
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Weipeng Jing,
Northeast Forestry University, China

REVIEWED BY

Shrinivas Desai,
KLE Technological University, India
Xizhe Fu,
Shihezi University, China

*CORRESPONDENCE

Suvidha Rupesh Kumar

suvidha.rupesh@vit.ac.in

RECEIVED 01 February 2025
ACCEPTED 25 June 2025

PUBLISHED 06 August 2025

CITATION

Sundhar S, Sharma R, Maheshwari P,
Kumar SR and Kumar TS (2025) Enhancing
leaf disease classification using GAT-GCN
hybrid model.
Front. Plant Sci. 16:1569821.
doi: 10.3389/fpls.2025.1569821

COPYRIGHT

© 2025 Sundhar, Sharma, Maheshwari, Kumar
and Kumar. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 06 August 2025

DOI 10.3389/fpls.2025.1569821
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Nadu, India, 2Department of Electrical Engineering, Mathematics and Science, University of Gävle,
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Agriculture plays a critical role in the global economy, providing livelihoods and

ensuring food security for billions. Progress in agricultural techniques has helped

boost crop yield, along with a growing need for precise disease monitoring

solutions. This requires accurate, efficient, and timely disease detectionmethods.

The research presented in this paper addresses this need by analyzing a hybrid

model built using Graph Attention Network (GAT) and Graph Convolution

Network (GCN) models. The integration of these models has witnessed a

notable improvement in the accuracy of leaf disease classification. GCN has

been widely used for learning from graph-structured data, and GAT enhances

this by incorporating attention mechanisms to focus on the most important

neighbors. The methodology incorporates superpixel segmentation for efficient

feature extraction, partitioning images into meaningful, homogeneous regions

that better capture localized features. The robustness of the model is further

enhanced by the edge augmentation technique. The edge augmentation

technique in the context of graph has introduced a significant degree of

generalization in the detection capabilities of the model as analyzed on apple,

potato, and sugarcane leaves. To further optimize training, weight initialization

techniques are applied. The hybrid model is evaluated against the individual

performance of the GCN and GAT models and the hybrid model achieved a

precision of 0.9822, recall of 0.9818, and F1-score of 0.9818 in apple leaf disease

classification, a precision of 0.9746, recall of 0.9744, and F1-score of 0.9743 in

potato leaf disease classification, and a precision of 0.8801, recall of 0.8801, and

F1-score of 0.8799 in sugarcane leaf disease classification. The results indicate

that the model is effective and consistent in identifying leaf diseases in plants.
KEYWORDS

leaf disease detection, Graph Convolution Networks, Graph Attention Networks, hybrid
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1 Introduction

The detection of plant diseases is important in agriculture,

significantly impacting crop yield and overall productivity. Plant

disease leads to biological and economic losses that leave millions of

people starving and undernourished (Oerke, 2006). With the

adoption of different agricultural practices and the intensification

of climatic changes, the prevalence of crop diseases has increased.

This, in turn, has made it a necessity to develop efficient and

accurate leaf disease detection methods. Traditional approaches

often rely on manual inspections by farmers, which can be time-

consuming and subjective, leading to delays in disease management

and substantial crop losses. In response to the evolving demands of

modern agriculture, there is a need for effective disease detection

strategies. Plant diseases, especially those affecting leaves, can often

be identified by visible changes such as discoloration or shrinkage

(Agrios, 2005). Rust is one of the most common and visually

identifiable leaf diseases. A sample image from the dataset

showing a leaf affected by rust is presented in Figure 1A. There

are variations of the rust disease with respect to color as show in

Figures 1B, C.

These visual cues have paved the way for identification using

computer vision methods. The integration of machine learning

(ML) and advanced computer vision technologies offers a

promising solution (Jafar et al., 2024), enabling rapid analysis of

leaf images and facilitating timely interventions essential for

maintaining healthy crops. Recent advances in ML and deep

learning (DL) have significantly improved the efficiency of plant

disease detection. For example, computer vision algorithms have

shown high performance in detecting tomato leaf diseases

(Harakannanavar et al., 2022), and deep learning models such as
Frontiers in Plant Science 02
AlexNet have demonstrated potential in identifying olive leaf

diseases (Alruwaili et al., 2019).

Many of the existing methods are limited to binary classification

tasks (i.e., Healthy vs. Non-Healthy), restricting their applicability

in real-world scenarios where distinguishing between multiple

disease types is critical. Furthermore, environmental variations

such as lighting, background noise, and plant physiology pose

further challenges in generalizing DL models to diverse

agricultural settings. The proposed work is a small step toward

addressing such limitations. This paper proposes a hybrid model

built using the Graph Convolution Network (GCN) and the Graph

Attention Network (GAT) for multiclass classification of leaf

diseases. By combining the spatial feature learning capabilities of

GCN with the dynamic feature prioritization mechanism of GAT,

the model captures both structural and contextual nuances of

disease symptoms more effectively. Superpixel-based image

segmentation is employed to preserve local structures and

enhance disease localization. In addition, the edge augmentation

and optimized weight initialization techniques are incorporated to

improve the robustness of the model. To demonstrate the

generalized behavior of the proposed model, experiments were

conducted on three diverse datasets, namely Sugarcane Leaf

Disease, Apple Leaf Disease, and Potato Leaf Disease. These

dataset contain leaf images presenting distinct visual and

pathological characteristics, leading to the comprehensive

evaluation of the performance and adaptability of the model.

