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Temporal transcriptome and
WGCNA analysis unveils
divergent drought response
strategies in wild and cultivated
Solanum varieties
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1Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India,
2Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University),
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Drought, exacerbated by climate change, threatens global food security,

particularly impacting crop products, including tomatoes, which are

economically essential but drought sensitive. This study explores drought

responses in the wild-type Solanum pennellii (WT), known for drought

tolerance, and cultivated Solanum lycopersicum (CT), through RNA-Seq

analysis at three drought intervals (2 Weeks +5D, +8D, and +11D). Across these

points, WT and CT showed 716 and 1459 differentially expressed genes (DEGs),

respectively. Pathway enrichment revealed distinct metabolic adaptations: wild

varieties prioritized arginine and proline metabolism early, shifting to cutin,

suberin, and wax biosynthesis by day 11, while cultivated varieties emphasized

steroid biosynthesis, secondary metabolite production, and photosynthesis-

related pathways. Transcription factor analysis highlighted HB-HD-ZIP

enrichment in wild varieties, contrasting with broader, less coordinated TF

activation in cultivated varieties. WGCNA identified the blue module as

significantly associated with prolonged drought in both species. Network

analysis showed ribosomal pathways enriched in CT, while in WT, it was

observed broader pathway enrichment, including secondary metabolites,

carbon metabolism, and oxidative stress pathways. In WT unique hub genes

were, sucrose synthase and malate synthase, suggesting specialized drought

adaptation mechanisms. These findings highlight multifaceted drought resilience

strategy of WT compared to growth-focused response of CT, offering a

foundation for breeding drought-resistant tomato varieties critical for food

security under climate pressures.
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1 Introduction

Solanum lycopersicum L. (tomato) is an economically important

and nutritionally valuable crop worldwide, with 189 million tons

cultivated on 5.16 million hectares, according to the (Food and

Agriculture Organization of the United Nations The FAO Statistical

Database-Agriculture. 2020 (http://faostat3.fao.org/faostatgateway/go/

to/download/Q/QC/E)). This translates to roughly 170 million tons

reaching consumers annually, making it one of the world’s most

important food crops. In exports, tomato plants are exported to a

variety of countries, helping to maintain trade balances and boosting

the economies of the producing countries. The United States, China,

Turkey, and Egypt are among the major tomato-producing countries.

Tomatoes are rich in essential nutrients, including alpha/beta-

carotene, lycopene, tomatine, and esculeoside A, contributing to

human health by reducing the risk of chronic diseases like

cardiovascular disease (Huang et al., 2021), cancers (Middha et al.,

2019), and diabetes (Zhu et al., 2020). The increasing challenges due to

climate change, particularly the rising frequency, and intensity of

drought events, threaten the global production of tomatoes.

From a meteorological perspective, drought is a period of

deficient rainfall compared to historical averages. This lack of

precipitation disrupts the water balance in agricultural and

natural ecosystems, hindering plant growth and productivity

(Krishna et al., 2022). It affects the crops by generating reactive

oxygen species (ROS), which disturbs cellular homeostasis (Krishna

et al., 2021). Antioxidant defense and osmotic regulation are the

major strategies used by plants to combat drought. Other schemes

include alterations in the expression of ROS scavenging enzymes,

(LEA)/dehydrin-type genes, and the synthesis of molecular

chaperones, proteinases, and other detoxification proteins (Rai

et al., 2013). During drought stress, tomatoes experience a surge

in a plant hormone called abscisic acid (ABA) (Vishwakarma et al.,

2017). This rise in ABA coincides with significant changes in gene

expression patterns within their leaves. Members of the abscisic-

acid-responsive element binding protein (AREB)/abscisic acid

element binding factor (ABF) subfamily of basic leucine zipper

(bZIP) transcription factors have been involved in the response to

ABA and abiotic stress. Proline (Ghosh et al., 2022) is also known to

confer better drought-withstanding capability to plants. Similarly,

jasmonic acid (Raza et al., 2021), carotenoid biosynthesis (Khoo

et al., 2011), and catalases, glutathione reductase, and superoxide

dismutases contribute to a holistic regulation of drought stress

response (Sarker and Oba, 2018).

Widely reported transcription factors (TFs) expressed during

drought stress are Myb (Baldoni et al., 2015), bHLH (Liang et al.,

2022), AP2/ERF (Xu et al., 2011), and WRKY (Genome wide

expression analysis of WRKY genes in tomato (Solanum

lycopersicum) under drought stress, 2018). Numerous reviews

highlighting the role of different TFs in various biotic and abiotic

stresses in plants like Arabidopsis, Oryza sativa, Nicotiana tabacum

and Zea mays (Liu et al., 2024) underline the importance of these

regulators in controlling drought. Integrating drought-stress-
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tolerant genes from other species into tomatoes has been the

focus of intense research efforts from scientists worldwide. Some

of the transgenes used for improving drought tolerance include

osmotin (to improve stress response) (Goel et al., 2010), CBF1 (a

stress-inducing transcription factor) (Hsieh et al., 2002), LeNCED1

(to increase abscisic acid (ABA) accumulation) (Wu et al., 2007).

Studies have shown success in developing transgenic tomatoes with

improved drought tolerance even better than wild types. For

example, introducing the AtCBF1 gene in cultivated varieties

resulted in significantly higher yields than wild-type tomatoes

under drought stress (Ratcliffe and Riechmann, 2002).

