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Tomato seedling stem and leaf
segmentation method based on
an improved ResNet architecture
Lina Zhang1, Xinying Li1, Zhiyin Yang1, Bo Yang2,
Shengpeng Yu1, Shuai Zhao1, Ziyi Huang1, Xingrui Zhang1,
Han Yang1, Yixing Lin1, Helong Yu1* and Minglai Yang1*

1College of Information Technology, Jilin Agricultural University, Changchun, China, 2College of
Information Engineering, Changchun University of Finance and Economics, Changchun, China
Introduction: The phenotypic traits of tomato plants reflect their growth status,

and investigating these characteristics can improve tomato production.

Traditional deep learning models face challenges such as excessive

parameters, high complexity, and susceptibility to overfitting in point cloud

segmentation tasks. To address these limitations, this paper proposes a

lightweight improved model based on the ResNet architecture.

Methods: The proposed network optimizes the traditional residual block by

integrating bottleneck modules and downsampling techniques. Additionally, by

combining curvature features and geometric characteristics, we custom-

designed specialized convolutional layers to enhance segmentation accuracy

for tomato stem and leaf point clouds. The model further employs adaptive

average pooling to improve generalization and robustness.

Results: Experimental validation demonstrated that the optimized model

achieved a training accuracy of 95.11%, a 3.26% improvement over the

traditional ResNet18 model. Testing time was reduced to 4.02 seconds (25%

faster than ResNet18’s 5.37 seconds). Phenotypic parameter extraction yielded

high correlation with manual measurements, with coefficients of determination

(R²) of 0.941 (plant height), 0.752 (stem diameter), 0.945 (leaf area), and 0.943

(leaf inclination angle). The root mean square errors (RMSE) were 0.506, 0.129,

0.980, and 3.619, respectively, while absolute percentage errors (APE) remained

below 6% (1.965%–5.526%).

Discussion: The proposed X-ResNet model exhibits superior segmentation

performance, demonstrating high accuracy in phenotypic trait extraction. The

strong correlations and low errors between extracted and manually measured

data validate the feasibility of 3D point cloud technology for tomato phenotyping.

This study provides a valuable benchmark for plant phenotyping research, with

significant practical and theoretical implications.
KEYWORDS

plant phenotype, stem and leaf segmentation in point cloud, lightweight network,
bottleneck block, downsampling
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1 Introduction

Tomato, as a crop of paramount importance globally (Ma et al.,

2023), not only possesses significant economic value but is also rich

in diverse nutrients, offering numerous health benefits to humans.

In recent years, with the continuous advancement of agricultural

technology, depth camera technology has demonstrated well

application potential and significant technical advantages in the

field of high-precision monitoring and analysis of plant phenotypic

characteristics (Fang et al., 2023). This high-tech approach is

capable of simultaneously capturing both the depth geometric

structure information and detailed color texture features of plants.

HeLi et al. pointed out that the phenotypic information of tea is an

important phenotypic parameter to reflect the growth status of tea

leaves and guide the management of tea garden (Li et al., 2022).

Yixin Guo et al. pointed out that the stalk-related phenotype of

soybean is important in soybean material selection (Guo et al.,

2022). Peisen Yuan et al. show that in strawberry cultivation,

phenotypic traits are decision tools for plant monitoring and

management that can predict subsequent stages and key

outcomes in plant development (Ndikumana et al., 2024).

Through advanced algorithm processing, it can accurately

reconstruct three-dimensional morphological models of plants.

This capability has greatly enhanced the precision and depth of

research on plant growth and development processes, providing

comprehensive, reliable, and high-quality data support for scientific

research work in fields such as crop breeding, and effectively

promoting the in-depth development of plant science research.

The application of deep learning in the field of point cloud

segmentation has become increasingly prevalent (Yang et al., 2024).

