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Comprehensive transcriptomic
and metabolomic analysis
revealed drought tolerance
regulatory pathways in
upland cotton
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Zhaolong Gong1, Ni Yang3, Shuaishuai Qian1, Nala Zhang3,
Xueyuan Li1, Junduo Wang1* and Juyun Zheng1*

1Cotton Research Institute of Xinjiang Uygur Autonomous Region Academy of Agricultural Sciences/
Xinjiang Key Laboratory of Cotton Genetic Improvement and Intelligent Production, Urumqi,
Xinjiang, China, 2Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture,
Xinjiang Agricultural University, Urumqi, Xinjiang, China, 3National Key Laboratory of Crop Genetic
Improvement, Hubei Hong Shan Laboratory, Huazhong Agricultural University, Wuhan, China
Cotton is a kind of cash crop widely planted in arid and semi-arid areas. In this

study, we performed multi-omics analysis of two drought resistant extreme

materials, Yumian 4 and C460, under drought stress. Transcriptome analysis

showed that DY (post-drought stress Yumian 4) hadmore differentially expressed

genes than DC (post-drought stress C460), and there were 10247 DEGs in the

two comparison groups. Metabolomics analysis identified 1766 metabolites,

which were divided into 12 classes. The up-regulated metabolites mainly

included lipid accumulation, phenylpropanoid biosynthesis, and flavonoids. The

combined transcriptome and metabolome analysis highlighted the importance

of phenylpropanoid biosynthesis in enhancing drought tolerance. Combining the

two omics analysis, it was found that the enrichment pathway of differential

genes and differential metabolites is mainly in the phenylpropane biosynthesis

pathway, which contains 23 related candidate genes. In summary, the results of

multi-omics analysis of the two extreme drought resistance cotton materials

showed that they enhanced drought resistance by affecting phenylpropanoid

biosynthesis pathways. Promote the accumulation of osmotic substances. The

results further deepen our understanding of the molecular mechanism of

drought tolerance in cotton and provide new insights for molecular breeding

of cotton.
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Introduction

Cotton is one of the most important natural fiber crops in the

world at present, which has an extremely important impact on

domestic textile industry and agricultural economy. Our country is

the world’s largest producer of cotton, according to the statistics of

relevant departments, our country cotton planting area, per unit

yield and total output are in the forefront of the world. Therefore,

cotton production also has an important impact on the

development of the national economy (Sun et al., 2021).

Drought stress is one of the major abiotic stresses faced by

plants under global climate change, which has significant effects on

physiological indexes of different plants. In recent years, studies

have shown that drought stress can significantly reduce the

photosynthetic rate of plants, affect water use efficiency, and lead

to the accumulation of osmoregulatory substances such as proline

and soluble sugar (Muhammad et al., 2018; Aditi et al., 2020). In

wheat, drought stress also causes changes in antioxidant enzyme

activity in response to oxidative stress (Zulfiqar et al., 2024). In

addition, different plant species have different responses to drought

stress, for example, maize and rice show different stomatal

conductance regulation strategies under drought. Transcriptomic

studies have revealed differentially expressed genes under drought

stress, which are involved in signal transduction, transcriptional

regulation and metabolic pathways (Fidel et al., 2022; Niu et al.,

2023). miRNA are also involved in drought stress response and

affect plant physiological processes by regulating the expression of

target genes (Waqar et al., 2022; Eom et al., 2019).

In recent years, omics technology has become an important

means to analyze the drought stress response mechanism of crops

(Li et al., 2021). Transcriptomic studies have shown that a large

number of genes are differentially expressed in crops under drought

stress, involving signal transduction, transcriptional regulation and

metabolic pathways (Zhu et al., 2019; Jiang et al., 2023). Proteomic

analysis further revealed the key proteins of drought response, such

as osmoregulatory proteins and antioxidant enzymes (Gao et al.,

2023; Ren et al., 2022). Metabolomics studies have revealed the

changes of metabolites in crops under drought stress, providing a

new perspective for understanding the biochemical basis of drought

response (Michael et al., 2020; Wang et al., 2023). In addition,

epigenetic studies have shown that drought can cause epigenetic

changes such as DNA methylation and histone modification,

affecting gene expression (Chang et al., 2023; Wang et al., 2021).

