°C than 5/1°C incubation

temperature (Figure 8). Fisher’s Exact test also showed a significant
FIGURE 5

A plot of the relative contributions of the three predictor variables
on the random forest model predicting Ivesia webberi seed viability.
MCM13 represents seed testa spectral reflectance at 690 nm.
FIGURE 4

A receiver operating characteristic (ROC) plot showing the area under curve (AUC) of the random forest model training (a) and test (b) data for non-
destructive Ivesia webberi seed viability classification.
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difference in seed germinations between 15/2 °C and 5/1 °C incubation

temperatures (c2 = 39.12, df = 1, p < 0.001).

A baseline GLMM, accounting for incubation temperature between

two experimental phases, showed significant effects of growthhormones

and pre-incubation heat treatments on seed germination, while pre-

incubation light exposure, pre-incubation chilling temperature, and

incubation light exposure have nonsignificant effects on seed

germination (Table 4). Overall, seeds exposed to growth hormone

mixture of higher concentrations of potassium nitrate (5055.5 M;

KNO3) and gibberellic acid (0.003 M; GA3) produced the highest

germination rate in the first experiment phase (Supplementary

Table 1). In the second experiment phase, however, seed germination

was greater in higher concentrations of GA3 or KNO3 exposures, while

mixture of both growth hormone mixtures did not increase seed

germination (Supplementary Table 1). Although seeds treated with

growth hormones had the highest percentage of germinations, seeds

treated to 4-week pre-incubation chilling and cold-stratified incubation

performed equal to or better than many of the hormone-induced

germinations in both experimental phases (Supplementary Table 1).
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3.7 Effects of pre-incubation and
incubation treatments on mean
germination time and synchrony of I.
webberi seed germination

For the first germination experiment phase (5/1°C), mean

germination time was the fastest for pre-incubated heat exposed

seeds, followed by hormone-induced germinations and pre-

incubated chilled seeds, while the two controls (no pre-incubation

treatments) had the slowest germination times (Supplementary

Table 1). However, germination times were faster for all

treatments in the second experiment phase (15/2°C) than in the

first phase (Supplementary Table 1). We also observed a significant

inverse relationship (r = -0.41, df = 270, p < 0.001) between the

number of germinated seeds and mean germination time across all

68 treatments used in this study. Analysis of variance results on

both experiment phases showed that all pre-incubation and

incubation treatments, except incubation light exposure,

significantly influenced germination time (Table 5). Similar
FIGURE 7

A plot of percentage seed weight increases during a 96-hour imbibition test of Ivesia webberi seeds.
FIGURE 6

Univariate plots showing seed viability for (a) seed testa reflectance at 690 nm, (b) seed x-ray, and (c) seed width computed from a random forest
model for non-destructive Ivesia webberi seed viability classification.
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results were obtained for separate ANOVA tests conducted for the

first and second experimental phases (Supplementary Tables 4, 5).

Furthermore, we observed synchronized germination only for

seeds subjected to pre-incubation heat treatment in the first

experimental phase, while greater seed germination synchrony

was recorded across all treatments in the second experiment

phase (Supplementary Table 1). The number of germinated seeds

significantly correlated with germination synchrony for both the

first and second experiment phases (r = 0.47, df = 270, p < 0.001),

while all treatments, except pre-incubation and incubation light

exposures, had significant effects on synchronization index

(Table 5). Similar results were observed for separate ANOVA

tests ran on the first and second experimental phases

(Supplementary Tables 4, 5).
4 Discussion

4.1 Drivers and implications of seed
viability in Ivesia webberi

Our data showed that Ivesia webberi seed viability and potential

for germination was the highest within a year of abscission, with

reduced viability over longer storage times, suggesting that the seeds

have a recalcitrant storage behavior. Recalcitrant seed behavior is

common in many perennial plant species (Baldos et al., 2014;

Duncan et al., 2019), including Great Basin Desert perennial

species (Allen and Nowak, 2008). Seeds that have recalcitrant

storage behavior are also likely to form a transient seed bank in
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situ (Guo et al., 1998; Gasparin et al., 2020). Though seed viability

loss was rapid within a year, it was not completely lost, suggesting a

bet hedging strategy that is also observed in many xeric plant

species (Clauss and Venable, 2000). Viability loss in xeric plants is

attributed to seed aging due to prolonged light exposure after

abscission (Schwember and Bradford, 2011). In addition, this

study also showed significant interannual variation in the viability

of I. webberi seeds. Temporal variability in seed viability may be

attributed to various biotic and abiotic factors in the previous or

current year that impact flowering, pollination, and seed set (Clauss

and Venable, 2000; Yang et al., 2016; Chen J.-Z. et al., 2022). For

example, interpopulation variability in seed viability for 2017

collections was significantly associated with heatload and summer

AET, indicating the impact of climatic factors on seed viability. This

is consistent with I. webberi phenology since seed abscission and

maturity occur in the summer. In previous studies, climatic stress

associated with high ambient temperatures resulted in loss of seed

viability, failed seed set, reduced seed quality, and decline in seed

vigor and germination (Young et al., 2004; Rang et al., 2011;

Rosbakh et al., 2018).