Currently, the strategies for point cloud segmentation using deep

learning methods can be mainly categorized into two types: those

based on classical neural network architectures and those based on

pre-trained neural network models. Models based on classical

neural network architectures (Guo et al., 2020) primarily extract

feature information from point cloud data, mapping these features

into multiple subsets, where each subset corresponds to a specific

feature dimension, and segmentation tasks are performed

separately for each subset. Shuqi Fang et al. successfully achieved

effective vehicle detection and precise segmentation by replacing the

backbone network ResNet in the Mask R-CNN model with

ResNeXt (Fang et al., 2023). Frans P. Boogaard et al. utilized a

deep neural network based on PointNet to finely segment point

clouds, thereby successfully estimating internode lengths from the

three-dimensional point clouds of cucumber plants (Boogaard et al.,

2023). JINHUI ZHANG et al. proposed an improved semantic

segmentation network, RangeNet++, based on an asymmetric loss

function. This network enhances point cloud segmentation

performance by accurately calculating and adjusting target

weights through the combination of an asymmetric loss function

and the Adam optimizer (Zhang et al., 2023). Jingkun Yan et al.

constructed a 3D deep learning network named PEPNet, which can

accurately segment plant organs and extract stem and leaf

phenotypic traits (Yan et al., 2024). Seunghan Yoon et al.

proposed a VNet segmentation model that can rapidly annotate
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organs in CT images using SEED images, significantly improving

annotation efficiency (Yoon et al., 2024). Muhammed Enes Atik

et al. proposed a robust and efficient deep learning-based point

cloud semantic segmentation method, which can accurately

perform semantic segmentation on range images generated from

spherically projected point clouds (Atik and Duran, 2022).

Xianquan Han et al. designed a local multi-level feature fusion

point cloud deep learning network and successfully applied it to

segmentation tasks on two public datasets (Han et al., 2023).

Xiaoguo Yang et al. proposed a new uncertainty-guided learning

strategy (UGLS) to significantly enhance the ability of the U-Net

neural network to segment multiple objects of interest from multi-

modal images (Yang et al., 2024). However, it is worth noting that

traditional neural network models often require a significant

amount of computational resources and have longer

training periods.

Based on pre-trained neural network architectures (Salehi et al.,

2023), the pre-training process is executed on large-scale datasets,

and the general features learned during this process can be

transferred and applied to other specific tasks. Nanqing Dong

proposed a strategy for pre-training the Region Proposal Network

(RPN) within a multi-stage detector, along with a self-supervised

learning strategy called ADePT. Experimental results indicate that

the pre-training of RPN can significantly reduce its localization

error (Dong et al., 2024). To fully utilize unlabeled data, Shoucun

Chen et al. proposed a pre-training strategy based on contrastive

learning, which can improve the accuracy of brain tumor labeling

(Chen et al., 2022). Zihan Wang et al. constructed a multimodal

pre-trained Transformer model for performing EEG-based DOC

(Disorders of Consciousness) state classification tasks (Wang et al.,

2024). Jiaao Li et al. proposed a novel framework called CLIPSP,

along with an adaptive prompting method, aimed at leveraging the

pre-trained knowledge of CLIP (Contrastive Language–Image Pre-

training) for scene parsing (Li et al., 2024). Qing Ye et al. introduced

GNPDTA (Graph Neural Network-based Predictive DTA) as a new

method for DTA (Drug-Target Affinity) prediction, aiming to

address the significant differences between the pre-training

objectives and samples used in existing pre-training methods and

the corresponding DTAP (Drug-Target Affinity Prediction)

methods (Ye and Sun, 2024). Sung-Jin Kim et al. proposed a

domain-agnostic Transformer model, named dformer, for

generalizing EEG pre-training models (Kim et al., 2024). Zhaohu

Xing et al. proposed a hybrid masked image modeling framework

for pre-training in three-dimensional medical image segmentation,

which supports both CNN (Convolutional Neural Networks) and

Transformer structures, effectively extracting features from medical

image data (Xing et al., 2024). However, it is worth noting that when

using pre-trained neural network models for experiments, a large

amount of data is usually required for training, which may lead to

the occurrence of overfitting.

Compared to traditional two-dimensional representation

methods, point cloud data (Rauch and Braml, 2023; Stilla and Xu,

2023) can more accurately capture the geometric shapes of objects

and effectively depict their three-dimensional spatial structures,

thereby demonstrating stronger representation capabilities when
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describing complex shapes and irregular objects. Jintao Chen et al.

proposed a weakly supervised ALS point cloud semantic

segmentation method based on line and plane point learning, and

validated its effectiveness on three datasets (Chen et al., 2024).

