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Koper, Slovenia
Chouardia litardierei (Asparagaceae) is a non-model, perennial species

characterized by exceptional ecological plasticity. In this research, we studied

the genetic architecture underlying several phenological traits in selected

ecologically diverged populations of this species. We conducted a genome-wide

association study (GWAS) to identify genomic regions linked to the following

populations-specific phenological traits: Beginning of Sprouting (BOS), Beginning

of Flowering (BOF), Flowering Period Duration (FPD), and Vegetation Period

Duration (VPD). Combining phenological data from a common garden

experiment with an SNP dataset obtained through the ddRAD-seq approach, we

identified numerous loci associated with these traits using single- and multi-locus

GWAS models. Narrow-sense heritability estimates were high for all traits, with the

VPD trait showing the highest estimate (86.95%), emphasizing its importance for

local adaptation. Functional annotation of associated genomic regions revealed

key protein families involved in flowering time regulation, vegetative growth

timing, and stress adaptation. These findings provide insights into the molecular

mechanisms of local adaptation in C. litardierei’s populations from different

habitats, emphasizing the role of genetic factors in phenological trait variation

and ecological divergence across populations.
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Introduction

Understanding the genetic basis of phenotypic variation is

essential for evolutionary biology, as it elucidates mechanisms

underlying speciation, biogeographical distributions, and fitness

in natural populations (Savolainen et al., 2013; Mckown et al.,

2014). Natural selection acts on allele frequencies within

populations, shaping their variation and promoting adaptive traits

that enhance survivability and reproductive success (Hu et al., 2020;

Walter et al., 2022; Lee et al., 2023). As populations undergo local

adaptation, ecological speciation may lead to the emergence of new

ecotypes (Turesson, 1922; Todesco et al., 2020) — genetically

distinct populations of the same species well-adapted to specific

ecological niches (Rundle and Nosil, 2005; Cortés et al., 2018).

Although the role of ecotypes in the speciation process remains

debated (Lowry, 2012; Fernández-Meirama et al., 2022), several

studies highlight their importance in driving genetic divergence

along ecological gradients (Lowry et al., 2008; Brandrud et al., 2017;

Cortés et al., 2018; Bakhtiari et al., 2019). Rapidly evolving lineages

in heterogeneous environments offer valuable insights into the

genetic mechanisms driving adaptation and speciation (Feder

et al., 2011; Cortés et al., 2018).

Phenology is one of the key features of plants as sessile

organisms. It determines the timing of life cycle phases and the

duration of growth and reproduction (Schwartz, 2003). Although

other factors like photoperiod (Adole et al., 2019; Wang et al., 2020),

water availability (Zhou et al., 2024), or selection by pollinators

(Sandring and Ågren, 2009) may play an important role as well,

temperature is considered to be the environmental element with the

most substantial impact on various phenological traits (Schwartz,

2003; Cook et al., 2012). Matching the growth and especially

reproduction periods with the optimal environmental conditions

is of exceptional evolutionary importance and is strongly influenced

by natural selection (Duputié et al., 2015). Among phenological

traits, flowering time is particularly sensitive to environmental

factors, marking a critical transition from vegetative growth to

reproduction (Hill and Li, 2016; Gaudinier and Blackman, 2020). In

seasonally variable habitats, where the timing and duration of the

vegetational season differ across landscapes, plants must initiate

sprouting and flowering within a constrained annual timeframe

(Anderson et al., 2012). Therefore, the regulation of flowering time

emerges as a frequent target of evolutionary processes (Gaudinier

and Blackman, 2020). Ecologically divergent taxa in numerous

lineages often have different flowering times (e.g., Heslop-

Harrison, 1964; Grant, 1981; Levin, 2000) suggesting that some

niche shifts were predicated upon temporal change (Levin, 2006).

Consequently, alterations in flowering schedules may allow

populations to better exploit different groups of pollinators (e.g.,

Waser, 1983; Goldblatt and Manning, 1996; Johnson et al., 1998),

while movements into new pollinator niches are accompanied by

changes in floral attributes (Levin, 2006). Natural selection

generally favours bigger individuals at maturity; however, the

timing of flowering presents a trade-off between maximizing

fecundity and ensuring reproductive completion before adverse

conditions, such as drought or winter, occur (Anderson et al.,
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2012). Species facing water limitations often adjust their flowering

phenology to align with peak moisture availability, taking advantage

of optimal conditions (Settele et al., 2016). For example,

Schmalenbach et al. (2014) found that late-flowering Arabidopsis

plants coped better with drought by compensating for early growth

losses with later recovery, while early-flowering plants, which may

flower sooner to exploit available moisture before drought,

exhibited lower fitness under the same conditions. High salinity

also impairs plant growth in Arabidopsis, acting as a suppressive

factor that delays flowering time (Li et al., 2007; Lee et al., 2023).

Coupled with variation in mating opportunity, temporal variation

in sexual phases of individual flowers may have a significant impact

on reproductive success in dichogamous plants (Sargent and

Roitberg, 2000). Since phenological traits display extensive

variations in plants and are often related to local adaptation

(Rathcke and Lacey, 1985), the analysis of their genetic

background presents a great opportunity to study the

mechanisms of the adaptive divergence process.

Investigating the genomic underpinnings of specific traits

within the framework of environmental dynamics is essential for

uncovering the mechanisms driving local adaptation and

elucidating the complex relationship between phenological traits

and adaptive responses (Bernatchez et al., 2023). Although much of

our understanding of flowering regulation and vegetation duration

derives from studies on model organisms such as A. thaliana

(Engelmann and Purugganan, 2006; Kinmonth-Schultz et al.,

2021), significant advancements have also been made in

agriculturally important species (e.g., Molla, 2022; Vicentini et al.,

2023; Flohr et al., 2017; Song et al., 2023). However, broadening this

research beyond model organisms could increase our

understanding of the diverse genetic mechanisms governing

phenological variation in populations of wild, non-model species

facing different ecological pressures in their habitats.

Here, we investigated the genetic basis of selected phenological

traits in the amethyst meadow squill, Chouardia litardierei (Breist.)

Speta; a small, bulbous, perennial species belonging to the

Asparagaceae family [following the APG III system (Bremer et al.,

2009)]. Being a typical geophyte, C. litardierei plants undergo a

dormancy period, which usually stretches from mid-summer to late

autumn or early spring, depending on the individual season’s

properties. During the spring, soon after the development of

young leaves, inflorescence emerges. From late April to early

June, depending on the population’s location, the flowering

phenophase will unfold, shortly followed by fruiting, which marks

the beginning of dying back to an underground perennating organ,

i.e., a bulb. C. litardierei produces a large racemose inflorescence,

typically consisting of several dozen radially symmetrical flowers,

without any apparent morphological adaptations for specific

pollination mechanisms. While this has not been formally

studied, it is expected to be an open-pollinated species (pers.

obs.). In addition to sexual reproduction, it propagates clonally

through the formation of bulbs surrounding the central bulb. C.

litardierei populations are found across the Dinaric Alps in the

western parts of the Balkan Peninsula (Ritter-Studnička, 1954;

Gaži-Baskova, 1962). Throughout this region, populations inhabit
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highly contrasting habitats, thus indicating a very pronounced

ecological plasticity of the species (Figure 1).

In terms of habitat types, the most substantial contrast can be

observed between southernmost populations, which are found on

patches of exposed dolomite bedrocks or dry mountainous grasslands

with very thin and sparse soil cover, on one side, and populations

occupying lush meadows of karst poljes, enclosed depressions with

deep and fertile soils, abundant in water, on another. These groups of

populations cope with very different types of challenges. For the first
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group of the populations, the most substantial adaptation pressure is

expected to come from limited resource availability accompanied by

pronounced seasonality in water availability and temperature, which

are usual for such a habitat (Mota et al., 2021). At the same time, the

second group faces seasonal flooding that can last up to seven months

each year (Mihevc et al., 2010; Bonacci, 2014). In addition to these

two prevailing groups of populations, based on a habitat type, a third

and the smallest group can be recognized, the one inhabiting deep-

soiled marshes along the coastline in western parts of the species
FIGURE 1

Habitat types of the studied Chouardia litardierei populations, shown from top to bottom: (A) Karst poljes meadows (locality of Budoške Bare
population), (B) Dry mountainous grasslands with exposed bedrock (Lovćen), and (C) Saline coastal marshes (Vrana Lake).
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Šarančić et al. 10.3389/fpls.2025.1571608
distribution range. These populations situated in proximity to the

seashore are experiencing different climates [i.e., Cfa and Csb climate

types according to Köppen classification (Köppen, 1918)] than other

inland meadow-habitat populations, which, for the most part, are

found in habitats characterized by Cfb type of climate. In addition,

these seashore populations are exposed to periodical sea flooding,

which causes an increase in soil salinity, one of the major factors in

plant ecology (Bui, 2013). Nonetheless, it is essential to note that

although this issue was already addressed by Šilić (1990), no clear

differentiation, either phenotypic or genetic, among these groups of

populations has yet been recognized.