The GCN and GAT architectures have been effectively applied

in various other domains. In the field of drug discovery (Sun et al.,

2020), the GCN model the molecular interactions, in 3D shape

analysis (Wei et al., 2020), view-based GCN aggregate multi-view

features, and in point cloud segmentation (Wang et al., 2019),
FIGURE 1

Visual illustration of rust disease in leaves (A). Rust disease in sugarcane leaf (B). Orange rust pustules (C). Brown rust pustules (Simões et al., 2023).
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Graph Attention Convolution (GAC) dynamically adjusts receptive

fields to capture fine-grained structures. Inspired by these

applications, the proposed work adapts GCN-GAT architectures

for the nuanced detection of leaf disease. It takes advantage of the

ability of GCN to model spatial correlations among segmented leaf

regions and uses attention mechanism of GAT to prioritize patterns

indicative of disease symptoms. This integration aims to enhance

classification accuracy and robustness, particularly under varying

environmental conditions.

In summary, the major contributions of this research include:
Fron
• GCN-GAT hybrid model that integrates the spatial feature-

capturing ability of GCN with the feature prioritization

strengths of GAT.

• Superpixel-based segmentation, edge augmentation, and

tailored weight initialization to improve model robustness

and localization.

• Evaluation on three diverse datasets (apple, potato, and

sugarcane leaves) to demonstrate model generalize behavior

and adaptability.

• Comparative experiments with standalone GCN and GAT

models to validate the efficacy of the proposed

hybrid architecture.

• Performance assessment using key metrics such as F1-score,

accuracy, precision, recall, cross-entropy loss, and

confusion matrix.
The remainder of this paper is structured as follows. Section 2

presents a literature review and discusses prior research in the field.

Section 3 describes the dataset, the preprocessing steps applied, the

proposed methodology, and the loss and evaluation metrics used in

the experiments. Section 4 presents the results and analysis,

comparing the performance of the proposed model with baseline

methods. Finally, Section 5 concludes the paper, summarizes the

key findings, and outlines potential directions for future research.
2 Review of prior findings

This literature review aims to provide an overview of the recent

advancements in the realm of plant leaf disease detection. It

examines a range of approaches that involves traditional machine

learning approaches, state-of-the-art deep learning architectures

that integrate multiple techniques. By synthesizing findings from

key studies, the review also identifies research gaps and highlights

areas that require further exploration, particularly focusing on

improving model adaptability and generalization, as well as

enhancing disease detection systems in diverse and dynamic

agricultural environments

(Oo and Htun, 2018) presented a detection and classification

system for four plant leaf diseases, including Cercospora Leaf Spot,

Bacterial Blight, Powdery Mildew, and Rust. It involves image

preprocessing, segmentation, and feature extraction using GLCM

and LBP techniques. Various machine learning models were used,

with the highest accuracy of 98.2% achieved by SVM. A
tiers in Plant Science 03
comparative evaluation was conducted using classifiers such as

SVM, KNN, and ensemble methods. The use of texture feature

extraction through GLCM and classification enhanced using LBP

by leveraging both statistical and structural characteristics.

However, the study relies on feature extraction techniques that

lack structural relationships among the features of the leaves.

(Karlekar and Seal, 2020) addressed issues related to leaf

segmentation and disease classification with a two-part approach:

extracting leaf images through a specific method and employing a

deep learning model called SoyNet for soybean disease

classification. The model achieved an accuracy of 98.14%. An

Integrated Pest Management (IPM) technique ensured the

segmentation of leaf regions, even in complex backgrounds,

focusing the model on relevant areas. Additional testing on the

large Plant Disease Database (PDDB) dataset, which contains 16

disease categories, aimed to improve generalization across various

types of disease. However, since the model was tested on one dataset

only, its adaptability to new data remains limited.

(Wang et al., 2022) proposed a plant disease recognition model

integrating visual and textual data through feature decomposition

and GCNs. The model was evaluated on datasets with both uniform

and non-uniform severity levels. Traditional networks like

ResNet18 performed well on uniform data, while feature

decomposition improved results for more complex data. An

accuracy of 97.62% was reported with precision, sensitivity, and

specificity values of 92.81%, 98.54%, and 93.57%, respectively,

demonstrating the efficacy of multimodal approaches. It was

observed that the two-layer GCN outperformed both singlelayer

and three-layer models by optimally extracting features from the

graph structure. However, the study used a static graph structure,

which may not fully capture the dynamic nature of disease

progression. Dynamic graph models could be explored to better

represent changing disease information. A review by (Lu et al.,

2021) focused on the application of deep learning methods,

specifically CNN for the classification of plant leaf disease.

Techniques like segmentation, data augmentation, and transfer

learning were examined to overcome challenges such as limited

datasets and robustness issues. Transfer learning-based CNN

models achieved an accuracy of 95%. The review also explored

image segmentation techniques like watershed segmentation, Otsu’s

thresholding, and K-means clustering to isolate leaves from

complex backgrounds, an often overlooked aspect in related

research. Although CNN models are effective at capturing pixel-

level features, they are limited in modeling the relational and

structural characteristics inherent in disease patterns.