The comprehensive application of these omics techniques provided

strong support for the in-depth analysis of drought stress response

mechanism of crops and the cultivation of drought-tolerant

varieties. Transcriptome analysis of rice under drought stress

using RNA-Seq technology revealed a number of differentially

expressed genes related to drought response, including genes

involved in osmoregulation, antioxidant defense and signal

transduction pathways (Anuj et al., 2023). The expression changes

of these genes provide important clues for understanding the

molecular mechanism of drought tolerance in rice. Protein

expression profiles of wheat leaves under drought stress were

analyzed by ITRAQ-labeled proteomics technology, and several
Frontiers in Plant Science 02
proteins related to drought tolerance were identified, such as

osmoregulatory proteins, molecular chaperones and heat shock

proteins (Wang et al., 2019). These proteins perform important

functions under drought stress, helping to maintain cell homeostasis

and protect cell structure. Using GC-MS and LC-MS techniques to

study the changes of metabolites in maize under drought stress, the

researchers identified a series of metabolites related to drought

response, including amino acids, organic acids and sugars (Zhang

et al., 2021). The accumulation or consumption of these metabolites

reflected the adjustment of metabolic pathway of maize under

drought stress, and provided the basis of metabolic level for

breeding drought-tolerant varieties. Drought stress can cause

changes in DNA methylation patterns and affect gene expression.

The researchers used sequencing techniques to analyze changes in

DNA methylation levels in wheat under drought stress and found a

number of differentially methylated regions associated with drought

response (Salehe et al., 2024). These results indicate that multi-

omics analysis plays an important role in drought tolerance of crops.

In recent years, the phenylpropane pathway has played an

important role in plant response to drought stress. Studies have

shown that it plays a crucial role in enhancing plant tolerance by

producing secondary metabolites. Drought stress can significantly

induce the expression of phenylpropane-related genes and enzyme

activity, thus promoting the synthesis of secondary metabolites and

improving drought resistance of plants (Ge et al., 2023; Wang et al.,

2024). The expressions of phenylalanine aminolyase (PAL), C4H and

4-coumarine-CoA ligase (4CL) were significantly up-regulated under

drought conditions (Ge et al., 2023; Wang et al., 2024). These

enzymes catalyze the synthesis of lignin and flavonoids, which

contribute to cell wall reinforcement and antioxidant defense

mechanisms, respectively. Lignin pathway and flavonoid pathway

are two important branches of phenylpropane metabolism. Lignin,

the second most abundant polymer on Earth, accumulates mainly in

the secondary cell walls of plants, provides mechanical support for

plants, and is involved in the formation of conduits, critical for the

transport of water and mineral elements (Ge et al., 2023; Vanholme

et al., 2010). Flavonoids are the most diverse metabolites in

phenylpropane metabolic pathway, including flavonoids, flavonols,

flavanones, isoflavones, anthocyanins, proanthocyanidins and other

compounds, which play an important role in plant flower color

formation, pollination insect attraction, antioxidant defense and

other aspects (Ge et al., 2023; Winkel-Shirley, 2001). In addition,

the phenylpropane pathway is involved in drought signal

transduction and response by regulating the expression of related

transcription factors and genes. For example, MYB transcription

factor family can regulate the expression of phenylpropane pathway

related genes under drought stress, thus affecting drought resistance

of plants (Guan et al., 2020).