To learn as much as possible about the genetic background of

phenological traits of selected C. litardierei populations from across

its distribution range and from different habitats, results from a

common garden experiment and genotyping were processed

through a set of comprehensive single- and multi-locus genome-

wide association (GWA) models. Functional annotation of

recognized candidate loci was further performed, thus enabling us

to deepen our understanding of the complex genetics behind the

phenological aspect of adaptive divergence and to analyze the extent

to which differentiation of the studied populations has advanced.
Methods

Plant material, common garden
experiment, and phenotyping

To establish the common garden experiment, 214 individuals

were relocated from nine chosen populations of C. litardierei. Three

populations were selected to represent each of the three presumed

groups of populations from different habitat types, as illustrated

in Figure 1.

During the sampling expeditions, 22 to 25 individuals were

selected from each population, ensuring a minimum distance of 10

meters between them, following the 1:20 rule (Wagner, 1995). The

geographic coordinates of the sampling locations are listed in

Supplementary File 1. Leaf material from each individual was

collected for DNA extraction and desiccated using silica gel. Each

sampled individual (represented by a single bulb) was transplanted

into a separate two-litre plastic container filled with a mixture of soil,

sand, and perlite. The containers were placed in raised beds outdoors,

creating a common garden setup that exposed the plants to a

temperate continental climate (Cfb climate type) (Köppen, 1918;

Zaninović et al., 2008). No additional interventions, such as

supplemental watering or pesticide use, were applied, allowing the

plants to grow under natural, undisturbed environmental conditions.

After two vegetative seasons of acclimatization, four phenological

traits were selected for further research (Table 1): (i) Flowering Period

Duration (FPD), calculated as the number of days from the appearance

of the first flower to the last; (ii) Vegetation Period Duration (VPD),

measured as the time from sprouting to the opening of the first capsule

with ripened seeds, also in days; (iii) Beginning of Flowering (BOF),

recorded using the earliest plant flowering dates a reference; and (iv)

Beginning of Sprouting (BOS), noted by referencing the sprouting date
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of the first individual. All traits examined were measured on an

individual genotype level and were considered polygenic.

To assess differences in phenological traits across individual

populations and three groups of populations originating from

different habitat types, Kruskal-Wallis tests were implemented in

the PAST software (Hammer et al., 2001), were performed. We

further performed pairwise comparisons using Mann-Whitney

post-hoc tests with Bonferroni correction to identify significant

trait variations. Since none of the variables followed a normal

distribution, Spearman’s correlation analysis was conducted to

examine the relationships between FPD, VPD, BOF, and BOS

variables using the “stats” package in R (R Core Team, 2016).
Sequencing, genomic data processing, and
population genetic structure

DNA isolation was carried out using the GenElute™ Plant

Genomic DNA Miniprep Kit (Sigma–Aldrich®) . DNA

concentrations were measured with the Qubit™ Fluorometer

(Thermo Fisher Scientific, Wilmington, DE, USA), and samples

were subsequently diluted to a concentration of 20 ng/mL.
For genotyping the studied C. litardierei populations, a ddRAD-

seq approach was utilized (Peterson et al., 2012). DNA was initially

digested with two restriction enzymes, AseI and NsiI (NEB

#R0526L and #R0127L, respectively). The resulting fragments

were then ligated with barcoded i5 and i7 adapters, allowing all

samples to be multiplexed. Final amplification was carried out after

nick repair using DNA polymerase I (NEB #M0209L). The resulting

DNA libraries were double-sequenced (150 bp paired-end) on the

Illumina HiSeq X platform.

The initial sequencing data underwent preprocessing for quality

trimming and adapter removal using Trim Galore (Martin, 2011).
TABLE 1 Descriptive statistics of the Chouardia litardierei phenological
traits examined in the study.

Overall

Trait
(days)

Description
Median
(Q1 – Q3)

Min – max

FPD
Duration from the date of the
first to the last flower for
each genotype

17 (15 – 18) 9 - 25

VPD
Duration from genotype
sprouting to the opening of the
first capsule

97 (88 – 107) 55 - 162

BOF

Beginning of flowering
considering the flowering date
of the first genotype as
a reference

11 (10 – 13) 1 - 33

BOS

Beginning of sprouting
considering the sprouting date
of the first genotype as
a reference

56 (52 – 63) 1 - 88
All traits were measured in days. BOF, Beginning of Flowering; BOS, Beginning of Sprouting;
FPD, Flowering Period Duration; max, maximum value; min, minimum value; VPD,
Vegetation Period Duration; Q1, first quartile; Q3, third quartile.
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Post-trimming, BAM files were generated by aligning the reads to

the C. litardierei reference genome (Radosavljević et al., 2023) using

the Burrows-Wheeler Aligner (Li and Durbin, 2009).

SNP identification was performed with the Stacks software

package v1.48 (Catchen et al., 2013). The ref_map.pl wrapper

module was ut i l i z ed , fo l lowing Par i s e t a l . (2017)

recommendations, the pstacks module was executed to extract loci

previously aligned to the reference genome, with a minimum

coverage depth of three reads to ensure a reliable representation

of loci across samples and reduce low-confidence genotype calls.

The cstacks module then constructed a comprehensive catalogue of

loci across populations, allowing a maximum of four mismatches

among sample loci to minimize alignment errors. Subsequently, the

populations module calculated population-level summary statistics.

To ensure high data quality, loci were retained only if present in all

nine populations and at least 70% of individuals within each

population, with a maximum observed heterozygosity of 0.70.

Additional filtering criteria included retaining only one SNP per

locus and excluding loci with minor allele frequencies (MAF) below

1%. This stringent filtering approach focused on common and well-

represented genetic variants, reducing the risk of inaccuracies due to

sequencing or sampling errors. The resulting dataset, comprising

high-quality genetic markers, was exported in .vcf format for

downstream analysis.

To assess the neutral population genetic structure of the studied

populations, we used a model-based clustering method

implemented in ParallelStructure (Pritchard et al., 2000; Besnier

and Glover, 2013). To overcome the issue of this analysis’s high

computational demands and lengthy processing time for such a

large number of SNPs, we constructed a subset of 5,000 randomly

selected SNPs. The analysis comprised ten runs for each of the ten

clusters (K). Each run consisted of a burn-in period of 50,000 steps,

followed by 500,000 Monte Carlo Markov Chain (MCMC)

replicates. We used the StructureSelector online software (Li and

Liu, 2018) to obtain the most likely number of clusters (K) following

Evanno’s method (Evanno et al., 2005) as well as to retrieve the final

data through the clustering and averaging of the runs following the

Clumpak algorithm (Kopelman et al., 2015). The obtained results

were processed using CorelDRAW X7 v.17.1.0.572 software (Corel

Corp., Ottawa, Canada) for improved visualization.
Genome-wide association analyses

Figure 2 illustrates a schematic representation of the

methodological approach used in this study. All traits were treated

as polygenic and GWAS analyses were carried out assuming an

additive genetic model. Variants with a minor allele frequency (MAF)

below 1% were excluded using the BCFtools software (Danecek et al.,

2021). Two distinct statistical approaches were employed for each

association analysis: the frequentist single-locus approach and the

Bayesian multi-locus approach. In the frequentist single-locus

approach, two distinct models were applied. A standard linear
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mixed model (LMM) was fitted using GEMMA 0.98.5 (Zhou and

Stephens, 2012) for all four traits, keeping in mind that this approach

assumes a normal trait distribution. Additionally, all traits were

analyzed using GMMAT 1.4.2 (Chen et al., 2019), applying a

Poisson generalized linear mixed model (GLMM), to account for

their count-based distributions. The Poisson GLMM inGMMATwas

selected because it effectively accounts for the non-normal

distribution of count data, providing a complementary approach to

the LMM analysis performed in GEMMA.