Patch size was not a predictor of seed viability. Although small

and isolated populations may produce seeds with relatively low

viability due to reduced cross-pollination and higher selfing

(Wright et al., 2013; Barrett, 2015; but see Nakayama et al., 2012),

we observed that the I. webberi population with the lowest

estimated density also had relatively high seed viability in the two

years of sampling. Contemporary gene flow patterns and time since

isolation may play a role in maintaining adaptive genetic variation

even under contemporary isolation (Levin, 2012; Borokini et al.,
TABLE 3 Results of the generalized linear mixed model for I. webberi seed germination subjected to varying pre-incubation light (12-hour light vs 24-
hour darkness), either cold moist (1 or2°C), warm dry or warm moist (30/15°C), and either 5/1°C or 15/2°C incubation temperature, while accounting
for incubation light exposure (12-hour light exposure or 24-hour darkness) as a random effect.

Factor Estimates Standard error z-value P

Intercept -1.15 0.07 -17.23 <0.01

Pre-incubation light exposure -0.02 0.01 -2.19 0.03

Chilling temperature -0.18 0.05 -3.68 <0.01

Heat treatment -0.33 0.04 -7.63 <0.01

Incubation temperature 0.04 0.01 7.07 <0.01
The model was performed with a binomial error and logit link function.
TABLE 2 Results of the generalized linear mixed model for I. webberi seed germination subjected to varying pre-incubation light (12-hour light vs 24-
hour darkness), either cold moist (1 or 2°C), warm dry or warm moist (30/15°C), and either 12-hour incubation light exposure or 24-hour darkness,
while accounting for incubation temperature difference (5/1°C or 15/2°C) between the two experiment phases, as a random effect.

Factor Estimates Standard error z-value P

Intercept -0.76 0.15 -5.16 <0.01

Pre-incubation light exposure -0.02 0.01 -2.23 0.03

Chilling temperature -0.18 0.05 -3.61 <0.01

Heat treatment -0.33 0.04 -7.65 <0.01

Incubation light 0.01 0.01 0.64 0.52
The model was performed with a binomial error and logit link function.
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2021a). In a meta-analysis, Baskin and Baskin (2023) showed that

seeds from both large and small populations had similar

germination rates in more than half of 119 species tested, and

they concluded that seed germination was not affected by seed size,

population size, genetic diversity or gene flow barriers. Moreover,

previous studies showed that small populations of species that

exhibit a mixed breeding strategy could still produce a high

number of viable seeds (Mayer et al., 1996; Baldwin and Schoen,

2019) by delaying selfing till the end of the flowering season when

chances of cross-pollination are reduced (Kalisz and Vogler, 2003;

Hildesheim et al., 2019). Interpopulation variability in seed viability

will have profound implications on temporal seedling recruitment

across sites, which may affect census size and consequently genetic

diversity, especially for small and increasingly geographically

isolated populations (Hens et al., 2017; Capblancq et al., 2021; Liu

et al., 2023).
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The tetrazolium test is a standard, but destructive approach that

is widely used to screen seeds for viability. Here, we showed that for

Ivesia webberi, this test can be replaced with equally reliable and

non-destructive methods. These results could apply to other achene

fruits, although further studies are needed to explore the efficacy of

non-destructive methods for other species. The seed x-ray imagery

showed that filled, well-developed, and undamaged I. webberi seeds

could be used as proxy for viability. This finding is supported by

previous studies which have also reported the accuracy of seed x-ray

images for predicting seed viability (e.g., Costa et al., 2014; Alencar

et al., 2016; Gomes et al., 2016; Kim et al., 2017). Though positive

seed viability tests do not necessarily result in seed germination,

especially for bet hedging species, Riebkes et al. (2015) found

significant association among seedling emergence, tetrazolium

test, and seed x-ray images for investigating seed viability in three

species. Moreover, exposure to radiation from seed x-ray tests was
TABLE 4 Results of the baseline generalized linear mixed model, with incubation temperature (5/1°C or 15/2°C) as a random effect, for I. webberi
seed germination subjected to varying pre-incubation light (12-hour light exposure or 24-hour darkness), either cold moist (1 or 2°C), warm dry or
warm moist (30/15°C), and varying incubation light exposure (12-hour light exposure or 24-hour darkness).

