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Introduction: In corn pest and disease prevention, traditional blanket pesticide

spraying has led to significant pesticide waste and environmental pollution. To

address this challenge, research into precision agricultural equipment based on

computer vision has become a hotspot.

Methods: In this study, an integrated system named the FGA-Corn system is

investigated for precision pesticide application, which consists of three important

parts. The first part is the Front Camera Rear Funnel (FCRF) mechanical structure

for efficient pesticide application. The second part is the Agri Spray Decision

System (ASDS) algorithm, which is developed for post-processing the YOLO

detection results, driving the funnel motor to enable precise pesticide delivery

and facilitate real-time targeted application in specific crop areas. The third part is

the GMA-YOLOv8 detection algorithm for center leaf areas. Building on the

YOLOv8n framework, a more efficient GHG2S backbone generated by HGNetV2

enhanced with GhostConv and SimAM is proposed for feature extraction. The

CM module integrated with Mixed Local Channel Attention is used for multi-

scale feature fusion. An Auxiliary Head utilizing deep supervision is employed for

improved assistive training.

Results and discussion: Experimental results on both the D1 and D2 datasets

demonstrate the effectiveness and generalization ability, with mAP@0.5 scores of

94.5% (+1.6%) and 90.1% (+1.8%), respectively. The system achieves a 23.3%

reduction in model size and a computational complexity of 6.8 GFLOPs. Field

experiments verify the effectiveness of the system, showing a detection accuracy

of 91.3 ± 1.9% for center leaves, a pesticide delivery rate of 84.1 ± 3.3%, and a

delivery precision of 92.2 ± 2.9%. This research not only achieves an efficient and

accurate corn precision spraying program but also offers new insights and

technological advances for intelligent agricultural machinery.
KEYWORDS

precision agriculture, center leaf detection, embedded device deployment, realtime
detection, precision pesticide delivery system
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1 Introduction

Corn, as a key global food and chemical raw material, had a

production of 45.507 billion bushels in 2022-2023 (World of Corn,

2023). However, annual production losses of 20% to 40% were

attributed to pests and diseases (Kamilaris and Prenafeta-Boldú,

2018). Traditional blanket pesticide spraying, including plant

protection drones, is a significant method to increase production

and reduce costs (Tudi et al., 2021). Despite that, the indiscriminate

spraying method could lead pesticide waste. Therefore, precision

agriculture has gradually become a research hotspot in recent years,

which utilized sensors and radar, especially the computer vision

technology for the localization of individual plants (Salazar-Gomez

et al., 2021). Based on the detailed location information, researchers

can achieve effective regional management and investment to

improve resource utilization and food production efficiency

(Fountas et al., 2020).

With the continuous advancements in deep learning and

convolutional neural network (CNN) technologies, the accuracy

of machine vision has significantly improved, promoting its

application in precision agriculture. It was reported that the

accuracy of strawberry detection and grapevine key point

detection could achieve to mAP of 82.44% (Zhang et al., 2022)

and AP of 89.7% (Chen et al., 2024). In corn cultivation, existing

research has primarily focused on using computer vision for pest

and disease identification (Du et al., 2022; Divyanth et al., 2023;

Antolıńez Garcıá and Cáceres Campana, 2023; Mota-Delfin et al.,

2022), weed recognition (Jiang et al., 2020), and real-time growth

monitoring through phenotyping studies (Guan et al., 2024). In

agricultural intelligent precision spraying research, recent studies

demonstrated various successful implementations. Drones with

cameras and image analysis capabilities for precise crop

protection (Cisternas et al., 2020). TF Lite models deployed on

Raspberry Pi-equipped drones for autonomous spraying decisions

(Singh et al., 2024). Notable achievements include multi-object

tracking for avoiding duplicate spraying (Hu et al., 2024), high-

precision strawberry spraying using ONNX-quantized YOLOv3

with 97% accuracy (El Amraoui et al., 2024), and weed-targeted

herbicide application achieving over 90% effectiveness in both

controlled and field conditions (Upadhyay et al., 2024).

While high-precision recognition models provide technical

support for precision agriculture, their complexity and numerous

parameters present deployment challenges. To address these issues,

researchers have focused on designing lightweight network

architectures for resource-constrained devices. Key developments

include efficient depthwise separable convolutions and subsequent

versions of MobileNet (Howard, 2017; Sandler et al., 2018; Howard

et al., 2019). Other advancements involve the cost-effective feature

map generation of GhostNet (Han et al., 2020). Improvements were

also made to the DFC attention mechanism of GhostNetV2 (Tang

et al., 2022). Furthermore, the HGNetV2 backbone of RT DETR

(Zhao et al., 2024) contributed to real-time detection. Recently, the

effectiveness of channel or spatial attention mechanisms in

generating clearer and more refined feature representations has

been validated (Zhang et al., 2023). Parameter-free attention
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mechanisms like SimAM (Yang et al., 2021) and MLCA (Wan

et al., 2023) have demonstrated enhanced model efficiency and

generalization capability for embedded applications.

Therefore, the feasibility of achieving high precision through 2D

machine vision and simplified mechanical structures was explored,

highlighting its importance. Compared to complex 3D systems, 2D

vision was noted for its lower hardware costs and simpler structures,

as well as reduced dependence on environmental conditions.

However, this shift imposed higher demands on algorithm

accuracy and mechanical design. The research focused

on achieving high-precision pesticide application using

target detection information without reliance on complex

location data.

In summary, the feasibility of achieving high precision through

2D machine vision and simplified mechanical structures was

explored. In this study, an embedded delivery system for row-

planted corn was developed, providing hardware support for

precision pesticide application in agriculture. First, a simple and

efficient mechanical device named FCRF was designed based on the

structural characteristics of row-planted corn. Second, an ASDS

algorithm uses post-processing of detection results to coordinate

visual models with mechanical structures to accurately apply

pesticides. Third, a lightweight 2D vision algorithms were

investigated based on YOLOv8 for high-precision detection and

deployment. This design shifts pesticide application from

traditional blanket spraying to center leaf areas of corn, which

fundamentally supports automated farming and pest management,

and promotes the development of precision agriculture.
2 Materials and methods

A system called FGA-Corn was developed for precise pesticide

delivery during the corn growth stage. This system consists of an

efficient mechanical structure (FCRF), an optimized deep learning

object detection model (GMA-YOLOv8), and software algorithms

(ASDS) for post-processing detection information. Figure 1

illustrates the complete workflow, from camera image acquisition

to precise pesticide application.

The system integrates image processing and deep learning

algorithms for detecting center leaf areas, simultaneously

actuating the mechanical structure for precise pesticide delivery.

As shown in Step 1 of Figure 1, operation commences with the

capture of corn imagery by a camera, which is then transmitted to

an Nvidia Jetson Xavier NX edge device hosting the GMA-YOLO

model for object detection. Subsequently, in Step 2, the ASDS

algorithm refines these detection results through post-processing

and simultaneously commands the integrated embedded and

mechanical systems (Step 3) for targeted pesticide application.

Finally, Step 4 of Figure 1 depicts the visual comparison of the

center leaf areas before and after pesticide application. This

comprehensive system facilitates effective recognition of

designated corn leaf regions and enables real-time precision

targeting, thereby supporting informed and efficient pesticide

application decisions.
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2.1 FGA-corn precision pesticide
application system

2.1.1 System equipment and its parameters
The entire system hardware consisted of four main components:

the decision layer, signal relay layer, execution layer, and image

acquisition layer.

The core component of the decision layer was the Nvidia Jetson

Xavier NX edge device (NVIDIA, Santa Clara, California, USA), on

which the improved GMA-YOLOv8 algorithm was deployed. A key

attribute of both Jetson Nano and Jetson Xavier NX is their

integration of CPU and GPU in a heterogeneous architecture.

This device was equipped with 384 NVIDIA Volta architecture

GPUs (48 Tensor Cores) and a 6-core NVIDIA Carmel ARM v8.2

64-bit CPU, offering 128GB of storage and 8GB of memory,

providing powerful AI computing capabilities.