In this study, transcriptome and metabolomics were used for

multi-omics analysis to explore the regulatory mechanism of cotton

response to drought stress. The results of this study are of great

significance for exploring the response of cotton to water stress,

helping to clarify the regulatory network of plant response to

drought stress, and providing valuable information for breeding

new varieties of drought-tolerant cotton.
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Materials and methods

Material planting and drought treatment

Drought-tolerant variety C460 (R) and drought-sensitive

variety Yumian 4 (S) were identified by the previous research

group through drought stress screening. In this study, R and S

were used as experimental materials to carry out hydroponics

experiments. First of all, the two materials were cultured in the

germination box until the seeds were white, and the seeds with

uniform growth were selected and uniformly transplanted to the

hydroponic pot. After cultivation to the trifoliate stage, PEG (15%)

stress treatments were applied, and true leaves of R and S cotton

were collected at 4, 8, 12, and 24 h after stress treatment, and three

duplicate samples were collected for each treatment time. After

rapid freezing in liquid nitrogen, it is temporarily stored in a

refrigerator at -80°C for subsequent use.
Transcriptome sequencing analysis

Total RNA was extracted by TRIzol method for subsequent

analysis, and RNA integrity was measured by Agilent 2100

bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Total

RNA was enriched by mRNA using Oligo dT magnetic beads. After

fragmentation, the cDNA is synthesized, its end is modified, and the

cDNA library is purified. Sequencing by Illumina platform. Raw

readings are processed using software to obtain clean readings

(Chen et al., 2018). Software quickly and accurately compares

clean readings to reference genomes and predicts new genes (Kim

et al., 2015; Pertea et al., 2015). According to the result of

comparison with the reference genome, the read number of genes

was obtained through the software, and then the expression level of

gene FPKM was obtained (Wang et al., 2014; Liao et al., 2014).

DEGs with FDR ≤ 0.05 and |log2FoldChange|≥ 1 were identified by

DESeq2 (1.20.0) software as the criteria for differential gene

screening. GO functional enrichment analysis and KEGG

pathway enrichment analysis were performed on DEGs by

software, and genes with p values of <0.05 were considered to be

significantly enriched (Young et al., 2010; Ogata et al., 1999). The

accuracy of transcriptomic analyses was analyzed using Pearson

correlation coefficient and principal component analysis

(Supplementary Figures S1) (Robinson et al., 2010).
Metabolomics sequencing analysis

This study is based on liquid chromatography-mass

spectrometry (LC-MS) technology for non-targeted metabolomics

studies (Want et al., 2010). Simple screening of metabolites by

Compound Discoverer 3.3 (CD3.3, Thermo Fisher, Waltham, MA,

USA) using raw data. The metabolites were then compared with

mzCloud (https://www.mzcloud.org/), mzVault, and MassList

databases for secondary identification. Finally, metabolites with

coefficient of variance (CV) less than 30% were used for
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follow-up analysis (Dai et al., 2017). The identified metabolites

were annotated by KEGG database for functional characterization.

DAM screening is mainly based on variable importance (VIP),

multiple change (FC) and P-value (Haspel et al., 2014). The

threshold is set to VIP > 1.0, p < 0.05, FC > 1.2, or FC < 0.833.
Statistical analysis

One-way ANOVA was used to analyze the significance of

phenotypic difference of drought-treated cotton (0, 4, 8, 12 and

24 h). Student t test was used to detect significant differences in gene

expression under drought treatment (0, 4, 8, 12 and 24 h). IBM

SPSS Statistics v21 software was used to conduct one-way ANOVA

and Student t test.
Result

Analysis of differentially expressed genes (DEGs) in cotton

under drought stress

All the samples were divided into ten groups: they included

Yumian 4 and C460 control groups (CK_Y and CK_C), and

drought stress treatment groups for 4h, 8h, 12h and 24h (DY_4,

DY_8, DY_12, DY_24, DC_4, DC_8, DC_12 and DC_24). A total

of 210.83 GB of clean sequencing data were obtained

(Supplementary Table S1). The genome alignment rate was

greater than 90%, the Pearson correlation coefficient (R2) of the

biorepeats was greater than 0.9 in the inter-group comparisons

(Supplementary Figure S1A), and there were significant differences

in gene expression between groups (Supplementary Figure S1B).