Factor Estimates Standard error z-value P

Intercept -1.13 0.14 -7.88 <0.01

Pre-incubation light exposure -0.02 0.01 -1.90 0.06

Chilling temperature -0.04 0.05 -0.77 0.44

Heat treatment -0.12 0.05 -4.07 <0.01

Incubation light exposure 0.01 0.01 0.64 0.52

Gibberellic acid treatment 0.49 0.08 6.00 <0.01

Potassium nitrate treatment 0.37 0.08 4.72 <0.01
The model was performed with a binomial error and logit link function.
FIGURE 8

A plot of cumulative percentage seed germination for Ivesia webberi seeds incubated under 5/1°C or 15/2°C cold-stratified temperature regimes.
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reported to have minimal effect on seed health and germination

(Bino et al., 1993; Young et al., 2007). At 690 nm wavelength, non-

viable seeds have stronger fluorescent intensity which is associated

with higher chlorophyll a content and oxidation, both of which have

been linked to reduced tolerance to abiotic stress and reduced

germination potential (Cerovic et al., 1999; Dell’Aquila, 2009;

Smolikova et al., 2011; Boelt et al., 2018; Li et al., 2019). Viable I.

webberi seeds had significantly lower spectral values at 690 nm

(Supplementary Table 2), suggesting the usefulness of multispectral

imaging at 690 nm in discriminating between viable and non-

viable seeds.
4.2 Dormancy release and germination of
Ivesia webberi seeds

I. webberi seed germination was higher and faster in the second

experiment phase, characterized by higher incubation and wider

cold stratification temperatures, suggesting that warmer winter and

spring conditions will both accelerate the seed germination rate and

process. This is consistent with field observations that I. webberi and

other spring emergents regenerate up to two months earlier in

milder winters, resulting in dramatic phenological changes. Future

climate changes in the Great Basin Desert are predicted to lead to

warmer and shorter winters resulting in phenological shifts for

winter and spring annuals and perennials (Mondoni et al., 2012,

2015; Tang et al., 2015). This germination result is also congruent

with the predictions that increased global temperatures will increase

seed germination in higher latitudes and altitudes (De Frenne et al.,

2010; Walck et al., 2011; Rosbakh et al., 2018). In addition to

phenological shifts, mild winters could result in greater vegetative

cover, especially of invasive species (Borokini et al., 2021b).

However, if early germination of spring and winter annuals and

perennials is followed by winter or spring frost, this may result in

seedling death (Walck et al., 2011; Porceddu et al., 2013). It is also

important to note that germination in I. webberi was associated with
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myxodiaspory, the release of hydrophilic mucilage from seeds

following water imbibition, in hydrated I. webberi seeds prior to

radicle emergence (Yang et al., 2012; Gorai et al., 2014; Chen Y.

et al., 2018). Furthermore, most germination of I. webberi seeds

occurred within the first two weeks of incubation, which is

indicative of relatively “fast” germination syndrome which is

associated with survival strategies in highly disturbed habitats

such as the Great Basin Desert that are characterized by frequent

wildfires and a short growing season (Pierce et al., 2007; Gentili

et al., 2013).

We observed I. webberi seed germination under varying pre-

incubation and incubation treatments, but pre-incubation chilling

followed by cold stratification incubation significantly increased I.

webberi seed germination more than other treatment in both

experimental phases. This is consistent with natural conditions

under which I. webberi seeds germinate – a period of winter cold

followed by heat fluxes of late winter and early spring. The

effectiveness of pre-incubation chilling and cold stratification

incubation on seed germination have been reported for many

temperate species (Baskin and Baskin, 2014; Cheng et al., 2022)

including achene-producing spring perennials found within the

range of I. webberi such as Purshia tridentata and Balsamorhiza

sagittata (Young and Evans, 1979; Brown and Allen, 2023). Studies

showed that pre-chilling and cold stratification softened seed testa

and decreased the concentration of germination inhibitors

(Feurtado et al., 2004; Płażek et al., 2018). Light exposure was the

only pre-incubation and incubation treatment that had no

significant effect on seed germination, indicating that I. webberi is

a neutral photoblastic species (Baskin and Baskin, 2014). When the

seeds abscise, they remain on the soil surface or in surface rock

crevices on the soil, therefore, whether the seeds are buried under

the snow (total darkness) or chilled on barren cold soil and exposed

to periodic winter sunlight, seed germination would occur when

cold stratification is initiated. This result is also consistent with

studies that show desert plants do not require light for germination

(Jurado and Westoby, 1992; Flores et al., 2016) because chilling,
TABLE 5 Effects of pre-incubation (varying light exposure, chilling vs heat treatments), varying incubation light exposure, and incubation
temperature, and differing concentrations and mixtures of gibberellic acid and potassium nitrate treatments on time and synchrony of Ivesia webberi
seed germination under both 5/1°C and 15/2°C incubation temperature, using analysis of variance.