The signal relay layer was composed of an STM32 development

board (STMicroelectronics, Geneva, Switzerland), which was
Frontiers in Plant Science 03
responsible for converting the signals generated by the ASDS

algorithm. Additionally, the signal relay layer employed the

HBS57 fully digital closed-loop two-phase stepper driver

(Leadshine Technology, Dongguan, Guangdong, China) to

precisely control the motor rotation of spraying funnel.

The execution layer included a funnel equipped with a rotating

motor (PM60-10-ST/57CME30A, XINSONG, Shenyang, Liaoning,

China), featuring a working current of 5.0 A and a torque of 3.0

N·m. By driving the HBS57 driver with an STM32 microcontroller,

accurate control of the motor rotation was achieved. When the

holes in the rotating motor briefly aligned with those in the funnel,

the funnel opened, allowing pesticide granules to fall under the

force of gravity.

The image acquisition layer utilized the DF-100 industrial

camera (Jierui Weitong, Shenzhen, China), which featured a

2.8mm diagonal (1/2.7-inch) CMOS sensor with 2 million

physical pixels. This camera captured plant information in real

time. The image transmission frame rate was set to 30 frames per
FIGURE 1

FGA-Corn workflow: from image acquisition to pesticide application on center leaf areas.
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second, and the DF-100 communicated with the Jetson via USB 3.0,

ensuring real-time data acquisition and storage.

The display and debugging layer included a portable display, a

Bluetooth keyboard, and a mouse, allowing for real-time debugging

of software algorithms during field operations.

Through the design and implementation of these components,

along with their detailed device parameters, the FGA-Corn system

was able to efficiently and accurately perform pesticide spraying on

the center leaf areas of corn.

2.1.2 Front camera rear funnel mechanical
structure

To achieve high-precision pesticide application in the center

leaf areas of corn, a precision spraying system was developed that

integrated visual perception and mechanical control, referred to as

the FCRF. The core of this system is to place the camera in front of

the spray funnel and ensure that the distance between the camera

and the spray funnel is set to L1. As shown in Figure 2, the FCRF

structure was highly modular, featuring a simple design and easy

maintenance. It was cost-effective in both production and

maintenance, making it scalable across various agricultural

applications. During system operation, the spraying precision

depended on the accurate synchronization of multiple timing

parameters. First, from the moment the vision system captured

the target area to the initiation of the spray funnel motor, there was

an inherent signal processing and transmission delay, denoted as T1.

Additionally, as pesticide particles fell from the height H1 to the

target height H2 of the center leaf areas, a height difference DH=H1-

H2 existed. The time required for the particles to fall was

represented by T2. Assuming the mobile platform equipped with

the system moved at a speed of V1, the time required to travel a

distance of Length1 was T3. For the system to achieve accurate

spraying, the following relationship needed to be satisfied: T1
Frontiers in Plant Science 04
+T2=T3. This implied that the total time for signal transmission

and particle descent should equal the time the mobile platform took

to reach the target position, ensuring that the pesticide was applied

precisely at the intended location.

As shown in the Figure 2, during the signal processing delay T1,

the mobile platform ran a distance of L2. Subsequently, the spray

motor was activated, and the pesticide particles began to fall,

covering a distance of L3 before finally reaching the designated

center leaf area of the corn. However, in real-world agricultural

operations, the travel speed of platform V1could vary due to factors

such as complex terrain and crop conditions, leading to dynamic

changes in T3. To ensure the precise matching of T1+T2=T3, the

system primarily achieved this through dynamic adjustment of the

funnel motor rotational speed, while keeping path L1 constant. The

system could also dynamically adjust the additional delay T4 in the

signal transmission process. These adjustments compensated for

any time deviations caused by changes in travel speed. The dynamic

adjustment mechanism ensured that high accuracy in pesticide

particle delivery was maintained during operations, thus enhancing

agricultural efficiency and crop protection.

The mechanical structure was optimized for row-planted

agricultural fields, where one delivery system corresponded to one

row of plants. For corn fields specifically, the open structure of corn

leaves allowed delivered solid granules to roll down toward the

central target area, representing a critical characteristic that guided

the FCRF design. This structure implemented an asynchronous

operation between visual detection and pesticide application,

utilizing and eliminating the delay between target detection and

dispenser activation. The asynchronous operation demonstrated

another significant advantage in preventing error accumulation, as

detection and delivery were performed separately, enabling error

correction in each delivery decision. In field operations, one FGA-

Corn structure corresponded to one row of target plants, therefore,
FIGURE 2

Front camera and rear funnel mechanical structure display diagram.
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the pesticide delivery system was configured in a multi-row cascade

arrangement to maximize coverage area and enhance

operational efficiency.
2.1.3 Agri spray decision system
The ASDS (Adaptive Spraying Decision System) is the core

algorithm responsible for controlling precise pesticide spraying,

with its specific process illustrated in Figure 3.

In this framework, this study defines post-processing

algorithms and logic based on the YOLO (You Only Look Once)

object detection system. Initially, a baseline rectangular box is

manually defined on the detection window display page; this box

contains a crosshair icon centered within it. When the detection

system is operational, the YOLO algorithm processes images

captured in real-time by the camera and performs post-

processing logical judgments: if center leaf areas of corn are

detected, the system evaluates whether this detected area overlaps

with the predefined baseline rectangular box. Once the detection

box meets the predefined overlap conditions with the baseline

rectangular box, the system triggers the dosing decision and sends

corresponding dosing instructions to the signal transmission layer.

These instructions drive the spraying equipment via an STM32
Frontiers in Plant Science 05
microcontroller and an HBS57 fully digital closed-loop two-phase

stepper driver, thereby achieving automated control of the detection

algorithm and the dosing mechanical structure. To enhance the

flexibility and adaptability of algorithm, the dimensions of this

baseline rectangular box can be dynamically adjusted based on

different growth stages of the corn and the actual growth conditions

of the crops, thereby optimizing the precision of pesticide delivery.

Further details are elaborated in Algorithm 1.
Input: Video stream V from camera

Output: Motor control signals via HBS50

//Initialize system components

1: Initialize RS232_PORT, BAUD_RATE

2: Define RECT_REGION = {x1, y1, x2, y2}//Detection

zone coordinates

//Step 1. Main processing loop

3: while Video_Stream_Active do

4: frame ← GetNextFrame(V)

5: preprocessed_frame ← Preprocess(frame)

//Step 2. Object detection

6: detections ← GMA-YOLO_Detect(preprocessed_frame)

7: for each detection d in detections do
FIGURE 3

ASDS decision algorithm for YOLO post-processing in precision agriculture: (a) Post-processing visualization display window, (b) Signal transmission
logic, (c) Portable display screen, (d) Jetson main control device, (e) STM32 microcontroller, (f) HBS57 fully digital closed-loop two-phase stepper driver.
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Fron
8: {conf, label, (x, y)} ← d

9: DisplayDetection(frame, d)

//Step 3. Check intersection with defined region

10: if IntersectsRegion(x, y, RECT_REGION) then

11: DisplayMessage(“send message”)

//Step 4. Serial communication protocol

12: signal_packet ← FormatSignal(x, y, conf)

13: try:

14: SendSerialData(RS232_PORT, signal_packet)

15: catch CommunicationError:

16: HandleError()

17: end if

18: end for

19: end while

20: return TRUE//Return success status after completion
Algorithm 1. Agri spray decision system.

Additionally, the parameters of the rotating motor in the

execution layer (such as revolutions per minute) could be precisely

controlled and adjusted through software code to accommodate

various operational requirements and crop conditions.

Through this strategy that combined hardware adjustments

with software control, a software-based pesticide delivery decision

algorithm was developed, achieving precise and real-time delivery

to the center leaf areas of corn. This approach not only simplifies

manual operations but also improves pesticide application

efficiency through intelligent image processing, reducing over

spraying and enhancing the sustainability and economic benefits

of the operation.
2.2 Data acquisition and preparation

This study documented and analyzed image data collected

during pesticide application periods in the experimental fields of

Henan Agricultural University, Zhengzhou. The data collection was

conducted during the V6-V8 stage of corn, with images captured at

different times (morning 7:00-9:00 AM, noon 11:00 AM-1:00 PM,

and evening 4:00-6:00 PM) under sunny weather conditions. A total

of 162 high-resolution images (4000×3000 pixels) were captured

from an overhead view, with the camera positioned 0.5 to 1 meter

above the corn. The center leaf areas were annotated with the

LabelImg tool, and the dataset was split into training and test sets in

an 8.2:1.8 ratio. To enhance the generalization ability of the model, a

supplementary dataset (D2) containing 600 training images and 200

validation images was collected under identical conditions.

