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Introduction:Missing seedlings is a common issue in field maize planting, arising

from limitations in sowing machinery and seed germination rates. This

phenomenon directly impacts maize yields owing to the poor effect of

unmanned aerial vehicle (UAV) remote sensing images based on seedling

leakage detection in fields. Therefore, this study proposed a method for

detecting missing seedling in fields based on UAV remote sensing to quickly

and accurately detect missing seedling and facilitate subsequent crop

management decisions.

Methods: The method calculates the rated inter-seedling distance in UAV-

captured images of maize fields using a combination of image processing

techniques, including background segmentation, stalk center region detection,

linear fitting of plant rows, and average plant distance calculation. Based on these

calculations, an improved Maize-YOLOv8n model was employed to detect

actual seedling emergence.

Results: The experimental results demonstrate that the new model achieved

superior performance on a self-constructed dataset, with a mean average

precision (mAP) of 97.4%, precision (P) of 94.3%, recall (R) of 93.1%, and an F1

score of 93.7%. The model was lightweight, comprising only 1.19 million

parameters and requiring 20.2 floating-point operations per second (FLOPs).

The inference time was 12.8 ms, satisfying real-time detection requirements.

Performance evaluations across various conditions, including different leaf

stages, light intensities, and weed interference levels, further indicated the

robustness of the model. In addition, a linear regression equation was

developed to predict the total number of missing seedlings, with model

performance evaluated using the root mean squared error (RMSE) and mean

absolute error (MAE) metrics.

Discussion: The results confirm the ability of the model to accurately detect

maize seedling gaps. This study can evaluate the quality of seeding operations
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and provide accurate information on the number of missing seedlings for timely

replacement work in areas with high rates of missing seedlings. This study

advances precision agriculture by enhancing the efficiency and accuracy of

maize planting management.
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Highlights
• Achieved 97.4% mAP in maize seedling detection

usingMaize-YOLOv8n.

• Reduced model parameters to 1.19M for real-time UAV

maize detection.

• Improved maize seedling detection under varied light,

weed, and growth conditions.

• Proposed a regression model to predict maize seedling

gaps accurately.

• Enhanced precision agriculture by automating seedling

replanting guidance.
1 Introduction

Maintaining uniformity and density in crop planting is essential

for maximizing yield and quality in modern agricultural production.

As a critical global food crop (Baier et al., 2023), maize is pivotal to

ensuring food security and supporting the agricultural economy.

However, challenges such as missing seeds during sowing or

non-emergence after sowing can lead to reduced crop emergence

and lower yields. Therefore, accurately assessing maize leakage is

crucial for crop management decisions and subsequent timely

replacement work in areas with high leakage rates. In existing

agricultural practice, maize seedling deficiency is typically

determined based on phased field inspection and experience

judgment after planting, which are inefficient and subjective. As

such, satisfying the requirements of precision agriculture using these

methods is challenging. With advancements in digital image

processing and deep learning (DL), image-based maize seedling

detection has emerged as a more efficient and accurate solution.

Crop counting techniques are broadly categorized into traditional

digital image processing and DL-based methods.

Traditional digital image processing has long been integral to crop

counting. These methods involve preprocessing images, segmenting

crops from their backgrounds based on features such as color (Teixidó

et al., 2012), texture, and shape, and applying techniques such as

morphological operations, skeletonization, contour detection, and

corner detection. For instance, in citrus counting, red–green–blue

(RGB) images are converted into the hue–saturation–value (HSV)

format, followed by threshold processing, orange detection, noise
02
removal, watershed segmentation, and counting (Dorj et al., 2017).

This algorithm shows promise for early yield prediction in individual

citrus trees. Similarly, Wu et al. (2023) combined Deeplab V3+, a

convolutional neural network (CNN) model, with classical image

processing algorithms to segment banana bunches and calculate their

number. They employed edge detection to extract banana finger

centroids and clustering to determine the optimal bunch count,

enabling intelligent decision-making for debudding timing. However,

segmentation based on a single feature often has limitations. To address

this issue, Sun et al. (2019) used a dual-threshold region growth

algorithm that combines color and spatial features to segment cotton

balls and developed three geometry-based algorithms for field yield

estimation under natural light. In scenarios with uneven illumination

and complex backgrounds, Malik et al. (2018) improved the HSV color

space and watershed segmentation methods to detect ripe tomatoes

with an accuracy of 81.6%. Liu et al. (2016) developed an automated

method for counting wheat seedlings in the field using image

processing, establishing a skeleton optimization method and

achieving an average accuracy of 89.94% in overlapping areas. He

et al. (2023) introduced an adaptive threshold method based on HSV

color space to detect and locate Zanthoxylum fruit, outperforming

fixed-threshold methods. However, traditional digital image processing

methods are highly dependent on artificial design features such as color

and texture and are not sufficiently robust in complex field scenes. The

method based on color threshold segmentation is easily affected by

illumination changes, resulting in over-segmentation or under-

segmentation. Morphological manipulation is sensitive to the

diversity of seedling shape and size, and adapting to maize seedlings

of different leaf stages is challenging. In addition, the traditional method

needs to manually adjust parameters for different scenarios, and the

generalization ability is limited.

DL has significantly expanded the possibilities for crop detection

and counting. DL object detection methods are typically employed for

crop quantity estimation, and many researchers have refined existing

models to enhance accuracy. Liu et al. (2020)integrated drone and

smartphone imagery and employed models based on ResNet and

Faster R-CNN (VGGNet). Their results demonstrated that using

ResNet as the feature extraction network achieved a maximum

accuracy of 95.95% in corn tassel detection, and after optimizing

anchor sizes, the detection accuracy for high-resolution images

increased to 89.96%. Alzadjali et al. (2021) developed two methods

for detecting corn ears—TD-CNN and Faster R-CNN—based on
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drone images. Among these, Faster R-CNN achieved a superior F1

score of 97.9% compared to TD-CNN’s 95.9%, confirming the

potential of deep learning to precisely capture corn ears and

suggesting that further improvements in CNN architectures could

enhance detection efficiency and adaptability. Xu et al. (2022)