(Rao et al., 2024) presented a study combining CNN and GCN

to improve plant disease classification. The integrated model

achieved an accuracy of 99%, surpassing traditional models like

DeepPlantNet (98%), ensemble models (91%), and transfer learning

approaches (95%). By incorporating image-based features and plant

connectivity, the model provided better contextual awareness and

higher accuracy in disease classification. However, this approach

requires significant computational resources and longer training

times compared to a standalone CNN or GCN model. In addition,

its performance heavily depends on the availability of large and
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balanced datasets. (Peng and Wang, 2022) introduced a new system

for automatic identification, localization, and detection of leaf

diseases using an image retrieval approach that incorporates

object detection and deep metric learning. They first enhanced

the YOLOv algorithm to improve the detection of small objects,

allowing a more accurate extraction of leaf objects. The system also

integrates classification recognition with metric learning, enabling

the model to jointly learn both categorization and similarity

measurements, hence enhancing the performance of existing

image classification models. This approach allows for the addition

of new disease types without the need for retraining. Experimental

results on three publicly available leaf disease datasets demonstrated

the effectiveness of the proposed system. This study demonstrates

the application of the system to practical use cases in intelligent

agriculture, such as crop health monitoring and nutrition diagnosis.

However, there is an urgent need to improve the scalability and

adaptability of the system to handle a broader range of plant species

and environmental variations, ensuring its robustness in diverse

agricultural settings.

(Rathore and Prasad, 2020) proposed an automatic method for

the detection of diseases in rice plants using a CNN model. The

model classified rice images into “Healthy” and “Leaf Blast”

categories with an accuracy of 99.61% using a dataset of 1,000

images. Data augmentation techniques, including random rotation,

shifting, flipping, and cropping, were used to expand the dataset and

improve the generalization of the model. Although effective, the

applicability of the model is limited as it classifies only two classes,

namely healthy and leaf blast, thus restricting its use in detecting a

broader range of rice diseases. (Roy et al., 2023) introduced an

advanced plant disease segmentation method for precision

agriculture using optimal dimensionality reduction with fuzzy C-

means clustering and deep learning. The approach focused on the

segmentation of rice leaf regions and the classification of diseases

with high accuracy. The model used CNN models and achieved an

accuracy of 99.61% on a dataset containing 1,000 images. Data

augmentation techniques were used to increase performance.

However, similar to (Rathore and Prasad, 2020), the model was

designed to classify only two categories: healthy and leaf blast,

consequently limiting its generalization to a wider variety of

diseases and pests.

(Liu et al., 2020) proposed a novel approach for the

identification of grape leaf diseases using an improved

convolution neural network (CNN). The study focused on six

major grape leaf diseases—anthracnose, brown spot, mites, black

rot, downy mildew, and leaf blight—that cause significant economic

losses in the grape industry. To address this challenge, the authors

developed a dataset of 107,366 grape leaf images through image

enhancement techniques, utilizing 4,023 fieldcollected images and

3,646 images from public datasets. The method incorporates an

Inception structure to enhance multi-dimensional feature

extraction and introduces a dense connectivity strategy to

promote feature reuse and propagation. The proposed deep

learning model, named DICNN, was trained from scratch and

achieved an overall accuracy of 97.22% on a hold-out test set.

Compared to GoogLeNet and ResNet-34, DICNN improved
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recognition accuracy by 2.97% and 2.55%, respectively. Although

the model demonstrates strong performance, a key research gap

remains in its ability to generalize across different crops and diverse

environmental conditions (Bansal et al., 2021) developed a deep

learning-based approach for the detection of apple leaf diseases. The

dataset consists of 3,642 images divided into four classes, namely

apple scab, apple cedar rust, multiple diseases, and healthy leaves.

Pre-processing techniques such as flipping, rotation, and blurring

were applied, and images were resized to 512x512 pixels. The

authors used pre-trained models, including DenseNet121,

EfficientNetB7, and EfficientNet NoisyStudent, with an ensemble

model achieving a maximum accuracy of 96.25%. The ensemble

approach effectively reduced variance and improved classification

accuracy. However, relying solely on pre-trained CNN models may

not fully capture the intricate relationships between different parts

of a leaf, especially in cases involving multiple diseases.

Table 1 summarizes recent key studies in plant leaf disease

detection, highlighting their methodologies, datasets, performance

metrics, and research gaps. Although considerable advances have

been made using deep learning and hybrid models, key challenges

remain. Many models are tailored to specific species or datasets and

lack the generalizability needed for broader agricultural

applications. Realworld variability, such as lighting, leaf

orientation, and background clutter, continues to affect model

performance. Moreover, scalability to multispecies or multilabel

classification, real-time detection of subtle symptoms, and robust

performance under constrained data scenarios are areas needing

further work. Although attention mechanisms and graph-based

methods like GCNs and GATs have shown promise, they often fail

to capture both spatial relationships and contextual dependencies.

To address these gaps, the proposed hybrid GCN-GAT model

offers improved generalization and spatial relational learning,

enabling robust and accurate detection of leaf diseases. The

overarching research gaps identified in the literature can be

summarized as follows.
• Limited generalization of existing architectures across

diverse plant species and disease types hinders scalability.

• Inadequate modeling of spatial and relational dependencies

between leaf regions, reducing detection precision.

• Performance degradation under real-world environmental

conditions such as lighting changes, occlusions, and

background noise.
3 Methodology

3.1 Dataset description

The hybrid model is analyzed using three different leaf disease

datasets, namely: Sugarcane leaf disease dataset (Sankalana, 2022),

potato leaf disease data set (Putra, 2020), and apple leaf disease data

set (Antor, 2020), each capturing a diverse set of images taken under

various lighting conditions.
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3.1.1 Sugarcane Leaf Disease Dataset
The Sugarcane Leaf Disease Dataset consists of 2521 RGB

images of sugarcane leaves, collected manually from various

regions of Maharashtra, India. The images are categorized into

five distinct classes, including 522 images of healthy leaves, 462

images showing mosaic symptoms, 518 images of red rot disease,

514 images of rust and 505 images of yellow disease.