Motion blur augmentation was implemented to enhance

detection capability under high-speed operation conditions, while

random brightness adjustments (± 25%) and image rotation were

applied to simulate natural lighting variations and different viewing

angles. These methods expanded the initial dataset to 1,085 images

and the D2 dataset to 2,400 images, strengthening the accuracy and

robustness of the model in practical applications. Images of corn
tiers in Plant Science 06
during pesticide application and the target detection area were

shown in Figure 3.
2.3 GMA-YOLOv8 deep learning method

This study aimed to achieve real-time detection of the center

leaf areas of corn during its growth stages. After comparing various

network models, YOLOv8 was ultimately selected as the core model

due to its exceptional accuracy, despite having room for

improvement. To optimize performance, a series of comparative

experiments were conducted, leading to the selection of HGNetV2

as the backbone. HGNetV2 employed a hierarchical lightweight

feature extraction approach, effectively learning complex patterns

across multiple scales and abstraction levels, thereby enhancing its

capability to process complex image data.

Building on this foundation, the GHG2S backbone network was

designed, integrating the lightweight attention mechanism SimAM

to improve detection accuracy and speed. Research increasingly

indicated that applying attention mechanisms for feature extraction

and fusion could effectively mitigate the performance loss

associated with model lightweighting. Parameter-free attention

mechanisms like SimAM and MLCA enhanced feature focus

while maintaining high computational efficiency and model

simplicity, making them ideal for agricultural edge devices and

embedded systems.

To effectively integrate feature information, the Mixed Local

Channel Attention (MLCA) mechanism was introduced, and the

CM (C2f-MLCA) was proposed. Additionally, an Auxiliary Head

was incorporated for supplementary feature supervision to assist in

training, achieving high-precision identification of corn leaf regions.

Based on these designs and improvements, GMA-YOLOv8

maintained rapid detection speed while ensuring accuracy,

meeting the demands of edge computing. The architecture of the

improved model is illustrated in Figure 4.

2.3.1 Standard YOLOv8 model
YOLOv8 (You Only Look Once), introduced by Ultralytics,

represented a significant advancement over YOLOv5, enhancing

both performance and versatility (Bochkovskiy et al., 2020; Redmon

et al., 2016; Redmon and Farhadi, 2017; Redmon, 2018; Wang et al,

2023). The algorithm efficiency was improved, and new features were

introduced to enhance applicability. The model structure included an

input module that processed images using grayscale padding and data

augmentation, a backbone network that combined CBS and SPPF for

feature extraction—with the lightweight C2f module enhancing detail

recognition—a neck network that integrated features of different scales

using FPN and PAN structures, and a detection module that employed

anchor-free heads and a new loss function for precise predictions.

YOLOv8 also allowed parameter tuning for width (W), depth (D), and

ratio (R) to create models of various sizes (N/S/M/L/X), supporting

tasks like object detection and semantic segmentation across diverse

industries. This study focused on optimizing the lightweight YOLOv8n

model for edge computing deployment, aiming to provide a more

efficient solution.
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2.3.2 Feature extraction backbone GHG2S
YOLOv8, developed by Ultralytics, employed techniques such

as CBS, C2f, and SPPF for feature extraction in the backbone

network. However, its complex network structure was not

conducive to edge deployment. To address this issue, a new

lightweight backbone network, named GHG2S, was designed as

shown in Figure 4. The GHG2S structure was introduced through

three improvement measures.

Firstly, a series of mainstream lightweight backbone networks

was tested to select an appropriate structure. After these

experiments, HGNetV2 was chosen to replace the original

backbone network due to the significant reduction in model

parameters achieved through its hierarchical feature extraction

method. HGNetV2, serving as the backbone network of RT-

DETR, utilized a hierarchical lightweight feature extraction

method to learn complex patterns at multiple scales and

abstraction levels, thereby enhancing the ability of this network to

handle complex image data. Features were extracted through

continuous convolution in the Stem layer, and integration of

features at different levels was performed using the HGBlock in

Figure 4, incorporating residual connections and specific

convolution layers. The number of parameters was reduced, and

the efficiency and expressiveness of high-level feature extraction

were improved through DWConv downsampling. The outstanding
Frontiers in Plant Science 07
performance of HGNetV2 in feature extraction was attributed to its

excellent network architecture.

Despite its superior architecture, many repeated HGBlocks in

HGNetV2 contained numerous ordinary convolutions that required

substantial computational resources. Therefore, the second

improvement involved replacing the convolutional layers in the

HGBlock with GhostConv to further reduce the number of model

parameters. The working details of GhostConv were as follows: the

module first received the image and reduced the number of feature

layers through non-linear convolution (CBS: Conv2D,

BatchNormalization, SiLU), using fewer convolution kernels. Linear

convolution (such as 3x3 or 5x5 kernels) was then applied to the

feature map for feature mapping, followed by merging the results of

these two steps. Mathematically, the input dimension was chw (input

channel number, height, width), and the output dimension was nhw

(output channel number, height, width). Assuming n
s represented the

number of output channels after the first transformation, Ghost

convolution was shown to be significantly lower than regular

convolution in terms of computation and parameter quantity after

s transformations. This is particularly evident when comparing the

sizes of the regular convolution kernel k and the linear

transformation kernel d. As depicted in Equations 1 and 2, the

efficiency of Ghost convolution is highlighted, demonstrating reduced

computational load and fewer parameters required.
FIGURE 4

Improved model overview display.
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R _ S =
w 0 ·h 0 ·n · c · k2

w 0 ·h 0 · ns · (c · k
2   +   d2 · (s − 1))

≈ s (1)

R _C =
s · k2

k2 + (s − 1) · c · d2
≈ s (2)

After the above two improvements, the model parameters of the

backbone network were significantly reduced, but this slightly

affected its ability to extract features, resulting in a reduction in

accuracy. To compensate for this performance loss, the third

improvement introduced the SimAM (Simultaneous Attention

Module) attention mechanism at the end of the new backbone

network. By focusing on channel and spatial information from a

three-dimensional perspective, it enhanced the quality of feature

extraction. SimAM was designed as a lightweight attention module

to address the issues of traditional attention mechanisms, which

required additional subnetworks (such as GAP+FC+ReLU+FC

+Sigmoid) to generate weights and lacked flexibility. It did not

add extra parameters and was capable of generating three-

dimensional attention weights for feature maps that integrated

spatial and channel dimensions.

SimAM utilized an energy optimization function based on

neuroscience to evaluate the importance of neurons both

concisely and efficiently, as illustrated in Equations 3. Most of its

operations were based on this energy function, thereby reducing the

need for structural adjustments. This method not only improved

the portability of the module and flexibility but also enhanced its

efficiency across various tasks. By defining the energy function and

utilizing binary labels and regularization terms, denoted in

Equation 4, SimAM accurately calculated the importance of

neurons, as shown in Equations 5, 6. It simplified the process of

obtaining analytical solutions, encapsulated in Equation 7, and

effectively represented the statistical characteristics of neurons in

the (H) and (W) dimensions, signified by Equation 8.

e _ t(w _ t, b _ t, y _ t, x _ i)

= (y _ t − t̂ )2 +
1

Mall − 1 o
Mall−1

i=1
(y _ o − x̂ _ i)2 (3)

e _ t(w _ t, b _ t, y _ t, x _ i) = 1
Mall−1 o

Mall−1

i=1
( − 1 − (wt*x _ i + b _ t))2

+(1 − (w _ t*t + b _ t))2 + lw _ t2

(4)

w _ t =
−2(t − u _ t)

(t − mt)
2 + 2s 2

t + 2l
(5)

b _ t =
−1
2
(t + u _ t)w _ t (6)

e _ t* =
4(ŝ 2 + l)

(t − m̂ )2 + 2ŝ 2 + 2l
(7)
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� �
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Where w _ t is the weight vector at time t, b _ t is the bias term at

time t, y _ t is the true label, x _ i is the input feature vector for the i-

th sample; M _ all is the total number of samples, l is the

regularization parameter, t is the target value, u _ t is the mean of

the target values, ŝ 2 is the variance of the target values, E is the

energy measure, X _ o is the original input feature matrix.

