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The phenylpropanoid pathway remains a key target for most climate-resilient crop

development, owing to it being a precursor to over 8000 metabolites, including

flavonoids and lignin compounds, including their derivatives. These metabolites

are involved in biotic and abiotic stress tolerance, inviting several studies into their

roles in plant defense, drought, temperature, UV, and nutrient stress tolerance.

Literature is currently inundatedwith cutting-edge reports on the phenylpropanoid

pathways and their functions. Here, we provide a comprehensive update on the

biosynthesis of phenylpropanoids, mainly lignin and flavonoids, their roles in biotic

and abiotic interaction, and transcending topics, including pest and diseases,

drought, temperature, and UV stress tolerance. We further reviewed the post-

transcriptional, post-translational, and epigenetic modifications regulating

phenylpropanoid metabolism and highlighted their applications and optimization

strategies for large-scale production. This review provides an all-inclusive update

on recent reports on the metabolism of phenylpropanoids in plants.
KEYWORDS

phenylpropanoids, plant interactions, post-transcription, post-translation, epigenetics
modifications, plant development
1 Introduction

Phenylpropanoids are highly diverse secondary metabolites derived from the shikimate

pathway, emanating from the glycolysis and the pentose phosphate pathways routes (Lehari and

Kumar, 2024). The phenylpropanoid pathway branches into two, producing numerous lignin-

and flavonoid-related metabolites, which are ubiquitous in the plant kingdom and greatly
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contribute to plant environmental interactions. Phenylpropanoids and

other phenolic compounds formation commences with L-

phenylalanine, an aromatic amino acid, and L-tyrosine in some

grasses. An enormous array of plant self-serving metabolites are

generated via the phenylpropanoid metabolic pathway through a few

shikimate pathway intermediates (Siebeneichler et al., 2024). The

resultant hydroxycinnamic acids and esters are converted by a series

of oxygenases, reductases, and transferases, yielding developmental-

and environmental cues-specific metabolites (Ninkuu et al., 2023c).

Glycosides of phenylpropanoid exhibit a variety of bioactivity,

including antioxidant effect, immunomodulatory effects, and

enzyme-inhibitory effect (Pinar and Rodrıǵuez-Couto, 2025).

Phenylpropanoids are categorized into several classes, including

simple phenylpropanoids such as cinnamic and p-coumaric acids,

ferulic, caffeic, and sinapic acids; phenolic acids (hydrocinnamic

and hydroxybenzoic acids); flavonoids (flavones, flavonols,

flavanones, anthocyanins, isoflavonoids, etc.); lignin and lignans;

coumarins, and stilbenoids (Dixon et al., 2002).

Recent studies have comprehensively elucidated the molecular

regulation of phenylpropanoids, diversity, and plasticity. Additionally,

the role of phenylpropanoid metabolites in biotic (plant diseases and

pest control) and abiotic stress (drought, temperature, UV, nutrients,

etc.) are interactions continuously changing the face of climate-resilient

germplasm development in recent times. Moreover, phenylpropanoids

such as lignin are required for mechanical support for plant growth and

the promotion of water and mineral uptake and partitioning in plants

(Uddin et al., 2024). The current article provides a comprehensive

update on the biosynthesis of phenylpropanoids, mainly lignin and

flavonoids, their roles in biotic and abiotic interaction, and topics,

including pests and diseases tolerance, drought, temperature, nutrient

signaling and uptake, and UV stress tolerance. We also examined post-

transcriptional, post-translational, and epigenetic modifications

involved in phenylpropanoid biosynthesis and highlighted their

industrial applications as well as optimization strategies for large-

scale production. This review provides an all-inclusive update on

recent reports on the metabolism of phenylpropanoids in plants.

2 Overview of the phenylpropanoid
pathway

The intracellular, plastidial localization, and the intricate regulation

of the phenylpropanoid pathway have been explored for decades now,

with almost all the pathway genes and proteins identified. Whereas

tryptophan, phenylalanine, and tyrosine are useful aromatic amino

acids synthesizing proteins, they are also precursors to several natural

products, including hormones, pigments, alkaloids, and cell wall

components. Intriguingly, all three are derivatives of the shikimate

pathway, where approximately ≥30% of photosynthetic carbon is fixed

on plants, providing essential diet components to humans and animals

due to the loss of this pathway in their lineage (Maeda and Dudareva,

2012). The shikimate, which is a crucial precursor to the

phenylpropanoids pathways, is driven by a seven-step pathway

characterized by six enzymes and initiated via the condensation

reaction of phosphoenolpyruvate and erythrose-4-phosphate. Notably,

the phosphoenolpyruvate and erythrose-4-phosphate are also
Frontiers in Plant Science 02
derivatives of glycolysis and the pentose phosphate pathways,

respectively (Ren et al., 2024; Tzin and Galili, 2010). The formation

of Arogenate from shikimate is the major biosynthetic route of

phenylalanine and tyrosine, encoded by prephenate aminotransferase

(PAT and CE) and arogenate dehydratase (ADT). However, recent

advances have also linked phenylalanine biosynthesis to phenylpyruvate

in microbes (Ren et al., 2024; Tzin and Galili, 2010) (Figure 1).

Phenylalanine ammonia-lyase (PAL) is the gate opener for several

glycosylation, acylation, hydroxylation, and methylation reactions,

forming over 8000 metabolites in the phenylpropanoid pathway

(Ninkuu et al., 2023a).

The phenylalanine and the tyrosine in some grasses diverge into

different pathways, from Arogenate but reconverges, yielding p-

coumarate, which is a precursor to coumaroyl CoA for the

formation of an array of phenylpropanoid metabolites. Coumaroyl

CoA is also the precursor for the lignin and flavonoid biosynthesis

(Figure 1). Lignin is a heterogeneous phenolic polymer and the

second most abundant polymer after cellulose, forming 30% of the

earth’s organic carbons in the biosphere. The so-called heterogeneity

of lignin results from its polymerization from various

hydroxycinnamoyl alcohol derivatives. It is subsequently deposited

in the cell walls of vascular plants, conferring many stress tolerance

traits, including resistance to diseases and pests, drought,

deterioration, heat stress, UV radiation, etc (de Oliveira et al., 2025;

Ninkuu et al., 2022). Elsewhere, we comprehensively reviewed the 11

enzymes involved in lignin biosynthesis, the phytoalexins they

produced, and their individual or collaborative roles in plant

immunity induction (Ninkuu et al., 2023a).

Like lignin, flavonoid metabolism is the second branch of the

phenylpropanoid pathways, producing over 6000 polyphenolic

metabolites (Jie et al., 2023). Flavonoids are bioactive metabolites

involved in plants’ biotic and abiotic interactions, including microbial

signaling, allelopathy, and nutraceuticals for improved health (Oro

et al., 2025; Zheng et al., 2025). Flavonoids are characterized by C6-C3-

C6 diphenylpropane skeleton, where three carbon chains (C3) links the

two aromatic rings (Shanker and Rana, 2025). Flavonoids are classified

based on the heterocyclic C‐ring, such as chalcones, aurones, flavones,

isoflavones, flavanones, dihydroflavonols, anthocyanidins,

leucoanthocyanidins, flavonols, and flavan‐3‐ols (Chen et al., 2023).