In the Bayesian multi-locus approach, a Bayesian sparse linear

mixed model (BSLMM) (Zhou et al., 2013) was simultaneously fitted

for all traits under analysis. Significant SNPs for each trait were identified

by first intersecting the sets of significant SNPs obtained from GLMM

and LMM, and then further intersecting the resulting set with those

identified by BSLMM, ensuring consistency across both the frequentist

and Bayesian approaches (Figure 2). Additionally, a multivariate linear

mixed model (mvLMM) was performed in GEMMA to simultaneously

analyze significantly correlated traits (FPD andVPD, as well as BOF and

VPD) to identify shared association signals between them.

The results were visualized using Manhattan plots generated

with the R package “qqman” (Turner, 2018) and “CM plot” (Yin

et al., 2021). An ad hoc threshold of 1×10−³ was used for the

frequentist GWAS analyses (GLMM, LMM, and mvLMM).
Generalized linear mixed model using a
poisson distribution

The generalized linear mixed model (GLMM) with a Poisson

distribution was applied using GMMAT, and the model is expressed

as follows (Equations 1–3):

log(mi) = Wia + xib + ui (1)

u ∼ MVNn(0,  lK) (2)

yi ∼ Poisson(mi) (3)

In this model, yi represents the observed count for the i-th

individual, while mi denotes the mean count, modeled as the

exponential of the linear predictor. Wi is the i-th row of an n × c

matrix of covariates (fixed effects), a is the corresponding vector of

coefficients for these covariates, xi represents the genotype of the i-

th individual, and b denotes the effect size of the genetic marker.

The random effects u are assumed to follow a multivariate normal

distribution MVNn (0,lK), where K is the relatedness matrix of size

n × n, and l represents the ratio of variance components. The

observed data yi is assumed to follow a Poisson distribution with mi.
This model incorporates individual-level random effects and a

genetic relationship matrix K to account for population structure

and relatedness. When assuming a normal distribution and an

identity link function for continuous traits, GMMAT conducts

association tests using linear mixed models (LMMs).
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Linear mixed model

The standard LMM was applied using GEMMA 0.98.5. in the

following form:

y = Wa + xb + u +  e (4)

u ∼ MVNn(0,  lt
−1K) (5)
Frontiers in Plant Science 06
e ∼ MVNn(0,  t
−1In) (6)

Here, y represents a vector of trait values for 214 individuals,

and W is an n × c matrix of covariates (fixed effects), which, in this

case, consists of a column of 1s. Let a represent a c-vector of the

intercept, x be an n-vector of marker genotypes, and b denote the

effect size of the marker. Additionally, u is an n-vector of random
FIGURE 2

A schematic outline of the methodological approach employed to study the genetic basis of phenological traits in Chouardia litardierei.
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Šarančić et al. 10.3389/fpls.2025.1571608
effects, e is an n-vector of errors, t-1 denotes the variance of the

residual errors, and l is the ratio between the two variance

components. K is the known n × n relatedness matrix, and In is

an n × n identity matrix. MVNn refers to the n-dimensional

multivariate normal distribution. The effect sizes indicate the

change in trait values associated with each additional effect allele

in the genotypes of individuals.
Bayesian framework

The LMM (Equations 4–6) implemented in GEMMA evaluates

the alternative hypothesisH1: b ≠ 0 against the null hypothesisH0: b
= 0 for each SNP individually. Extensions of the LMM that account

for the effects of variants across multiple loci simultaneously could

improve the power to identify causal variants. Bayesian LMMs can

model all markers simultaneously by assigning different prior

distributions to the marker effects and sampling from their

posterior distribution. These Bayesian models, designed for

estimating SNP effect sizes, start with a basic linear model that

links genotypes X to phenotypes y:

y = 1n μ +Xb + e (7)

e ∼ MVNn(0,  t − 1In) (8)

we let y be a vector of phenotypes observed on n individuals,

and X be an n × p matrix of genotypes for these same n individuals

at p genetic markers. The vector b represents the effects of genetic

markers, 1n is an n-vector of 1s, µ is a scalar representing the mean

phenotype, and e is an n-vector of error terms with variance t-1. Our
aim was to estimate the parameter b, which corresponds to the

effects of the genetic markers. However, because the number of

genetic markers in our study (p = 23,315) far exceeds the number of

individuals (n = 214), certain modeling assumptions regarding SNP

effect sizes b had to be made. These assumptions range from the

infinitesimal (or polygenic) model, which posits that all SNPs have

non-zero effects, to the sparse model, which assumes that only a

small subset of SNPs affect the phenotype. The success of the model

relies on the true genetic architecture of the trait being studied,

although this is typically unknown. The most widely used polygenic

model assumes that all SNPs impact the phenotype (i.e., have non-

zero effects) with normally distributed effect sizes:

b ∼ N(0,s 2
b ) (9)

When Equations 7–8 are combined with the normality

assumption (Equation 9) for effect sizes b, they result in the

previously described LMM, as it incorporates a random effect

term that represents the combined genetic effects.
Bayesian sparse linear mixed model

A more general assumption, which includes both polygenic and

sparse modeling scenarios, suggests that effect sizes come from a

mixture of two normal distributions.
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bi  ∼   pN(0,
s 2
a +  s 2

b

pt
) + (1 − p)N(0,

s 2
b

pt
) (10)

In this model, p represents the proportion of SNPs with large

effects, while s2
b and s2

a correspond to the variances of small and

large effects, respectively. The resulting BSLMM model combines

polygenic and sparse effects in the prior distribution of effect sizes,

allowing it to adapt to various genetic architectures of the traits

being studied. BSLMM addresses population structure and

relatedness by incorporating a genomic kinship matrix as a

random effect term, and it accounts for linkage disequilibrium

(LD) by estimating SNP effect sizes b while controlling for other

SNPs in the model. The model uses a Markov chain Monte Carlo

algorithm to sample from the posterior distribution and estimate

SNP effect sizes. Unlike LMM, which provides p-values, BSLMM

outputs a posterior inclusion probability (PIP) for each SNP,

reflecting the likelihood that a marker is associated with the

trait based on the data. This PIP is calculated as the proportion

of chain iterations in which the SNP exhibits a large effect. SNPs

with high PIPs are considered the most likely functional variants

influencing the analyzed traits. We applied BSLMM to the same

dataset (214 individuals and 23,315 variants) used in our primary

frequentist association analysis to compare single-SNP and multi-

SNP approaches and reduce false positives. The BSLMM chain

was run with 1,000,000 sampling steps and 100,000 burn-in

iterations. We used the estimated PIPs from BSLMM for

additional fine-mapping of genomic regions identified in the

frequentist analysis.
SNP heritability estimation

The proportion of variance in phenotypes accounted for by all

available genotypes (PVE), also referred to as narrow-sense

heritability (h2), along with the proportion of genetic variance

explained by variants with large effects (PGE), was estimated for

the traits shown in Table 1. This estimation was based on the

assumption that SNP effect sizes follow a mixture of two normal

distributions (Equation 10), as implemented in GEMMA BSLMM.
Multivariate genome-wide association
analyses

To identify common variants associated with the trait pairs

showing the strongest statistically significant correlations,

multivariate genome-wide association analyses were performed

using a multivariate linear mixed model (mvLMM) in GEMMA.