When we compared the DEGs of DC_4 and DY_4, DC_8 and

DY_8, DC_12 and DY_12, and DC_24 and DY_24 (Figure 1), we

found that 194 DEGs of the two varieties were expressed under

drought stress. It is hypothesized that these genes are involved in the
FIGURE 1

Venn diagram of differential genes.
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FIGURE 2

GO enrichment analysis of DEG (A) Yumian 4 and C460 treated with drought stress for 4h; (B) Yumian 4 and C460 treated with drought stress for
8h; (C) Yumian 4 and C460 treated with drought stress for 12h; (D) Yumian 4 and C460 treated with drought stress for 24h).
FIGURE 3

KEGG rich distribution point diagram (A) Yumian 4 and C460 treated with drought stress for 4h; (B) Yumian 4 and C460 treated with drought stress
for 8h).
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drought stress response of cotton and are closely related to its

tolerance to drought. In DC_12 and DY_12 and DC_24 and DY_24,

only a small part of DEGs were common in drought stress, and the

number of genes induced by DC_4 and DY_4 and DC_8 and DY_8

were more.
Functional analysis of DEGs under
drought stress

In order to further explore the function of DEGs under drought

stress and analyze the response mechanism of cotton to drought stress,

GO and KEGG analyses were performed on the up-regulated DEGs in

R and the down-regulated DEGs in S (Figure 2). DEGs in the four

comparison groups (DC_4 and DY_4, DC_8 and DY_8, DC_12 and
Frontiers in Plant Science 05
DY_12, and DC_24 and DY_24) mainly concentrated in three

categories: biological processes (BPs), molecular functions (MFs), and

cell components (CCs) (Figure 2). Up-regulated DEGs is mainly

involved in the negative regulation of biosynthesis and hormone

metabolism (BPs), photosynthesis and microtubule associated

complexes (MFs), redox enzyme activity and xylosyltransferase

activity (CCs). Down-regulated DEGs are mainly involved in

chromosome condensation (BPs), driver protein complexes (MFs),

and chromatin structural components (CCs). KEGG enrichment

analysis showed that the top 20 metabolic pathways enriched after

drought treatment included the biosynthesis of secondary metabolites.

Biosynthesis of cutin, wax and wax; Cysteine and methionine

metabolism; Biosynthesis of glucosinolate; MAPK- signaling pathway

(Figure 3). “MAPK- signaling pathway”, “keratin, wax and wax

biosynthesis” and “plant hormone signal transduction” were
FIGURE 5

Differential multiplex histogram of DAMs (A) Yumian 4 and C460 treated with drought stress for 4h; (B) Yumian 4 and C460 treated with drought stress for 8h).
FIGURE 4

Pie chart of different metabolite content.
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significantly enriched in CK vs D. The biological activity of cotton

seedlings under drought stress may bemainly maintained by regulating

the biosynthesis of secondary metabolites, and further may be mainly

dependent on enhancing the biosynthesis of cutin, wax and wax and

plant hormone signal transduction.

In DC_4 and DY_4 and DC_8 and DY_8, DEGs were

significantly enriched in 51 pathways (p < 0.05), including plant

hormone signal transduction, MAPK signal pathway, starch and

sucrose metabolism, keratin, wax and wax biosynthesis, glutathione

metabolism, ascorbic acid and uronate metabolism. Among them,

“plant hormone signal transduction”, “starch and sucrose

metabolism” and “ascorbic acid and uronate metabolism” were

only enriched in DC_4 and DY_4. The rest were enriched in DC_8

and DY_8. The top 20 most significantly enriched pathways in both

comparisons are shown in Figure 3.
Analysis of cotton metabolites under
drought stress

In order to explore the regulatory mechanism of cotton

response to drought stress, metabolomics technology was used to
Frontiers in Plant Science 06
analyze and identify the metabolites after drought stress. A total of

1766 metabolites were detected, which were divided into 12

categories, including 198 lipids, 321 flavonoids, 230 phenolic

acids, 171 amino acids and their derivatives, 150 alkaloids, 68

nucleic acids and their derivatives, 106 organic acids, 105 lignins

and coumarins, 123 terpenoids, 26 quinones, and 9 tannins, and 259

other substances (Figure 4). PCA showed significant interspecific

differences between drought treatment (group D) and control

(group CK) (Supplementary Figure S2), indicating that seedlings

were slightly damaged at 4 h and significantly damaged at 8 h under

drought stress, which was consistent with transcriptomic results.