Table 1 and Figure 2 show the classifications of flavonoids and their

structural forms, respectively. The first committed step in flavonoid

biosynthesis is catalyzed by chalcone synthase (CHS), converting p‐

coumaroyl‐CoA to chalcone, which directs the metabolic flux to

flavonoid metabolism. Stilbene synthases (STS) also encode the

formation of simple stilbenes from cinnamoly‐CoA and p‐

coumaroyl‐CoA. Liu et al. (2021) review discusses the biosynthesis

processes of flavonoids in plants, dissecting the various

enzymes involved.
3 Biological functions of
phenylpropanoid-derived metabolites

As a sessile land organism, plants are exposed to numerous but

expected environmental hazards, including pathogens and insect
frontiersin.org
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infections, UV radiation, drought, heat, and cold stressors. The

deterioration of crop products is also quite hastened by

environmental influences. Notwithstanding these unavoidable
Frontiers in Plant Science 03
stressors imposed partly due to climate change, studies have

shown that phenylpropanoid metabolism can ameliorate these

factors in plants (Figure 3). In the following sections, we highlight

recent works elucidating the role of phenylpropanoid metabolism in

resisting these stresses.
3.1 Phenylpropanoid metabolism enhances
resistance to reactive oxygen species for
stress tolerance

Reactive oxygen species (ROS), including superoxides (O2
-),

hydrogen peroxide (H2O2), hydroxyl radical (OH
-), and singlet

oxygen species (1O2) are by-products of cellular metabolism

responsive to adverse environmental stressors in plants (Rabeh

et al., 2025). ROS induction signals plant growth, differentiation,

and immune responses. Moreover, ROS production under stressful

conditions obstructs cellular functions, leading to oxidative damage

and conferring biotic and abiotic stress responses in plants.

However, plants adapt to excessive ROS induction using intricate

ROS-scavenging mechanisms to offset damage to protein, lipids,

and DNA (Rabeh et al., 2025; Wang et al., 2024; Gao et al., 2023;

Yang et al., 2023). Moreover, plants have developed sophisticated
TABLE 1 Classification of phenylpropanoids.

Class Examples Functions

Simple
Phenylpropanoids

Eugenol, Chavicol Antimicrobial, antioxidant

Phenolic Acids Gallic acid, caffeic acid Defense, antioxidant

Flavonoids
Quercetin,
anthocyanins

UV protection,
pollinator attraction

Lignins/Lignans
Pinoresinol,
lignin polymers

Structural support,
pathogen defense

Coumarins
Scopoletin,
umbelliferone

Antifungal, allelopathy

Stilbenes Resveratrol Antioxidant, antifungal

Tannins
Proanthocyanidins,
tannic acid

Herbivore defense, soil
nutrient cycling

Chalcones
Phloretin,
isoliquiritigenin

Allelopathy, pathogen defense
FIGURE 1

Phenylpropanoid metabolic pathway.
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mechanisms to cope with stressors, such as phenolic compound

metabolism, to neutralize ROS DNA (Rabeh et al., 2025; Wang

et al., 2024).

Meeting the growing food demand presents a significant

challenge to global food security, as much of the world’s arable

land remains vulnerable to abiotic stresses such as salinity, drought,
Frontiers in Plant Science 04
extreme temperatures, UV radiation, and heavy metal toxicity.

Phenylpropanoid biosynthesis becomes a crucial physiological need

of abiotic-stressed plants. The surge in phenylpropanoid metabolism

under abiotic stress detoxifies ROS and protects cellular components

from oxidative damage. Hence, crucial genes encoding key phenolic

enzymes, including PAL (phenylalanine ammonia-lyase), C4H
FIGURE 2

Structural formulae of phenylpropanoid metabolites.
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(cinnamate 4-hydroxylase), 4CL (4-coumarate: CoA ligase), CHI

(chalcone isomerase), and F3H (flavanone 3-hydroxylase) are

predominantly upregulated in response to various abiotic stressors

(Rabeh et al., 2025; Rao and Zheng, 2025; Sharma et al., 2019).
3.2 Phenylpropanoids enhance plants’
tolerance to UV-B radiation

Plants exposed to UV-B stress generate harmful ROS that

severely damage their DNA and proteins (Naikoo et al., 2019;

Singh et al., 2023). Nevertheless, such stresses can be mitigated by

increasing cellular phenolic deposition, which shields the epidermal

layers of the leaves (Olson and Ruhland, 2024; Xiao et al., 2023).

Phenylpropanoids further plummet DNA damage by minimizing the

photodamage of crucial enzymes such as NAD/NADP, while

arresting thymine dimerization (Naikoo et al., 2019). Among these

phenolics, flavonoids are considered effective UV-B screening filters

deposited in leaf interiors and trichomes, for plant defense against

harmful radiations (Choudhary et al., 2021; Singh et al., 2023). Several

studies have affirmed that a spike in flavonoid biosynthesis promotes
Frontiers in Plant Science 05
plant tolerance to UV- radiation (Table 3) (Hao et al., 2022; Rizi et al.,

2021; Song et al., 2025). Hence, increased expression of flavonoid

biosynthetic genes (F3H, CHS, CHI, and FLS) safeguards plants

against UV-B stress. According to Zhao et al. (2020), revealed that the

upregulation of FLS and FS’H in response to UV-B radiation

promoted flavonoid biosynthesis in Ginkgo biloba leaves. Similar

upregulation of the flavonoid-induced gene (F3H) has been reported

in a desert plant, Reaumuria soongorica, indicating flavonoid

regulates UV-B stress adaptation (Liu et al., 2013). Martıńez-

Silvestre et al. (2022) revealed a higher flavonoid content in the

callus irradiated with UV-B, averting the harmful effects of UV-B

radiation in Sideroxylon capiri. Thus, flavonoids function as a “signal

trigger,” neutralizing the prospective effects of UV-B light.
3.3 Phenylpropanoids enhance plant
responses to temperature stressors

Extremes of temperature retards plant growth and development

(Aluko et al., 2021; Ma D. et al., 2025). Plants accumulate more

phenolic compounds to detoxify ROS under temperature stress
FIGURE 3

Biological functions of flavonoids and lignin.
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(Table 3). Hence, the increased expression of C3H and lignin levels

in rhododendron contributes to cold tolerance (Wei et al., 2006).

The crucial genes encoding lignin biosynthesis were highly

expressed in cold-tolerant cultivars, indicating the contribution of

lignin in peach adaptation to cold (Li et al., 2023b). Overexpressing

CaPOA1 and CaCAD in Arabidopsis increases ROS scavenging and

plant tolerance to cold injury (Xiao et al., 2025). A similar increase

in phenolic compounds was observed in heat-stressed plants

(Commisso et al., 2016; Wang J. et al., 2019; Yuan et al., 2025),

indicating the crucial roles of phenylpropanoids in enhancing

plants’ tolerance to temperature stress.
3.4 Transcriptional regulation of lignin and
flavonoids roles in plant defense
interactions

While lignin metabolism strengthens the cell wall, enhancing

physical resistance to invasion, flavonoid biosynthesis produces

essential phytoalexins that support plant immunity and serve as
Frontiers in Plant Science 06
signaling molecules for microbial interactions. For example, the

upregulation of the phenylpropanoid pathway under Hrip1

induction conferred resistance to rice blast fungi by reinforcing cell

walls through extensive lignin deposition (Ninkuu et al., 2022; Zhang

et al., 2021). Wang W. et al. (2025) also reported the enhanced

accumulation of lignin against Tambocerus elongatus in Camellia

sinensis. The oxidation of H2O2 promoted lignin accumulation by

downregulating transcriptional inhibitors, including miR397b, that

adversely regulate OsLAC7, OsLAC28, and OsLAC29, liberating

Copalyl Diphosphate Synthase 2 (CPS2) for terpenoids metabolism

(Cao and Dong, 2025; Ninkuu et al., 2021). Additionally, a pear plant

over-expressing the PbrMYB14 enhanced lignin accumulation

against Alternaria alternata and reduced leaf lesions by 68.95%

(Yan et al., 2025). GhBGLU46 has been identified as a key activator

of several lignin metabolism genes, including GhCCoAOMT2,

GhCCR4, GhCAD6, and GhCAD. Thus the overexpressing

GhBGLU46 increased lignin production against Verticillium wilt

(Wang et al., 2025a). Li and Wang (2025) also found that

CpVQ20-overexpressing lines in tobacco promoted flavonoid and

lignin metabolism via upregulated NtF5H against powdery mildew.
TABLE 2 Role of phenylpropanoids in pests and disease mitigation.