2.3.3 Neck Module CM and MLCABlock
YOLOv8n employed a C2f structure containing multiple

bottleneck layers to extract features, aiming to improve the

computational efficiency of the model. However, this structure

had some limitations. First, C2f primarily enhanced the ability of

this model to capture detailed features through convolution

operations, but it exhibited limitations in the diversity and

richness of feature representation. Second, C2f focused on the

extraction of spatial features while overlooking the dynamic

dependencies between channels. This imbalance limited

performance in tasks requiring fine-grained recognition

and classification.

To address these issues, a new CM module was designed to

replace the C2f module by introducing the MLCA (Mixed Local

Channel Attention) mechanism in the bottleneck layer of the C2f

module, as shown in Figures 5a, b. By considering channel and

spatial attention at both local and global levels, the CM module

significantly enhanced the capture of key features with minimal

parameters, providing more diverse and rich feature representations

and improving understanding and processing capabilities for

complex scenarios, which resulted in a significant performance

improvement in object detection tasks.

The excellent performance of the CM module benefited from

the integration of the MLCA mechanism, illustrated in

Figures 5c, d. MLCA was an efficient and lightweight attention

mechanism that significantly improved object detection accuracy

with only a small increase in parameters. It addressed the problems

of traditional channel attention mechanisms that focused solely on

one-dimensional weights while ignoring spatial information, as well

as the high computational cost associated with spatial attention

mechanisms. MLCA integrated channel and spatial information to

balance model complexity and performance. The basic structure

included Local Average Pooling (LAP) and Global Average Pooling

(GAP). By performing 1D convolution on pooled features,

rearranging and combining them with original features, and

strengthening useful features, MLCA maintained computational

efficiency while enhancing feature capture capabilities, achieving

significant improvements in accuracy.

2.3.4 Deep supervision auxiliary head
The traditional single-head network model, such as YOLOv8n,

exhibited several shortcomings. Firstly, the model could not fully

utilize the rich features of the middle layer if it relied solely on the
frontiersin.org

https://doi.org/10.3389/fpls.2025.1571228
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Song et al. 10.3389/fpls.2025.1571228
final output for error feedback, which hindered the ability of this

model to perform deep learning and feature refinement, causing

it to fail to exploit its potential fully. Secondly, in situations where

the target was small, occluded, or complex, such as the center leaf

areas of corn, single-head network structures faced the problem of

insufficient recall, meaning the model might not effectively identify

or detect all relevant instances, especially in complex scenarios.

To address the challenges brought about by the shortcomings of

the standard YOLOv8 detection head, a method was proposed that

combined an Auxiliary Head with the standard YOLOv8 detection

head (Lead Head) (Wang et al., 2023). The improved detection

module was shown in Figure 6a. The Aux Head was designed based
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on a deep supervision strategy, aiming to provide additional feature

supervision through the auxiliary training head to optimize the

capture of scale and hierarchical features. This design allowed the

model to capture feature information of different scales and levels

during the training process and use this information to optimize

training results.

Specifically, the Aux Head combined the weights of the shallow

network, auxiliary loss, and the final detection result with the real

label to generate soft labels. These soft labels utilized finer-grained

labels when training the Lead Head and coarser labels when training

the Auxiliary Head, as shown in Figure 6b. This design enabled the

Auxiliary Head to select additional cells as positive samples, thereby
FIGURE 6

(a) Aux head structure diagram. (b) Coarse-to-fine lead head guided label assigner diagram.
FIGURE 5

CM network structure diagram: (a) CM, (b) MLCA-Block, (c) MLCA attention schematic, (d) MLCA attention network structure diagram.
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relaxing the restrictions on the potential area of positive samples

and improving the recall rate.

In addition, the Auxiliary Head adopted the SimOTA algorithm

(Ge, 2021; Ge et al., 2021), inheriting the idea of OTA to improve

the allocation process of real samples. SimOTA considered the

Intersection of Union (IoU) and classification results, further

enhancing the performance. After introducing the Aux Head, the

model overcame the detection challenges caused by the small size,

overlapping, or high complexity of the targets in the center leaf

areas of corn, achieving better training results.
2.4 Deployment on Jetson Xavier NX

To achieve real-time detection on resource-constrained edge

devices in smart agriculture, the GMA-YOLOv8 model was

deployed on the Jetson Xavier NX, eliminating delays associated

with server communication. This embedded device was installed on

unmanned spraying vehicles or robotic systems, functioning

independently of network connections. The deployment process

involved preparing a test dataset, importing and converting the

trained model, compiling necessary libraries, and conducting

rigorous performance evaluations. The system captured video

streams using the DF-100 monocular camera, processed them

with the GMA-YOLOv8 model, and displayed detection results in

real-time on a connected monitor. Additionally, the ASDS algorithm

was deployed on the Jetson Xavier NX to perform post-processing

on YOLO outputs, with integrated signals communicated via a 232

serial port to the STM32 microcontroller. This approach

significantly enhanced the reliability and feasibility of automated

sustainable operations for unmanned spraying vehicles.
2.5 Experimental platform, environment,
and parameter settings

2.5.1 Model training platform
The experimental setup for this study was configured as follows:

The deep learning model was trained and evaluated on an NVIDIA

GeForce RTX 3090 GPU hosted on AutoDL platform. The

experimental code was developed using Python 3.10.14, PyTorch

2.2.2+cu121, and torchvision 0.17.2+cu121.

2.5.2 Training parameters
The improved networks were trained without using the pre-

trained model yolov8n.pt. The learning rate (lr0) was set to 0.01,

with the final learning rate (lrf) also at 0.01. Momentum was

established at 0.937, and weight decay was configured to 0.0005.

Warmup epochs were set to 3.0, with warmup momentum adjusted

to 0.8 and warmup bias learning rate defined as 0.1. The number of

workers was set to 4, and the optimizer chosen was SGD, with

mixed precision (amp) enabled. Intersection over Union (IoU) was

set to 0.7, replacing the previously considered value of 0.65 for
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consistency in training parameters. The number of epochs was set

to 300, and the image size was defined as 640. These configurations

ensured a consistent training environment and optimized

model performance.

The selection of these hyperparameters was based on multiple

considerations. First, through a comprehensive grid search

approach, learning rates ranging from 0.001 to 0.1 were tested,

where 0.01 demonstrated the optimal balance between convergence

speed and stability. The momentum value of 0.937 and weight decay

of 0.0005 were initially referenced from the successful practices in

YOLOv8, and their effectiveness in this specific task was confirmed

through experimentation. Additionally, ablation studies on these

key parameters were conducted, which showed that this

combination achieved the best trade-off between detection

accuracy and training efficiency for corn leaf detection.

Furthermore, these parameters also aligned well with the

characteristics of the relatively small dataset, preventing

overfitting while ensuring effective feature learning.
2.5.3 Embedded development platform Jetson
configuration

In this study, the configuration parameters of the Jetson

embedded device were as follows: the NVIDIA Jetson Xavier NX

Developer Kit operated on the Ubuntu 20.04 LTS (focal) platform.