combined an improved Mask R-CNN with a YOLOv5x model to

detect and count complex field corn leaves using drone imagery. The

detection average precisions (AP) for fully unfolded and emerging

leaves were 89.6% and 54.0%, respectively, validating the efficiency and

potential of integrating drone imagery with deep learning for crop

phenotyping. Niu et al. (2024) addressed the challenge of detecting

drought stress in corn seedlings under climate change conditions by

proposing a drone image analysis method based on an improved

YOLOv8+model. By compressing themodel with a C2F-Convmodule

and incorporating CA attention and BiFPN architectures to enhance

small object recognition, the method achieved an mAP@50 of 89.16%

along with a real-time detection speed of 24.63 ms, thereby providing

an effective solution for precise agricultural drought monitoring. Cui

et al. (2023) introduced a real-time seedling counting method using

improved YOLOv5s and ByteTrack algorithms, achieving 93.2%

accuracy and a detection speed five times faster than manual

methods. Jiang et al. (2024) proposed a cabbage detection algorithm

based on YOLOv8-Cabbage, integrated with a positioning system using

a Realsense depth camera, improving accuracy from 88.8% to 93.9%.

Wang et al. (2024a) created a potato seedling dataset using unmanned

aerial vehicle (UAV) imagery and proposed the VBGS-YOLOv8n

model, which achieved an average accuracy of 98.4% compared with

other state-of-the-art models. Wang et al. (2024b) proposed a method

for detecting wheat seedlings using localized annotation, incorporating

a space-to-depth conv module and a microscale detection layer to

achieve a detection accuracy of 90.1%. Gao et al. (2024) developed

YOLOv5-Tassel for detecting corn tassels in UAV imagery, achieving

98.70% accuracy through innovative processes such as attention

mechanisms and multi-scale convolution. Zhu et al. (2024)

introduced YOLOv5s-CEDB, a network for oil tea fruit detection,

achieving an average mAP of 91.4% and an F1 score of 89.6% using

deformable convolution and coordinated attention.

In recent years, crop detection technology based on UAV remote

sensing and deep learning has rapidly advanced. Although these

approaches have achieved promising results in crop detection and

counting, studies directly targeting missing seedling detection remain

scarce. Current mainstream object detection methods—such as

YOLOv5, YOLOv8, and Faster R-CNN—still exhibit certain

limitations. Specifically, detecting small objects in UAV images

remains challenging, and the complex background information

in field maize images—characterized by varying leaf stages,

lighting conditions, and weed interference—can lead to both false

positives and missed detections, ultimately compromising detection

accuracy and the ability to count maize precisely. Furthermore, in

order to satisfy mobile deployment requirements, the issue of model

lightweighting must also be addressed. Based on these considerations,

this study combines traditional image processing techniques with

deep learning to propose a flexible and reliable algorithm for counting

missing maize seedlings in field conditions.
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In this study, a missing seedling detection method based on

UAV remote sensing images, combined with an improved target

detection algorithm and traditional digital image processing, was

proposed. The method is robust and satisfies the real-time detection

requirements for maize seedlings in different leaf stages, different

light intensities, and degrees of weed interference in the field.

SCConv modules were introduced into the backbone and neck of

YOLOv8n to reduce the number of model parameters using a dual

redundancy strategy while retaining the expression ability of key

features. The BiFormer bidirectional sparse attention mechanism

was embedded in the SPPF layer, and the global context

information of maize seedlings was captured using a dynamic

routing strategy, which significantly improved the detection

robustness under weed interference scenarios. The multi-scale

detection head was reconstructed, the large target detection

branch was removed, and the small target detection scale was

expanded, improving the detection accuracy of early three-leaf

seedlings. Subsequently, the number of maize seedlings in the

field can be accurately obtained through a series of traditional

image processing methods such as background segmentation, stem

center area search, and average plant distance calculation.

Combined with the detection results of the detection algorithm,

the information of missing seedlings can be effectively detected.

Experimental verification revealed that this model can accurately

detect corn seedlings under complex natural scenes. This study

effectively detects the number of corn seedlings, provides a scientific

basis and technical support for subsequent corn crop management

decisions, and contributes to the technological advancement of

agricultural production.

The main contributions of this study are as follows:
• Integrating traditional image processing methods with the

Maize-YOLOv8n model for automated maize seedling

gap detection.

• Employing advanced image processing techniques,

including background segmentation, stalk center region

identification, and average plant distance calculation, to

determine maize seedling counts.

• Improving the mAP, recall (R), and F1 score of the Maize-

YOLOv8n model while reducing model parameters,

enabling efficient detection in complex field conditions.
The remainder of this paper is structured as follows: Section 2

details the structure and implementation of the algorithm, Section 3

presents experimental results and analysis, Section 4 discusses the

findings, and Section 5 concludes the study.
2 Materials and methods

2.1 Workflow

The workflow of this study, as illustrated in Figure 1, comprises

three primary components:
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• Establishing an image dataset for maize leakage detection.

• Developing the Maize-YOLOv8n network structure to

statistically analyze maize seedling counts.

• Creating a traditional image processing detection model for

maize seedling count estimation.
2.2 Dataset creation
2.2.1 Data collection

UAV image data were collected from June 12 to 20, 2022,

between 10:00 and 13:00 daily at the Modern Agricultural Science

and Technology Demonstration Park in Durbert Mongolian

Autonomous County, Daqing City, Heilongjiang Province. The

center of the park is located at 46°49’N, 124°26’E, with an

elevation of approximately 147 m above sea level.

The maize varieties planted include Jinwanyu Z658, Tianyu 108,

Meiya 81, Lihe 869, and Jindoctor 825, with a row spacing of 65 cm

and a plant spacing of 25 cm. The study focused on maize grown in

mechanically seeded plots. Data acquisition was conducted using a

DJI Spirit 3P UAV equipped with a 1/2.3-inch complementary

metal-oxide semiconductor image sensor. The sensor had an

effective resolution of 12.4 Mp (total resolution: 12.76 Mp), and

the camera was equipped with a lens offering a 94°field of view, a

20 mm focal length (35 mm equivalent), and an aperture of f/2.8.