Plants Disease Genes/Proteins
Metabolite
accumulation Defense activation References

Sugarcane
Sugarcane white
leaf (SCWL)

CAD, CCR, REF1, POD,
PAL, and HCT Flavonoids, lignin, and coumarins

Candidatus
Phytoplasma sacchari

(Lohmaneeratana
et al., 2024)

Sunflower Sunflower wilting
PAL, 4CL2, CCR, POD10,
and POD11

Anthocyanins, coumarins, lignans,
flavonoids, phenols Orobanche cumana (Huang et al., 2022)

Alfalfa
Curling, yellowing,
and atrophy PAL, 4CL and F6H

Flavonoids, lignin, coumarins
and phenols

Response to
aphid infestation. (Liu H. et al., 2024)

Bambusa Shoot blight CCoAOMT2 and CAD5 Reduced flavonoids and lignin Shoot blight defense (Luo et al., 2022)

Zanthoxylum
armatum Pepper rust CHS, CHI, and DFR Flavonoids

Resistance against
Coleosporium zanthoxyli (Han et al., 2023)

– Dodder inhibition
PAL, CCR,
and CCoAOMT Flavonoids, phenols, and lignin

Defense against
Cuscuta japonica (Guo et al., 2022)

Cotton fungal infection
PAL, F6’H,
and CCoAOMT Phenols and lignin

Defense against
Verticillium dahliae (Zhang M. et al., 2024)

Korla Blackhead disease PAL, C4H, and 4CL Phenols
Resistance to
Alternaria alternata (Sun et al., 2025)

Wild
mungbean

Root-
knot nematodes PAL and POD Phenols

Improved resistance to
Meloidogyne spp (Lee et al., 2024)

Solanum
habrochaites Not stated

SlCHI, SlHCT,
and SlCAD Reduced Phenolics Suppression of mites

(Wang et al., 2024a, b; Wang
M. et al., 2024)

Lycium
barbarum L. Root rot PAL, 4CL and C4H Lignin and flavonoids

Enhance Rhizophagus
intraradices defense (Li N. et al., 2024)

Cucumber Fusarium wilt CHS Phenolics and flavonoid
Promotes plant resistance to
Fusarium wilt (Yang et al., 2024)

Lily Not stated CHS and PAL Coumaric acid and phenolics
Increased lily resistance to
Aphid infestation (Zhou L. et al., 2024)

Maize Stalk rot PAL and C4H Coumaric acid and phenolics Resistance to F. proliferatum (Sun et al., 2024)

Chinese
Cabbage Not stated PAL and 4CL Flavonoids and phenolics

Enhanced resistance to
P. brassicae (Wei et al., 2024)
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TABLE 3 Phenylpropanoid metabolism mediates abiotic stress tolerance in plants.

Abiotic
stress Plant species Response to abiotic stressors Reference

Drought
stress Salvia miltiorrhiza

Upregulation of PAL, CAD, CHS, and 4CL enhances ferulic acid content for
drought tolerance. (Zhou Y. et al., 2024)

Casuarina equisetifolia Flavonoids and phenols accumulation improves drought stress tolerance (Zhang S. et al., 2023b)

Brassica juncea L. POD, CCoAOMT, 4CL, and PAL downregulation mediates seed germination. (Wei et al., 2023)

Ligularia fischeri
Increased expression of CHS, CHI, F3H, FNS, and FLS may contribute to
drought tolerance. (Park et al., 2023)

P. vulgaris A spike in isoflavone in response to drought resulted in a 50% loss of root water content. (Peña Barrena et al., 2024)

Cuminum cyminum L Increased activity of the PAL gene indicates its significance in drought responses. (Ghasemi et al., 2023)

Ophiopogon japonicus Changes in 4CL, HCT, and PAL gene expression boost drought tolerance (Cheng et al., 2025)

Sophora alopecuroides Increased flavonoid content improves root tolerance to drought (Huang et al., 2023)

Adonis amurensis Drought stress heightens the expression of phenolics and flavonoids. (Gao et al., 2020)

S. baicalensis Drought alters the expression of flavonoids in S. baicalensis (Zhang T. et al., 2025)

Salvia miltiorrhiza Bunge Lignin deposition in the secondary cell wall safeguards plants against drought attacks. (Zhang Y. et al., 2025)

Lilium brownii Anthocyanin accumulation improves leaf resistance to drought. (Chen W. et al., 2025)

Salt stress Taraxacum officinale Downregulation of ToC4H, To4CL, ToHCT, and ToHQT contributes to salt tolerance. (Zhu et al., 2022)

Morus atropurpurea
Upregulation of FLS, CHS, PAL, and ANR suggests their involvement in
salinity tolerance. (Wang et al., 2024b)

Hordeum vulgare L. Lignin, flavonoids, and polyphenols in seed cells improved salinity tolerance (Xue et al., 2023)

L. ruthenicum An increase in flavonoid content enhances salinity tolerance. (Qin et al., 2022)

Chrysanthemum × grandiflora Upregulation of PAL, CYP73A, and 4CL in leaves and roots improves salt tolerance. (Liu H. et al., 2022)

Carex rigescens HCT and F5H metabolite may contribute to salt tolerance (Wu et al., 2024)

Solanum lycopersicum Alterations of PAL, C4H, and 4CL genes protect during salinity stress. (Jia et al., 2022)

Phaseolus vulgaris Changes in POD, 4CL, and CCoAOMT activities contribute to salinity tolerance. (Zhang Q. et al., 2023)

Phaseolus vulgaris Salt stress enhances rutin accumulation in germinating beans (Zhang et al., 2022)

Salicornia europaea Phenylpropanoids increase osmotic tolerance in response to salt stress. (Duan et al., 2023)

Triticum aestivum L. Increased activities of PAL and POD protect wheat against salinity stress. (Maslennikova et al., 2023)

Platycodongrandiflorus
Upregulation of PAL, COMT, and C4H may suggest their participation in response to
salt stress. (Zhang M. et al., 2023)

Medicago sativa L. Overexpressing MsFLS13 promotes flavonoid accumulation, improving salt tolerance. (Zhang L. et al., 2023)

UV-B stress Juniperus rigida Low-intensity UV-B enhances phenolic synthesis, while high UV-B hinders it. (Feng et al., 2025)

Rhododendron chrysanthum CAD and PAL enzymatic sites were upregulated in response to UV-B stress
Lignin accumulation mitigates the harmful effects of UV-B stress.
Flavonoids promote plant’s resistance to UV-B stress.

(Gong et al., 2024, 2023;
Yu et al., 2024)

Zizyphus jujuba Ultraviolet radiation improved ROS scavenging ability in Jujube fruits (Jia et al., 2023)

Artemisia argyi UV-B stress induces flavonoid biosynthetic genes crucial for stress tolerance (Gu et al., 2024)

Brassica rapa L. (Pakchoi) Enhancing flavonoid biosynthetic genes promotes nutritional quality
(Hao et al., 2022;
Mao et al., 2024)

Morus alba L. Flavonoid biosynthesis may contribute to UV-B resistance in Morus leaves. (Li et al., 2023a)

Schisandra chinensis
Isoquercetin, Quercetin, and 4-hydroxycinnamic acid improved UV-B
radiation tolerance. (Ri et al., 2024)

Cajanus cajan L. UV-B radiation enhances phenolic deposition (Gai et al., 2022)

(Continued)
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Furthermore, lignin also mediates insect modulation. Recent

literature has shown that the overexpressing lines of CCR in

Populus enhanced lignin levels to mediate defense against L.

dispar larvae (Li Y. et al., 2025). Sl4CLL6 mutant lines hampered

the expression of genes downstream of the phenylpropanoid

pathway, including SlHCT , SlCAD , and SlCHI , further

compromising tomato resistance to mites (Wang et al., 2024).