HAOXIANG SHI et al. introduced a self-supervised contrastive

learning framework and incorporated few-shot contrastive learning

with unsupervised data augmentation to enhance text clustering

performance (Shi and Sakai, 2023). Kun Fang et al. designed a

three-dimensional point cloud segmentation algorithm based on

depth cameras, which is suitable for unsupervised class

segmentation of large-scale model point clouds (Fang et al.,

2023). Xinrong Bu et al. proposed a three-dimensional point

cloud semantic segmentation network named DFSNet, which

achieved good segmentation results in unstructured orchard sites

(Bu et al., 2024). Xin Cao et al. introduced the PointStaClu method

within the unsupervised learning framework to achieve single-stage

point cloud clustering (Cao et al., 2024). Yinyin Peng et al. proposed

a new self-distillation architecture for weakly supervised point cloud

instance segmentation, which can utilize inaccurate bounding boxes

as annotations for training (Peng et al., 2023). Muhammad

Sulaiman et al. combined unsupervised segmentation techniques

with a genetic algorithm-optimized combination method to validate

the effectiveness of segmentation using LiDAR point cloud datasets

(Sulaiman et al., 2024). Yongbin Liao et al. proposed the first semi-

supervised point cloud instance segmentation network that uses

bounding boxes as supervision, and this network can mine instance

masks within predicted bounding boxes on both learned semantic

score maps and original point clouds (Liao et al., 2021). However, it

is worth noting that due to the limited label information provided

before training in weakly supervised learning (Ren et al., 2023) and

unsupervised learning (Ding et al., 2022), models require more

resources during the training stage and may exhibit poor

segmentation performance in some specific application scenarios.

Addressing the array of challenges currently faced in the field of

point cloud segmentation, this paper presents the design and

implementation of a lightweight point cloud segmentation

network model, termed the X-ResNet network. The construction

of this network model aims to effectively tackle the following

key issues:
Fron
1. Conventional neural network models necessitate a

substantial parameter during the training phase,

accompanied by high computational complexity. This not

only results in a prolonged training period and sluggish

training speed but also leads to inefficiency, thereby

compromising the performance of segmentation tasks.

2. When there exists a significant distribution discrepancy

between the training data of a new model and an initial

model, utilizing a pre-trained neural network model for

training tends to readily induce overfitting, thereby

weakening the generalization capability of the model and

ultimately resulting in poor training outcomes.
Addressing the current issues, this paper adopts the

following strategies:
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1. Combined with the curvature features and geometric

features to customize the convolution layer, improve the

training speed of the model, make the convolution layer

more fit to the point cloud data, and the model can better

extract the stem and leaf data features of plants.

2. Integrated the encapsulated convolutional layer with

downsampling operations, thereby enhancing the

convergence speed and stability of the model during the

training process.

3. By deeply integrating the traditional ResNet18 network

with Bottleneck Blocks, the number of parameters and

computational load of the model are reduced, thereby

decreasing the model’s complexity. Taking tomato as an

example, the proposed X-ResNet network successfully

achieves high-throughput and precise extraction of plant

phenotypic parameters.
2 Materials and methods

2.1 Data sources

This study was conducted within the No. 4 greenhouse facility

of the Jilin Vegetable and Flower Science Research Institute,

encompassing five distinct planting blocks, each with 96 plants

cultivated, totaling 480 plant samples. In terms of planting layout,

each region is divided into 2 rows with a distance between rows of

0.1 m and each line is 2.4 meters long (Figure 1A). Within the same

row, the distance between adjacent plants was 0.05 meters. As

shown in Figures 1B, C, the study employed the high-precision

3DScanner-630w (measurement dimension error: 0.001~0.03 mm;

maximum lens pixel: 6.3 million; scanning mode: non-contact

surface scanning; single plane scanning speed: about 1s; no

limited scanning range) device to collect point cloud datasets of

tomato plants. During the data collection process, special attention

was paid to avoiding potential interference caused by shadow

occlusion and surface reflection, to ensure comprehensive and

accurate acquisition of the plant’s overall morphological

information. Furthermore, as illustrated in Figure 1D, utilized the

professional point cloud processing software CloudCompare to

conduct detailed and accurate annotation of the collected data.
2.2 Algorithmic process

Captured the three-dimensional point cloud data of the plant

using depth camera technology, which is typically represented as a

set of three-dimensional coordinates P= pif gNi=1 ⊂ R3, where N

denotes the total number of points in the point cloud, pi =

½xi, yi, zi�T . The preprocessing steps include the following

common operations:

This research employed a statistical filtering approach (Lin

et al., 2024) to process the neighborhood of the point cloud,

aiming to remove noise points. Assuming that each point has a
frontiersin.org
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neighborhood N(pi), it is calculated by Equation 1 by the following

conditions.