The camera was positioned vertically downward during the

operation. The flight height of the UAV should consider the image

resolution and coverage area; a lower height provides a higher
tiers in Plant Science 04
resolution but reduces the coverage area and increases the data

acquisition workload. A higher height increases the coverage;

however, the lower ground resolution captured by the camera will

lead to blurred details and edges of corn seedlings in the image,

reducing the detection accuracy of the model for corn seedlings.

Considering the above factors, the UAV shooting height was set to

10 m, and the ground sampling distance was 0.44 pixels/cm. Images

were acquired under stable solar radiation and clear, cloudless skies

to minimize the loss of texture features owing to cloud cover. Route

planning was performed using Pix4Dcapture, with the parallel and

side overlap of the UAV set to 80% and 70%, respectively. Factors

such as target coverage, field obstacles, and battery life were

considered to optimize the flight path of the UAV. Figure 2

illustrates the test site, route planning software, and acquisition

equipment. Sample data collection is shown in Figure 3.

2.2.2 Data annotation and partitioning
In total, 300 maize seedling images were collected during the

experiment. These images were spliced into high-resolution maps

using Pix4Dmapper (Song et al., 2016), as shown in Figure 4. Creating

samples with sufficiently large areas without compromising the

network detection speed was challenging owing to the large sizes of

the spliced images and the dense packing of seedlings. However, this

was addressed by slicing the images into smaller segments. The sliced

images were screened to remove blurry or distorted samples, leaving

550 images for use in the dataset. Maize seedlings in the images were

annotated using the LabelImg tool, which generated extensible

markup language files containing ground-truth information. The
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FIGURE 1

Missing seedling detection workflow.
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FIGURE 3

Data sample. (A) Maize seedling in three leaf stage. (B) Incipient maize seedlings with three leaves. (C) Maize seedlings under high light intensity. (D)
Maize seedlings under low light intensity. (E) Maize seedlings accompanied by weeds.
FIGURE 4

Image stitching example.
FIGURE 2

Test site and equipment design.
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dataset was then divided into training, validation, and test sets at a

ratio of 7:1:2 (Zhao et al., 2024), with 385 images in the training set, 55

in the validation set, and 110 in the test set.

2.2.3 Data enhancement
Data augmentation techniques were applied to the training set

to improve the robustness and detection performance of the model

(Rebuffi et al., 2021). Methods such as random filling, rotation,

saturation adjustment, brightness, and cropping were used, along

with the addition of Gaussian noise and blur processing (Shorten

and Khoshgoftaar, 2019; Song et al., 2020). During augmentation,

four enhancement methods were randomly selected for each image.

After processing, 2,200 enhanced images were generated. The final

training set included 1,540 images, with the test and validation sets

containing 440 and 220 images, respectively. Figure 5 illustrates the

effects of the data augmentation process.
2.3 Maize-YOLOv8n seedling number
detection model

This study developed a maize seedling counting model based on

YOLOv8n, a cutting-edge and advanced version of the YOLO series,

featuring enhanced performance and flexibility. YOLOv8 is well-

suited for target detection tasks, as it was designed for speed,

accuracy, and user-friendliness. However, despite its advancements,

the detection accuracy of the model needs to be further improved, and
Frontiers in Plant Science 06
its model parameters need to be reduced. In this study, the SCConv

module was introduced into the C2f module of YOLOv8n, and the

number of parameters of the model was reduced using the space-

channel dual redundancy strategy, while the expression ability of key

features was retained. The BiFormer module was added to the

backbone network to focus the global context information of maize

seedlings using a bidirectional sparse routing mechanism to

significantly improve precision. The detection head size was

reconstructed according to the small size of maize seedlings in the

early stage, to improve the detection accuracy of three-leaf seedlings in

the early stage.

2.3.1 C2f-SCConv module
CNNs have achieved remarkable results in computer vision tasks;

however, they often require substantial computational resources,

partly owing to redundant feature extraction in convolutional layers.

Strategies such as model pruning, distillation, and quantization, along

with lightweight architectures like MobileNet (Howard et al., 2019),

ShuffleNet (Zhang et al., 2018), and GhostNet (Han et al., 2020), aim

to address this issue. This study builds upon these strategies by

leveraging spatial and channel redundancies in CNN features

through the SCConv module (Li et al., 2023).

SCConv is an advanced convolutional module that enhances

feature learning by integrating spatial and channel dependencies.

This integration allows the network to adapt its responses based on

contextual information, enabling more refined feature extraction.

SCConv comprises a spatial reconstruction unit (SRU) that reduces
FIGURE 5

Data enhancement examples: (A) original image, (B) random brightness, (C) Gaussian noise, (D) random filling, (E) blur processing, (F) random
rotation, (G) random tailoring, and (H) random saturation.
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spatial redundancy by separating and reconstructing redundant

features, followed by a channel reconstruction unit (CRU) that

minimizes channel redundancy and reduces computational cost

using split-transform and fusion strategies.

For an intermediate input feature X in the bottleneck residual

block, the SRU generates a spatial refinement feature, XW, which

the CRU then processes to yield the channel refinement feature, Y.

By exploiting redundancies, SCConv reduces intermediate feature

map redundancy while enhancing the feature representation of the

CNN. The bottleneck module, used extensively with YOLOv8,

facilitates the extraction and fusion of multi-dimensional features;

however, it also contributes significantly to computational

overhead. Figure 6 illustrates the bottleneck structure. This was

mitigated by designing the SCConv-based SC block to replace the

bottleneck module in the C2f module, serving as a primary gradient

flow branch. This substitution reduces the floating-point operations

and computational load of the model. Figure 7 shows the structure

of the C2f-SCConv module, which integrates SCConv to streamline

computation during the convolution process.

2.3.2 BiFormer attention module
Traditional object detection methods often struggle to extract

global context information, as they primarily focus on local features.