Flavonoids such as anthocyanins, flavonols, and flavones are

highly pigmented and contribute to the flower color of plants (Bisht

and Gaikwad, 2025). Recent studies have revealed their novel roles in

pest and disease mitigation (Tiwari et al., 2025). Chu et al. (2025)

reported the role of NtWRKY28 in lignin and flavonoid metabolism

against aphids in tobacco plants by inducing the upregulation of

several phenylpropanoid biosynthetic genes (PAL, 4CL, CHI, CAD,

HCT, CHS, C4H, and CCR). Additionally, VqWRKY56 enhances the

transcription of VqbZIPC22, which activates salicylic acid and

proanthocyanidin metabolism, strengthening resistance to powdery

mildew in Vitis quinquangulari (Wang Y. et al., 2023). Quercetin

accumulation in lima beans also enhances defense against

Tetranychus urticae (Li F. et al., 2025), while Brown midrib 12

(BMR12) induction promoted COMT activity, increasing JA and

flavonoids accumulation against fall armyworm (Kundu et al., 2025).

In a study investigating the mechanism of phenylpropanoid’s defense

against Alternaria alternata in korla fruits, Sun et al. (2025) reported
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high enzymatic activity of PAL, C4H, and 4CL resulting in significant

accumulation of total phenolics, trans-cinnamic acid, ferulic acid,

caffeic acid, p-coumaric acid, and sinapic acid. Notably, higher

expression of CHS and CHI significantly improved flavonoid

accumulation, including naringenin, rutin, apigenin, quercetin, and

epicatechin in defense against A. alternata infection. Recent research

has highlighted the role of phenylpropanoid metabolism in plant

resistance to diseases and pests (Table 2).
3.5 Phenylpropanoids (Flavonoids) as
signaling molecules for root nodulation in
legumes

Flavonoids play a crucial role as signaling molecules and chemo-

attractants in plant-microbe interactions, influencing organisms such

as Fusarium spp., Rhizobium, and arbuscular mycorrhizal fungi.

Additionally, they can activate virulence genes in Pseudomonas

syringae and Agrobacterium tumefaciens (Falcone Ferreyra et al.,

2012). Flavonoids also play a crucial role in the legume nodulation

process (Figure 3). Thus, legume roots exudate flavonoids, which

rhizobial nodulation (Nod) protein NodD detects, triggering the

expression of nod genes and Nod factors (NF) (Ninkuu et al.,

2025) (Figure 4). NFs induces legume responses for symbiotic
TABLE 3 Continued

Abiotic
stress Plant species Response to abiotic stressors Reference

Vaccinium corymbosum Inhibition of flavonoid accumulation under UV-B stress (Song et al., 2022)

Gossypium hirsutum Anthocyanins and lignin were enhanced in response to UV-B stress
GhMYB4 negatively regulates anthocyanin to hinder UV-B stress tolerance.

(Song et al., 2025)

Salvia verticillata Increased expression of PAL in young leaves promotes resistance to ultraviolet radiation. (Rizi et al., 2021)

Oryza Sativa OsbZIP18 induces phenylpropanoid biosynthesis for UV-B stress tolerance.
Osbzip18 mutant exhibits reduced phenolic contents under UV-B stress

(Liu X. et al., 2024)

Ocimum basilicum L. Cold stress enhanced C4H expression and other phenolic compounds. (Rezaie et al., 2020)

Brassica rapa L. Cold induces polyphenolic compounds involved in ROS-scavenging (Eom et al., 2022)

Cold stress Gastrodia elata Increased phenolic activity preserves G. elata quality under low-temperature stress. (Dong et al., 2023)

Oryza Sativa Negatively regulation of phenylalanine enhanced cold tolerance (An et al., 2024)

Dendrobium officinale The upregulation of F3’H and FLS contributes to cold tolerance in plants (Zhan et al., 2022)

Camellia sinensis
CsPAT1 expression increased drought, cold, and heat stress tolerance by regulating
phenylpropanoid metabolism (increased flavonoid levels) (Li J-W. et al., 2025)

Heat stress
Oryza sativa

OsUGT72F1-overexpression mediate heat resistance via upregulation of the
phenylpropanoid, zeatin, and flavonoid pathway, leading ROS induction (Ma Y. et al., 2025)

Oryza sativa Overexpressing UGT706F1 mediated heat resistance through elevated flavonoid and
flavonoid glycosides levels and binds to MYB61 to form MYB61-UGT706F1 module
increases heat stress resistance

(Zhao et al., 2025)

Triticum aestivum TaMGD-overexpressing wheat plant increased grain weight under elevated heat stress (Ma D. et al., 2025)

Oryza sativa
OsPEX1-overexpressing increases rice vulnerability to heat stress, impairs root growth via
increased lignin accumulation and downregulation of Gibberellins

(Li J. et al., 2023;
Li J. et al., 2025)

Oryza sativa Knockout of OsMAPK3 compromised heat stress resistance (Deng et al., 2025)
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interactions (Haskett et al., 2025). Evidence has shown that RNAi of

chalcone synthase in legumes exhibited deficiency in nodulation due

to the collapse of flavonoid biosynthesis (Abdel-Lateif et al., 2013; Das

et al., 2024). Moreover, the Rlv3841 NodD regulatory domain

deletion line activated NodDFI for transcript accumulation of NF

genes (Haskett et al., 2025). Interestingly, flavonoid exudation into

the rhizosphere to attract rhizobia spp. is complicated and involves

several players. Elicitors have been implicated in inducing flavonoid

exudation (Hassan and Mathesius, 2012). However, transgenic

Arabidopsis harboring the mutant ABC transporter exhibited

altered exudation of flavonoids. ABC transporters have been
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demonstrated to be involved in isoflavonoid genistein exudation in

soybeans, and it has also been reported that flavonoids can be

passively released by decomposing roots (Hassan and

Mathesius, 2012).

Flavonoids-induced symbiotic interactions between roots of

legumes and rhizobia spp. have several ecological benefits (Figure

4). Some of these include improvement of soil health, reduction of

environmental pollution and GHG emissions from synthetic

fertilizer use. Furthermore, ROS accumulation in legume roots

upon detecting rhizobia spp. via nod factors can also initiate a

crucial signaling cascade (Hérouart et al., 2002). Apart from
FIGURE 4

Phenylpropanoids (Flavonoids) signal rhizobia for root nodulation in legumes. The Figure provides an overview of the role of flavonoids as signaling
molecules for rhizobia, which infects root hair legumes, leading to nodulation. This symbiotic relationship results in N2 fixation for crop growth. The
Figure also highlighted the ecological benefits of nitrogen fixation.
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coordinating symbiotic interaction, ROS production modifies the

cell wall and modulates the expression of defense-related genes,

positioning legumes’ defense machinery against pathogens.

Interestingly, it is currently unknown how cell wall modification

favors rhizobia infection but inhibits pathogens.

Two plant growth regulators, cytokinins and auxins,

crucially enhance legumes nodulation process, promoting cell

division and differentiation (Reid et al., 2017; Ryu et al., 2012).