3.1.2 Potato Leaf Disease Dataset
The Potato Leaf Disease Dataset contains 1200 RGB images of

potato leaves, classified into three types of disease: Early Blight, Late

Blight, and Healthy leaves with each class having 300 samples

of leaves.

3.1.3 Apple Leaf Diseases Dataset
The Apple Leaf Diseases Dataset is a comprehensive collection

of 480 RGB images designed to support the identification of various

foliar diseases in apple trees. The images in this dataset are
TABLE 1 Summary of recent research on plant disease detection and classification.

Author(s) and year Methodology Dataset Performance

(Luo et al., 2021) Optimized multi-scale fusion network with
enhanced ResNet backbone, pyramid and
dilated convolutions

Original and preprocessed
apple leaf disease datasets

Classification accuracy:
94.24% (original), 94.99%
(preprocessed)

(Dai et al., 2022) Hybrid graph representation learning
framework GraphCDA combining GCN and
GAT, with Bayesian surrogate model for
automated model selection

Disease-associated circRNAs data Improved prediction via adaptive model
selection (quantitative metrics not specified)

(Khan et al., 2022) Two-stage apple disease detection: transfer
learning with Xception for classification,
Faster-RCNN for localization

Apple disease
images

88% classification accuracy

(Shoaib et al., 2022) Inception Net-based classification and
Modified U-Net semantic segmentation for
tomato plant disease detection

Dataset of 18,161 segmented and
non-segmented tomato leaf images

Modified U-Net accuracy
98.66%, IoU 98.5, Dice 98.73; InceptionNet
accuracy 99.95% (binary),
99.12% (six-class)

(Liu and Wang, 2023) Tomato disease detection using prior
knowledge attention mechanism and multi-
scale features (PKAMMF), new feature fusion
and prediction layers, Adaptive Structured
IoU loss

Self-built tomato disease dataset mAP of 91.96%, 3.86% improvement over
baselines

(Mahum et al., 2023) Improved deep learning classification of
potato leaf diseases using pre-trained Efficient
DenseNet with additional transition layer and
reweighted cross-entropy loss

Potato leaf disease dataset Accuracy of 97.2%

(Wang et al., 2024) Attention mechanisms with CBAM and
multi-scale feature fusion via BiRepGFPN
replacing PAFPN in YOLOv6 for tomato
leaf disease detection

PlantDoc and tomato leaf
disease datasets

Significant improvements in mAP,
precision, recall, and F1-score

(Bera et al., 2024) PND-Net: GCN on top of CNN
with spatial pyramidal pooling for plant
nutrition deficiency and disease classification

Banana, coffee
nutrition deficiency, potato disease,
and
PlantDoc datasets

Accuracies: 90.00%
(banana), 90.54% (coffee),
96.18% (potato), 84.30%
(PlantDoc)
TABLE 2 Distribution of training and testing images across leaf
disease classes.

Class Training Testing Total per class

Sugarcane _Healthy 418 104 522

Sugarcane _Mosaic 369 93 462

Sugarcane _Red Rot 414 104 518

Sugarcane _Rust 411 103 514

Sugarcane _ Yellow 404 101 505

Potato _Early Blight 300 100 400

Potato _Late Blight 300 100 400

Potato _Healthy 300 100 400

Apple _Scab 120 30 150

Apple _Black Rot 136 34 170

Apple _Cedar Rust 128 32 160
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categorized into three primary disease types: Apple Black Rot (170

samples), Cedar Rust (160 samples), and Apple Scab (150 samples).

For all datasets, the images were split into training and testing

sets with an 80–20 ratio to ensure a balanced representation of

classes and effective model evaluation and has been tabulated in

Table 2.
3.2 Preprocessing

To ensure the efficiency of the model, several preprocessing

techniques were applied to the dataset. Initially, to standardize the

input size, all images were resized to 128x128 pixels. This resizing

step ensures uniformity across the dataset, which is essential for

consistent model performance. Furthermore, to facilitate faster

convergence during training, the pixel values of the images were

normalized to the range [−1,1], using a mean of 0.5 and a standard

deviation of 0.5, as shown in Equation 1. This normalization

procedure helps stabilize the training process and accelerates

convergence. A batch size of 32 was selected for training,

balancing computational efficiency and the stability of gradient

updates.

xnormalized =
x=255 − m

s
= 2 ·

x
255

− 0:5
� �

(1)
Fron
• x is the original pixel value in the range [0,255].

• µ = 0.5 and s = 0.5 are the mean and standard deviation

used for normalization.

• This transformation scales the input to the range [−1,1] to

improve training performance.
In addition to resizing and normalizing, superpixel

segmentation was employed to enhance feature extraction. The

Simple Linear Iterative Clustering (SLIC) algorithm (Achanta et al.,
tiers in Plant Science 06
2012) was used to partition each image into perceptually

meaningful regions, or superpixels, based on color similarity and

spatial proximity. The mathematical formulation of the distance

metric used in SLIC is presented in Equation 2.

D =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2c +

m
S

� �2
d2s

r
(2)
• D is the combined distance used to assign pixels

to superpixels.

• dc is the color distance in the CIELAB space.

• ds is the spatial distance between the pixel coordinates.

• m is the compactness parameter controlling the shape

regularity of superpixels.

• S is the grid interval, representing the approximate spacing

between the superpixel centers.
This segmentation technique allows graph-based models to

focus on localized regions of the image, which is particularly

beneficial for detecting fine-grained textures and structures

indicative of leaf diseases. Based on experimental evaluation, the

number of superpixels was set to 50, which provided a detailed and

balanced representation of the image regions. Lower values such as

20 captured insufficient features, while higher values such as 100 led

to overfitting. Some representative examples of segmented leaf

images are shown in Figure 2.