Specifically, multivariate GWAS was conducted for the VPD and

BOS traits, as well as for the VPD and BOF traits, which exhibited

the strongest statisticaly significant correlations. This approach

enabled the simultaneous analysis of genetic effects on both trait

pairs of traits by treating them as dependent variables. The mvLMM

method accounts for population structure and relatedness among

individuals, ensuring accurate identification of genetic variants

contributing to the observed phenotypic variation in these traits.
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Candidate genes prediction

After identifying phenotypic evidence for local adaptation in

distinct C. litardierei populations and conducting GWAS analysis,

efforts focused on pinpointing associated candidate genes. Using the

reference genome, sequences were extracted spanning a total of 50

kilobases – including 25 kilobases upstream and downstream of

each significant SNP identified through both statistical models,

using SAMtools (Danecek et al., 2021). Functional annotations

for these sequences were then obtained through the eggNOG-

mapper v2 database, applying an e-value threshold of < 1 × 10−2

(Huerta-Cepas et al., 2019).
Results

Phenotyping

Figure 3 illustrates the phenological variations observed among

C. litardierei populations in the common garden experiment.

Out of the 214 individuals sampled across nine populations, 204

flowered successfully. Consequently, all traits related to flowering

[FPD, VPD (since its ending is related to the start of the fruiting

phenophase), and BOF] were measured and subsequent analyses

were performed on the set of 204 individuals, while the remaining

10 were discarded. At the same time, the BOS trait was analyzed

across all 214 individuals. The FPD and the VPD ranged from 9 to
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25 days, with a median of 17 days (Q1 – Q3: 15 – 18), and 55 to 162

days, with a median of 97 days (Q1 – Q3: 88 – 107), respectively.

The BOF and BOS traits ranged from 1 to 33 days, with a median of

11 days (Q1 – Q3: 10 – 13), and 1 to 88 days, with a median of 56

days (Q1 – Q3: 52 – 63), respectively. All the obtained data are

summarised in Table 1. Supplementary File 2 contains the results of

Kruskal-Wallis and Mann-Whitney post-hoc tests for the studied

phenological traits, showing significant differences at the population

level and between the assumed population groups. The distribution

of these phenological traits is visually represented using box plots

in Figure 4.

A correlation analysis revealed several significant associations

among the studied traits (Table 2). A weak positive correlation was

observed between FPD and VPD, while a strong positive correlation

was found between VPD and BOF.
Sequencing, genomic data processing, and
population genetic structure

The sequencing process generated a total of 1,284,680,304 reads.

After filtering the raw sequences and mapping them to the reference

genome, 1,278,409,966 reads were retained. SNP identification and

filtration were performed using the Stacks software, resulting in the

detection of 24,660 SNPs. Following the application of the BCFtools

MAF filter with a 1% threshold, 23,315 SNPs were kept for

subsequent analysis.

The cluster analysis based on the Bayesian model implemented in

the ParallelStructure software revealed that the most likely number of

genetic clusters was two (Supplementary File 3). One cluster

corresponded to the group of populations from the dolomite

bedrock habitat, while the remaining populations formed the other

cluster (Supplementary File 4). Such structuring reflects the

environmental preferences of the studied populations only to some

extent, as populations from seashore and meadow habitats remained

grouped without any differentiation among them.
Genome-wide association analyses

The analysis of the FPD trait using LMM identified 48

significant SNPs, while GLMM detected 8. An overlap of these

results revealed 8 SNPs that were significant across both methods.

Further validation using BSLMM confirmed 3 of these SNPs as

significant, with one located on each of chromosomes 10, 7, and 11.

For the VPD trait, LMM identified 26 significant SNPs, while

GLMM detected 54. Fourteen SNPs were found to overlap

between the two methods. Subsequent analysis with BSLMM

confirmed 2 of these SNPs as significant, located on

chromosomes 4 and 12. In the case of the BOF trait, LMM and

GLMM identified 17 and 29 SNPs, respectively, with 8 overlapping

SNPs. BSLMM analysis confirmed 1 significant SNP located on

chromosome 2. For the BOS trait, LMM identified 34 significant

SNPs, while GLMM detected 162. Seven SNPs overlapped between

the two methods, and BSLMM analysis confirmed 1 significant SNP
FIGURE 3

The horizontal bar plot illustrates the durations of Vegetation period
Duration (VPD) and Flowering Period (FPD) across populations of the
Chouardia litardierei during one vegetational season. The x-axis
represents the days of the year, while the y-axis lists the populations
being compared. The dark magenta bars indicate the FPD, which
represents the duration from the date of the first to the last flower
for each genotype. In contrast, the grey bars represent the VPD,
denoting the duration from the genotype sprouting to the opening
of the first capsule. Additionally, the figure provides a visual
reference for the Beginning of Flowering (BOF) and the Beginning of
Sprouting (BOS), where BOF and BOS are calculated relative to the
individual that flowered or sprouted first, respectively.
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on chromosome 12. All SNPs passing the genome-wide significance

threshold (1 × 10−3) in both LMM and GLMM single-SNP LMM

analysis are listed in Table 3. The results from the single-SNP

association analysis conducted in GMMAT and GEMMA are

presented together in Manhattan plots in Figure 5.

In the Bayesian association analysis, two SNPs were identified as

having a major sparse effect on the FPD trait. These SNPs were

estimated to have a sparse effect in at least 10% of the BSLMM chain

iterations (posterior inclusion probability, PIP ≥ 0.099).

Additionally, both SNPs showed a sparse effect in over 16% of the

iterations (PIP ≥ 0.165), further highlighting their significance. In
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contrast, for the VPD trait, 75 SNPs displayed a major sparse effect

in ≥10% of BSLMM chain iterations (PIP ≥ 0.095). In addition, the

top four SNPs displayed a major sparse effect in more than 44% of

iterations (PIP ≥ 0.447). Concerning the BOF trait, three SNPs were

identified with a major sparse effect in ≥10% of iterations (PIP ≥

0.098) and the top SNP had a major sparse effect in over 17% of

iterations (PIP ≥ 0.172). Similarly, for the BOS trait, 26 SNPs

exhibited a sparse effect in ≥10% of BSLMM chain iterations (PIP

≥ 0.095), with the top two SNPs showing a strong effect in over 82%

of iterations (PIP > 0.829). The data outlined above is reported in

Supplementary File 5.

A total of 7 SNPs passed the genome-wide significance threshold

(1 × 10−³) in the single-SNP LMM analyses and the posterior

inclusion probability threshold (PIP ≥ 10%) in the Bayesian multi-

SNP BSLMM analysis and are listed in Table 4. Manhattan plots from

the BSLMM analysis are provided in Supplementary File 6.
SNP heritability estimation

The BSLMM analysis, performed using 23,315 SNPs, provided

estimates of narrow-sense heritability (PVE) for the phenological

traits studied, along with the proportion of genetic effect (PGE) and

the count of variants with a major effect (n.gamma), as detailed in

Table 5. The PVE estimate for the FPD revealed that 20.26% of the
FIGURE 4

Box plots illustrate the obtained phenological results from a common garden experiment, depicting four phenological traits: (A) Flowering Period
Duration (FPD) (top left), (B) Vegetation Period Duration (VPD) (top right), (C) Beginning of Flowering (BOF) (bottom left), and (D) Beginning of
Sprouting (BOS) (bottom right) per genotype. Each box represents the interquartile range (IQR), with the horizontal line inside the box indicating the
median. Whiskers extend to data points within 1.5 times the IQR, while dots represent outliers.
TABLE 2 Spearman’s correlation coefficients and p-values for the four
C. litardierei phenological traits: FPD, VPD, BOF, and BOS.

Trait 1 Trait 2 Spearman’s r p-value

FPD VPD 0.025 0.725

FPD BOF -0.241 0.0005

FPD BOS -0.069 0.324

VPD BOF 0.430 1.33e-10

VPD BOS -0.948 < 2.2e-16

BOF BOS -0.241 0.0005
BOF, Beginning of Flowering; BOS, Beginning of Sprouting; FPD, Flowering Period Duration;
VPD, Vegetation Period Duration.
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TABLE 3 SNPs passing the genome-wide significance threshold (1 × 10−³) in both GMMAT and GEMMA single-SNP LMM analyses for Chouardia
litardierei traits: FPD, VPD, BOF, and BOS.