This limitation hinders performance in complex scenes. Sparse
Frontiers in Plant Science 07
attention mechanisms have been proposed to address this;

however, they frequently face two challenges: fixed static modes

that lack adaptability and shared sampling subsets of key-value

pairs across all queries, which limits interference resolution. This

study overcomes these challenges by utilizing BiFormer, a dynamic,

query-aware sparse attentionmechanism (Zhu et al., 2023). BiFormer

filters irrelevant key-value pairs at a coarse level, retaining only

relevant regions, and applies fine-grained token-to-token attention

within these areas. This dual-level approach enhances the ability of

the self-attention mechanism to capture global context while

establishing effective correlations across image regions.

BiFormer enhances detection accuracy in the context of this

study, where varying maize sizes, leaf stages, lighting conditions,

and weed interference complicate seedling detection. By focusing

adaptively on relevant areas, it effectively handles complex field

environments. Figure 8 shows the integration of the BiFormer

module into the detection framework.

2.3.3 Improved detection head
Detecting small targets, such as pre-trilobate stage maize seedlings,

poses challenges for traditional YOLO networks, which tend to prioritize

larger, more prominent targets on feature maps. We addressed this by

providing an improved detection head (IDH), created by increasing the

receptive field sizes from 80 × 80, 40 × 40, and 20 × 20 to 160 × 160, 80 ×

80, and 40 × 40, respectively. This expansion improves the ability of the

model to accurately detect small-sized seedlings.

The improved detection head also optimizes feature learning,

enhancing sensitivity and recognition for small targets. Although

the number of channels in the detection head was reduced, the

remaining output channels were sufficient for detecting maize

seedlings. This reduction in channels decreased computational

cost and memory usage, accelerating both model training and

real-time inference. By streamlining feature maps, the detection

head achieves a balance between performance and efficiency,

resulting in faster and more precise seedling detection in complex

environments. Figure 9 presents the network structure of the Maize-

YOLOv8n model, showcasing the adjustments made to optimize its

detection capability for small targets.
2.4 Counting seedlings

2.4.1 Background segmentation
In field conditions, variations in lighting and interference from

weeds can complicate maize seedling segmentation. Therefore,

selecting an appropriate method for isolating green plants is

crucial. This study employed the super green segmentation

method to isolate maize seedlings from the background. First, the

original RGB image was read, and the R, G, and B channels were

separated. The green factor was then selected as the color feature to

distinguish the green plants from the background. The green factor

was calculated using Equation 1.

ExG = 2G − R − B : (1)
FIGURE 6

Bottleneck structure diagram.
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The green factor method is widely used in plant image

recognition, as it suppresses shadows, dead grass, and soil,

enhancing the prominence of green plant images for improved

seedling recognition. After calculating the green factor, Otsu’s

method was applied for image threshold segmentation. Otsu’s

method automatically determines the optimal threshold values for
Frontiers in Plant Science 08
green plant recognition, eliminating the need for manual

parameter setting. This approach is convenient, stable, and

effective, as demonstrated by the segmentation results shown in

Figure 10B. The morphological closure method was applied to fill

the black noise points within the white areas of maize seedling

branches, addressing the small amounts of black noise in the
FIGURE 8

BiFormer attention module.
FIGURE 7

C2f-SCConv module structure diagram.
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(A)

(B)

(C)

(A)
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FIGURE 10

Background segmentation diagrams: (A) Original image, (B) binary image, and (C) images after morphological closure.
FIGURE 9

Structure of the Maize-YOLOv8n model.
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branch junction areas of maize seedlings. The results are shown

in Figure 10C.
2.4.2 Stem center search
Accurately locating the centroid of each seedling is critical for

determining the number of maize seedlings. First, a contour

detection algorithm was used to identify the contours of each

maize seedling in the image. The contours were further filtered to

exclude smaller outlines, minimizing interference from weeds and

non-maize seedlings. The remaining contours were considered to

represent maize seedlings (Figure 11).

The centroid coordinates of each maize seedling were calculated

using the contour moments. This method ensures precise

positioning, even in the presence of external noise. The centroid

positioning results are shown in Figure 12. The centroid coordinates

were determined using Equation 2.

x0 =
m10

m00
, y0 =

m01

m00
(2)
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where m00   is the zero moment of the contour (area), m10 is the

first moment along the x-axis, andm01 is the first moment along the

y-axis. This calculation method is relatively insensitive to noise,

ensuring accurate centroid determination under varying conditions.

2.4.3 Plant alignment
Maize plants are typically arranged in distinct, straight rows, a

feature that facilitates the determination of row directions based on the

central positions of stalks. In this study, linear regression was employed

to detect the row direction by minimizing a cost function. Given N

data points (xi, yi)i = 1, 2, 3… N , representing the central positions of

the stalks, the linear relationship can be expressed as Equation 3.

y(x) = y(x:, a1…am) (3)

where a1…am are the coefficients of the linear model. These

coefficients were estimated using least squares regression,

minimizing the value of Equation 4.

oN
i=1½yi − y(x:, a1…am)�2 (4)
FIGURE 12

Centroid location map of maize seedlings.
FIGURE 11

Outline of maize seedlings.
FIGURE 13

Maize seedling row straight line fitting results.
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The distances between plants were calculated by projecting the

plant centers onto the fitted line. The projection point was identified

at the intersection of the vertical line from the plant centroid and

the fitted line. Figure 13 illustrates the line alignment fitting results,

and Figure 14 shows the projection points of plant centers.
2.4.4 Average plant distance and seedling
number

A set of plant distances, Di(i = 1… N), was obtained to

calculate the distances between consecutive projection points

along the row direction. Minimum  Dmin and maximum Dmax

values in this set were determined, and a sequence Dj(j = 1…M)

was created by varying Dj from Dmin to Dmax in steps of 10 pixels.

For each Dj, the absolute difference, DT = ABS(Dj − Di), was

calculated for every distance, Di, in the set. If DT was below a

predefined threshold, the corresponding increment count, CNTj(j =

1…M), was increased by one. After traversing all Dj values, the

value of Dt in Dj corresponding to the maximum CNTj was taken as

the best estimate of the average plant spacing. The total number of

seedlings was then calculated using Equation 5.