Following segmentation, a Region Adjacency Graph (RAG) was

constructed to model the spatial relationships between adjacent

superpixels. In this graph, each superpixel is represented as a node,

and the edges encode adjacency between neighboring regions. The

mean RGB color of each superpixel was extracted as a node feature,

providing a compact yet informative representation of the visual

content. The encoded adjacency information enables the graph-

based model to learn spatial relationships more effectively, and in

turn improvising their ability to capture complex visual patterns.
FIGURE 2

Preprocessed images of apple, potato, and sugarcane leaves using superpixel segmentation.
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These RAG features, along with the corresponding class labels, were

stored in pickle files and used during the training phase of

the model.
3.3 Methodology

3.3.1 Machine Learning
Machine Learning (ML) is a subset of artificial intelligence

(Samuel, 1959) that enables machines to learn from data and make

predictions or decisions without being explicitly programmed. It

involves developing algorithms that iteratively improve their

performance by minimizing a loss function based on experience

or data.

3.3.2 Deep Learning
Deep Learning (DL) is a specialized branch of machine learning

that uses multi-layered neural networks (Hinton et al., 2006) to

automatically learn representations from raw data. This hierarchical

feature learning enables models to capture complex patterns and is

particularly effective in tasks such as image classification and

natural language processing.

3.3.3 Graph Convolution Network
A Graph Convolution Network (GCN) is a neural network

designed for graph-structured data (Kipf and Welling, 2016). It

captures node-level features and local relationships between

neighboring nodes by aggregating information from them. The

core mechanism of GCNs involves message passing, where each

node updates its representation based on the features of its

neighbors. This is achieved through feature propagation, where

nodes receive information from connected neighbors, followed by

graph convolution, where aggregated features are transformed

through a weighted sum. A simple structure of a GCN is depicted

in (Figure 3).
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3.3.4 Graph Attention Network
Graph Attention Networks (GAT) extend GCN by

incorporating an attention mechanism (Velickovic et al., 2017).

Instead of treating all neighbors equally, GATs compute attention

scores between nodes by applying a shared linear transformation,

followed by a dot product operation and a softmax normalization to

determine the importance of each neighbor. The final node

representation is obtained through a weighted sum of its

neighbors ’ features. This dynamic weighting enhances

expressiveness, enabling GATs to handle varying neighborhood

sizes and adapt to dynamic graph structures. Unlike traditional

GCNs, which rely on predefined adjacency matrices, GATs can

learn important relationships from data and hence improving the

performance of node classification, graph classification, and link

prediction. A sample illustration of how weight and attention are

computed in GAT is shown in (Figure 4).

3.3.5 GCN-GAT Hybrid architecture
The architecture combines Graph Convolution Networks

(GCN) and Graph Attention Networks (GAT) to take advantage

of the strengths of both models for processing graph-structured

data. At the initial stage, the GCN layers capture local neighborhood

information by aggregating and propagating node-level features

through graph convolution, modeling spatial relationships within

the graph. Thereafter, GAT layers use an attention mechanism to

assign different weights to neighboring nodes, allowing the model to

focus on the most relevant features, thus enhancing its

feature representation.

In addition, a classifier layer with LeakyReLU activation is used

to make the predictions of the leaf conditions based on the learned

representations. Figure 5 illustrates the workflow of the

methodology. To increase the robustness of the model and to

prevent overfitting, an augmentation strategy is used on the graph

edges. This stochastic approach introduces randomness by

randomly adding or removing edges in the graph during training,
FIGURE 3

Schematic representation of the Graph Convolution Network (GCN) architecture.
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encouraging the model to generalize better and reducing its reliance

on specific graph structures. The algorithm for edge augmentation

is represented in Algorithm 1.
Fron
Data: Edge index: E, Edge augmentation probability: p

Result: Augmented edge index: Eaug

1 Initialize: Eaug ← E;

2 if random probability < p then

3 Add edge: enew ← random edge;

4 Eaug ← Eaug ∪ enew;

5 if random probability < p then

6 Remove edge: eremove ← random edge from Eaug;

7 Eaug ← Eaug \eremove;

8 return Eaug
Algorithm 1. Edge Augmentation.

To address the challenges of vanishing gradients and promote

more efficient training, the He initialization method has been adopted

(He et al., 2015). This method helps maintain consistent variance in the
tiers in Plant Science 08
activations of each layer, enabling faster convergence and improving

gradient flow throughout the network. The He initialization can be

mathematically expressed as shown in Equation 3.

W ∼ U( −
ffiffiffiffiffiffi
6
nin

r
,

ffiffiffiffiffiffi
6
nin

r
) (3)

Where,
• W represents the weight matrix.

• nin is the number of input units (neurons) in the layer.

• The distribution is a uniform distribution, denoted by U,
with bounds ±

ffiffiffiffiffi
6
nin

q
.

3.4 Loss & evaluation metrics

Loss functions are mathematical functions used to measure how

far predictions of the model deviate from the actual values. A higher
FIGURE 5

Proposed hybrid model: architecture and workflow.
FIGURE 4

Schematic representation of the Graph Attention Network (GAT) architecture.
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loss indicates that the model is making more errors, while a lower

loss suggests better predictive performance.

The architecture utilizes the cross-entropy loss function, which

quantifies the difference between the predicted probability

distribution and the true distribution.