Trait SNP Chr Position
Effect
Allele

Referent
Allele

MAF
Single-SNP LMM Analysis b

(p-value) in GMMAT
Single-SNP LMM Analysis
b (p-value) in GEMMA

FPD 275195_16 13 197688818 C T 0.14 0.12 (2.41 × 10-4) -0.52 (5.68 × 10-6)

FPD 131957_13 10 97222552 T G 0.02 0.30 (2.79 × 10-4) -1.13 (8.22 × 10-6)

FPD 750129_37 7 113120650 G A 0.06 0.18 (3.24 × 10-4) -0.76 (9.69 × 10-6)

FPD 688820_29 5 89511430 T C 0.03 0.33 (3.68 × 10-4) -1.39 (1.02 × 10-5)

FPD 134834_42 11 108997955 G C 0.02 0.38 (3.69 × 10-4) -1.49 (1.89 × 10-5)

FPD 445498_105 1 133595095 T G 0.07 0.16 (5.24 × 10-4) -0.66 (2.29 × 10-5)

FPD 53032_22 9 14725086 A G 0.06 0.16 (6.05 × 10-4) -0.68 (2.98 × 10-5)

FPD 380447_37 13 615321041 T A 0.06 0.18 (8.73 × 10-4) -0.77 (5.91 × 10-5)

VPD 565532_39 4 14626431 C A 0.13 0.10 (5.23 × 10-6) -0.46 (1.01 × 10-5)

VPD 65720_38 9 26233589 A G 0.03 -0.14 (1.52 × 10-6) 0.60 (1.28 × 10−5)

VPD 305761_25 13 320423026 T G 0.13 -0.08 (6.14 × 10-7) 0.33 (1.58 × 10−5)

VPD 167223_27 11 64125165 T G 0.09 0.11 (1.62 × 10-4) -0.46 (7.95 × 10−5)

VPD 221833_73 12 284678317 C G 0.35 0.05 (6.52 × 10-4) -0.22 (1.02 × 10−4)

VPD 210123_39 12 239066297 T G 0.03 -0.13 (8.71 × 10-7) 0.51 (1.37 × 10−4)

VPD 618657_20 4 345766799 A G 0.01 -0.23 (2.46 × 10-5) 0.93 (1.75 × 10−4)

VPD 334377_114 13 437172692 C A 0.01 -0.14 (5.03 × 10-4) 0.75 (1.75 × 10−4)

VPD 76416_37 9 64503815 A G 0.06 -0.08 (1.09 × 10-4) 0.35 (2.34 × 10−4)

VPD 57078_21 9 163441584 A C 0.28 -0.06 (3.76 × 10-5) 0.23 (2.43 × 10−4)

VPD 774777_66 7 206933711 C T 0.03 -0.14 (1.07 × 10-4) 0.56 (2.83 × 10−4)

VPD 635043_17 4 93373391 T C 0.08 -0.09 (8.57× 10-5) 0.37 (3.38 × 10−4)

VPD 790473_18 7 8052404 A T 0.02 -0.20 (2.39 × 10-5) 0.81 (4.63 × 10−4)

VPD 272420_33 13 186297710 T G 0.08 -0.10 (8.13 × 10-7) 0.33 (9.05 × 10−4)

BOF 445520_34 1 133744238 A G 0.23 -0.19 (2.16 × 10-6) 0.41 (1.74 × 10−4)

BOF 504422_54 2 95535920 T G 0.34 -0.18 (9.52 × 10-6) 0.49 (9.17 × 10−5)

BOF 623094_18 4 39016369 A G 0.43 -0.14 (3.29 × 10-5) 0.30 (4.02 × 10−4)

BOF 477240_15 2 115724781 A G 0.25 -0.15 (6.87 × 10-5) 0.34 (9.49 × 10−4)

BOF 768498_16 7 186900792 G C 0.02 -0.33 (1.86 × 10-4) 0.89 (3.07 × 10−4)

BOF 252813_22 13 104630774 C G 0.03 0.60 (4.04 × 10-4) -1.26 (3.79 × 10−5)

BOF 455458_35 1 37036194 G T 0.36 -0.28 (4.08 × 10-4) 0.59 (7.76 × 10−4)

BOF 186978_19 12 148693882 A C 0.03 -0.30 (6.69 × 10-4) 0.81 (1.99 × 10−4)

BOS 210123_39 12 239066297 T G 0.03 0.95 (5.88 × 10-22) -0.64 (5.95 × 10-5)

BOS 65720_38 9 26233589 A G 0.03 0.71 (2.04 × 10−14) -0.64 (5.95 × 10−5)

BOS 57078_21 9 163441584 A C 0.28 0.20 (1.19 × 10−10) -0.61 (4.60 × 10−4)

BOS 774777_66 7 206933711 C T 0.03 0.36 (6.64 ×10−6) -0.27 (3.39 × 10−4)

BOS 221833_73 12 284678317 C G 0.35 -0.12 (1.85 × 10-5) -0.66 (5.88 × 10−4)

BOS 38821_38 8 94422071 G A 0.27 0.12 (4.12 × 10-5) 0.27 (1.34 × 10−4)

BOS 333922_26 13 435879200 T G 0.43 0.12 (4.58 × 10-5) -0.24 (6.68 × 10−4)
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Statistical analyses were performed with GEMMA and GMMAT LMM. p-values < 1 × 10−3 are considered genome-wide significant. BOS, Beginning of Sprouting; BOF, Beginning of Flowering;
Chr, Chromosome; FPD, Flowering Period Duration; LMM, Linear Mixed Model; MAF, Minor Allele Frequency; SNP, Single Nucleotide Polymorphism; VPD, Vegetation Period Duration.
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phenotypic variation was explained by all available genotypes, with

47.22% attributed to 60 SNPs exhibiting significant phenotypic

effects. Similarly, the PVE estimate for the VPD indicated that

86.95% of the phenotypic variation was explained by all genotypes,

with 65.72% attributed to 111 SNPs exhibiting notable phenotypic

effects. Moreover, the BSLMM analysis revealed that 66.03% of the

phenotypic variation in BOF was explained by all genotypes, with
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25.86% of this variation accounted for by 47 SNPs with significant

effects. The PVE estimate for the BOS revealed that 76.05% of the

phenotypic variation was explained by all available genotypes, with

63.19% attributed to 52 SNPs exhibiting significant phenotypic

effects. Supplementary File 7 contains the means, medians, and 95%

equal tail posterior probability intervals (95% ETPPIs) of the

hyperparameters derived from the BSLMM.
FIGURE 5

Manhattan plots of single-SNP association mapping of FPD, VPD, BOF, and BOS traits. Single-SNP analysis was conducted using (A) GMMAT (top
row) and (B) GEMMA (bottom row) for each trait, where the x-axis represents the chromosomal positions of SNPs and the y-axis shows the −log10
(p-values) from the LMM analysis. The red horizontal line denotes the genome-wide significance threshold (p = 1 × 10−³). Each point on the
Manhattan plot corresponds to a SNP, with stronger associations appearing higher due to lower p-values. Green dots indicate SNPs identified in
both analyses.
TABLE 4 SNPs passing the genome-wide significance threshold (1 × 10−³) in the single-SNP LMM analyses and the posterior inclusion probability
treshold (PIP ≥ 10%) in the Bayesian multi-SNP BSLMM analysis.

Trait SNP Chr Position
Effect
Allele

Referent
Allele

MAF
Single-SNP LMM

Analysis b (p-value)
in GMMAT

Single-SNP LMM
Analysis b (p-value)

in GEMMA

Multi-SNP
BSLMM
Analysis
b (PIP)

FPD 131957_13 10 97222552 T G 0.02 0.30 (2.79 × 10-4) -1.13 (8.22 × 10-6) -0.70 (0.17)

FPD 750129_37 7 113120650 G A 0.06 0.18 (3.24 × 10-4) -0.76 (9.69 × 10-6) -0.48 (0.17)

FPD 134834_42 11 108997955 G C 0.02 0.38 (3.69 × 10-4) -1.49 (1.89 × 10-5) -0.70 (0.06)

VPD 565532_39 4 14626431 C A 0.13 0.10 (5.23 × 10-6) -0.46 (1.01 × 10-5) -0.33 (0.91)

VPD 210123_39 12 239066297 T G 0.03 -0.13 (8.71 × 10-7) 0.51 (1.37 × 10-4) 0.33 (0.75)

BOF 504422_54 2 95535920 T G 0.34 -0.18 (9.52 × 10-6) 0.49 (9.17 × 10-5) 0.32 (0.17)

BOS 210123_39 12 239066297 T G 0.03 0.95 (5.88 × 10-22) -0.64 (5.95 × 10-5) -0.48 (0.83)
Statistical analyses were performed with GEMMA and GMMAT LMM and BSLMM. p-values< 1 × 10−3 are considered genome-wide significant. BOS, Beginning of Sprouting; BOF, Beginning of
Flowering; BSLMM, Bayesian Sparse Linear Mixed Model; Chr, Chromosome; FPD, Flowering Period Duration; LMM, Linear Mixed Model; MAF, Minor Allele Frequency; PIP; Posterior
Inclusion Probability; SNP, Single Nucleotide Polymorphism; VPD, Vegetation Period Duration. The table presents the single-SNP LMM p-values along with their corresponding posterior
inclusion probabilities from the BSLMM analysis for Chouardia litardierei traits FPD, VPD, BOF, and BOS.
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Multivariate GWAS analysis

In the multivariate GWAS analysis, 113 SNPs surpassed the

genome-wide significance threshold (p = 1 × 10-3) for the model with

BOS and VPD traits as dependent variables (Supplementary File 8).