Orthogonal partial least squares discriminant analysis

(OPLS-DA) was used to mine differential metabolites, and the

contribution of each metabolite in the OPLS-DA model was

assessed by variable importance (VIP). |log2FC| ≥ 1 and VIP ≥ 1

were used as thresholds for screening. In DC_4 and DY_4, 137

important differentially expressed metabolites (DAMs) were

screened, of which 57 were up-regulated and 80 were down-

regulated. We found that four categories contained more than 10

DAMs: phenolic acids (20,14.6%), flavonoids (48,35.0%), alkaloids

(13,9.5%), and terpenoids (12,8.8%). There are 291 important

DAMs in DC_8 and DY_8, 233 of which are up-regulated and 68
FIGURE 6

KEGG enrichment analysis of differential metabolites is shown in (A, B) (A) Yumian 4 and C460 treated with drought stress for 4h; (B) Yumian 4 and
C460 treated with drought stress for 8h). (C, D) was the differential abundances of differential metabolites. (C) Yumian 4 and C460 treated with
drought stress for 4h; (D) Yumian 4 and C460 treated with drought stress for 8h).
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down-regulated. Similarly, six classes contained more than 10

DAMs: lipids (36,12.4%), flavonoids (109, 37.5%), and phenolic

acids (33,11.3%) etc. In DC_12 and DY_12, 222 DAMs were

screened, of which 118 DAMS were up-regulated and 104 DAMS

were down-regulated. There are eight categories that contain more

than 10 DAMs: phenolic acids (35,15.8%), flavonoids (76,34.2%),

and lipids (10,4.5%) etc. There are 143 important DAMs in DC_24

and DY_24, 43 of which are up-regulated and 100 down-regulated.

There were four classes containing more than 10 DAMs: phenolic

acids (25,17.5%), flavonoids (46,32.2%), and terpenes (10, 7.0%) etc.

There were significant changes in the abundance of 428

metabolites in DC_4 and DY_4 and DC_8 and DY_8 groups.

Compared with drought-tolerant varieties, the metabolite abundance
Frontiers in Plant Science 07
of drought-sensitive varieties varied greatly, in which the increase of

lipids was the largest, and the decrease of flavonoids was the largest.

Based on the multiples of metabolite accumulation, we identified the

top 10 DAMs that increased or decreased in control and drought

treatment (Figures 5 A, B). Through screening, we found that the co-

accumulation of 39 metabolites changed in all groups (lipids were the

substances with the main accumulation increases, while flavonoids and

phenolic acids were reduced). Notably, most of the different substances

that accumulate in drought-tolerant varieties are related to energy

metabolism (Figures 5 A, B).

DAMs were enriched into KEGG pathway, and p<0.05 was used

as the screening condition. The results showed that the carbon

metabolism, arginine biosynthesis, linoleic acid metabolism,
FIGURE 7

Combined gene and metabolite analysis (A) Yumian 4 and C460 treated with drought stress for 4h; (B) Yumian 4 and C460 treated with drought
stress for 8h).
FIGURE 8

Multi-omics KEGG enrichment analysis (A) Yumian 4 and C460 treated with drought stress for 4h; (B) Yumian 4 and C460 treated with drought
stress for 8h).
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phenylpropane biosynthesis, plant hormone signal transduction