Total =on
k=1round(

Dd

Dt
) + 1 (5)

where round() is the rounding function, Dd is the spacing

between the maximum and minimum vertical coordinates of each

maize row, Dt is the average plant spacing, and k is the number of

rows. This approach provides a straightforward and accurate method

for calculating the total number of maize seedlings per image.
3 Results and analysis

3.1 Experimental environment

The experiments were conducted using the PyTorch

framework, and the details of the experimental environment are

provided in Table 1. The input image size was set to 640 × 640

pixels. The model hyperparameters were configured as follows: the

batch size was 16, the optimizer leveraged stochastic gradient

descent with an initial learning rate of 0.01, the termination

learning rate was 0.01, and the momentum parameter was set to

0.937. The learning rate was adjusted using the cosine annealing

decay algorithm, with a decay coefficient of 0.0005.
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Training comprised 300 iterations, with weight files saved every

50 epochs. A log file was also generated to record the loss values for

the training and validation sets. These hyperparameters were

carefully selected to ensure faster convergence, minimize

overfitting, and prevent the model from becoming stuck in

local minima.
3.2 Model evaluation index

Several metrics were employed to objectively evaluate the

performance of the model in detecting maize seedlings, including

precision (P), recall (R), F1 score, average precision (AP), mean

average precision (mAP), number of network parameters, floating-

point operations per second (FLOPs) and inference time. For the

experiments, the intersection over union threshold was set to 0.5. The

formulas for calculating P, R, and F1 score are provided as follows

Equations 6–8:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 =
2 · Precision · Recall
Precision + Recall

(8)

where TP represents correctly detected (i.e., true positive) maize

seedlings, FP denotes incorrectly classified (i.e., false positive) maize
TABLE 1 Test environment.

Configuration Argument

CPU Intel(R) Xeon(R) Platinum 8352V
CPU @ 2.10 GHz

GPU NVIDIA GeForce RTX4090 16G

RAM 120GB

Operating system Ubuntu20.04

Accelerating environment Cuda11.3 CUDNN 8.2.0

Development platform PyCharm

Other Numpy 1.17.0 Opencv 4.1.0
FIGURE 14

Plant center projection.
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seedlings, and FN refers to missed detections (i.e., false negatives).

The F1 score is the harmonic mean of precision and recall, with

values closer to 1 indicating superior performance. AP is the area

under the precision–recall (PR) curve, with higher values indicating

better detection performance. Since this study focused on single-

category detection (maize seedlings), mAP and AP are identical, as

they both represent the area under the PR curve. mAP is calculated

as Equation 9:

mAP =
1
ko

k
i=1APi (9)

where N represents the number of categories. In addition, the

number of network parameters, FLOPs and inference time were

used to assess the complexity of the model.
3.3 Ablation test results

The ablation test results are presented in Table 2. The following

key observations were made:
Fron
• Test 2: Incorporating the SCConv module into the C2f

module reduced the computational complexity of the model.

The number of model parameters decreased to 87.4% of the

baseline network, FLOPs dropped to 7.2, and the inference

time increased by 7.6 ms. This improvement also increased

mAP by 1.9% and recall by 0.6%. This is because SCConv

limits feature redundancy and enhances feature representation

capability, improving the recall rate and average accuracy.

However, although SCConv reduces the parameters and

computation amount through spatial-channel feature

reconstruction, the parallel efficiency decreases owing to the

introduction of conditional branches and fine-grained

operations, resulting in increased inference time.

• Test 3: The attentional mechanism module was added in

experiment 3 based on the limitations in experiment 2,

decreasing the precision of the model by 0.8%, improving

the recall rate and mAP, and increasing the number of

parameters, FLOPs, and inference time.

• Test 4: In experiment 4, after adding the BiFormer attention

module on the basis of the baseline network, the accuracy

rate, recall rate, and average accuracy of the model

improved compared with the baseline network, and the

precision rate reached the maximum of 95.2%, F1 also

reached the maximum of 94.0%, and the calculation

amount and complexity of the model increased slightly.

The results showed that adding the BiFormer module

improved the detection effect of maize seedlings, which

might be because the BRA module was based on sparse

sampling rather than undersampling and could retain fine-

grained details.

• Test 5: In experiment 5, after improving the detection head,

compared with the baseline network, the accuracy and F1 of

the model decreased slightly, FLOPs increased slightly, all the

evaluation indices of other models improved, and the number

of model parameters decreased to 34.6% of the baseline
tiers in Plant Science 12
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network. This indicates that such improvements reduce the

amount of computation required by the model.

• Test 6: Experiment 6 improved the detection head on the

basis of experiment 4. The number of parameters decreased

by 1.96M, the number of model parameters decreased to

43.5% of the baseline network, the precision rate, recall rate,

and mAP all decreased, the model complexity increased,

and the inference time improved.

• Test 7: In test 7, C2f-SCConv was replaced, and the

detection head was improved. Compared with test 2,

when only C2f-SCConv was replaced, the recall rate and

mAP of the model improved slightly, and the precision rate

and F1 decreased slightly. The number of model parameters

reached the minimum of 0.92M, which was only 30.6% of

the baseline model.
Compared with the baseline network, the mAP of the improved

Maize-YOLOv8n network increased by 3.2%, the recall rate increased

to a maximum of 2.1%, the F1 score increased by 0.9%, the model

precision 0.3%, and the number of model parameters shrunk to 39.5%

of the baseline network. FLOPs were 12.1 higher, and the inference

time was 7.4 ms slower. The above experiments demonstrate that

Maize-YOLOv8n reduces the amount of calculation required by the

model while P, R, F1 score, and mAP steadily increase. The results

show that the model can ensure good detection and reduce the

deployment cost. Figure 15 shows that compared with the original

model, the model with the BiFormer attention mechanism has a

stronger feature extraction ability for maize seedlings in an
tiers in Plant Science 13
environment with weeds. The original model had the issue of missed

detection under the interference of weeds. The results show that the

model can maintain high detection accuracy under weed interference.