This indicates shared genetic factors influencing these phenological

traits across multivariate and univariate analyses. Five SNPs were

significant in both LMM and GLMM univariate analyses for the BOS

trait, and these same five were also significant for the VPD trait, along

with an additional eight SNPs that were significant only for VPD,

bringing the total to 13 (Table 6). In the multivariate GWAS analysis for

the model with VPD and BOF traits as dependent variables, 36 SNPs

exceeded the same threshold (Supplementary File 9). Among these, 10

SNPs were significant in LMM and GLMM univariate analyses for the

VPD trait, while 4 showed significance for the BOF trait (Table 6). The

multivariate GWAS findings for BOS and VPD, and BOF and VPD are

plotted in Manhattan plots in Figure 6. The frequencies of effect alleles

across populations for the significant SNPs (shown in Tables 4, 6) are

depicted in a plot provided in Supplementary File 10.
GWAS candidate genes identification

The eggNOG tool provided detailed data clarifying the

connection between individual SNPs/sequences and specific

protein families (PFAM). To identify candidate genes potentially

influencing phenological traits, we conducted eggNOG analysis on

7 SNPs that passed the genome-wide significance threshold (1 ×

10−³) in both the single-SNP LMM and multi-SNP BSLMM

analyses of C. litardierei traits, including FPD, VPD, BOF, and

BOS. This analysis identified 59 queries corresponding to sequences

matched to the eggNOG database for functional annotation

(Supplementary File 11). Using eggNOG, we further analyzed 13

SNPs that met the same significance threshold in the multivariate

GWAS analysis of BOS and VPD, uncovering 114 additional

queries (Supplementary File 12). Similarly, 14 SNPs passed the

same significance threshold in the multivariate GWAS analysis of

VPD and BOF, resulting in 173 additional queries (Supplementary

File 13). The eggNOG analysis connected sequences to protein

families, which we further explored through manual inspection and

a literature review to identify specific genes and PFAM domains

related to the traits being studied. Some domains were common to
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both the univariate and multivariate GWAS results, resulting in

overlaps. The most significant findings, along with their biological

functions and relevant references, are summarized in Table 7.
Discussion

This study aimed to advance our understanding of the genetic

foundations of phenological adaptive traits in C. litardierei’s

populations occupying contrasting habitats and shaped by distinct

ecological pressures. To minimize the effects of phenotypic plasticity

and identify heritable local adaptation traits as accurately as possible,

individuals from divergent environments were grown under uniform

conditions (Liu and El-Kassaby, 2019; Schwinning et al., 2022). This

approach allowed the separation of genetic influences from

environmental effects, revealing the heritable components driving

local adaptation, where populations evolve toward optimal

phenotypic and genetic configurations in response to local selective

pressures (Montejo-Kovacevich et al., 2021).

Basic statistical analyses on the common garden experiment data

were first performed to characterize the variations within the tested

phenological traits and their potential importance for the local

adaptation of studied populations in their natural habitats. Except

for the duration of flowering (FPD), substantial variations in tested

traits among the studied populations were revealed, highlighting their

importance for adaptation to contrasting environmental pressures.

However, although significant differences in phenological traits

among studied groups and individual populations were present,

there were many exceptions in the general pattern. For instance,

although the dolomite-habitat population group began with

flowering (BOF) before the remaining two groups, the Pag

population from the seashore habitat was an exception, as it

overlaped with all the dolomite-habitat populations. At the same

time, the Pag population came into flowering significantly earlier

than the Vrana Lake population, which is found in the same habitat

and is even geographically closely positioned to the Pag population.

Similarly, VPD was significantly shorter in the dolomite-habitat

group of populations in contrast to other groups; however, the

Budoške Bare population from karst poljes’ meadow habitat joined

this group due to having VPD also significantly shorter than any of

the remaining populations from this and the seashore habitat. Such a

result supports the earlier assumption that although groups of C.

litardierei population thrive in highly contrasting habitats, their

differentiation into well-differentiated ecotypes remains poorly

supported. This was also partially confirmed by the obtained

population genetic results (Supplementary Files 3, 4). Here, only

the group of populations from the dolomite habitat was substantially

differentiated and formed a well-defined genetic cluster, while all the

remaining populations remained clustered together, without signs of

differentiation between the seashore and meadow-habitat groups.

Since the ecotypes are defined as groups of populations whose

differentiation is supported both genetically and phenotypically

(Lowry, 2012), the studied groups do not meet these criteria.

Nonetheless, some trends can be observed in the obtained results

that point to certain conclusions. The dolomite-habitat population
TABLE 5 Genetic architectures of Chouardia litardierei phenological
traits identified using a BSLMM.

Trait PVE/% PGE/% n.gamma

FPD 20.26 47.22 60

VPD 86.95 65.72 111

BOF 66.03 25.86 47

BOS 76.05 63.19 52
BOF, Beginning of Flowering; BOS, Beginning of Sprouting; FPD, Flowering Period Duration;
n.gamma, number of variants with major effect; PGE, Proportion of Variance Explained by
major effect variants; PVE, Proportion of Variance Explained by genetic data; VPD,
Vegetation Period Duration.
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group sprouted later (BOS) and flowered earlier (BOF) but had a

shorter vegetation period (VPD) than the remaining two groups.

Such a shift in phenophases is likely to be significantly influenced by

habitat properties. To understand how this specific habitat may affect

this phenomenon, two aspects must be considered: the dolomite

substrate properties and the influence of the local climate dynamics

on the vegetation season. These southernmost populations of C.

litardierei are usually found on bare dolomite bedrock or less

frequently in dry, exposed mountainous grassland habitats
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developed on very shallow rendzina soils (Figure 1). Due to

reduced water and nutrient capacity, accompanied by high levels of

thermal conductivity and thermal capacity of the dolomite substrate

(Thomas et al., 1973; Waples and Waples, 2004; Mota et al., 2021),

these drought-prone habitats are known to induce heat stress in

adjacent organisms and thus present a hostile environment for plant

species (Mota et al., 2021). In addition, due to very sparse vegetation

cover in such habitats, the substrate temperature can be expected to

reach far greater values when compared to habitats covered with
TABLE 6 SNPs passing genome-wide significance threshold (1 × 10−3) in the multivariate GWAS mvLMM analysis of Chouardia litardierei phenological
traits BOS and VPD, and BOF and VPD.