The system was powered by the Tegra194 SoC, featuring a CUDA

architecture of 7.2. The software environment included PyTorch

version 2.0.0, optimized for the NVIDIA Jetpack 5.1.1 framework,

which provided enhanced performance for deep learning

applications. Additionally, Torchvision version 0.15.1a0 was

employed, ensuring compatibility with the latest features and

improvements. The CUDA toolkit version 11.4.315 and cuDNN

version 8.6.0.166 were also integrated, facilitating efficient GPU

acceleration for both training and inference tasks. This setup was

designed to leverage the powerful capabilities of the Jetson platform

for advanced computer vision applications.
2.6 Model evaluation metrics

2.6.1 Network model evaluation metrics
This study utilized a variety of metrics tomeasure improvements in

model accuracy, including Precision (Equation 9), which represented

the proportion of actual positives among predicted positives, and Recall

(Equation 10), which indicated the proportion of actual positives that

were correctly predicted. Subsequently, the average precision AP

(Equation 11) was computed for a single class. For the entire task,

the mean average precision (mAP) (Equation 12)was obtained by

averaging all APs corresponding to all classes. Additionally, the mAP50

metric was introduced, which represented the mean average precision

under the condition of Intersection over Union (IoU) of 0.5. The

prediction results were categorized into four classifications: True

Positive (TP), True Negative (TN), False Positive (FP), and False

Negative (FN), to comprehensively evaluate the performance.
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P =
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P(R)dR (11)
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C

j=1
APj (12)

To assess the complexity of the model, three key indicators were

employed: the number of floating-point operations (FLOPs), the

number of model parameters (Parameters), and the storage size of

the model (Size). FLOPs measured the amount of computation

required to execute the model, while the number of parameters

reflected the complexity of the structure, and the storage size related

to the convenience of model storage and deployment. During

testing, all latency measurements were uniformly conducted on

an NVIDIA RTX 3090 GPU to minimize performance variations

that might occur on laptops. The results were obtained by

calculating the average latency from three independent trials for

each condition. The mean latency was determined to represent the

central tendency of the measurements. Additionally, the standard

deviation was calculated to assess the variability of the latency

values across the trials. The final results are presented in the format

of “Mean ± Standard Deviation” to provide a clear understanding of

both the average performance and its consistency. These

performance indicators offered a basis for a comprehensive

understanding and optimization of the performance on

edge devices.

2.6.2 Evaluation metrics for the medication
delivery system

To assess the effectiveness and reliability of the medication

delivery system, the following evaluation metrics were established:

Delivery Rate: The delivery rate measured the ratio of the number of

plants that successfully received solid pesticide granules at the target

areas to the total number of tested plants, as shown in Equation 13.

Nsuccess represented the number of successful deliveries, and Ntotal

represented the total number of tested plants.

Detection Accuracy: The detection accuracy evaluates the

ability of the deep learning model to accurately identify center

leaf areas. It is calculated as the ratio of correctly identified leaf areas

to the total number of leaf areas, as shown in Equation 14. Ncorrect

represents the number of correctly identified leaf areas, and Nleaf

represents the total number of leaf areas.

Delivery Precision: The delivery precision assesses the ratio of

successfully delivered pesticide granules to accurately identified

areas. It is calculated as the number of accurate deliveries to the

number of identified target areas, as shown in Equation 15. Naccurate

represents the number of accurate deliveries, and Nidentified

represents the number of identified target areas.
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Delivery  Rate = (
Nsuccess

Ntotal
)� 100% (13)

Detection  Accuracy = (
Ncorrect

Nleaf
)� 100% (14)

Delivery   Precision = (
Naccurate

Nidentified
)� 100% (15)
3 Results

This study conducted a comprehensive evaluation of network

performance by presenting and analyzing results from computer-

based training environment and the Jetson embedded platform. An

in-depth exploration of the effectiveness of the network

improvements was provided. Furthermore, the study examined

how these enhancements impacted the functionality of the

network across various application scenarios. Sections 3.1 to 3.4

focused on performance metrics on GPU platforms, while Section

3.5 was dedicated to the performance outcomes from field tests

conducted on the Jetson embedded platform.
3.1 Comparative analysis of different
backbone feature extraction networks

This study aimed to enhance the performance of YOLOv8n by

integrating diverse architectural backbones, with comparative

results presented in Table 1. The results revealed a consistent

trade-off among model accuracy, size, and inference speed across

various configurations.

While the baseline YOLOv8n demonstrated robust initial

performance (mAP: 0.929 on Dataset D1, 0.883 on Dataset D2),

attempts to improve specific aspects yielded varied outcomes. For

instance, models such as GhostNet and GhostNetV2 (Tang et al.,

2022) achieved notable detection performance, albeit at the expense

of slightly increased inference latency (12.0 ± 0.1 MS and 11.4 ± 0.8

MS, respectively). Conversely, the MobileNet series and FasterNet

(Chen et al., 2023) prioritized inference velocity, which generally led

to a reduction in detection accuracy. EfficientViT (Liu et al., 2023)

exhibited competitive accuracy on one dataset but displayed a

marked decrease on another, coupled with slower processing

speeds. The HGNet series, however, presented a more balanced

approach, maintaining efficiency and consistent performance.

Within this series, the enhanced GhostHGNetV2 and GHG2S

variants were particularly prominent, aligning with the

conclusions of Huang et al. (2024) and Yan et al. (2024),

distinguished by their minimal parameter count (2.3M) and

FLOPs (6.8G).

Ultimately, YOLOv8n+GHG2S was identified as the optimal

configuration. It achieved an exceptional balance of high detection

precision (D1: 0.920 mAP, D2: 0.888 mAP) and rapid inference
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speed (08.0 ± 0.3 MS). This renders YOLOv8n+GHG2S particularly

well-suited for demanding edge computing applications in

precision agriculture, effectively mitigating the typical

performance degradation associated with l ightweight

backbone designs.
3.2 Ablation analysis of the impact of
attention application methods on deep
model performance

3.2.1 Attention contrast experiments in main
network

To overcome the limitations of single-level feature extraction in

network architectures and compensate for performance loss

incurred by lightweight backbone networks, this study introduced

the three-dimensional attention mechanism SIMAM and the mixed

channel-space attention mechanism MLCA. Ablation experiments
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were conducted focusing on the critical p5 layer (methodologies

illustrated in Figure 7) to optimize detection performance.

Results presented in Table 2 elucidate that Figure 7b, employing

SIMAM, achieved higher accuracy on both datasets compared to

Figure 7a, while MLCA in Figure 7c demonstrated stronger

detection capabilities than Figure 7d. This discrepancy highlights

the differential information processing abilities of SIMAM and

MLCA. SIMAM enhanced the sensitivity to three-dimensional

cues, whereas MLCA prioritized the augmentation and

integration of salient features along with contextual information

within the feature map. Furthermore, the design of scheme (c)

significantly mitigated the risk of excessive feature amplification,

thereby improving detection capabilities.

These results confirm the efficacy of SimAM in optimizing

feature extraction of GHG2S backbone. Inspired by research of

Huang et al. (2022) on selective connection mechanisms, this study

further explored optimal attention mechanism configuration

strategies. Results demonstrate that scheme (g) achieved the best
TABLE 1 Comparative performance of different backbones applied in YOLOv8n.

Model Dataset Precision Recall mAP0.5 (Val) Params (M) FLOPs (G) Size (MB) Latency (MS)

V8n
D1 0.915 0.896 0.929

3.0 8.1 6.0 07.2 ± 0.6
D2 0.867 0.805 0.883

V8n+FasterNet
D1 0.852 0.886 0.896

4.1 10.7 8.2 08.6 ± 0.7
D2 0.844 0.822 0.878

V8n+GhostNet
D1 0.856 0.867 0.910

2.0 5.5 4.2 12.0 ± 0.1
D2 0.862 0.794 0.876

V8n+GhostNetV2
D1 0.854 0.896 0.925

3.0 7.2 6.3 11.4 ± 0.8
D2 0.863 0.831 0.893

V8n+MobileNetV2
D1 0.795 0.774 0.832

2.3 6.3 4.7 09.5 ± 0.5
D2 0.843 0.809 0.872

V8n+MobileNetV3
D1 0.824 0.85 0.827

2.2 5.4 4.5 09.9 ± 0.2
D2 0.854 0.791 0.887

V8n+EfficientViT
D1 0.884 0.886 0.924

4,0 9.4 8.4 22.9 ± 0.6
D2 0.844 0.778 0.856

V8n+HGNetV2
D1 0.854 0.851 0.894

2.3 7.0 5.0 07.8 ± 0.4
D2 0.876 0.804 0.891

V8n+RepHGNetV2
D1 0.820 0.879 0.898

2.3 6.9 4.8 08.0 ± 0.9
D2 0.846 0.780 0.865

V8n+GhostHGNetV2
D1 0.857 0.908 0.918

2.3 6.8 4.7 08.0 ± 0.1
D2 0.859 0.813 0.888

V8n+GHG2S
D1 0.901 0.872 0.920

2.3 6.8 4.9 08.0 ± 0.3
D2 0.855 0.827 0.888
In order to ensure that different feature extraction networks applied after YOLOv8n had model sizes on the same order of magnitude, the following specific models were selected: FasterNet_t0,
GhostNet_050, GhostNetV2_100, MobileNetV2_050, MobileNetV3_small_050, and EfficientViT_M0. The Latency values were measured with the batch size set to 1.
The bolded text indicates the best-performing network architecture.
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TABLE 2 Ablation analysis of the impact of attention application methods on deep model performance.