Factor df Mean germination time Synchronization index

SS MSS F P SS MSS F P

Pre-incubation light 1 4.37 4.37 6.81 <0.01 0.04 0.04 2.05 0.15

Chilling temperature 2 29.44 14.72 22.94 <0.01 1.79 0.90 49.16 <0.01

Heat treatment 2 43.07 21.53 33.56 <0.01 1.58 0.79 43.43 <0.01

Incubation temperature 1 63.41 63.41 98.82 <0.01 1.48 1.48 81.51 <0.01

Incubation light 1 0.02 0.02 0.03 0.87 0.00 0.00 0.00 0.98

Gibberellic acid 2 16.32 8.16 12.71 <0.01 0.52 0.26 14.13 <0.01

Potassium nitrate 2 15.18 7.59 11.83 <0.01 0.70 0.35 19.29 <0.01

Residuals 260 166.85 0.64 4.73 0.02
f
rontiersin.org

https://doi.org/10.3389/fpls.2025.1568951
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Borokini et al. 10.3389/fpls.2025.1568951
water, and cold stratification are more important than light for the

germination of spring or early summer annuals and perennials

(Rubin and Friedman, 2018; Cheng et al., 2022). Moreover, seeds of

desert plants are not likely to be buried under litter or dense canopy,

conditions under which light requirements would be adaptive

(Fenner and Thompson, 2005).

In this study, all pre-incubation and incubation treatments

except light exposures had significant effects on both mean

germination time and synchrony. Germination success rate of I.

webberi seeds is inversely correlated with mean germination time, a

proxy for germination speed, but positively associated with

synchronization index. For example, in the first experimental

phase, pre-incubation chilling treatment produced greater but less

synchronized germinations, while faster and synchronized

germinations resulted in lower seed germination rates in pre-

incubation heat treatments. In the second experiment phase

where incubation temperature was higher, seed germination rates

were greater, occurred faster and more synchronized in all

treatments, indicating the role of incubation temperature on seed

germination. Moreover, synchronized germination in higher

temperature is a predicted response to more stable environmental

conditions (Xu and Du, 2023), while bet hedging strategies are

associated with unpredictable environments (Simons, 2011). Thus,

a species may exhibit plastic synchronous or asynchronous

germination depending on habitat conditions during germination

and disturbance frequencies (Xu and Du, 2023).

Seed germination experiments under various dormancy

releasing treatments are used to test the regeneration niche

hypothesis that plant species occur in habitats where seed

germination and seedling establishment are successful (Grubb,

1977; Guerra-Coss et al., 2021; Glison et al., 2023). The ability of

I. webberi seeds to germinate under various temperature and

chemical treatments is indicative of reduced dormancy and a

wide regeneration niche, which may be associated with generalist

seed germination spectrum where germination occurs rapidly when

exposed to conditions that favor dormancy release (Marques et al.,

2014; Finch et al., 2019; Fernández-Pascual et al., 2021).

Furthermore, successful seed germination under varying

conditions may be indicative of asynchronous germination and

bet hedging strategies, which have been previously reported for

other alpine and subalpine plants as an adaptive response (Liu et al.,

2013; Xu and Du, 2023).
4.3 Ivesia webberi seed embryo
morphology and dormancy type

Seed embryo morphology and germination tests can be used to

infer the type of dormancy a species exhibits. This knowledge is

crucial for successful ex situ conservation and optimal seed

germination of rare plants. Visual inspection of I. webberi seed

embryo morphology indicates that the species has a spatulate

embryo (Martin, 1946), and can be more specifically classified as
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“non-endospermic with a spatulate embryo (slightly curved)”

(Atwater, 1980). Spatulate seed embryo morphology is common

in other rosaceous genera such as Amelanchier, Coleogyne, Fragaria,

and Potentilla (Annette Miller pers. comm.), and lack of endosperm

supports field observation that I. webberi seeds are not subjected to

seed predation or granivory. Species with non-endospermic and

spatulate embryos are not mature when they abscise from the plant

but require summer heat for maturation, during which period the

seed endocarp thickens (Gudin et al., 1990). Increased endocarp

thickness in achenes is associated with physiological dormancy as

observed in many temperate rosaceous species (Tanowitz et al.,

1987; Gudin et al., 1990; Baskin and Baskin, 2014). However, the

endocarp in I. webberi seeds is permeable to water allowing for

dormancy release, as we have shown in the imbibition test.