Trait SNP Chr Position
Effect
Allele

Ref.
Allele

MAF
Beta1
(VPD)

Beta2
(BOS)

mvLMM in GEMMA
(p-value)

BOS +VPD 305761_25 13 320423026 T G 0.13 0.35 -0.37 7.85 × 10−6

BOS +VPD 65720_38 9 26233589 A G 0.03 0.61 -0.59 1.25 × 10−5

BOS +VPD 565532_39 4 14626431 C A 0.13 -0.45 0.55 1.73 × 10−5

BOS +VPD 221833_73 12 284678317 C G 0.35 -0.23 0.30 3.20 × 10−5

BOS +VPD 334377_114 13 437172692 C A 0.01 0.75 -0.62 9.93 × 10−5

BOS +VPD 167223_27 11 64125165 T G 0.09 -0.46 0.49 2.14 × 10−4

BOS +VPD 790473_18 7 8052404 A T 0.02 0.85 -1.13 3.34 × 10−4

BOS +VPD 210123_39 12 239066297 T G 0.03 0.51 -0.58 4.28 × 10−4

BOS +VPD 774777_66 7 206933711 C T 0.03 0.57 -0.72 5.10 × 10−4

BOS +VPD 618657_20 4 345766799 A G 0.01 0.93 -1.05 6.71 × 10−4

BOS +VPD 57078_21 9 163441584 A C 0.28 0.22 -0.21 6.98 × 10−4

BOS +VPD 76416_37 9 64503815 A G 0.06 0.35 -0.38 7.19 × 10−4

BOS +VPD 635043_17 4 93373391 T C 0.08 0.37 -0.44 8.20 × 10−4

Beta1
(VPD)

Beta2
(BOF)

BOF +VPD 65720_38 9 26233589 A G 0.03 0.59 0.25 8.71 × 10−6

BOF +VPD 305761_25 13 320423026 T G 0.13 0.34 0.01 2.04 × 10−5

BOF +VPD 565532_39 4 14626431 C A 0.13 -0.45 0.15 3.26 × 10−5

BOF +VPD 334377_114 13 437172692 C A 0.10 0.73 0.49 7.39 × 10−5

BOF +VPD 774777_66 7 206933711 C T 0.03 0.61 -0.27 2.41 × 10−4

BOF +VPD 167223_27 11 64125165 T G 0.09 -0.46 0.16 2.74 × 10−4

BOF +VPD 221833_73 12 284678317 C G 0.35 -0.22 0.11 3.14 × 10−4

BOF +VPD 618657_20 4 345766799 A G 0.01 0.95 -0.28 4.52 × 10−4

BOF +VPD 76416_37 9 64503815 A G 0.06 0.35 0.06 6.51 × 10−4

BOF +VPD 210123_39 12 239066297 T G 0.03 0.50 -0.01 6.84 × 10−4

BOF +VPD 504422_54 2 95535920 T G 0.34 0.23 0.49 2.16 × 10−5

BOF +VPD 252813_22 13 104630774 C G 0.03 0.10 -1.27 1.03 × 10−4

BOF +VPD 186978_19 12 148693882 A C 0.03 -0.22 0.82 4.17 × 10−4

BOF +VPD 445520_34 1 133744238 A G 0.23 0.06 0.39 5.72 × 10−4
Statistical analyses were performed with GEMMA mvLMM. p-values< 1 × 10−3 are considered genome-wide significant. BOF, Beginning of Flowering; BOS, Beginning of Sprouting; Chr,
Chromosome; FPD, MAF, Minor Allele Frequency; mvLMM, multivariate Linear Mixed Model; SNP, Single Nucleotide Polymorphism; VPD, Vegetation Period Duration. Listed SNPs were
found to be significant in both GEMMA and GMMAT univariate analyses.
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canopies or meadows (Oliver et al., 1987), thus further worsening

already inhospitable conditions. Regarding the influence of regional

climatic patterns on local vegetation, two peaks of ecosystem

productivity have been observed in Mediterranean climate

conditions across southern Europe – the larger one during spring

and the less pronounced one during autumn. Such a modality has

developed because of ecological constraints imposed by low winter

temperatures on one side and summer droughts on another (Spano

et al., 2013; Camarero et al., 2021), thus leaving relatively short time

frames in spring and autumn suitable for development and

reproduction. Consequently, it seems plausible that populations

experiencing such climatic patterns, in combination with drought-

and heat-stress-prone habitats, have developed short development-

and reproduction-related phenophases. At the same time, the

remaining C. litardierei populations inhabiting deep, moisture-

retaining soils protected by dense vegetation layer which

additionally reduces the increase of substrate temperature (Oliver

et al., 1987), experience a less limited time frame for closing the sexual

reproduction cycle. This is reflected in significant shifts in related

phenophases toward later sprouting and the beginning of flowering,

as well as a more extended vegetation period.

By emphasizing their heritable nature, the high PVE values

observed in our study were suggested to indicate the great

evolutionary importance of detected candidate loci in shaping the

phenological adaptation of populations to local climatic conditions.

The highest PVE value (86.95%) was exhibited by the trait VPD,

suggesting that the length of the growing season in this species is

predominantly determined by genetic factors. The high genetic

variance observed in VPD could be reflective of adaptive

mechanisms that allow C. litardierei to optimize its growth and

reproductive success in response to environmental cues, such as

climate and soil conditions, with strong natural selection acting on

traits critical for survival in fluctuating environments. While a PVE

for flowering time exceeding 95% has been reported for Arabidopsis
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from Cape Verde and Morocco (Neto and Hancock, 2023),

highlighting the predominant genetic influence, the PVE for C.

litardierei flowering period duration (FPD) was found to be

20.26%, indicating a more significant role of environmental or

non-genetic factors. PVE values of 66.03% and 76.05% were

exhibited by the BOF and BOS traits, respectively, indicating that

genetic elements were exerting a greater influence than local

environmental factors in shaping these traits. This was reinforced

by the PGE values, with the highest PGE (65.72%) being observed in

VPD, driven by a few major variants. In contrast, lower PGE values

(25.86% and 63.19%) were found for BOF and BOS, respectively,

reflecting the influence of numerous small-effect variants and a

greater environmental impact. Overall, these heritability estimates

and genetic findings provided evidence of the significant role played

by genetic factors in shaping phenological traits in C. litardierei,

emphasizing the complex interaction between genetics and

environment and offering a strong foundation for future genetic,

evolutionary, and adaptation studies.

In this study, multiple loci linked to phenological traits in C.

litardierei were identified through univariate and multivariate GWAS

approaches. The relatively low overlap of significant SNPs detected

across the different GWAS models likely reflects inherent differences

in their statistical assumptions and approaches to modelling genetic

effects.While both frequentist methods (GLMM and LMM) applied a

consistent significance threshold of < 1 × 10−3, the BSLMM relies on

posterior inclusion probabilities, which are generally more

conservative and not directly comparable to p-values. Importantly,

each model is optimized for different data characteristics: LMM

assumes normally distributed traits, whereas GLMM, using a

Poisson distribution, is more appropriate for count-based traits

with non-normal distributions. Applying trait-appropriate models

increases the reliability and power of association detection, even if it

results in a lower number of shared SNPs. Functional annotation of

the genomic windows surrounding significant SNP loci revealed
FIGURE 6

Manhattan plot of multivariate genome-wide association study (multi-GWAS) of (A) BOS and VPD (left) and (B) BOF and VPD traits (right). The red
horizontal line indicates the genome-wide significance threshold (p = 1 × 10-3). Each dot on the Manhattan plot signifies a SNP. The strongest
associations have the smallest p-values, so their negative logarithms will be the greatest, appearing higher on the plot. Green dots indicate SNPs
identified as significant in the multivariate GWAS analysis as well as in both GEMMA and GMMAT univariate analyses for each of the two plots.
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Šarančić et al. 10.3389/fpls.2025.1571608
regions encoding key protein families involved in essential biological

pathways related to phenological events. Among others, SNP loci

were identified in regions encoding the chromo domain, which is

crucial to plant chromatin-based gene regulation. In Arabidopsis,

mutations in LHP1 (LIKE HETEROCHROMATIN PROTEIN 1), a

gene encoding a chromo domain, have been shown to cause early

flowering and reduced plant size (Gaudin et al., 2001).

Overexpression of CONSTANS (CO), which activates

FLOWERING LOCUS T (FT) in long-day conditions, has been
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found to alter chromatin at the FT locus by reducing LHP1

binding and increasing histone acetylation, suggesting LHP1

represses flowering through chromatin regulation (Adrian et al.,

2010). SNP loci were also identified in regions encoding histidine

phosphatase proteins, which are known to regulate plant

development and stress responses, particularly through hormone

signaling pathways like cytokinins that influence flowering and

vegetative growth (Werner et al., 2001; Hai et al., 2020). For

instance, it has been demonstrated that exogenous cytokinin
TABLE 7 List of candidate genes for regions of strong association with FPD, VPD, BOF and BOS identified by the eggNOG-mapper v2 database.