Model Dataset Precision Recall
mAP0.5
(Val)

Params (M) FLOPs (G) Size (MB) Latency (MS)

GY-S_10 (a)
D1 0.857 0.926 0.926

2.3 6.8 6.2 8.5 ± 0.2
D2 0.882 0.795 0.880

GY -S_11 (b)
D1 0.893 0.903 0.934

2.3 6.8 6.2 8.5 ± 0.6
D2 0.870 0.819 0.896

GY -M_10 (c)
D1 0.875 0.900 0.933

2.3 6.8 6.2 9.0 ± 0.1
D2 0.888 0.821 0.891

GY -M_11 (d)
D1 0.867 0.899 0.916

2.3 6.8 6.2 8.4 ± 0.6
D2 0.887 0.807 0.897

GY -S_10+MLCA (e)
D1 0.864 0.900 0.904

2.3 6.8 6.2 9.5 ± 0.4
D2 0.868 0.812 0.890

GY -S_11+MLCA (f)
D1 0.889 0.908 0.932

2.3 6.8 6.2 8.9 ± 0.7
D2 0.859 0.816 0.887

GY -S_10+CM (g)
D1 0.912 0.925 0.945

2.3 6.8 6.2 9.1 ± 0.3
D2 0.899 0.805 0.901

GY -S_11+CM (h)
D1 0.9 0.867 0.929

2.3 6.8 6.2 9.1 ± 0.6
D2 0.878 0.806 0.888
F
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In this table, “GY” stands for GMA-YOLOv8, “S” stands for SimAM attention, “M” stands for MLCA attention.
The bolded text indicates the best-performing network architecture.
FIGURE 7

Different applications of attention. (a, b) two structures using SimAM attention, (c, d), two structures using MLCA, (e, f), two structures using SimAM
and MLCA, (g, h), two structures using SimAM and CM.
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overall performance across both datasets, strongly validating the

superiority of strategically fusing different attention mechanisms,

rendering it an ideal choice for high-precision, high-efficiency

agricultural edge detection.

3.2.2 Attention contrast experiments in neck
network

Based on the design of incorporating SIMAM attention into the

GHG2S backbone, supplementary experiments were conducted to

optimize the feature-capturing deficiencies introduced by the

original C2f structure. These experiments explored the efficacy of

attention mechanisms within the neck network, as depicted in

Figure 7e–h. Initial attempts to integrate MLCA into the neck

network and increase its depth led to decreased performance, as

shown in Figure 7e, f. However, strategically applying attention

mechanisms within the bottleneck of the C2F structure, along with

the development of the CM module, boosted performance to a

mean average precision (mAP) of 94.5%, as illustrated in Figure 7g,

while maintaining an acceptable inference velocity.

The success of the CM module lay in its ability to alleviate

potential issues by directing focus towards essential features and

optimizing the processing of multi-scale information.

Consequently, it dynamically enhanced critical features to

improve computational efficiency and achieve a balance between

performance and speed.

3.2.3 The synergistic integration of SIMAM and
MLCA mechanisms

In essence, the juxtaposition and ablation studies conducted

indicated that the synergistic application of SimAM and the MLCA-

bearing CM module to the network structure (scheme g) facilitated

optimal feature extraction and surpassed the outcomes achievable

through their isolated application. This synergy not only addressed

the limitations inherent in the singular applications of each

mechanism but also fostered their mutual enhancement, thereby

augmenting the capability of this network to extract complex

features and amalgamate contextual data. This, in turn, markedly

boosted detection accuracy, substantiating the premise that the

proposed integration of SimAM and MLCA attention mechanisms

could effectively resolve the challenges associated with single-level

feature extraction.

3.2.4 Backbone and attention visualization
analysis

Gradient-weighted Class Activation Mapping (Grad-CAM)

(Selvaraju et al., 2020) was employed to generate heatmaps

visualizing the center leaf areas, where GHG2 represents

GhostHGNetv2. The heatmaps provided intuitive visualization of

the regions in feature maps that attracted the attention. Through

backpropagation of the output class confidence, gradient values

were calculated, with higher values displayed in deeper red and

lower values in deeper blue. The heatmap generation utilized the

following parameters: method: Grad-CAM; layers: [10, 12, 14, 16,
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18]; backward type: ‘class’; confidence threshold: 0.2; ratio: 0.02;

show box: False; renormalize: True.
• YOLOv8n: Small, concentrated areas of high activation on

corn leaves, indicating focus on specific, localized

features. (Figure 8a)

• YOLOv8n+GHG2: Slight shift in attention patterns with

GHG2 backbone, showing both diffuse and sharp focus

areas, suggesting altered feature extraction. (Figure 8b)

• YOLOv8n+GHG2S: More coherent and broader activation areas

with SimAMmodule, implying improved feature integration and

attention to larger contextual regions. (Figure 8c)

• YOLOv8n+GHG2S+C: Most comprehensive attention

distribution with CM, showing larger, intense activation

areas across corn structures. This suggests enhanced capture

of holistic features and contextual information, potentially

improving detection in complex backgrounds. (Figure 8d)
The heatmap visualization intuitively validated the effectiveness

of the proposed improvements.
3.3 Albation study

This study, based on YOLOv8n, achieved an optimal balance

between model lightness and performance efficiency through three

progressive improvement strategies, with ablation study results

detailed in Table 3.

Firstly, by introducing the GHG2S backbone network (YOLOv8n

+G), model complexity was significantly reduced, with parameters,

FLOPs, and model size substantially decreased (2.3M parameters, 6.8G

FLOPs, 4.9MB size), while maintaining high mAP on both datasets

(D1: 0.920, D2: 0.888). GHG2S, leveraging hierarchical feature

extraction of HGNetV2 and the SimAM attention mechanism,

enabled efficient feature extraction without sacrificing performance.

Subsequently, the innovative CM design (YOLOv8n+G+C) further

enhanced model performance (D1 mAP: 0.935, D2 mAP: 0.890) by

integrating channel and spatial attention mechanisms to optimize

feature integration, with only a minimal increase in computational

load. Finally, the integration of the AuxHead component (YOLOv8n

+G+C+A) led to the highest mAP scores (D1: 0.945, D2: 0.901) and a

significantly improved recall rate, primarily attributable to the

enhanced training quality provided by deep supervision.

In summary, through these optimization strategies and

innovative designs specifically targeting the center leaf areas of

corn, the proposed model achieved excellent detection performance

while maintaining its lightweight nature (2.3M parameters, 6.8G

FLOPs) and computational efficiency. The final configuration

balanced model compression and inference speed, demonstrating

a latency of 9.1 ± 0.3 MS. These consistent performance

improvements validate the capability to significantly enhance

efficiency and efficacy in computer vision tasks, particularly for

edge computing scenarios like those involving agricultural robots.
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TABLE 3 Ablation study results: model performance and efficiency metrics of different configurations.