and carotenoid biosynthesis of the two varieties were significantly

enriched under drought. Metabolism of alanine, aspartate and

glutamate, isoflavone biosynthesis, folate biosynthesis, flavonoids

and flavonols biosynthesis, and tryptophan metabolism are only

enriched in CK_C vs DC. Pentose phosphate pathway, D-amino

acid metabolism, glyoxylate and dicarboxylate metabolism, purine

metabolism, unsaturated fatty acid biosynthesis , and

2-oxycarboxylic acid metabolism are associated with more

abundant DAMs in CK_Y vs DY (Figures 6A, B). The common

enrichment pathways of DC_4 vs DY_4 and DC_8 vs DY_8 are as

follows: Biosynthesis of flavonoids and flavonols; phenylalanine

metabolism and Lysine biosynthesis, etc. In order to elucidate the

overall trend of KEGG metabolic pathways, we performed

differential abundance analysis of the DC_4 vs DY_4 and DC_8

vs DY_8 pathway maps (Figures 6C, D). The results showed that

lysine biosynthesis was significantly down-regulated.
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DEGs and DAMs were integrated into the KEGG pathway, and

the enrichment pathway of both DEGs and DAMs was screened

using p < 0.05 as the threshold value. The enrichment pathways in

DC_4 vs DY_4 and DC_8 vs DY_8 are ABC transporters,

biosynthesis of secondary metabolites, phenylpropane

biosynthesis, amino acid biosynthesis, and biosynthesis of various

plant secondary metabolites. A nine-quadrant map of DEG and

DAM correlation based on correlation value > 0.8 shows that most

DEG is consistent with DAM pattern, with genes up-regulated,

metabolites remaining unchanged or down-regulated, and positive

gene regulation predominates over negative regulation among genes

affecting metabolic changes (Figures 7A, B).

Under drought conditions, plants will synthesize a large

number of cell transport enzymes and antioxidant enzymes to

enhance their drought tolerance. Therefore, next, we use the

comprehensive analysis data of transcriptome and metabolome to

focus on the change trend of cotton transport enzymes and oxidase
FIGURE 9

Pathways of phenylpropane biosynthesis in cotton under drought stress.
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under drought conditions. In DC_4 and DY_4 and DC_8 and

DY_8, ABC transporters and phenylpropane biosynthetic pathways

were significantly enriched at both transcriptome and metabolome

levels (p ≤ 0.01). Caffeic acid 3-O-methyltransferase, members of

the ABC transporter G family, b-Amyrin11-oxidase, and 1-deoxyd-

xylose-5-phosphate synthetase were significantly increased in both

treatments (Figures 8A, B).
Effects of drought stress on phenylpropane
biosynthesis pathways in cotton

The analysis of transcript level and metabolite accumulation

showed that the major changes of cotton after drought stress

involved phenylpropane biosynthesis. The phenylpropanoid

biosynthesis pathway is well understood, so genes and metabolites

detected by the transcriptome and metabolome are integrated into this

metabolic pathway (Figure 9). In this pathway, 23 candidate genes were

screened. These include CYP84, 4CL1, SNL6, CAD6, PER, and HST,

SAMDM, SALAT, CAG, and OMT1 are involved in phenylpropanoid

biosynthesis (Figure 9). To investigate the underlying mechanisms, we

associate DEGs with the above pathways of significant variation. A

total of 23 genes were found to be highly related to the phenylpropane
Frontiers in Plant Science 09
biosynthesis pathway (|PCC| > 0.8). We hypothesized that these 23

candidate genes play an important role in phenylpropane-like

biosynthesis pathways under drought stress. We concentrated and

normalized the genes using FPKM, and found that P450 and

methyltransferase genes were more actively expressed in drought-

tolerant varieties. In addition, after drought stress, all genes except

OMT1, PER43, PER43, SNL6, and SAMDM were up-regulated

(Figure 10), indicating that they played an important role in drought

stress response.
Discussion

Transcriptome analysis

A total of 6752, 14460, 22640, 23615, 12311, 15884, 22894 and

25747 DEGs were identified in cotton genotypes R and S under

different stress times (Figure 1), respectively. The results of GO

analysis showed that DEGs was mainly enriched during

biosynthesis and hormone metabolism, and the results of this

study were consistent with those of wheat under drought stress.

KEGG analysis showed that DEGs was mainly enriched in the

biosynthesis of secondary metabolites after drought stress.
FIGURE 10

Differential genes in phenylpropanoid biosynthesis pathways.
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Biosynthesis of cutin, wax and wax; Cysteine and methionine

metabolism; Biosynthesis of glucosinolate and so on (Figure 2, 3).