Additionally, cytokinins and auxins promote the growth of root

primordia via cell elongation and division in the proliferating zone

(Ryu et al., 2012).
4 Phenylpropanoids mediate osmotic
stress adjustment

Osmotic stresses, such as drought and salinity, are major

physiological factors that limit plant growth and yield

improvement. The next sections discusses their impacts on plants

and highlights the modulatory role of phenylpropanoids in

stress response.
4.1 Phenylpropanoid biosynthesis is crucial
for drought stress tolerance

Drought stress negates various plant physiological processes,

ultimately retarding growth and development (Aluko et al., 2021;

Jardim-Messeder et al., 2025). Nevertheless, plants have

developed adaptative mechanisms for drought, specifically via

phenylpropanoid biosynthesis (Rao and Zheng, 2025; Wagay

et al., 2023). Earlier studies reported increases in the expression

of flavanone-3-hydroxylase (F3H), PAL, 4CL, and flavonol

synthase (FLS) enhanced plant tolerance to drought (Chen W.

et al., 2025; Ghasemi et al., 2023; Park et al., 2023), perhaps

because phenolic compounds mitigates ROS accumulation in the

cells, preventing oxidative damage. It has been claimed that

flavonoid deposition in the cytoplasm efficiently mitigates the

harmful effect of the H2O2 molecule exerted by drought. However,

La et al. (2023) detected a lesser content of flavonoids in soybean

under drought stress conditions. Discrepancies in these findings

may be influenced by factors including stages of seed

development, tissue type, or drought severity (La et al., 2023).

Ghasemi et al. (2023) reported a gradual decline in phenolic

content, following an initial increase 7 days after drought

treatment. Low phenolic formation during the later stages of

stress indicates plants’ metabolic adjustment to prolonged stress

(Ghasemi et al., 2023). Furthermore, Yan et al. (2023) reported the

role of OsOLP1 in mediating rice tolerance to drought via lignin,

proline, and abscisic acid accumulation. Elsewhere, Cao P. et al.

(2024) identified BGC7 and BGC11 gene clusters consisting of 12

genes, including 4CLs, C3H, CPA, and SlMYB13 in phenolamide

metabolism against drought stress tolerance in tomatoes,

providing deeper insight into crop improvement techniques via
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reports on crop drought-resistant mechanisms mediated by

phenylpropanoids metabolism are highlighted in Table 3.
4.2 Salinity stress tolerance in plants under
phenylpropanoid metabolism

Salinity stress is a crucial environmental constraint that halts

plant growth and development (Ben Youssef et al., 2025; Safdar et al.,

2019; Aluko et al., 2024). High soil salinity decreases leaf dry weight,

plant height, photosynthesis, water, and nutrient uptake (Singh et al.,

2025; Wang H. et al., 2025). Salt stress promotes the production of

ROS, causing oxidative damage to plant cells (Jiang et al., 2025; Singh

et al., 2025; Huang et al., 2024; Yang et al., 2023). Therefore,

enhancing antioxidant defense systems could contribute to plant

salinity tolerance (Ling et al., 2025). One of the most probable ways of

improving plants defense system is by increasing the activities of

antioxidant enzymes such as CAT and SOD, involved in the removal

of H2O2 and O2-, safeguarding against cellular damage (Garcia-

Caparros et al., 2021; Shomali et al., 2022). Cao Y. H. et al. (2024)

reported a significant increase in SOD and CAT activities under

salinity stress, particularly in salt-tolerant genotypes. The salt-tolerant

genotype appears to have an in-built phenolic compound, acting as

an antioxidant defense system, that scavenges harmful ROS (Cao Y.

H. et al., 2024; Bistgani et al., 2019; Chen et al., 2019). Ample evidence

revealed that increased expression of phenylpropanoid biosynthetic

genes and their respective metabolites contributes to plant salt

tolerance (Table 3). Increased expression of NtCHS1 facilitated

tobacco tolerance to salt stress (Chen et al., 2019). Flavonoid

biosynthetic genes, including LpFLS1 and LpCHI1, highly expressed

in ryegrass, suggest their involvement in salt tolerance (Cao Y. H. et

al., 2024). Overexpressing GmCHI4 in soybean enhanced isoflavones

content in the salt-stressed root (Zhang J. et al., 2024). These and

other findings suggest the contributions of phenylpropanoids in plant

salt stress tolerance.
4.3 Phenylpropanoids role in postharvest
deterioration

Postharvest physiological deterioration (PPD) severely

threatens global food security, rendering crops unpalatable 1–3

days after harvest (Chang et al., 2024; Chen Z. et al., 2025; Ji et al.,

2025). Different storage methods, including cellular storage, plastic

bag wrapping, indoor sand storage, and paraffin wax coatings, have

been previously used to improve plants’ postharvest quality. Yet, the

interventions are time-consuming and labor-intensive (An et al.,

2023; Chang et al., 2024; Chen Z. et al., 2025). Extending the

postharvest shelf life is critical for sustainable crop productivity.

Attempts to extend postharvest shelf-life have been quite

challenging due to the increased production of reactive oxygen

species (ROS), which causes PPD. Phenylpropanoid metabolism

has become a crucial defense mechanism to mitigate ROS-induced
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PPD and improve plant storage stability effectively (Liu Q. et al.,

2024; Liu et al., 2017; Wahengbam et al., 2023). Specific

phenylpropanoid-derived metabolites, such as phenolics,

epicatechin, flavonoids, and ferulic acid, accumulate in stressed or

injured plants during storage. Meanwhile, others, including 3,4-

flavanone, coumarin, and isoflavone, decrease, suggesting changes

in metabolite synthesis contribute to postharvest deterioration

under stress. Zheng et al. (2022) recently revealed that changes in

the synthesis of phenylpropanoid derivatives impact strawberry

postharvest quality under temperature stress. Apple and bulb

discoloration have also been attributed to phenylpropane

biosynthesis, suggesting phenylpropanoids are crucial for fruit

preservation (Chen Z. et al., 2025; Wang J. et al., 2023).

Studies have shown a significant increase in the expression of

genes associated with phenolic biosynthesis and ROS turnover
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during storage, ultimately regulating PPD (An et al., 2023; Liu Q.

et al., 2024; Vanderschuren et al., 2014; Wahengbam et al., 2023;

Wang B. et al., 2019; Wang C. et al., 2023). Perhaps the reason why

PAL expression, which was barely detectable in harvested cassava

roots (0hr), increased by 70-fold 72hrs after wounding (Kumar and

Knowles, 2003; Wang C. et al., 2023). The enhanced activity of PAL

facilitates lignin biosynthesis (Liu et al., 2005); thus, the expression

of cinnamate-4-hydroxylase (C4H), which synthesizes precursors of

lignin biosynthesis, increased 72hrs after wound healing (Xu J. et al.,

2019). Furthermore, 4-coumarate CoA ligase (4CL) facilitates the

metabolic flux to flavonoids in PPD-susceptible plants (Wang C.

et al., 2023; Wang et al., 2020), indicating the contributions of

phenolic compounds in plant storage stability. Recent updates on

the crucial roles of phenylpropanoid genes and the respective

metabolites are indicated PPD (Tables 4, 5).
TABLE 4 Phenylpropanoid metabolism enhances postharvest deterioration tolerance in crops.

Genes Plant Technique
Regulation/
expression Roles of phenylpropanoids Reference

MeC3’H Cassava RNAi Downregulated
Delayed PPD by decreasing scopoletin and
scopoletin accumulation (Ma et al., 2022)

StC3’H Potato RNAi Downregulated Reduced yield and phenolic metabolites (Knollenberg et al., 2018)

MeF6’H Cassava CRISPR-CAS9 Downregulated Decreased scopoletin levels and PPD symptoms (Mukami et al., 2024)

PAL, HCT, CYP98A, and
PPO1-4 Lettuce qRT-PCR Upregulated Induced browning in lettuce (Liu Y. et al., 2022)

PAL and C4H Cassava qRT-PCR Upregulated Contributes to wound healing (Wang C. et al., 2023)

MeCHS3 and MeANR Cassava RNAi Downregulated Induces cassava tolerance to PPD (An et al., 2023)

OsPAL7, OsC4H,
and OsCAD2 Rice qRT-PCR Upregulated Improves storage stability of paddy rice (Liu Q. et al., 2024)
TABLE 5 Phenylpropanoid metabolism mediates Postharvest physiological deterioration (PPD).