Method Dataset Precision Recall mAP0.5 (Val) Params (M) FLOPs (G) Size (MB) Latency (MS)

YOLOv8n
D1 0.915 0.896 0.929

3.0 8.1 6.0 07.2 ± 0.6
D2 0.867 0.805 0.883

YOLOv8n+G
D1 0.901 0.872 0.920

2.3 6.8 4.9 08.0 ± 0.3
D2 0.855 0.827 0.888

YOLOv8n+G+C
D1 0.916 0.912 0.935

2.3 6.9 4.7 9.0 ± 0.5
D2 0.869 0.828 0.890

YOLOv8n+G+C+A
D1 0.912 0.925 0.945

2.3 6.8 6.2 9.1 ± 0.3
D2 0.899 0.805 0.901
F
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In this table, “G” stands for GHG2S, “C” stands for CM, “A” stands for Aux Head. The Latency values were all measured with the batch size set to 1.
The bolded text indicates the best-performing network architecture.
FIGURE 8

Grad-CAM visualization heatmaps for different backbone and attention module configurations: (a) YOLOv8n, (b) YOLOv8n+GHG2, (c) YOLOv8n
+GHG2S, (d) YOLOv8n+GHG2S+C.
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3.4 Comparison of state-of-the-art
methods

The comparative analysis between the advanced network

architecture and conventional detection algorithms demonstrated

that the enhanced algorithm achieved a superior mAP50 score of

0.945 on the first dataset (D1), surpassing all other competing

methods. Although the performance gap is 0.3 mAP50 points

compared with RT-DETR-R18 on the second dataset (D2), the

proposed GMA-YOLOv8 algorithm shows comprehensive

advantages in lightweight implementation. The architectural
Frontiers in Plant Science 16
efficiency was particularly noteworthy, as the model was

developed with approximately one-tenth of the parameter volume

required by conventional counterparts, while simultaneously

achieving twice the operational speed of comparable algorithms.

This systematic evaluation, which encompassed both detection

precision and computational efficiency, confirmed the

effectiveness and technical superiority of the algorithm. Complete

performance metrics for all compared models were systematically

documented in Table 4 and Figure 9.

Figure 10 presents the comparison of detection performance for

various models.
TABLE 4 Comparison of experimental results of different models.

Model
mAP0.5(Val)

Params (M) FLOPs (G) Size (MB) Latency (MS)
Dataset 1 Dataset 2

YOLOv7-tiny 0.882 0.901 6.0 13.0 11.7 14.8 ± 0.3

YOLOv9t 0.903 0.901 2.6 10.7 6.1 16.4 ± 0.8

YOLOv10n 0.904 0.890 2.7 8.2 5.8 11.8 ± 0.1

YOLOv11n 0.917 0.885 2.6 6.3 5.5 09.2 ± 0.6

RT-DETR-R18 0.903 0.904 19.9 56.9 40.5 15.6 ± 0.4

YOLOv8n 0.929 0.883 3.0 8.1 6.0 07.2 ± 0.6

GMA-YOLOv8 0.945 0.901 2.3 6.8 6.2 09.1 ± 0.3
The Latency values were all measured with the batch size set to 1.
The bolded text indicates the best-performing network architecture.
FIGURE 9

Comparison of experimental results of different models: (a) Params, (b) Latency, (c) FLOPs, (d) mAP50-D1, (e) mAP50-D2, (f) Size.
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Analysis of these results reveals a broad performance spectrum.

YOLOv7-tiny showed the lowest actual detection confidence rate,

while YOLOv10n demonstrated strong detection for central targets

but lower confidence for peripheral ones. RT-DETR-R18 achieved

high overall confidence rates, though it risked low confidence (0.26) for

slightly occluded targets. YOLOv5n, YOLOv8n, YOLOv9t, and GMA-

YOLO consistently showed progressively improving performance.

Notably, all lightweight YOLO variants (YOLOv7-tiny, YOLOv10n,

YOLOv11n, and YOLOv8n) demonstrated false detections with low

confidence scores, potentially due to model overfitting issues.

Ultimately, GMA-YOLO achieved the best overall detection

performance among the compared models. This comparative

analysis provides an intuitive visualization of each strengths and

limitations in object detection tasks from a top-down perspective.
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3.5 GMA-YOLO performance across
planting densities and growth stages

To comprehensively evaluate and demonstrate the GMA-

YOLO detection performance and generalization capability in real

agricultural environments, this study conducted in-depth detection

experiments focusing on corn plants under varying planting

densities (e.g., sparse vs. dense cultivation) and at different crop

developmental stages (ranging from seedling to maturity, involving

dynamic changes in plant size, leaf morphology, and mutual

occlusion levels). These conditions were designed to fully simulate

the complexity and diversity of real field environments, thereby

verifying the robustness and adaptability in complex, dynamic

settings. The detection results are shown in Figure 11.
FIGURE 10

Object detection model comparison. (a1) YOLOv5n, (b1) YOLOv7-tiny, (a2) YOLOv9t, (b2) YOLOv10n, (a3) YOLOv11n, (b3) RT-DETR-R18, (a4)
YOLOv8n, and (b4) GMA-YOLO. CN denotes correct number and WN denotes wrong number.
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3.6 Field performance

In real corn field conditions, a systematic test of the pesticide

application system prototype was conducted to verify its

effectiveness. The main debugging equipment included an

NVIDIA Jetson NX embedded device, a 640 × 480 resolution

display, a keyboard, and a mouse, which were used to adjust the

rectangle size in the ASDS algorithm and the rotation speed

parameters of the funnel motor. During the testing process, the

application system was mounted on a mobile platform, with the

camera fixed approximately 0.5 meters above the corn plants.

Influenced by the best practices of YOLO, the experiments were

conducted under the condit ions of conf_thres=0.25,

iou_thres=0.45. The test results demonstrated that the sprayer
Frontiers in Plant Science 18
prototype could effectively detect the center leaf areas of the corn

and apply pesticides via the rotating motor. In the field experiments,

all groups except the first (45 plants) were tested on 50 corn plants

each. The experimental results, summarized as Mean ± Standard

Deviation, are presented in Table X. Specifically, the Delivery Rate

was 84.1 ± 3.3%, Detection Accuracy was 91.3 ± 1.9%, and Delivery

Precision was 92.2 ± 2.9%. The test results are shown in Table 5.

This section provided a comprehensive overview of the field testing

results, highlighting the performance of the application system and

the challenges faced, aiming to offer reference points for

future research.

It should be specifically noted that the field validation

experiments were exclusively conducted under Dataset D1

conditions. While Dataset D2 was subsequently incorporated for
FIGURE 11

GMA-YOLO detection of corn at different growth stages and planting densities.
TABLE 5 Field test results.

Ntotal Nidentified Nsuccess Delivery rate Detection accuracy Delivery precision Ntotal

1 45 42 40 88.9 93.3 95.2

2 50 45 43 86.0 90.0 95.6

3 50 46 42 84.0 92.0 91.3

4 50 44 41 82.0 88.0 93.2

5 50 46 40 80.0 92.0 87.0

6 50 47 44 88.0 94.0 93.6

7 50 45 40 80.0 90.0 88.9

8 50 46 43 86.0 92.0 93.5

9 50 45 41 82.0 90.0 91.1

Total 445 406 374 84.0 91.2 92.1

M ± SD 84.1 ± 3.3 91.3 ± 1.9 92.2 ± 2.9
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extended algorithm validation, its field testing was constrained by

seasonal agricultural cycles and equipment availability limitations.

The laboratory-based comparative analysis on D2 demonstrated

comparable performance trends to those observed in D1 field trials,

with detailed metrics presented in Section 3.3.

3.6.1 Deep model field test results
To evaluate the accuracy and applicability of the designed deep

learning model, field trials were conducted. During these tests, video

data output from the portable display was recorded in real-time for

subsequent statistical analysis. Out of 445 corn plants tested, the

GMA-YOLOv8 deep learning model successfully identified 406

plants, failing to detect 39. This resulted in a detection accuracy

of 91.3 ± 1.9%. Additionally, the YOLOmodel achieved a frame rate

of approximately 30 fps on the Jetson device.