Figure 15 shows that compared with the original model, themodel with

the small target detection head was more focused on detecting smaller

seedlings. By contrast, the original model could not clearly detect light-

colored seedlings. The model with the small target detection head

demonstrated better attention in detecting corn seedlings, indicating

that the small target detection head is crucial in small seedling detection

in the pre-three-leaf stage. Consequently, the detection effect of the

model on small targets was considered to have improved.
3.4 Visualization results of the receptive
field heatmap

The receptive field (Ding et al., 2022) is a critical concept in

CNNs, representing the region of an input image that a specific

neuron can “perceive.” The size and characteristics of the receptive

field significantly influence the performance, representation

capabilities, and training efficiency of the model. Five well-trained

models—YOLOv8n, YOLOv8n+C2f+SCConv, YOLOv8n

+BiFormer, YOLOv8n+IDH, and Maize-YOLOv8n—were selected

for comparison to support the analysis. A subset of 50 images from

the validation set was resized to 1024 × 1024 pixels for testing. A 1024

× 1024 aggregated contribution score matrix was generated, in which

each entry quantified the contribution of a pixel in the input image to

the center point of the feature map produced by the final layer.
FIGURE 15

Heat map visualization of the model. (A) Original image, (B) YOLOv8n, (C) YOLOv8n+BiFormer, (D) Original image, (E) YOLOv8n, and (F)
YOLOv8n+IDH.
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As shown in Figure 16, the high-contribution pixels of YOLOv8n

were concentrated around the central point, whereas the contribution of

peripheral pixels was limited, indicating a constrained effective receptive

field. YOLOv8n+C2f+SCConv exhibited higher contributions than

Maize-YOLOv8n. The high-contribution pixels of YOLOv8n

+BiFormer were more uniformly distributed, which explains its higher

mAP. For YOLOv8n+IDH, the distribution of high-contribution pixels

was highly concentrated, highlighting its improved focus on small target

detection. Maize-YOLOv8n demonstrated higher peripheral

contributions, indicating that it paidmore attention to external elements.

Item r reflects the proportion of the smallest bounding rectangle that

covers contributions above a given threshold, t. The high-contribution

area ratios for YOLOv8n, YOLOv8n+C2f+SCConv, YOLOv8n

+BiFormer, and YOLOv8n+IDH were 75.74%, 93.55%, 84.69%, and

28.72%, respectively. By comparison, Maize-YOLOv8n achieved a high-

contribution area ratio of 97.21%, surpassing all othermodels. Therefore,

most pixels contributed significantly to the final prediction.
3.5 Detection model comparison test

The Maize-YOLOv8n model, based on YOLOv8n, was

compared with mainstream target detection network models,

including Faster R-CNN, DETR, YOLOv5s, and YOLOv8n. The

results are summarized in Table 3, with a radar map visualization

shown in Figure 17A and the loss function curves of different

detection models shown in Figure 17B.
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Table 3 reveals the following:
• Faster R-CNN: As shown in Table 3, this study first compares

the two stages of target detection representing Faster R-CNN.

Among the models compared, the Faster R-CNN model

demonstrated the largest FLOPs of 369.7, which was 349.5G

higher than the Maize-YOLOv8n model. This implies that the

model requires a significant amount of computation. The P, R,

F1 score, and mAP decreased by 9.4%, 0.2%, 5.0%, and 4.1%,

respectively, compared with the Maize-YOLOv8n model. The

Params were 136.68M, which was 135.49M higher than that of

the Maize-YOLOv8n model. The inference time was faster

than that of the Maize-YOLOv8n model.

• DETR: Second, the detection performance of Maize-

YOLOv8n and the DETR model was compared.

Compared with the Maize-YOLOv8n model, the P, F1

score, and mAP of the DETR model decreased by 25.5%,

14.2%, and 4.8%, respectively; the R increased slightly; and

the Params, FLOPs, and inference time increased (36.74M,

73.6G, and 25.8 ms, respectively).

• YOLOv5s: Finally, the modeling effects of related models in

the YOLO series were compared. Compared with the

Maize-YOLOv8n model, the R, F1 score, and mAP of the

previously proposed YOLOv5s model decreased by 3.8%,

1.9%, and 1.9%, respectively; P increased slightly; and

FLOPs decreased by 3.7G. Although Params increased by

5.87M, the inference time was 3.4 ms faster.
(A) (B) (C) (D) (E)

FIGURE 16

Visualization of the heat map of model receptive fields: (A) YOLOv8n, (B) YOLOv8n+C2f+SCConv, (C) YOLOv8n+BiFormer, (D) YOLOv8n+IDH, and
(E) Maize-YOLOv8n.
TABLE 3 Comparison of the test results of maize seedlings with different models.

Model P (%) R (%) F1 score (%) mAP (%) Parameters (M) FLOPs (G) Inference
time (ms)

Faster R-CNN 84.9 92.9 88.7 93.3 136.68 369.7 9.8

DETR 68.8 94.0 79.5 92.6 36.74 73.6 25.8

YOLOv5s 94.5 89.3 91.8 95.5 7.06 16.5 9.4

YOLOv8n 94.6 91.0 92.8 94.2 3.01 8.1 5.4

Maize-
YOLOv8n

94.3 93.1 93.7 97.4 1.19 20.2 12.8
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• YOLOv8n: The R, F1, and mAP of the YOLOv8n model

were 2.1%, 0.9%, and 3.2% lower than those of the Maize-

YOLOv8n model, respectively; FLOPs decreased by 12.1G;

the inference time was 7.4 ms faster; and P and Params

increased by 0.3% and 1.82M, respectively.

• These results demonstrate that the Maize-YOLOv8n model

outperforms similar detection models, achieving superior

precision, recall, and mAP with fewer parameters (1.19M) and

higher mAP (mAP of 97.4%). The model also offers faster

detection speeds and lower computational complexity.
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3.6 Detection performance in complex
natural scenes

This study evaluated the detection performance of the Maize-

YOLOv8n model under various conditions, including different leaf

stages, light intensities, and weed interference. The detection results

were compared with the Faster R-CNN, DETR, YOLOv5s, and

YOLOv8n models. In the test images shown in Figure 18, correct

recognitions are shown in red boxes, unrecognized instances in

yellow, and errors or repeated detections in blue.