Retain points pi :
1

N(pi)j joq∈N(pi) ‖ pi − q ‖22 ≤ ∈ (1)

Data normalization (Zhao et al., 2024) is a technique that maps

data to a uniform scale or distribution range, aiming to enhance the

efficiency and performance of machine learning algorithms,

eliminate differences among feature dimensions, and optimize

data visualization. For the extracted three-dimensional point

cloud data, performed normalization to ensure that the center of

the point cloud is located at the origin and that the distribution of

the point cloud is within a unit sphere, calculated by the Equation 2.

p
0
i =

Pi − �P
maxjjjPj − �Pjj2

(2)

Where, �P = 1
NoN

i=1Pi denotes the geometric centroid of the

point cloud.

The ResNet network incorporates residual connections (Park

et al., 2021), enabling each layer to directly “learn” the residual

between the input and the desired output, thereby reducing the

complexity of model training. In the ResNet18 network, the residual

block is constructed with two convolutional layers, each followed by

a Batch Normalization (BN) layer (Saeedi et al., 2023). The core

function of the BN layer is to normalize each data sample flowing

through it, which accelerates the convergence process of model

training, enhances the training stability of the model. Furthermore,

by normalizing the input distribution of each layer, the BN layer

ensures the numerical stability of gradients during the

backpropagation, thereby mitigating the issues of gradient
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vanishing and gradient explosion. Its output function can be

expressed as Equation 3:

F = g
xi − m
ffiffiffiffiffiffiffiffiffiffiffiffiffi

s 2 + e
p + b (3)

Wherein, m represents the sample mean, s2 represents the

sample variance, g is the scaling parameter, b is the shift

parameter, and e is a very small value.

The encoder module (Chen and Guo, 2023) is responsible for

converting the input point cloud data into feature representations

with semantic information. Assuming the input point cloud data is

denoted as P ∈ RN�3, the encoder contains a bottleneck block,

whose specific structure can be defined as follows Equation 4:

Fe = f enc(P) (4)

Wherein, Fe ∈ RM�C represents the encoded features, M

denotes the number of points after downsampling, and C signifies

the feature dimension.

Within the realm of deep learning, the Bottleneck Block (Jabeen

et al., 2024) represents a specially designed deep neural network

structure aimed at reducing the computational cost and total

number of parameters during model training, thereby achieving

the dual objectives of lowering model complexity while maintaining

training accuracy. The Bottleneck Block integrates two key

components: convolution operations (Wei et al., 2023) and

activation functions (Mao and Zhou, 2023).The calculation

formula is shown in Equation 5.

F1 = s (P ·W1 + b1),Fe = F1 ·W2 + b2 (5)

Wherein, W1 ∈ R3�C1 、W2 ∈ RC1�C represents the weight

matrix, and s denotes the nonlinear activation function.
FIGURE 1

Point cloud data acquisition and annotation process. (A) Tomato plant sample point cloud data collection; (B, C) Acquisition of point cloud data
using the 3DScanner-630w device; (D) Annotation of data using CloudCompare software.
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As illustrated in Figure 2, within the framework of the residual

structure of the ResNet18 network, the Bottleneck Block introduces

a design of a 1×1 convolutional layer. The primary function of the

first 1×1 convolutional layer is to reduce the number of channels in

the feature map, thereby achieving a reduction in data

dimensionality. The subsequent 3×3 convolutional layer is

responsible for performing the core task of feature extraction. The

last 1×1 convolutional layer restores the depth of the feature map by

restoring the number of channels to the original output channels.

Given that the encoder component employs a specific

transformation strategy, which efficiently maps the input raw data

into a low-dimensional vector space, achieving a significant effect in

data dimensionality reduction. In the decoder section, the model

integrates three Bottleneck Blocks and directly introduces the

encoder’s output into the decoder through skip connections for

further processing (Kim and Lee, 2023). The definition of the

decoder is now stated as follows Equation 6:

Fd,i = f dec,i(Fd,i−1, Fe) (6)

Wherein, i=1, 2, 3 denote the indices of the respective

Bottleneck Blocks, Fd,0 = Fe. The final output feature of the

decoder is labeled as Fd ∈ RN�C‘

. The operation of the skip

connection can be represented as Equation 7:

Fd,i = Concat(Fd,i−1, Fe) (7)

Wherein, Concat is employed as a feature concatenation

operation. Additionally, integrated downsampling techniques

(Shen et al., 2023) into this treatment flowsheet. Downsampling

gradually restores the data dimensionality to a level close to the

original input data, it significantly enhances the model’s capability
Frontiers in Plant Science 05
in feature extraction by reducing information redundancy and

highlighting the saliency of key features.