Metabolite Plants Biosynthesis
Function in
PPD regulation Reference

Salicylaldehyde Cassava decrease
Low levels of Salicylaldehyde
delay PPD (Drapal et al., 2024)

Chlorogenic acid, Chrysin O-malonylhexoside, Chrysoeriol 7-O rutinoside,
calycosin-7-O-glucoside, and glycitin Lettuce Increase

Triggers lettuce browning
during storage

(Liu Y. et al., 2022; Yang
et al., 2022)

Ferulic acid and flavonoids Bulbs Increase
maintains the freshness of
the bulb (Chen Z. et al., 2025)

Flavonoids Cassava Increase
Induces a delay in
cassava PPD (An et al., 2023)

Anthocyanin Cassava Increase
Contributes to
PPD resistance (Drapal et al., 2024)

Flavonoid
Paddy
rice Increase

Improves the storage
stability in paddy rice (Liu Q. et al., 2024)

(-)-Epigallocatechin and L-epicatechin Cassava Increase
Induces the severity of
cassava PPD (An et al., 2023)
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4.4 Interaction between plant growth
regulators and phenylpropanoid
metabolism

Phytohormones are natural signaling molecules that contribute

to plants’ response to environmental cues (Samanta and

Roychoudhury, 2025). Recent advances link these naturally

synthesized and deployed molecules by plants to the modulatory

activity of the phenylpropanoid pathway. For example, ethylene,

auxin, strigolactone (SL), jasmonate (JA), and gibberellin are

associated with the phenylpropanoid pathway (Silva et al., 2025),

indicating the activities influencing phenylpropanoids intricately

affect phytohormones. Shi et al. (2024) recent study reported the

role of a novel phytohormone, 2,4-dichloroformamide cyclopropane

acid (B2) in drought stress tolerance in Carex breviculmis.

Transcriptome analysis of B2-treated plants activated the

expression of drought stress-responsive transcription factors,

including AP2/ERF-ERF, WRKY, and mTERF, which consequently

upregulated the phenylpropanoid metabolism via the upregulation of

HCT , COMT , and POD genes. B2 signaling modulated

phytohormone-responsive genes, leading to abscisic acid

accumulation for drought tolerance (Shi et al., 2024). Elsewhere,

Dey and Sen Raychaudhuri (2024) reported that 1 mM MeJA

treatment of Plantago ovata enriched the PAL and CHI for

enhanced antioxidant defense through ROS signaling, activating

significant metabolism of phenolic compounds, such as caffeic acid,

chlorogenic acid, vanillic acid, coumaric acid and Luteoloside and

PGRs including IAA and GA. Moreover, evidence indicates that

FvTCP9 transcription factor regulates FaNCED1, which encodes 9-

cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in abscisic

acid (ABA) biosynthesis. Activation of FaNCED1 leads to changes in

ABA levels and may be involved in the PYR-PP2C-SnRK2 signaling

pathway. Furthermore, FvTCP9modulates the transcription of genes

associated with anthocyanin biosynthesis (FaPAL, FaCHS, FaCHI,

FaANS, FaUFGT), influencing strawberry coloration. Thus, exploring

the intricate interaction of phenylpropanoids and phytohormones

can enhance plants developmental cues and stress Reponses.
4.5 Phenylpropanoids regulate nutrient
deficiency tolerance in plants

Nutrient deficiency stress is one of the leading causes of plant

growth retardation and yield loss (Li et al., 2023a, b; Li C. et al.,

2023; Ninkuu et al., 2023a). Nitrogen (N), phosphorus (P), and

potassium (K+) deficiency stress, for instance, disrupt

photosynthesis, nutrient uptake, and allocation. Nevertheless,

phenylpropanoids mediate plant tolerance to nutrient stress

(Table 6). Li J. et al. (2023) revealed that the upregulation of

flavonoids under N deficiency stress maintains C/N balance of

sugarbeet. Low N stress promotes flavonoid biosynthesis, increasing

plant enzymatic activities in snow chrysanthemum (Li Z. et al.,

2023). Similar reports on rapeseed and cassava have shown a

significant boost in flavonoid content in response to N deficiency

stress (Koeslin-Findeklee et al., 2015; Wang et al., 2025b). Wang
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et al. (2025b) affirm the upregulation of two CHI in response to low

N stress, suggesting CHI is crucial for carbon flux redistribution.

Evidence has shown the detrimental impact of N deficiency stress

on carbon metabolism, redirecting photosynthetic carbon into the

phenylpropanoid biosynthetic pathway (Aluko et al., 2021; Wang

et al., 2025b). This shift promotes metabolic flux of the flavonoid

downstream genes, resulting in increased flavonoid deposition (Xin

et al., 2019). Samarina et al. (2024) reported that increases in lignin

and flavonoids improved cell wall stability under N deficiency,

suggesting their roles in tea adaptation to low N conditions. Lignin

regulates root architecture and other plant physiological processes,

and thus, lignin reprograms Neolamarckia cadamba root under N

deficiency stress (Lu et al., 2021).

Increased activities of phenylpropanoid–derivatives under P

deficiency have also been well-documented (Liu S. et al., 2024;

Wu et al., 2022). Increased activities of PAL and 4CL suggest their

enzymes are crucial downstream metabolites in response to P

deficiency stress (Liu S. et al., 2024). Lignin, one of the vital

downstream branches, was enhanced in response to P deficiency

(Cesarino, 2019). More importantly, lignin biosynthetic genes,

including CCR, CAD, and POD, were significantly upregulated in

response to low P stress (Wu et al., 2022). Increasing lignin gene

expressions may promote cell wall thickening, reduce permeability,

and improve plant adaptation to low P stress (Cesarino, 2019).

The impact of phenylpropanoids on low K+ stress has been

elucidated following the reports of excessive production of harmful

ROS upon low K+ stress (Sun et al., 2023; Zeng et al., 2015, 2018).

Potassium stress increases PAL deposition to detoxify ROS, which

damages cell membrane stability (Sun et al., 2023). Moreover, UDP-

glucosyl transferase activities have been demonstrated to regulate

flavonoid-mediated auxin levels during grain development (Ninkuu

et al., 2023b). Although the impact of phenylpropanoids in

enhancing plant tolerance to individual stress has been harnessed,

less is known under combined N, P, and K stressors (Table 6).
5 Post‐transcriptional regulation of
phenylpropanoid metabolism

Plant cell retains their competitiveness to varying degrees of

stress exposure by balancing growth and proliferation expenditures

with the stress factors. Under such conditions, plants recruit

different levels of gene regulatory activities, such as post-

translational and post-transcriptional modification of mRNA, to

respond to the stress factors and recovery processes (Hernández-

Elvira and Sunnerhagen, 2022). Post-transcriptional gene

modification is multi-layered, involving mRNA processing,

stability, localization, and protein translations (Courtney, 2021).

The role of Micro RNAs (miRNAs) and small RNAs (RNAs) in

targeting the structural genes regulating phenylpropanoid

metabolism has been thoroughly studied in relation to plant

stress responses (Nayak et al., 2025; Rosatti et al., 2024). MiRNAs

modulate their target genes posttranscriptionally through mRNA

cleavage or limiting its translation, which is critical in the

downstream biochemical pathways and pigment synthesis (Ding
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et al., 2024). For instance,miRNA156modulates flavonoid synthesis

by targeting MYB TFs (Rosatti et al., 2024). Additionally, the loss of

function of miR-858a liberated the targeting efficiency of flavonoid-

specific transcriptional regulators, including AtMYB12 and AtCHS1

(Jiang et al., 2021). Moreover, miR-172, miR530, and miR157 have

been demonstrated to regulate secondary metabolite accumulation

in leaves and roots of rice, Arabidopsis, and Chlorophytum

borivilianum (Jiang et al., 2021). Furthermore, miR-894, miR172,

miR-9662, and miR-166 have also been reported to regulate

phenylpropanoid metabolism in plants (Marcela et al., 2019).