Figure 18 reveals the following:
• Leaf Stage: The images collected in this study included the

early trilobate stage (approximately 10 cm tall) and late

trilobate stage (approximately 15 cm tall) of maize

seedlings. Figure 18 demonstrates that Maize-YOLOv8n

achieved higher detection rates for small seedlings in the

early three-leaf stage, which are challenging to detect owing

to their minimal size and low contrast with the ground.

Although YOLOv5s and YOLOv8n performed better than

Faster R-CNN and DETR, some detection errors persisted.

The Maize-YOLOv8n model, with its enhanced detection

head and BiFormer module, significantly reduced the

number of undetected seedlings.

• Light Intensity: Faster R-CNN and YOLOv8n exhibited

missed detections under high light conditions. Under low

light, DETR and YOLOv5s faced similar issues, whereas

Maize-YOLOv8n struggled with repeated detections at

image edges owing to reduced contrast and blurred

boundaries. Despite this, Maize-YOLOv8n demonstrated

robus t per formance under med ium and high

light intensities.

• Weeds: Maize growth in the field environment is often

accompanied by various weeds; the color and shape of

weeds are similar to that of corn, which makes detection

more challenging. The weed type observed in the collected

images was barnyard grass, as shown in Figure 19 below.

Maize-YOLOv8n effectively detected all maize seedlings in

the presence of weeds, including smaller seedlings at the

edges, thus outperforming other models. Faster R-CNN and

DETR failed to detect the seedlings among weeds, whereas

YOLOv5s and YOLOv8n missed some smaller seedlings.

Maize-YOLOv8n proved capable of detecting maize
FIGURE 17

Performance comparison chart of different mainstream standard
object detection models. (A) Comparison of precision, recall, F1
score, mAP, parameters, and GFLOPs. (B) Validation loss.
TABLE 4 Quantitative analysis of the high-contribution area ratio, r.

Test Baseline C2f+SCConv BiFormer IDH t = 20% t = 30% t = 50% t = 99%

1 ✓ 3.01% 5.28% 11.92% 75.74%

2 ✓ ✓ 2.39% 4.32% 9.47% 93.55%

3 ✓ ✓ 3.81% 6.33% 13.71% 84.69%

4 ✓ ✓ 1.30% 2.11% 4.45% 28.72%

5 ✓ ✓ ✓ ✓ 1.96% 2.84% 4.72% 97.21%
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FIGURE 18

Examples of the maize seedling detection effects of five different models on different leaf stages, light intensity, and weeds. (A)Original image, (B) Faster R-
CNN, (C)DETR, (D) YOLOv5s, (E) YOLOv8n, and (F)Maize-YOLOv8n.
FIGURE 19

Barnyard grass.
Frontiers in Plant Science frontiersin.org16

https://doi.org/10.3389/fpls.2025.1569229
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Gao et al. 10.3389/fpls.2025.1569229

Fron
seedlings even amidst similar-colored weeds, ensuring

stable detection.
In summary, Maize-YOLOv8n exhibited excellent performance

across various leaf stages, light intensities, and weed conditions,

making it well-suited to maize seedling detection and counting in

complex field environments.
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3.7 Complex natural environment
experiment

In this study, traditional image processing algorithms were

applied to count the number of maize seedlings in a field, with

results shown in Figure 20. The algorithm effectively extracted

maize seedlings under various conditions, including different leaf
FIGURE 20

Effect of the seedling detection model on maize seedling detection at different leaf stages, light intensity, and weeds. (A) three-leaf stage, (B) early
three-leaf stage, (C) high light intensity, (D) low light intensity, and (E) with weeds. Items (F–J) are effect diagrams representing items (A, E), respectively.
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stages, light intensities, and weed interference. The test results for

maize seedlings at the Three-leaf early seedlings, incipient seedlings

with three leaves, seedlings under high light intensity, seedlings

under low light intensity, and seedlings amidst weeds were 8, 9, 7, 6,

and 7, respectively, matching the actual observed values.
3.8 Overall evaluation of the leaky seedling
detection model

Nine plots were randomly selected from the experimental field

to compare the detection performance of the proposed seedling

leakage model with manual measurements. The differences between

the manually detected and automated measurements were 19, 12,

15, 22, 14, 6, 11, 7, and 14 seedlings, respectively, as detailed

in Table 5.

The correlation between predicted and measured values was

analyzed using RMSE and MAE metrics (Figures 21A–I).

The linear regression analysis of the predicted values yielded R2

coefficients of 0.9308, 0.9154, 0.8000, 0.7735, 0.8509, 0.8506, 0.8655,

0.9289, and 0.7650, respectively, for Plots 1–9. The RMSE values

were 0.9552, 0.9800, 1.5457, 1.4523, 0.9479, 1.0114, 1.0075, 0.7413,

and 1.4883, and the MAE values were 0.7665, 0.7298, 1.0924,

1.1985, 0.8203, 0.8382, 0.8523, 0.6130, and 1.2705. These results

demonstrate that the proposed missing seedling detection model

aligns closely with manual measurements, demonstrating its

accuracy and efficiency in identifying seedling leakage.
4 Discussion

4.1 Resource identification initiative

The performance of the proposed maize seedling detection model

was compared with those of similar studies. For example, Zhao et al.

(2023) proposed LW-YOLOv7, a lightweight model achieving a mAP
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of 93.2%, precision of 89.3%, recall of 85.5%, and a parameter count

of 59.4M. By contrast, the proposed Maize-YOLOv8n model

achieved an mAP of 97.4%, precision of 94.3%, and recall of 93.1%,

which is 4.2%, 5% and 7.6% higher than that of LW-YOLOv7,

respectively, and the number of parameters is reduced by 58.21M

to 1.19M. This detection accuracy improvement, coupled with a

reduced computational load, satisfies real-time application

requirements and facilitates deployment on portable and embedded

devices in agricultural settings.