By embedding downsampling operations within convolutional

layers, this research are able to reduce the dimensionality and size of

feature maps while extracting features from point cloud data. This

approach decreases the complexity of the model, mitigates the risk

of overfitting. In this experimental design, selected the Farthest

Point Sampling (FPS) method as the downsampling strategy. The

calculation formula is shown in Equation 8.

Psampled = Sample(Pin, r) (8)

Wherein, Psampled ∈ RM�3,(M<N) represents the number of

points after sampling, and r denotes the sampling rate.

For feature processing, this research employ the k-Nearest

Neighbors (Ni et al., 2024) pooling operation to aggregate

neighborhood features. The calculation formula is shown in

Equation 9.

Fdown(i, : ) = Fj ∈ Ni max up(j, : ) (9)

Herein, Ni denotes the index set of neighboring points

corresponding to the ith sampling point.

Assuming that the low-resolution features in the decoder are

represented as Flow ∈ RM�C , and the upsampling process aims to

restore the features to the number of original points N. This process

is typically achieved using methods such as Nearest Neighbor

Interpolation or Trilinear Interpolation. The calculation formula

is shown in Equation 10.

Fup(i, : ) =oj∈Ni
wij · Flow(j, : ) (10)
FIGURE 2

Bottleneck block architecture in the X-ResNet network framework.
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Herein, wij represents the interpolation weights (which are

usually determined by spatial distances, such as wij =

1
Psampled,j−Pin,ik k2

). Ni represents the interpolation neighborhood for

the i th original point.

The features thus restored are denoted as Fup ∈ RN�C .

Adaptive Average Pooling (Wang et al., 2023) is a unique

pooling mechanism characterized by its ability to handle input

data of arbitrary sizes. This mechanism dynamically adjusts the size

of the output data based on preset parameters to ensure strict

matching with the input of subsequent fully connected layers in

terms of size and dimension, thereby maintaining the coherence of

the network structure and the consistency of data flow. In this

hypothesis, the global feature Fglobal ∈ RC is obtained by calculating

the average of the features of all points. The calculation formula is

shown in Equation 11.

Fglobal(c) =
1
No

N
i=1Fup(i, c) (11)

Where c ∈ [1, C], The Adaptive Average Pooling operation

adjusts the size of the feature map to (batch_size, 512, 1), a

characteristic that significantly enhances the flexibility and

compatibility of the network structure.

The Flatten layer (Zou et al., 2024) is responsible for flattening

the multi-dimensional feature map output by the Adaptive Average

Pooling layer into a one-dimensional vector, facilitating subsequent

processing and analysis by fully connected layers. The calculation

formula is shown in Equation 12.

Fflat = ½Fglobal(1), Fglobal(2),…, Fglobal(C)�T ∈ RC (12)

The size of the feature map has been transformed to (batch_size,

512). Each neuron in the Fully Connected Layer establishes synaptic

connections (Dong et al., 2023) with all neurons in the previous

layer through full connectivity, and utilizes a unique set of weight

parameters to achieve a nonlinear mapping from the high-

dimensional feature space to the low-dimensional output space.

Assuming that the point cloud features after upsampling are

denoted as Fup ∈ RN�C , then mapped through a Fully Connected

Layer to obtain the category distribution O ∈ RN�K for each point,

where K represents the total number of predefined categories. The

calculation formula is shown in Equation 13.

O(i, : ) = Softmax(Fup(i, : ) ·Wo + bo) (13)

Where:

WO ∈ RC�K is the weight matrix,

bo ∈ RK is the bias vector,

Softmax(z) = exp(zk)

oK
k=1

exp(zk)
is the activation function used to

generate the probability for each category.

Ultimately, the segmentation result comprises the category

labels corresponding to each point. The calculation formula is

shown in Equation 14.

ŷ i = arg max
k∈½1,K�O(i, k) (14)
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Where ŷ i ∈{1,2,…,K} represents the predicted category for the i

th point.
2.3 X-ResNet network model

To enhance the quality of the input point cloud data, a series of

preprocessing operations were executed. The architecture diagram

of the X-ResNet network model is shown in Figure 3, using the

custom-wrapped convolution layers, the proposed model

architecture adheres to the encoder-decoder paradigm, wherein

the encoder section comprises a bottleneck layer that conducts in-

depth analysis of the input data, captured the core information

within, and accordingly generates a feature vector rich in semantics.