MiRNAs-TFs-target genes complex can upregulate or compromise

phenylpropanoid metabolism. SPL9 and SPL13 are targeted

explicitly by miR156 to stifle the mRNA level of DFR and inhibit

anthocyanin accumulation in the process (Cui et al., 2014; Gou

et al., 2011). Nevertheless, DFR expression is upregulated for

anthocyanin accumulation via overexpressing miR156, which

inhibits SPL13 in alfalfa (Feyissa et al., 2019). Our previous study

showed that MiR396b/GRF module regulates Arabidopsis growth

under low sulfur conditions (Ninkuu et al., 2024). Yuan et al. (2024)

recent study showed that the miR396b/GRF6 module improved salt

stress tolerance in rice by inhibiting H2O2 accumulation while
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elevating ROS-scavenging enzyme activities, including CAT, SOD

and POD. Meanwhile, ZNF9 was identified as a negative regulator

of salt stress tolerance by binding to the miR396b promoter region.

In soybean, miR398b targets and represses the transcript level of

GmCCS and GmCSD1b, compromising the defense prowess of the

crop. Interestingly, the defense machinery of soybean against

Heterodera glycines worsened when miR398b overexpressing

levels were generated. However, silencing of miR398b in soybeans

improved crop defense capabilities by modulating H2O2 and O2
-

levels (Zhang X. et al., 2024).

Plant pigmentation can also be regulated by miRNA in plants.

Nayak et al. (2025) RNA sequencing identified 74 miRNA

regulating white coloration and 61 responsible for brown color

pigmentation in cotton by modulating flavonoid biosynthesis.
6 Post-translational modification of
phenylpropanoid metabolism

Post-translational modifications (PTMs) play a significant role

in protein functions, stability, localization, activity, structure, and
TABLE 6 The role of phenylpropanoids in nutrient deficiency mitigation.

Nutrient
stress

Plant
Genes/
metabolites

Technique
Regulation/
expression

Function Reference

Potassium
deficiency

Soybean
Isoflavones
and coumestans

UPLC-HRMS Increased
Isoflavones may be potential biomarkers of K
+ deficiency

(dos Santos Cotrim
et al., 2023)

Potassium
deficiency

Coconut
POD1, PER5,
and PER10

RNA-seq and
qRT-PCR

Upregulated
Lignin biosynthetic genes may participate in
low K+ tolerance

(Jin et al., 2024)

Potassium
deficiency

Apple
PAL, C4H, 4CL, ANS,
CHI, and CHS

RNA-seq and
qRT-PCR

Upregulated
Flavonoids regulate plant response to low K
+ stress

(Sun et al., 2023)

Potassium
deficiency

Brassica
napus

CAD and CCR RNA-seq Upregulated Phenolics regulate K+ in response to stress (Liao et al., 2025)

Nitrogen
deficiency

Tobacco
Lignin
biosynthetic genes

RNA-seq downregulated
Incomplete cell wall development under a low
NO3

- supply
Lignin-mediated resistance to aphid infestation.

(Miao et al., 2025)

Nitrogen
deficiency

Maize
Cinnamate
and flavonoids

LC-MS/
MS analysis

Increased
Flavonoids facilitate plant response to Low
N stress

(Lu et al., 2023)

Nitrogen
deficiency

Cassava
CHS, CHI, ANR,
and F3H

RNA-seq and
qRT-PCR

Upregulated Flavonoid enhances low N stress tolerance (Wang et al., 2024)

Nitrogen
deficiency

Tea (Camellia
sinensis L.)

PAL, POD12,
and CAD3

qRT-PCR Upregulated
Phenolics improved cell wall stability under
low N stress

(Wang et al., 2024)

Nitrogen
deficiency

Robinia
pseudoacacia

Flavonoids Increased
Flavonoids contribute to plant adaptation to
low N stress

(Li Y. et al., 2024)

Nitrogen
deficiency

Citrus sinensis
Lignin, flavonoids,
phenolic genes

RNA-seq Upregulated
Phenylpropanoids enhanced N-deficiency
tolerance in citrus

(Peng et al., 2023)

Low
phosphorus

Epimedium
pubescens

FLS, C4H, 4CL,
and PAL

qRT-PCR Upregulated
Flavonoids induce growth in response to low
phosphorus stress

(Liu S. et al., 2024)

Low
phosphorus

Neolamarckia
cadamba

Lignin biosynthetic
genes, POD,
and CAT

RNA-seq and
qRT-PCR

Upregulated
Upregulation of the genes elucidates the
response mechanisms to stress

(Zhang et al., 2023a)

Low
phosphorus

Peanut
CAT, PAL, CCR,
and POD

RNA-seq Upregulated
Lignin biosynthesis maintains plant’s stability
under low P stress

(Wu et al., 2022)
frontiersin.org

https://doi.org/10.3389/fpls.2025.1571825
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ninkuu et al. 10.3389/fpls.2025.1571825
molecular interactions. Post-translational modifications can also

influence lignin biosynthesis and wood formation. Recent studies

have demonstrated that PTMs of monolignol enzymes, such as

phosphorylation and ubiquitination, inhibit enzymatic activity and

stability of proteins (Sulis and Wang, 2020). It is worth noting that

PTM of proteins are strongly associated with phenylpropanoid

metabolism, including phosphorylation, ubiquitination,

glycosylation, and S-nitrosylation. These PTMs are essential for

biological processes in plants. For example, Kelch Domain F-Box

(KFB) proteins (KFB1, KFB50, KFB20, and KFB39) inhibit

phenylpropanoid metabolism via PAL ubiquitination and

proteasome-mediated degradation. Moreover, MED5 mediates the

activation of KFB39 and KFB50, while KFBCHS, which negatively

regulates flavonoid biosynthesis, acts as the ubiquitination and

degradation of CHS in A. thaliana (Kim et al., 2020).

Additionally, the ubiquitination of PAL1–4 reduces KFB proteins,

lowering their stability in Arabidopsis thaliana via the 26S

proteasome. Similarly, the interaction of OsCCR with SCFOsFBK1

in rice decreases its stability through the 26S proteasome (Zhang

et al., 2013). Zhang et al. also showed that MYB156 and MYB221

interaction with UBC34 diminishes their transactivation of lignin

genes and may reduce their stability through the 26S proteasome in

P. tomentosa (Zheng et al., 2019).

Phosphorylation has long been recognized as a key regulatory

modification of proteins. Phosphorylation of PtrAldOMT2 by

SDX deactivates its protein activity in Populus trichocarpa by ∼
60% (Wang et al., 2015). Although R2R3-MYB family members

are crucial regulators of gene expression, PtMYB4 is

phosphorylated by PtMAPK6 during early xylem development

(Morse et al., 2009).
7 Epigenetic regulation of
phenylpropanoid metabolism

Epigenetic regulation, which modifies gene expression without

altering DNA sequences, can influence phenylpropanoid

metabol ism, part icularly l ignin deposit ion in plants .

Environmental factors can trigger epigenetic modification by

altering plant gene expression, leading to phenylpropanoid

metabolism as a response factor (Ma H. et al., 2025). Epigenetic

regulatory mechanisms preceding lignin and flavonoid metabolism

include histone modification, DNA methylation, and miRNA

activity (Li W. et al., 2024). For instance, a histone deacetylase

PtrHDA15 , acting as an epigenetic inhibitor, relies on

PtrbZIP44-A1 for chromatin histone modifications that repress

PtrCCoAOMT2 and PtrCCR2 to inhibit lignin accumulation in P.

trichocarpa (Li W. et al., 2024). Moreover, overexpressing

PtrbZIP44-A1 or PtrHDA15 triggered the reduction of histone

acetylation at PtrCCoAOMT2 and PtrCCR2 promoters, leading to

reduced lignin accumulation. However, the ptrbzip44-a1 and

ptrhda15 mutants detected higher histone acetylation levels at

PtrCCoAOMT2 and PtrCCR2 promoters, triggering the expression

of the target gene and lignin deposition (Li W. et al., 2024). The
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conserved histone H2 variant, H2A.Z, has been shown to negatively

regulate anthocyanin biosynthesis in A. thaliana. Cai et al. (2019)

reported that anthocyanin synthesis in H2A.Z deposition-deficient

mutants is associated with increased levels of H3K4me3, which is

upregulated by anthocyanin-related genes. Furthermore, Peng et al.