Mota-Delfin et al. (2022) evaluated YOLOv4, YOLOv4-TINY,

and YOLOv5 structures for maize plant detection, with YOLOv5s

achieving the best performance at 73.1% mAP. By comparison, the

Maize-YOLOv8n model in this study significantly outperformed

YOLOv5s, achieving 24.3% higher mAP. In addition, traditional

image processing techniques were used in conjunction with

Maize-YOLOv8n to compute maize emergence and leakage

rates, providing a more comprehensive and precise assessment

of maize seedling populations. The R² values for the nine test plots

ranged from 0.7650 to 0.9308, indicating a strong correlation

between the predicted number of missing seedlings and the actual

number. These values indicate that the model is very accurate in

predicting missing seedlings, especially in plots with more

uniform planting patterns. However, we also acknowledge that

the R² values of some plots can be improved further, especially in

more complex or vegetated areas. The RMSE and MAE values

range from 0.7413 to 1.5457 and from 0.6130 to 1.2705,

respectively. These errors are small relative to the total number

of seedlings per plot, indicating that the prediction of the model is

acceptable in practical applications.
4.2 Environmental analysis

This study also analyzed the performance of the proposed

model under complex natural conditions, comparing it with those

of similar studies. Quan et al. (2019) employed a Faster R-CNN

model with VGG19 to distinguish maize seedlings from weeds

under varying weather and lighting conditions, achieving 97.71%

precision. However, the weed detection performance was not

evaluated. Yang et al. (2024) enhanced weed detection precision

but did not test the model under varying light conditions or leaf

stages. Lu et al. (2023) validated the performance of YOLOv5 under

weedy environments, occlusion, and various growth stages but did

not discuss the impact of different lighting conditions. In addition,

for the irregular plots, we divided the irregular plots into

rectangular sub-regions and applied the line detection algorithm

one by one. In this way, our detection method can be applied to

different shapes of farmland.

By contrast, this study evaluated the performance of the Maize-

YOLOv8n model under diverse conditions, including different leaf

stages, light intensities, and weed interference. The results

demonstrate that the Maize-YOLOv8n model effectively adapts to

complex natural scenes, highlighting its robustness and suitability

for field applications.
TABLE 5 Number of detected missing seedling in different plots.

Plots Predicted
leaked
seedlings

Actual
leaked
seedlings

R2 RMSE MAE

Plot 1 66 47 0.9308 0.9552 0.7665

Plot 2 81 69 0.9154 0.9800 0.7298

Plot 3 79 64 0.8000 1.5457 1.0924

Plot 4 86 64 0.7735 1.4523 1.1985

Plot 5 87 73 0.8509 0.9479 0.8203

Plot 6 69 63 0.8506 1.0114 0.8382

Plot 7 70 59 0.8655 1.0075 0.8523

Plot 8 83 76 0.9289 0.7413 0.6130

Plot 9 87 73 0.7650 1.4883 1.2705
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4.3 Limitations and solutions

Two primary limitations were faced in this study. First, the

mAP of the Maize-YOLOv8n model was 97.4%, indicating some

detection errors. Field environments introduce challenges such as

low image resolution, light condition variations (e.g., shadows,

overexposure), and noise interference, all of which reduce feature

extraction robustness. In addition, detection performance depends

heavily on high-quality labeled datasets. Inaccurate annotations can

lead to suboptimal feature learning, impacting detection accuracy.
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Finally, although the proposed model performs well on the test set,

its performance may be limited by the singleness of the dataset

because the dataset in this study was collected at the same place and

under similar environmental conditions. The above problems can

be addressed by optimizing the dataset by increasing diversified

data sampling, improving the data annotation quality, and further

collecting data under different regional and environmental

conditions to improve the robustness and generalization ability of

the model to complex field environments, enabling better

adaptation to practical application scenarios.
(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

(A) (B) (C)

(D) (E) (F)

FIGURE 21

Accuracy verification of the algorithm on nine plots. Items (A–I) represent Plots 1–9, respectively.
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Second, the regression analysis revealed suboptimal R2

coefficients and RMSE values for some plots, indicating seedling

count inaccuracies. These errors primarily stem from challenges in

distinguishing maize seedlings from weeds in densely vegetated

areas, leading to plant distance miscalculations and seedling count

overestimations. Future work will resolve these issues by

incorporating additional morphological parameters, such as maize

seedling skeleton pixels (Liu et al., 2022), to improve seedling count

accuracy. Further refinements to the missing seedling detection

algorithm will also be pursued to enhance performance in complex

field environments.
5 Conclusion

In this study, the images of the maize seedling stage in the field

environment were collected using the UAV remote sensing method.

Subsequently, the maize seedling deficiency detection dataset was

developed. The target detection method combined with traditional

image processing was proposed to detect the missing seedling

information accurately.

(1) The lightweight attention network (Maize-YOLOv8n) was

designed. SCConv and BiFormer modules ensured model detection

precision, significantly reduced the number of model parameters,

and improved the precision of model detection in complex

environments; the multi-scale detection head optimization

strategy was proposed to solve the problem of missed detection of

small targets, and the detection effect of early three-leaf seedlings

was significantly improved. The fusion framework of DL and

traditional image processing was developed, and the number of

missing seedlings was accurately detected by dynamically

calculating the plant distance and line direction fitting, which

provides a new technical path for precision agriculture.

(2) The experimental results revealed that the mAP, R, and F1

score of our proposed Maize-YOLOv8n method on the test set were

97.4%, 93.1%, and 93.7%, respectively, and the P was 94.3%. In terms of

the model parameters and FLOPs, the Maize-YOLOv8n also

performed well, and the number of model parameters was only

1.19M, the FLOPs was 20.2, and the inference time was 12.8ms,

which can satisfy the requirements of real-time model detection.

Compared with the baseline network model, the mAP of Maize-

YOLOv8n increased by 3.2%, the recall rate reached the maximum

increase of 2.1%, the number of model parameters decreased to 39.5%

of the baseline model, and the FLOPs increased by 12.1. The R2

coefficient of the determining coefficient between the number of missed

seedlings predicted by the model and the actual number of missed

seedlings was between 0.9308 and 0.7650. The RMSE was between

1.5457 and 0.7413. The MAE ranged from 1.2705 to 0.6130. Through

experimental analysis, the model can be applied to maize

leakage detection.

The proposed method can effectively reduce the manual labor

intensity of maize leakage detection and provide guidance for the

timely replacement of seedlings in areas with a high leakage rate in

the later period, contributing to the technological advancement of

the maize planting industry.
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