The decoder section is constituted by a cascade of three bottleneck

layers employing skip connections, allowing the decoder to directly

access and effectively integrate the feature information extracted by

the encoder into its structure. Meanwhile, the decoder is responsible

for restoring the low-resolution feature maps outputted by the

encoder to the spatial resolution of the original data. The

combined application of the encoder and decoder not only

significantly reduces the data dimensionality but also effectively

decreases the model complexity. During this process, an adaptive

average pooling layer is first applied to adaptively reduce the spatial

dimensions of the feature maps to a preset size, followed by a Flatten

operation that flattens the reduced feature maps into a one-

dimensional vector. Ultimately, this vector undergoes feature

integration and output through a fully connected layer.
3 Results

3.1 Comparative experiment

In this experiment, accuracy, recall, precision, loss rate, F1

Score, and Intersection over Union (IoU) are employed as

evaluation metrics to comprehensively assess the effectiveness of

model training. The relevant calculation formulas are presented

below.

Accuracy =
TP + TN

TP + TN + FP + FN

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F1 Score = 2 ∗
Precision ∗Recall
Precision + Recall

IoU =
SIntersection
SUnion
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Specifically, TP (True Positive) represents true positives, which

is the number of samples correctly predicted as positive; FP (False

Positive) represents false positives, which is the number of samples

incorrectly predicted as positive when they are actually negative; FN

(False Negative) represents false negatives, which is the number of

samples incorrectly predicted as negative when they are actually

positive; TN (True Negative) represents true negatives, which is the

number of samples correctly predicted as negative.

Currently, the mainstream deep learning models for point cloud

segmentation encompass the ResNet18, PointNet, PointNet++, U-

Net, and Mask R-CNN network models. To comprehensively

evaluate the performance of the X-ResNet network model,

conducted a deta i led comparat ive analys is with the

aforementioned five models serving as benchmarks. Figure 4

visually presents the segmentation images obtained from training

using six different network models. When the leaf morphology is

elongated and curved, the leaves in Figures 4C, 4F are not fully

recognized, reflecting the poor segmentation performance of the

ResNet18 and U-Net network models in such cases; when the leaf

area is too small, Figures 4C–4F all fail to identify the leaves,

indicating that the ResNet18, PointNet, PointNet++, and U-Net

network models fail to effectively capture leaf features during

training, resulting in incomplete segmentation; when there is

adhesion between leaves, the leaf contours in Figures 4E, 4G are

not depicted clearly, further revealing the inadequate segmentation
Frontiers in Plant Science 07
performance of the PointNet++ and Mask R-CNN network models

in handling such complex situations. In contrast, when using the X-

ResNet network model for training and segmentation operations,

the segmentation effect of stems and leaves is the most ideal, and the

contours of both are also extremely clear. This result fully

demonstrates the superior performance advantages of the X-

ResNet network model in plant stem and leaf segmentation tasks.

As demonstrated in Table 1, when compared to the ResNet18

network model, X-ResNet model exhibits an increase in accuracy by

3.26, recall by 9.96, precision by 4.43, and IoU by 3.43. Although the

ResNet18 model achieves comparable accuracy during the training

phase, it utilizes a larger number of parameters and exhibits higher

model complexity. In contrast, the X-ResNet model reduces the

parameter count by 59.6% compared to ResNet18, indicating its

successful implementation of a lightweight design that mitigates

model complexity.

In five additional comparative experiments, the models

required a substantial number of parameters and exhibited high

complexity. As the number of iterations increased, these models

were prone to overfitting, resulting in significant fluctuations in

various training metrics. In contrast, as illustrated in Figure 5A, the

X-ResNet network model maintained a dynamic balance in

accuracy as the number of iterations increased. Throughout the

iterative process, the X-ResNet model achieved the highest accuracy

without significant fluctuations, demonstrating excellent stability.
FIGURE 4

(A) the original image; (B) the segmentation results obtained after training using the X-ResNet network; (C–G) respectively display the segmentation
results obtained after training using the ResNet18, PointNet, PointNet++, U-Net, and Mask R-CNN networks.
FIGURE 3

Diagram of the X-ResNet network architecture.
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The experimental results indicate that the X-ResNet network model

exhibits superior performance across various metrics, enhancing

training accuracy and yielding the best segmentation results.
3.2 Ablation experiment

To investigate the degree to which various modifications impact

the training performance of the X-ResNet network model, this

study conducted ablation experiments to validate their effectiveness.