(2020) demonstrated that virus-induced gene silencing ofMcHDA6

(Histone deacetylase 6) inhibited the transcriptional activity of

methyltransferase 1 (McMET1), leading to enhanced expression

of McMYB10 and increased anthocyanin accumulation in

Malus crabapple.
8 Interaction between
phenylpropanoid metabolism and
plant signaling pathways

Phytohormones are naturally existing organic signaling

molecules that crucially coordinate responses to plant biotic and

abiotic interaction and developmental cues at lower concentrations.

Plant phytohormones are highly diverse, fulfilling distinct regulatory

roles or engaging in complex, multifunctional processes within the

plant. They include auxins, cytokinins, Gibberellins (GA), Ascisic

Acid (ABA), ethylene, Brassinosteroids, Salicylic Acid (SA),

Jasmonates (JAs), and Strigolactones (Chakraborty et al., 2025;

Iqbal et al., 2021). It is well-established that phytohormones can

regulate phenylpropanoid metabolism, and NAC/MYB has been

demonstrated to regulate these hierarchical interactions (Li C. et al.,

2024; Li W. et al., 2024). For instance, PtoJAZ5 is a key regulator of

JA-mediated lignin suppression in Populus, influencing secondary

vascular development. Furthermore, transgenic lines overexpressing

PtoJAZ5 in poplar and Arabidopsis exhibited collapsed secondary

cell walls attributed to the downregulation of genes involved in SCW

formation (Li C. et al., 2024; Li W. et al., 2024; Zhao et al., 2023).

Overexpression of McMYB4 led to increased accumulation of

flavonols and lignin in apples . Subsequent Y1H and

electrophoretic mobility shift assays (EMSAs) demonstrated that

McMYB4 directly binds to the promoter regions of McMYB4, CAD,

and F5H, key genes involved in flavonoid and lignin biosynthesis.

Additionally,McMYB4 was shown to interact with the promoters of

AUX/ARF and BRI/BIN genes, thereby activating auxin and

brassinosteroid signaling pathways to promote growth and reduce

reactive oxygen species (ROS) (Hao et al., 2021). According to Xu C.

et al. (2019), overexpression of PtoARF5.1 and PtoIAA9m, which

encodes a stabilized form of the IAA9 protein, suppresses secondary

xylem development by downregulating genes such as PAL4 and

WND1B that are involved in lignin biosynthesis and xylem

formation. This repression occurs through inhibiting their positive

regulators, PtoHB7, PtoHB8, and two class III HD-ZIP

transcription factors.

Exogenous application of benzylaminopurine and MeJA has

also been shown to stimulate the accumulation of proline, ROS,

and dehydrins, thereby enhancing antioxidant activity and

reinforcing the cell wall with lignin as a physical defense barrier
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(Avalbaev et al., 2021). Similarly, the application of SA and JA

enhanced resistance against drought stress in wheat and French

bean via enhanced SOD and POD enzymatic activities, along with

the accumulation of defense metabolites, such as anthocyanins,

flavonoids, total phenolics, and saponin (Ilyas et al., 2017; Karamian

et al., 2020; Mohi-Ud-Din et al., 2021).
9 Cutting-edge technologies for
optimizing phenylpropanoids
commercial production

In recent times, the demand for green bioactive compounds has

grown, driven by concerns over the environmental impact of

synthetic alternatives. Additionally, the rising global population has

stimulated growth in the pharmaceutical and food industries

(Adetunde et al., 2025), creating a need for innovative methods

to scale up the production of plant-based bioactive compounds.

The phenylpropanoid pathway has generated several bioactive

ingredients used in fragrance, flavor, food additives, neutraceuticals,

and several other drugs (Table 7).

A range of methods has been used in the commercial

production of phenylpropanoids. Traditional approaches, like

solvent extraction for vanillin and related compounds, produce

only minimal yields. As a result, modern high-yield techniques,

such as microbial synthesis, have been developed and adopted.

This approach depends on high-titre-tolerant microbes, such as

Escherichia coli and Saccharomyces cerevisiae, as biofactories for

the commercial production of phenylpropanoids (Ferulic acid,

resveratrol, cinnamic acid) (Vargas-Tah and Gosset, 2015b). For

example, heterologous expression PAL/TAL genes in microbes

have been used to produce CA and pHCA strains. Under this
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condition, L-Tyr and L-Phe are transformed into pHCA and CA

(Vargas-Tah and Gosset, 2015). Recently, Park et al. (2022)

synthesized coniferyl alcohol (CA) and dihydroquercetin (DHQ)

by reconstructing the phenylpropanoid pathway in E. coli. An E.

coli strain that produces 187.7 mg/L was engineered to carry

phenylpropanoid genes from A. thaliana, including 4CL4, OMT1,

and CCR1. Similarly, naringenin was also produced via 239.4 mg/

L of DHQ E. coli carrier, harboring A. thaliana genes (TT7, F3H,

and CPR) (Park et al., 2022).
10 Conclusion

Phenylpropanoids are central to plant survival and

environmental interactions, serving both structural and chemical

roles, as well as biotic and abiotic stress resistance. This pathway has

been a crucial target for climate-smart crop development due to the

diverse metabolites’ functions in ROS scavenging, UV stress

tolerance, salt stress resistance, and extreme temperature

tolerance. Based on these functions, plant stress improvement

techniques can be carried out to produce crop cultivars that can

simultaneously exhibit these traits to enhance food production for

the hungry world. Although lignin metabolism in crop plants has

generated controversy over the end use of crop straws due to overly

recalcitrant to chemical digestion, crop improvement techniques

must sustainably engineer lignin pathways to meet crop resilience to

stress and industrial application of crop straw. Furthermore, the

rapid development of metabolic engineering techniques could

benefit the engineering of most of these critical metabolites in the

phenylpropanoids pathway for biopesticide development.

Conclusively, our review provides a timely update of the current

studies on phenylpropanoid metabolism and stress tolerance.
TABLE 7 Commercialized phenylpropanoid products, application, and examples of commercial uses.

Compound Application Examples of Commercial Use Citation

Cinnamic acid
Fragrances, cosmetics,
flavors, pharmaceuticals

Used in perfumes, synthetic indigo, and anti-inflammatory
drugs production

(Vargas-Tah and
Gosset, 2015)

p-Coumaric acid UV protection, antioxidants, nutraceuticals Cosmetics and dietary supplement production (Yasir et al., 2024)

Ferulic acid Skincare, food preservation anti-ageing, Production of photoprotective creams and food antioxidants (Boo, 2019)

Chlorogenic acid
Antioxidant, anti-diabetic, weight
loss products

Coffee-based supplements and cosmetics (Rodrigues et al., 2023)

Resveratrol
Nutraceutical, cardiovascular health
anti-ageing,

Found in supplements and skincare, e.g., skincare serums (Keylor et al., 2015)

Vanillin Fragrance, flavoring, pharmaceuticals Synthetic vanilla flavor (Fache et al., 2016)

Eugenol
Food additive, Dental care,
antiseptic production

Used as an additive on clove oil-based dental anesthetics (Nejad et al., 2017)

Curcumin Anti-inflammatory and nutraceutical Turmeric supplements and other functional foods (Razavi et al., 2021)

Safrole (shikimol) flavor and fragrance Sassafras tea, root beer, (Lunz and Stappen, 2021)
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