3.4.1 Cross-entropy loss
The cross-entropy loss function is widely used in classification

problems to quantify the deviation between the predicted

probability distribution and the actual distribution. It helps to

optimize the model by penalizing incorrect predictions more

heavily. The mathematical representation of the cross-entropy

loss function is provided in Equation 4.

Cross–Entropy Loss = −o
N

i=1
o
C

j=1
yij log  (pij) (4)
Fron
• y represents the true distribution of the labels.

• ŷ represents the predicted distribution of the labels.
Evaluation metrics are employed to assess the performance and

quality of statistical or deep-learning models. To evaluate the hybrid

model, the following metrics have been utilized:

3.4.2 Accuracy
Accuracy represents the percentage of correctly classified leaf

disease samples from the total number of leaf samples in the dataset.

It measures the proportion of predictions that match the actual

labels for each test image, reflecting the performance of the model in

predicting the correct disease class label. Accuracy can be expressed

as shown in Equation 5.

Accuracy =
Correct Predictions
Total Predictions

� 100 (5)
3.4.3 Precision
Precision quantifies the reliability of the model when predicting

a leaf as diseased. It specifically focuses on the cases where the

model predicts the presence of a disease, evaluating how often these

predictions are correct.

The formula for calculating precision is given in Equation 6.

Precision =
True Positives

True Positives + False Positives
(6)
3.4.4 Recall
Recall measures the ability of the model to correctly identify all

diseased leaves from the total number of leaves that actually have

the disease. It highlights the capability of the model to capture as

many true positives as possible. The formula for calculating the

recall is presented in Equation 7.

Recall =
True Positives

True Positives + False Negatives
(7)
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3.4.5 F1-score
The F1-score combines precision and recall into a single metric,

providing a balanced evaluation of the performance of the model

for each disease class. This accounts for both the ability of the model

to detect diseased leaves and its accuracy in making predictions.

The formula for calculating the F1-score is given in Equation 8.

F1−score =
2� Precision� Recall
Precision + Recall

(8)
3.4.6 Confusion matrix
The confusion matrix provides a detailed breakdown of the

predictions by the model, categorizing them into various outcomes.

For each class, it shows the number of samples that are correctly or

incorrectly classified. This provides a comprehensive view of the

performance of the model, highlighting both its accurate

predictions and the areas where misclassifications occur.

C =
TN FP

FN TP

" #

Where, for each leaf disease class i, the confusion matrix terms

are defined as follows in the multi-class classification context:
• TP: The number of leaf images correctly predicted as a

member of class i.

• FP: The number of leaf images from other classes

incorrectly predicted as class i.

• FN: The number of leaf images belonging to class i

incorrectly predicted as other classes.

• TN: The number of leaf images correctly predicted as not

belonging to class i (i.e., all other classes correctly identified

as not i).
In multiclass classification, this matrix is extended such that

each row and column corresponds to a class, providing a more

granular evaluation of the performance of the model across

all classes.
4 Results and discussions

The datasets were evaluated using three distinct model

architectures: Graph Convolution Networks (GCN), Graph

Attention Networks (GAT), and the hybrid architecture, GCN-

GAT. The performance of these models was analyzed to understand

their effectiveness in the detection of leaf disease across the different

dataset. All models were trained for 100 epochs, and their

performance was evaluated using standard evaluation metrics,

namely Precision, Recall, F1-Score, and Accuracy, including the

analysis of loss and accuracy curves. The key training parameters

for the experiments (determined through hyperparameter tuning)

are summarized in Table 3.

For the Apple Leaf dataset, the GCN model achieved an

accuracy of 92.71%, with a precision of 0.9265, recall of 0.9271,
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and an F1-Score of 0.9267. In comparison, the GAT model attained

an accuracy of 82.03%, with precision, recall, and F1-Score values of

0.8558, 0.8203, and 0.8202, respectively. The hybrid architecture

(GCN-GAT) demonstrated exceptional performance, achieving an

accuracy of 99.73%, along with a precision of 0.9974, recall of

0.9974, and an F1-Score of 0.9974. The performance results of the

different models on the Apple Leaf dataset are summarized

in Table 4.

Based on these results, the models were further evaluated using

the Potato Leaf dataset to assess their effectiveness. The GCNmodel

attained an accuracy of 94.77% on this model, with a precision of

0.9506, recall of 0.9478, and an F1-Score of 0.9475. Interestingly, the

GAT model slightly underperformed compared to GCN, attaining

an accuracy of 92.33%, with a precision of 0.9298, recall of 0.9233,

and an F1-Score of 0.9243. However, the hybrid GCN-GAT model

once again stood out, delivering the highest performance with an

accuracy of 98.11%, a precision of 0.9811, recall of 0.9811, and an

F1-Score of 0.9811. The performance metrics for the models on the

Potato Leaf dataset are presented in Table 5, highlighting the

comparison between GCN, GAT, and the hybrid GCN-GATmodel.
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Finally, the models were tested on the Sugarcane Leaf dataset,

which posed unique challenges due to complex patterns present in

the images. On this dataset, the GCNmodel achieved an accuracy of

64.63%, with a precision of 0.6745, recall of 0.6464, and an F1-Score

of 0.6399. The GAT model experienced a notable drop in

performance, yielding an accuracy of 48.83%, with precision,

recall, and F1-Score values of 0.5360, 0.4884, and 0.4703,

respectively. In contrast, the GCN-GAT hybrid model

demonstrated its robustness, achieving a significantly higher

accuracy of 91.03%, with a precision of 0.9124, recall of 0.9104,

and an F1-Score of 0.9101. These results are summarized in Table 6.