Spatulate embryo and successful germination of I. webberi

under variable incubation temperature with or without cold

stratification is associated with type-2 nondeep physiological

dormancy (Baskin and Baskin, 2004; Shimono and Kudo, 2005;

Porceddu et al., 2013). Cold stratification and snowmelt associated

with late winter and early spring seasons are required to break

physiological dormancy and facilitate seed germination in alpine

and sub-alpine plant species (Baskin and Baskin, 2014). The delay

of germination until cold stratification and increased warming in

late winter or early spring is a reproductive strategy in seeds that

exhibit physiological dormancy to prevent autumn germinations

thus avoiding the death of seedlings due to freezing winter

temperatures (Schwienbacher et al., 2011; Bernareggi et al., 2016;

Fernández-Pascual et al., 2021). Significantly reduced seed

germination under a warm pre-incubation treatment, which is

associated with morphological dormancy, indicates that I. webberi

seeds do not likely exhibit morphological dormancy.
5 Conclusion

We have shown that Ivesia webberi, a U.S. federally threatened

forb in the Great Basin Desert, exhibits a recalcitrant seed dormancy

behavior possibly associated with a transient seed bank, and a mild

bet hedging strategy. Seed viability varies temporally, but much less

across populations and irrespective of their patch sizes. Viability of

I. webberi seeds can be reliably monitored using nondestructive

testing methods including seed x-ray and multispectral imaging. I.

webberi seeds exhibit nondeep physiological dormancy; dormancy

release is optimal with synchronous germination under warmer

cold stratified temperature or growth hormones, while higher,

asynchronous germination rate is associated with natural

conditions of winter cold period (pre-incubation chilling)

followed by spring-like cold stratification incubation. Lack of

germination synchrony may indicate bet hedging strategies, which

could be a plastic response to the variability of spring conditions in

the Great Basin Desert.

The regeneration niche of I. webberi is characterized by post-

winter temperature increase and water availability from snowmelt
frontiersin.org

https://doi.org/10.3389/fpls.2025.1568951
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Borokini et al. 10.3389/fpls.2025.1568951
or rain, typical of late winter and early spring weather. The timing of

seed germination also matches vegetative regeneration of adult I.

webberi from root caudices, suggesting that the role of cold

stratification in the regeneration phenology of I. webberi extends

also to asexual reproduction. As I. webberi has a generalist seed

germination behavior, climate change may have profound impacts

on the species phenology that could result in earlier germinations,

which in turn could increase the vulnerability of seedlings to late-

season frost.
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266. doi: 10.2980/i1195-6860-12-2-257.1

Costa, D. S., Kodde, J., and Groot, S. P. C. (2014). Chlorophyll fluorescence and X-ray
analyses to characterise and improve paddy rice seed quality. Seed Sci. Tech. 42, 449–
453. doi: 10.15258/sst.2014.42.3.11

Cosyns, E., Lens, A. D. L., and Hoffmann, M. (2005). Germination success of
temperate grassland species after passage through ungulate and rabbit guts. J. Ecol. 93,
353–361. doi: 10.1111/j.0022-0477.2005.00982.x

Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., et al.
(2007). Random forests for classification in ecology. Ecology 88, 2783–2792.
doi: 10.1890/07-0539.1

de Barros França-Neto, J., and Krzyzanowski, F. C. (2019). Tetrazolium: an
important test for physiological seed quality evaluation. J. Seed Sci. 41, 359–366.
doi: 10.1590/2317-1545v41n3223104

de Barros França-Neto, J., and Krzyzanowski, F. C. (2022). Use of the tetrazolium test
for estimating the physiological quality of seeds. Seed Sci. Tech. 50, 31–44.
doi: 10.15258/sst.2022.50.1.s.03

De Frenne, P., Graae, B. J., Kolb, A., Brunet, J., Chabrerie, O., Cousins, S. A. O., et al.
(2010). Significant effects of temperature on the reproductive output of the forest herb
Anemone nemorosa L. For. Ecol. Mgt. 259, 809–817. doi: 10.1016/j.foreco.2009.04.038

Dell’Aquila, A. (2009). Development of novel techniques in conditioning, testing and
sorting seed physiological quality. Seed Sci. Tech. 37, 608–624. doi: 10.15258/
sst.2009.37.3.10
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