Previous studies have shown that the biosynthesis of plant

secondary metabolites and the biosynthesis of cutin, wax and wax

play an important role in drought stress, and this result is the same

in our study (Milena et al., 2020).
Metabolomics analysis

Metabolomics analysis involves the analysis of endogenous

metabolites in organisms, including changes in their type,

quantity, and response to external factors (Kell and Oliver, 2016).

Compared with other omics analysis methods, metabolomics

analysis can better reflect the overall information of organisms

under external stimuli. Studies have shown that under drought

treatment, plants typically inhibit growth by slowing down

metabolic responses, such as carbohydrate interpretation and

energy supply, in response to stress (Wei et al., 2013). This

conclusion has been fully verified in this study. A total of 1766

DAMS were identified in R and S by metabolomic sequencing,

among which lipids and lipid-like molecules, phenylpropanes and

polyketones, and organic acids and their derivatives were the three

most enriched classes (Figures 5, 6). Lignin biosynthesis and

flavonoid bioanabolic pathways play important roles in drought

stress of cotton (Yuan et al., 2023). In this study, in addition to

flavonoid biosynthesis pathways, lignin biosynthesis and ABC

transporters were also significantly enriched, suggesting that these

genes may play an important role in drought stress (Figures 2, 3, 8).
Phenylpropane metabolic pathway
responds to drought stress in cotton

When plants are under drought stress, a large number of metabolic

substances will be produced in the body, including the destruction of

cell structure, membrane lipid peroxidation, etc., affecting normal

growth (Salah et al, 2019). Phenylpropane metabolic pathway plays

an important role in cotton response to drought stress. Studies have

shown that drought stress can induce the expression of genes related to

phenylpropane metabolic pathway in cotton, such as PAL, C4H and

4CL, etc (Figures 8, 9). These genes participate in the synthesis of lignin

and flavonoids, and help to enhance the resistance of cotton to drought

(Asif et al., 2023; Yuan et al., 2023). Lignin enhances the mechanical

strength of the cell wall and forms a physical barrier, while flavonoids

have antioxidant and antimicrobial activities. In wheat and maize,

phenylpropane metabolic pathways have also been found to improve

drought tolerance by regulating osmoregulatory substances and

antioxidant enzymes in response to drought stress (Wei et al., 2017;

Wang et al., 2022). Moreover, the metabolites of phenylpropane

metabolic pathway can also be used as signal molecules to

participate in gene expression regulation under drought stress

(Shashikumara et al., 2024). In this study, through the combined

analysis of transcriptomics and metabolomics, it was found that the

accumulation of L-glutamic acid and L-glutathione and other
Frontiers in Plant Science 10
metabolites increased significantly after drought stress. In addition,

many DEGs are enriched in the phenylpropane metabolic pathway,

and the expression of most genes is up-regulated (Figures 2, 3). These

findings suggest that phenylpropane metabolic pathways may play an

important role in cotton drought stress response.
Conclusion

We selected two cotton genotypes (one tolerant to drought stress

and one sensitive to drought stress) and placed seedlings under

control (normal watering) and drought stress (15% PEG6000) at an

early stage of development. Leaf samples were collected and analyzed

using a combination of metabolomics and transcriptomics. The

expression of different metabolites of cotton under normal and

drought stress was analyzed. The enrichment of lipid and

phenylpropane biosynthesis was the most significant under drought

stress. Cotton responds to drought in many ways, maintaining its

metabolism under drought stress by increasing cellular transport

enzymes and antioxidant enzymes, and responding to drought stress

by regulating phenylpropanoid biosynthesis. The combined analysis

of DEG and DAM showed that OMT1, PER43, PER43, SNL6 and

SAMDMwere closely related to the drought stress response of cotton.

The metabolic and transcriptomic findings of this study provide

important insights into the growth and development of cotton under

drought stress, especially in understanding the mechanisms of cotton

response under drought stress. These results provide relevant

theoretical basis, and it will help to select excellent cotton varieties

that are resistant to drought.
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