To evaluate training performance across different datasets, the

loss and accuracy curves were examined. For the Apple Leaf Disease

dataset, the GCNmodel recorded an average loss of 0.1987, whereas

the GAT model showed a higher loss of 0.8102. The hybrid GCN-

GAT architecture outperformed both, achieving a minimal loss of

0.0143, showcasing its superior learning capability. The

corresponding loss and accuracy curves are depicted in Figure 6.

On the Potato Leaf Disease dataset, the GCN model achieved a

loss of 0.1447, while the GAT model demonstrated slightly higher

efficiency with a loss of 0.3902. The hybrid architecture maintained

its advantage, attaining the lowest loss of 0.0548. The respective

training curves are illustrated in Figure 7.

Similarly, for the Sugarcane Leaf Disease dataset, the GCN

model experienced a loss of 0.9301, with the GAT model facing

greater difficulty, recording a loss of 1.2542. The hybrid architecture

once again proved to be the most effective, with a significantly

reduced loss of 0.2651. The training performance curves for this

dataset are presented in Figure 8.

To assess the classification performance per class in each

dataset, the respective confusion matrices of individual

architectures were inspected and analyzed.

In the apple leaf disease dataset, the GCN model effectively

classified black rot apple leaves but misclassified 13 out of 136

samples in rust and 14 out of 120 in scab. The GATmodel, however,

underperformed across all classes, resulting in a higher frequency of

misclassifications. In contrast, the GCN-GAT Hybrid model
TABLE 4 Comparative analysis of GCN, GAT, and hybrid model performance on the apple leaf dataset.

Model Accuracy Precision Recall F1-score Average loss

GCN 0.9271 0.9265 0.9271 0.9267 0.1987

GAT 0.8203 0.8558 0.8203 0.8202 0.8102

GCN+GAT 0.9973 0.9974 0.9974 0.9974 0.0143
The bold values indicate the comparatively best performance achieved by the proposed hybrid model.
TABLE 5 Comparative analysis of GCN, GAT, and hybrid model performance on the potato leaf dataset.

Model Accuracy Precision Recall F1-score Average loss

GCN 0.9477 0.9506 0.9478 0.9475 0.1447

GAT 0.9233 0.9298 0.9233 0.9243 0.3902

GCN+GAT 0.9811 0.9811 0.9811 0.9811 0.0548
The bold values indicate the comparatively best performance achieved by the proposed hybrid model.
TABLE 3 Details of experimental setup and parameters.

Parameter Settings

Image Size (128, 128, 3)

Batch Size 32

Learning Rate 0.001

Optimizer Adam

Attention Heads 2

Hidden Layers 512

GCN Layers 2

GAT Layers 2

Platform Google Colab

GPU NVIDIA A100
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demonstrated superior performance, reducing misclassifications to

1 out of 128 in Black Rot leaf condition. The corresponding

confusion matrices are shown in Figure 9.

On the potato leaf disease dataset, the GCN model misclassified 37

out of 300 samples in Late Blight conditions. Although the GAT model

showed consistent performance across all classes, the GCN-GATHybrid

model outperformed both, correctly classifying 883 out of 900 samples.

The confusion matrices for each model are presented in Figure 10.
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Finally, on the sugarcane leaf disease dataset, the GCN model

exhibited varying performance across different classes, performing

well in some but misclassifying more samples in others. The GAT

model showed poor performance overall, making random

predictions across classes. In contrast, the GCN-GAT Hybrid

model, despite some misclassifications in Mosaic and Mosaic leaf

conditions, outperformed both individual models. Figure 11

presents the confusion matrix for the sugarcane dataset.
FIGURE 6

Training loss and accuracy curves for the GCN, GAT, and GCN-GAT hybrid models on the apple leaf disease dataset.
FIGURE 7

Training loss and accuracy curves for GCN, GAT, and GCN-GAT models on the potato leaf disease dataset.
TABLE 6 Comparative analysis of GCN, GAT, and hybrid model performance on the sugarcane leaf dataset.

Model Accuracy Precision Recall F1-score Average loss

GCN 0.6463 0.6745 0.6464 0.6399 0.9301

GAT 0.4883 0.5360 0.4884 0.4703 1.2542

GCN+GAT 0.9103 0.9124 0.9104 0.9101 0.2651
The bold values indicate the comparatively best performance achieved by the proposed hybrid model.
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FIGURE 9

Confusion matrices of GCN, GAT, and hybrid GCN-GAT models for apple leaf disease classification.
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FIGURE 10

Confusion matrices of GCN, GAT, and hybrid GCN-GAT models for potato leaf disease classification.
FIGURE 8

Training loss and accuracy curves for GCN, GAT, and GCN-GAT models on the sugarcane leaf disease dataset.
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FIGURE 11

Confusion matrices of GCN, GAT, and hybrid GCN-GAT models for sugarcane leaf disease classification.
FIGURE 12

Visualization of accuracy comparison among GCN, GAT, and GCN+GAT models across apple, sugarcane, and potato leaf datasets.
TABLE 7 Performance comparison of state-of-the-art models for plant leaf disease classification.

Author(s) and year Methodology Dataset Performance

(Zhong and Zhao, 2020) DenseNet-121 based deep learning methods with
regression, multi-label classification, and focal
loss functions

Apple leaf dataset from
AI-Challenger-Plant-
DiseaseRecognition with 2,462 images
across 6 disease classes

Achieved up to 93.71%
accuracy on the test set

(Sholihati et al., 2020) Deep learning with VGG16 and VGG19 architectures Potato Leaf Disease Dataset consisting
of 5 classes: Alternaria Solani, Healthy,
Phytophthora Infestans, Virus,
and Insect.