3.6.2 Medication delivery system results
To assess the effectiveness and reliability of the pesticide

application system, a thorough inspection and documentation of

the treated corn plants were conducted. Out of the 445 plants, solid

pesticide granules were successfully delivered to the tender leaf

areas of 374 plants, with 71 plants not receiving treatment. This

resulted in a delivery rate of 84.1 ± 3.3%.
3.6.3 Analysis of unsuccessful deliveries
A detailed comparison of the test records revealed that 71 plants

did not receive treatment. Of these, 39 were due to the deep learning

model failing to accurately detect the tender leaf areas of the corn

plants, and 32 were due to the application system not accurately

delivering the pesticide granules to the corresponding areas.

Specifically, the delivery precision was calculated based on the

374 accurate deliveries out of the 406 identified target areas,

resulting in a delivery precision of approximately 92.2 ± 2.9%.

Through this analysis, it was concluded that while the application

system performed well in most cases, further optimization of the

deep learning model and application mechanism is necessary to

enhance overall detection and application accuracy.
3.6.4 Field test results analysis and system
performance evaluation

Field testing revealed 39 detection failures, primarily

attributable to environmental complexity and model performance

limitations. Detailed analysis showed that more than half of these

cases failed due to spatial overlap of corn leaves causing partial

occlusion of target areas, which exceeded the recognition

capabilities of the vision model. The remaining cases likely

resulted from multiple factors, including model precision

limitations, insufficient environmental adaptability, and adverse

imaging conditions, such as camera angle and motion blur

induced by platform movement. Despite these challenges, the

GMA-YOLOv8 model demonstrated a field detection accuracy of

91.3 ± 1.9%, providing clear directions for further optimization.
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Regarding delivery precision, analysis identified 32 cases of

inaccurate delivery. Benefiting from the synergistic design of the

FCRF mechanical structure and ASDS algorithm, the system

employs an asynchronous execution strategy for detection and

delivery, effectively preventing the accumulation of mechanical

errors. The delivery deviations were primarily attributed to timing

mismatches caused by signal processing delays. Additionally, the

significant terrain undulations in the experimental plot affected

equipment stability. Notably, the trajectory of solid pesticide

granules was minimally affected by wind forces, rendering this

factor negligible. Overall, the FGA-Corn system achieved a delivery

precision of 92.2 ± 2.9%, establishing a foundation for future

applications in complex agricultural environments. Subsequent

optimizations will focus on environmental factors, particularly

terrain adaptability.
4 Discussion

This study introduced FGA-Corn, a vision-based precision

pesticide application system specifically designed to target the

center leaf areas of corn plants. The system integrated a simple

yet efficient mechanical structure, an ASDS post-processing

algorithm that synergistically combined deep learning with

mechanical operation, and a lightweight, high-precision object

detection model. Unlike existing systems that often sprayed over

the entire target area despite incorporating visual algorithms (Hu

et al., 2024; El Amraoui et al., 2024; Upadhyay et al., 2024), FGA-

Corn innovatively shifted the spraying target to localized regions of

the plant, providing a novel solution for high-precision

pesticide application.

The proposed GMA-YOLO model demonstrated exceptional

performance, being both lighter (with a 23.3% reduction in model

size and a computational complexity of 6.8 GFLOPs) and more

accurate (achieving mAP@0.5 scores of 94.5% (+1.6%) and 90.1%

(+1.8%), respectively). Field test results further confirmed the

reliability and effectiveness, showing a detection accuracy of 91.3

± 1.9% for corn center leaves, a pesticide delivery rate of 84.1 ±

3.3%, and a delivery precision of 92.2 ± 2.9%.

Field tests in this study were primarily conducted using Dataset

D1. Additionally, an independent corn growth stage dataset, D2,

was collected and tested under laboratory conditions. Laboratory

results indicated that the overall performance trends of D2 were

consistent with those of D1, which validated the stability and

generalizability of the proposed method.

The design of the FGA-Corn system drew inspiration from the

morphological characteristics of corn plants, particularly the funnel-

like structure of the upper plant canopy. This design facilitated the

gravitational flow of applied pesticides to the target central area.

However, the accuracy of this vision-based spraying method was

highly dependent on visual information and presented challenges

such as leaf occlusion. Two main approaches were considered to

address this: optimizing the visual algorithm itself, or employing
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external equipment during field operations, such as devices designed to

gently move leaves aside.

Beyond the V6-V8 growth stages, which were the primary focus

of this study, the FGA-Corn system was also applicable to both early

and late growth stages of corn. Its applicability was notably stronger

in the late stages compared to early stages, as mature corn plants,

similar to those in the V6-V8 period, possessed larger leaf areas,

facilitating better gravitational movement of pesticide particles to the

target region. While suitable for young corn, the smaller target area

and leaf size in seedling plants might slightly increase the difficulty of

pesticide application. For different growth stages, localized precision

spraying could be achieved by adjusting parameters within the FGA-

Corn system, such as the distance from the funnel to the corn tender

leaf center and the rotation speed of the funnel. In practical

applications, the main spraying period was concentrated during the

early to mid-growth stages of corn plants.

Despite these significant achievements, this study still identified

limitations and areas for future improvement. To enhance the

understanding of the decision-making process of GMA-YOLO

model, further exploration into model interpretability, utilizing

visualization methods like CAM, was needed.

Furthermore, improving the generalization capability under

varying environmental conditions was considered crucial. This

could be approached through two primary avenues: first, from the

data perspective, for example, by employing data augmentation

strategies as utilized in this study or by expanding the dataset to

cover diverse conditions; and second, through the assistance of

external equipment, such as adding sunshades, rain shelters, and fill

lights to maintain optimal and consistent light intensity during

mornings, noons, evenings, and cloudy conditions. Given that

actual spraying operations were typically avoided during rainfall

to prevent pesticide runoff and muddy ground conditions,

physically maintaining constant light intensity was deemed more

efficient for practical engineering deployment.

Future research will also focus on optimizing mechanical

structures to enhance flexibility and durability. To reduce system

costs and optimize performance, studies on model quantization and

pruning techniques will be conducted to further reduce

computational load, and efforts will be made to deploy the system

on affordable embedded platforms like Raspberry Pi or RK3588.

While the system performed well in structured fields, challenges in

complex terrains will be addressed in future work through improved

mechanical design and extensive validation data collection.

Additionally, research on the adaptability of the system to different

crops and comprehensive environmental impact assessments are

planned to ensure sustainable agricultural implementation.
5 Conclusion

This study addresses the need for precision pesticide application

on corn center leaf areas by proposing the FGA-Corn system, which

integrates an innovative mechanical structure, an intelligent

decision algorithm, and an enhanced lightweight detection model.
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The system offers a novel solution for high-precision pesticide

spraying and holds significant practical value for applying

machine vision in precision agriculture. The key conclusions are

as follows.
1. This study designed the FCRF mechanical structure and

combined it with the ASDS decision algorithm to achieve

precise spraying based on real-time visual perception. Field

trials demonstrated a tender-leaf detection efficiency of

91.3 ± 1.9%, pesticide delivery efficiency of 84.1 ± 3.3%,

and delivery precision of 92.2 ± 2.9%. Deployment on the

Jetson Xavier NX platform confirmed the engineering

feasibility of system in real agricultural environments.

2. This study developed a lightweight GMA-YOLOv8 model

that, through architectural optimization, improved mAP

from 92.9% to 94.5% on Dataset D1 and from 88.3% to

90.1% on Dataset D2 (average gain of 1.7%), while reducing

computational load to 6.8 GFLOPs. Its stable cross-dataset

performance validates both the effectiveness of algorithmic

enhancements and strong generalization capability of this

study, establishing a new technical benchmark for

embedded agricultural vision systems.

3. This work shifts the pest and disease management

paradigm from field-scale coverage to localized, per-plant

targeting, constructing an automated precision spraying

framework that synergizes vision algorithms with

mechanical execution. This comprehensive solution

mitigates agricultural pollution and food safety risks,

holding important practical implications for sustainable

agricultural development. While significant progress was

made, future work will focus on improving detection

robustness in varied environmental conditions,

developing more adaptive mechanical structures for

diverse terrains, optimizing model efficiency for low-

power edge devices, and conducting broader field trials to

assess system generality.
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