Table 2 shows the performance comparison of network models

trained on tomato plants. After integrating the bottleneck block into

the ResNet18 network and comparing it with the traditional

ResNet18 network, observed an increase of 1.41 in accuracy, 7.5

in recall, and 1.06 in F1-Score. However, after adding the

downsampling operation to the ResNet18 network, there was an

increase of 1.3 in accuracy, 7.42 in recall, and 1.74 in precision. This

indicates that ResNet18, as the baseline model, will improve the

training effect of the network model by introducing bottleneck

blocks or downsampling operations.

Figure 6 depicts the trends in evaluation metrics during the

training process for these four models. Through comparative

analysis, this research found that both the “ResNet18 +

Downsampling” model and the “ResNet18 + Bottleneck Block”

model demonstrated improved training effects after multiple

iterations. In contrast, the traditional ResNet18 model exhibited

significant fluctuations and poor training performance. At the same

time, Figure 6F shows that with the increase of iteration ations of

the X-ResNet network model, the loss function becomes smaller

and smaller, and there is no large fluctuation. It can be concluded

that variants of the ResNet18 network model improve segmentation

accuracy by optimization adjustment, while the X-ResNet model

achieves good performance on segmentation task by merging

bottleneck blocks and downsampling operations.
3.3 Measurement results and analysis of
phenotypic parameters

In this study, 100 tomato plants were meticulously measured

and analyzed, with a systematic comparison conducted between
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manual measurements and data extracted using advanced three-

dimensional point cloud technology. Figure 7 presents detailed

measurement results for four key plant phenotypic parameters,

specifically: (A) measurement analysis of plant height, with

parameters of R²=0.941, RMSE=0.506, and MAPE=1.965; (B)

measurement analysis of stem diameter, yielding parameters of

R²=0.752, RMSE=0.129, and MAPE=4.290; (C) measurement

analysis of leaf area, with parameters of R²=0.945, RMSE=0.980,

and MAPE=4.358; and (D) measurement analysis of leaf inclination

angle, yielding parameters of R²=0.943, RMSE=3.619, and

MAPE=5.526. The experimental results demonstrate that through

in-depth analysis of plant phenotypic parameters, the measured

values obtained exhibit a high degree of correlation with the actual

data, validating the accuracy and reliability of three-dimensional

point cloud technology in plant phenotypic measurement.
4 Discussion

During the initial growth stage of tomato plants, the similarity in

color characteristics between their leaves and stems poses a significant

challenge to traditional image segmentation techniques, making it

difficult to effectively differentiate targets with similar morphologies

and colors. To address this issue, this experiment incorporated

downsampling operations into the ResNet18 network model,

significantly enhancing the model’s recognition accuracy for

various plant organs (leaves and stems), and consequently

improving the model’s training accuracy. This study enhances the

model’s ability to capture local geometric information of point cloud

data by incorporating curvature features and geometric features into

the custom convolutional layer. This improvement is particularly

evident in high-curvature regions such as stem and leaf segmentation,

thereby boosting the model’s sensitivity to fine details and ultimately

improving its training accuracy. Meanwhile, by introducing

bottleneck blocks into the model, reduced the number of input and

output channels, thereby decreasing the model’s complexity. In

addition, after the convolutional layer, added a batch normalization

layer, which accelerated the model’s convergence speed, improved its

stability. The final experimental results demonstrate that the adoption

of the X-ResNet network model for stem-leaf segmentation of tomato

plants yields great segmentation results.
TABLE 1 Performance evaluation of six network models (X-ResNet, ResNet18, PointNet, PointNet++, U-Net, and Mask R-CNN) for tomato plant image
segmentation tasks.

Models Accuracy (%) Recall (%) Precision (%) Loss F1-score (%) IoU (%) Params (M)

ResNet18 91.85 85.15 90.61 2.035 91.08 87.33 11.2

PointNet 87.39 83.45 83.66 3.810 84.42 81.92 8.02

PointNet++ 86.74 87.35 88.93 3.785 83.71 81.99 7.66

U-Net 89.03 91.22 84.12 3.100 87.92 77.29 30

Mask R-CNN 87.62 85.23 85.35 3.247 84.75 86.93 20.6

X-ResNet 95.11 95.11 95.04 1.113 95.10 90.76 4.52
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FIGURE 5

Comparison of various data in comparative experiments. (A) Accuracy; (B) Precision; (C) recall; (D) IoU; (E) F1 Score; (F) Loss.
TABLE 2 Compares and analyzes the performance of the ResNet18 network, X-ResNet network, “ResNet18 + Bottleneck Block” variant network, and
“ResNet18 + Downsampling” variant network in the tomato plant image segmentation task.