Achieved an average accuracy
of 91.3%.

(Khalifa et al., 2021) Deep CNN architecture with 14 layers Potato Leaf Dataset with 3 classes
(Healthy, Early Blight, Late Blight);
augmented from
1,722 to 9,822 images

Achieved a mean testing
accuracy of 98%

(Alsayed et al., 2021) Transfer learning with pre-trained models (VGG16,
ResNetV2, InceptionV3, MobileNetV2) for apple leaf
disease classification

Apple leaf dataset including apple
scab, cedar apple rust, and multiple
disease classes

Achieved 94% accuracy with
ResNetV2 and Adam optimizer

(Continued)
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Figure 12 highlights the overall accuracy of all three

architectures across multiple datasets, demonstrating the superior

performance of the GCN-GAT hybrid model in consistently

achieving higher classification accuracy compared to standalone

GCN and GAT models.

To further evaluate the effectiveness of the proposed GCN-GAT

hybrid architecture, we compare its performance with well-

established state-of-the-art deep learning models commonly used

for plant leaf disease classification. This comparison underscores

the robustness and competitiveness of our approach across various

datasets. The results are tabulated in Table 7.
5 Conclusion

An architecture using the GCN-GAT hybrid model was

analyzed for leaf disease detection, leveraging the spatial feature-

capturing capabilities of Graph Convolution Networks (GCN) and

the feature prioritization strengths of Graph Attention Networks

(GAT). The model was trained and evaluated on three diverse

datasets: apple leaves (3 classes), potato leaves (3 classes), and

sugarcane leaves (5 classes), representing varied leaf conditions.

To highlight the superiority of the hybrid model, its performance

was thoroughly analyzed and compared against the standalone

GCN and GAT models.

The hybrid model consistently outperformed others across all

datasets. On the apple dataset, it achieved a precision of 0.9974,

recall of 0.9974, and an F1-score of 0.9974, with an average loss of

0.0143. For the potato dataset, the model achieved precision, recall,

and F1-scores of 0.9811, 0.9811, and 0.9811, respectively, with an

average loss of 0.0548. Despite the complexity of the sugarcane

dataset, the model maintained robust results, achieving precision,

recall, and F1-scores of 0.9124, 0.9104, 0.9101 each, with an average
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loss of 0.2651. These metrics underscore the adaptability and

effectiveness of the hybrid model, with average accuracies of

99.74% for apple leaves, 98.11% for potato leaves, and 91.03% for

sugarcane leaves.

The model when built in isolation using either GCN or GAT, a

significant decrease in performance was observed across all the

three datasets. On the apple dataset, the GCN model achieved a

precision of 0.9443, recall of 0.9438, and an F1-score of 0.9436, with

an average loss of 0.0345, while the GATmodel achieved a precision

of 0.9521, recall of 0.9519, and an F1-score of 0.9517, with an

average loss of 0.0302. On the potato dataset, GCN recorded

precision, recall, and F1-scores of 0.9134, 0.9129, and

0.9127, with an average loss of 0.0386, whereas GAT achieved

precision, recall, and F1-scores of 0.9291, 0.9286, and 0.9284, with

an average loss of 0.0331. For the sugarcane dataset, GCN and GAT

showed relatively lower performance, with GCN achieving a

precision of 0.8112, recall of 0.8108, and an F1-score of 0.8105

(average loss: 0.0564), and GAT achieving precision, recall, and F1-

scores of 0.8293, 0.8290, and 0.8288 (average loss: 0.0517).

In summary, the GCN-GAT hybrid model significantly

outperformed the standalone GCN and GAT models across all

datasets, demonstrating its ability to effectively balance spatial

feature extraction and feature prioritization. The inclusion of the

idea of spatial information along with the prioritization of features

enabled the hybrid architecture to achieve higher accuracy and

lower loss, making it a robust solution for leaf disease classification.

Beyond current implementations, future work could focus on

optimizing the computational efficiency of the hybrid model to

facilitate its deployment on low-power devices. The integration of

the proposed model into a real-time agricultural framework has

the potential to revolutionize disease detection systems, ensuring

healthier crops, reducing losses , and contributing to

crop security.
TABLE 7 Continued

Author(s) and year Methodology Dataset Performance

(Kumar and Patel, 2023) The method detects multiple potato leaf diseases and
alerts farmers via decision support system; pre-processing
with median filtering and feature extraction using
intuitionistic fuzzy local binary pattern

Potato leaf disease dataset with
multiple disease classes including late
blight, early blight, and more

Achieves approximately 96%
accuracy based on reported
graphs

(Daphal and Koli, 2024) Attention-based Multilevel
RCNN (AMRCNN)

The Sugarcane Leaf Disease
Dataset contains 5 classes: Rust,
Mosaic, Healthy, Red Rot, and
Yellow Leaf

Achieved an accuracy of
86.53% on the dataset

(Wang et al., 2024) Deep evidence fusion framework using multi-saliency
maps and belief Cauchy–Schwarz divergence;
EfficientNetV2-S backbone

Large combined apple leaf disease
dataset from Northwest A&F
University and AppleLeaf9 with
multiple classes and augmented images

Achieved 98.1% accuracy with
EfficientNetV2-S

-
Proposed GCN-GAT hybrid model combining spatial
graph convolution and attention-based
node representation

Apple leaf
Potato leaf
Sugarcane leaf

99.73% accuracy 98.11%
accuracy
91.03% accuracy
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