Query Method e-value Chr
EGGNog
PFAM

Candidate
Genes

Species
Relevant
biological
functions

References

H 9:113095650-113145650_6 GWAS 4.55e-212 7

Chromo domain LHP1

Arabidopsis
thaliana

Chromatin
regulation and
flowering
time control

Gaudin et al.
(2001),
Adrian
et al. (2010)

H 9:206908711-206958711_54 mGWAS1 6.8e-111 13

H 2:95510920-95560920_36 mGWAS2 3.82e-132 2

H 9:113095650-113145650_4 GWAS 3.1e-163 7
Histidine
phosphatase
protein family

Hd3a,
ZCN8

Oryza
sativa,
Zea mays

Hormone signalling,
development, stress
response,
and flowering

Cho
et al. (2022)

H 9:113095650-113145650_44 GWAS 2.31e-42 7
Aspartic
Proteases (APs)

PvAP1
Phaseolus
vulgaris

Drought stress
adaptation and
osmotic resistance

Contour-Ansel
et al. (2010)

H 4:14601431-14651431_21 GWAS 2.19e-80 4
CCHC-type zinc
finger proteins
(CCHC-ZFPs)

AtCSP4

Arabidopsis
thaliana Growth,

development, and
stress responses

Yang and
Karlson (2011)

H 15:284653317-284703317_45 mGWAS1 1.77e-306 12

H 15:284653317-284703317_50 mGWAS2 1.77e-306 12

H 4:14601431-14651431_5 GWAS 1.14e-23 4 Pentatricopeptide
repeat
(PPR) proteins

AT1G15480
Arabidopsis
thaliana

Flowering
time regulation

Emami and
Kempken
(2019)H 4:14601431-14651431_4 mGWAS2 9.61e-26 4

H 14:108972955-109022955_19 GWAS 2.14e-100 11

Phytochrome-
interacting Factor
1 (PIF1)

PIF1
Arabidopsis
thaliana

Sprouting control,
growth, stress
adaptation, and
photosynthesis
regulation

Yadav (2024),
Soy et al.
(2014),
Li et al. (2024),
Chen
et al. (2013)

H 14:108972955-109022955_22 mGWAS1 1.00e-308 11

H 16:320398026-320448026_57 mGWAS1 3.11e-22 13

MATE domain

OsMATE2,
OsMATE4,
OsMATE42,
OsMATE46

Oryza
sativa

Early salt stress
response and
drought
stress resistance

Du et al. (2021)
H 16:320398026-320448026_58 mGWAS2 3.11e-22 13

H 15:284653317-284703317_6 mGWAS1 1.08e-12 12
Protein
kinase domain

SOS2/CIPK24
Arabidopsis
thaliana

Salt stress responses
and
hormonal signaling

Chen
et al. (2023)H 4:345741799-345791799_9 mGWAS2 2.09e-24 4

H 1:133719238-133769238_38 mGWAS2 1.33e-36 1
MLO
protein family

OsMLO1-4,
OsMLO9,
OsMLO11

Oryza
sativa

Heat and/or cold
stress response

Nguyen
et al. (2016)

H 15:148668882-148718882_58 mGWAS2 5.59e-190 12 C2 domain
QUIRKY,
STRUBBELIG

Arabidopsis
thaliana

Promotes
intercellular
communication and
tissue
morphogenesis

Vaddepalli
et al. (2014)
BOF, Beginning of Flowering; Chr, chromosome; BOS, Beginning of Sprouting; flowering period duration; GWAS, genome-wide association study; H, HiC scaffold; mGWAS1, multivariate
Genome-Wide Association Study of BOS and VPD; mGWAS2, multivariate Genome-Wide Association Study of BOF and VPD; PFAM, protein family; VPD, Vegetation Period Duration. (e-
value< 1 × 10−2) in Chouardia litardierei based on the 7 recognized SNPs passing genome-wide significance threshold (1 × 10−3) in the single-SNP LMM and multi-SNP BSLMM analysis as well
as 13 SNPs passing the same threshold in the multivariate GWAS mvLMM analysis of BOS and VPD (mGWAS1), and 14 SNPs in BOF and VPD (mGWAS2). The names of the identified
candidate genes associated with the SNPs, PFAMs, their relevant biological functions, and corresponding references are provided.
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application extends the vegetative phase in rice and maize by

inhibiting the expression of florigen genes, such as Hd3a and

ZCN8, thus delaying flowering time (Cho et al., 2022).

Additionally, cytokinins have been found to interact with

environmental signals like nutrient sensing (Argueso et al., 2009;

Prasad, 2022), potentially aiding plant adaptation to nutrient-poor

and drought-prone habitats, like those inhabited by the southern

group of C. litardierei populations. Similarly, cytokinin-deficient

mutants have been observed to exhibit delayed flowering on

nutrient-poor substrates, underscoring cytokinin’s role in

adaptation to nutrient-limited environments (Miyawaki et al.,

2006). SNP loci within the genomic regions encoding aspartic

proteases (APs) and CCHC-type zinc finger proteins (CCHC-

ZFPs) were recognized as well. In drought-susceptible common

bean cultivars, the PvAP1 gene exhibited significant upregulation

under mild water stress, supporting the role of APs in drought

responses (Contour-Ansel et al., 2010). CCHC-ZFPs are considered

essential for growth and development, as demonstrated in

Arabidopsis, where AtCSP4 has been identified as a key factor

(Yang and Karlson, 2011). Additionally, SNP loci within the

genomic region encoding pentatricopeptide repeat (PPR) proteins

were identified. It has been reported that mutations in theArabidopsis

gene AT1G15480, encoding a P-class PPR protein, result in early

flowering (Emami and Kempken, 2019). Furthermore, mutations

were detected in genetic regions responsible for encoding

phytochrome-interacting factor 1 (PIF1). In Arabidopsis, PIF1 has

been found to play a major role in sprouting inhibition (Oh et al.,

2004; Yadav, 2024), plant growth and development regulation (Soy

et al., 2014), stress adaptation (Li et al., 2024), and regulation of

photosynthesis initiation (Chen et al., 2013). In addition, SNP loci

were identified within regions encoding the MATE domain, the

protein kinase domain, and loci associated with the MLO protein

family. Several MATE domain genes in O. sativa (OsMATE2,

OsMATE4, OsMATE42, and OsMATE46) have been shown to

regulate plant responses to abiotic stresses, such as salt and

drought, through differential expression patterns (Du et al., 2021),

while the protein kinase SOS2/CIPK24 has been recognized as a

central regulator of salt stress response and hormonal signaling in

Arabidopsis (Chen et al., 2023). Finally, the MLO protein family is

considered crucial for temperature stress adaptation, as exemplified

by several OsMLO proteins in O. sativa (Nguyen et al., 2016).

Here, we investigated the genetic background of phenological

traits in C. litardierei, revealing significant associations between them

and specific genetic variations across the genome. Our findings

indicate that certain genomic regions may be instrumental in the

adaptive responses of populations to contrasting environmental

conditions. The genetic architecture of these phenological traits is

complex, with multiple candidate loci contributing to phenotypic

diversity across habitats. Using the ddRAD-seq approach and

comprehensive GWAS analyses, we identified key candidate genes

and multiple loci associated with phenological traits. However, the

limited genome scan resolution of ddRAD-seq, particularly in large

genomes like C. litardierei (3.7 Gb), leaves much genomic information

unexplored. The relatively small sample size is a limitation of our
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study, particularly given that GWAS typically include larger cohorts to

detect robust and reproducible associations. Nevertheless, our analysis

revealed several biologically plausible signals, which, while requiring

validation, provide a valuable foundation for future studies. These

findings should be interpreted with caution, but they offer meaningful

insights that can be further explored and confirmed in larger,

independent populations. Functional annotation of the associated

genomic regions revealed key protein families involved in vital

biological pathways related to flowering time, vegetative growth, and

stress adaptation. These protein families are crucial regulators of plant

development, environmental responses, and abiotic stress adaptation.

High narrow-sense heritability estimates indicated that genetic factors

accounted for a significant portion of the phenotypic variance, with

PVE ranging from 20.26% for flowering period duration (FPD) to

86.95% for vegetation period duration (VPD). This study underscores

the complexity of the genetic architecture driving phenotypic diversity

in plants, highlighting the critical role of genomic approaches in

examining adaptive traits in non-model species exposed to diverse

ecological pressures. Despite challenges in studying a wild, non-model

species, this research advances our understanding of the genomic basis

of adaptive divergence and ecological differentiation in C. litardierei.

Expanding this research through a comprehensive Genome-

Environment Association (GEA) study, incorporating more

populations across the species’ distribution range, could provide

deeper insights into the genomic drivers of local adaptation and

phenological divergence.
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