Models Accuracy(%) Recall(%) Precision(%) Loss F1-score (%) IoU (%)

ResNet18 91.85 85.15 90.61 20.35 91.08 87.33

ResNet18+Custom convolution 91.72 84.39 87.76 1.722 91.84 89.06

ResNet18+Bottleneck Block 93.26 92.65 90.15 18.99 92.14 86.92

ResNet18+Downsampling 93.15 92.57 92.35 22.20 90.89 87.88

X-ResNet 95.11 95.11 95.04 11.13 95.10 90.76
F
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Through comprehensive analysis of comparative experiments and

ablation studies, confirmed the superior performance of the X-ResNet

model in point cloud segmentation tasks. As shown in Figures 8A to

8C, when the leaves of tomato plants are excessively long and heavy,

resulting in a nearly vertical growth direction, it adversely affects the

training effectiveness of the model. Similarly, as illustrated in

Figures 8D, 8E, when the angle between the plant stem and the

ground is too small, it also leads to errors in the model’s identification

of stems and leaves, thereby weakening the training performance.

Despite the networkmodel demonstrating good training results on the

tomato dataset, continuous optimization and improvement are still

required in subsequent research. When using a point cloud camera for

image acquisition under strong or low light conditions, excessive or
Frontiers in Plant Science 10
insufficient light intensity can lead to underexposure or overexposure.

Additionally, unsuitable lighting conditions affect the reflectance and

texture characteristics of plant surfaces, significantly impacting the

accuracy of the camera’s 3D scanning. These factors can degrade the

quality of point cloud data during acquisition, thereby compromising

the reliability of the training dataset. This experiment was validated

only during the vegetative growth stage of tomato plants. Future

research will employ transfer learning to extend the X-ResNet network

model to other crop varieties and systematically validate different

growth stages of plants to enhance the model’s generalization ability.

In smart greenhouse systems, this model will be integrated with low-

power edge computing devices to enable real-time environmental

parameter adjustment and growth monitoring based on plant growth
FIGURE 6

Comparison of various data in ablation experiments. (A) Accuracy; (B) Precision; (C) recall; (D) Iou; (E) F1 Score; (F) Loss.
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status, thereby increasing crop yield and improving the precision of

agricultural monitoring.
5 Conclusion

This paper proposes a lightweight deep learning-based network

structure for high-precision segmentation of plant stems and leaves,
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which has been trained and validated on a tomato plant dataset.

Experimental results demonstrate the model’s excellent segmentation

performance. This method fully leverages point cloud data,

significantly enhancing the model’s ability to capture spatial

information, thereby optimizing the accuracy during model

training. This method utilizes a convolutional layer that integrates

curvature features and geometric features to process point cloud data,

thereby enhancing the model’s capability to capture the characteristics
FIGURE 7

Displays the measurement results for four crucial plant phenotypic parameters. (A) plant height; (B) stem diameter; (C) leaf area; (D) leaf
inclination angle.
FIGURE 8

(A–C) The growth direction of the leaves is close to vertical; (D, E) The angle between the plant stem and the ground is too small.
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of different organs of tomato plants and optimizing the accuracy

during the model training process. This research incorporate

bottleneck blocks into the traditional network architecture,

effectively reducing the number of parameters and computations,

and thus lowering the model’s complexity. Additionally, after each

convolutional layer, this research thoughtfully add Batch

Normalization (BN) layers, which significantly improve the training

stability of the model. By introducing downsampling operations, this

research effectively mitigate overfitting, thereby enhancing the

model’s robustness to noise and training accuracy. The improved

model is capable of performing more precise segmentation of plant

parts. By calculating evaluation metrics such as accuracy and recall,

found that the X-ResNet network model consistently exhibits good

performance during training. In future research, this research will

continue to explore the training effectiveness of this model on datasets

of more plant species, aiming to continuously improve its

generalization ability, thereby increasing crop yields in

agricultural production.
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