Wild tomato species, such as Solanum pennellii and Solanum

pimpinellifolium, have evolved in diverse ecological niches, exhibiting

natural adaptations to withstand water scarcity. Solanum pennellii

(Bolger et al., 2014) and Solanum pimpinellifolium (Razali et al.,

2018), exhibit remarkable resilience to various environmental

stresses, including drought. Unlike cultivated varieties, S. pennellii

thrives with minimal water. This translates to superior water-use

efficiency and resistance to wilting, allowing it to flourish even in dry

conditions. Towards this end, harnessing the genetic diversity in wild

tomato varieties known for their drought resistance and adaptations

to arid environments, emerges as a promising approach for

improving drought tolerance in cultivated varieties.Studies like

(Tirnaz et al., 2022) discuss the effectiveness and resources of using

wild varieties in enhancing various traits. Traditional breeding

approaches have made considerable strides in developing drought-

resistant cultivars, yet the genetic potential within wild tomato

relatives remains a largely untapped resource. Although efforts are

being undertaken to develop drought-tolerant varieties, the rate of

growth is very slow. Genetic variations in tomatoes and the

multigenic nature of drought tolerance further complicate the rate.

RNA sequencing (RNA-Seq) has revolutionized plant science

research, offering a powerful approach to understanding gene

expression and improving crop traits. It aids in breeding by

identifying candidate genes, understanding gene regulation,

characterizing genetic variations, abiotic stress responses, metabolic

pathway analysis, and many more. (Liu et al., 2021) Reported the

identification of candidate genes for drought tolerance in maize

seedlings, similarly (Pereyra-Bistraıń et al., 2021), reported the

identification of bacterial canker resistance genes in tomatoes using

RNA-seq. Genes for resistance to Tomato Leaf Curl New Delhi Virus

were identified in melon by (Sáez et al., 2021). Transcriptome

profiling reveals the expression and regulation of genes associated

with Fusarium wilt resistance in chickpeas (Garg et al., 2023).

In this context, here, we analyzed the time series drought-

response transcriptome data of resistant and susceptible Solanum

varieties for the study. The differentially expressed genes were

identified and functionally annotated. Pathway enrichment

analysis, and transcription factor analysis were performed on

identified DEGs of both species. Additionally, WGCNA was

conducted to identify significant modules associated with drought

in 2 weeks+11D, construct a PPI network, and uncover key

pathways involved in drought response.
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2 Materials and methods

2.1 Data collection

The leaf transcriptome dataset PRJNA800740 retrieved from

the NCBI SRA database (Home - SRA - NCBI, 2024) consisted of

drought-treated tolerant variety Solanum pennellii and susceptible

variety Solanum lycopersicum respectively, obtained at three

different time points of 2 weeks +5 days (2W+ 5D), 2 weeks +8

days (2W+ 8D), 2 weeks +11 days (2W+ 11D) of drought treatment

in triplicates. The workflow of the current study is illustrated

in Figure 1.
2.2 RNA-seq data pre-processing and
assembly

The RNA-Seq data of both species were analyzed through the

Galaxy suite (Galaxy, 2024), by using dataset fastq files as input in

the fastQC tool (Andrews, 2010) for quality assessment of raw

RNA-seq data. The quality-checked reads were mapped to the

Solanum lycopersicum reference genome retrieved from the NCBI

using HiSAT2 (Kim et al., 2019) and raw read counts of the mapped

transcripts were obtained using the Stringtie tool (Shumate

et al., 2022).
2.3 Differential gene expression analysis

Transcripts with a criteria of 5-10 counts per million (CPM) in

at least three samples obtained from the Stringtie tool were selected

for differential expression analysis, which was carried out using

DESeq2 (Love et al., 2014). Pairwise comparisons between time

points (e.g., day 5 vs. day 8 vs day 11) were performed to identify

DEGs at key stages of drought stress, given the focus of the study on

significant expression changes between early and late drought

phases. With only three time points (days 5, 8, and 11), this

approach was preferred over time-series models due to limited

temporal resolution. Significant DEGs were identified using DESeq2

with an FDR-adjusted p-value (padj) < 0.05 and |log2 fold change| >

1. The Benjamini-Hochberg procedure was applied to correct for

multiple testing and control the false discovery rate. The samples

were named Wild Type_Day5 (WT_D5), Wild Type_Day8

(WT_D8), Wild Type_Day11 (WT_D11), Cultivated Type_Day5

(CT_D5), Cultivated Type_Day8 (CT_D8) and Cultivated

Type_Day11 (CT_D11).
2.4 Pathway analysis

Differentially expressed genes (DEGs) identified from RNA-

sequencing data were subjected to pathway enrichment analysis to

uncover associated biological processes and signaling pathways.
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Functional annotation and pathway enrichment were performed

using ShinyGO 0.82 (Ge et al., 2020), based on the KEGG pathway

database. For pathway mapping, DEGs were provided as Ensembl

IDs and a pathway was considered significantly enriched if the

adjusted p-value (FDR) was < 0.05. Enrichment scores, and gene

counts were extracted for the top-ranked pathways.
2.5 TF prediction

The iTAK version 18.12 software (Zheng et al., 2016) was used

to identify transcription factors among the differentially expressed

genes. iTAK is a program to identify plant transcription factors

(TFs), transcriptional regulators (TRs) and protein kinases (PKs)

from protein or nucleotide sequences, and then classify individual

TFs, TRs and PKs into different gene families.
2.6 Weighted gene co-expression network
analysis

Weighted gene co-expression network analysis (WGCNA)

(Langfelder and Horvath, 2008) was performed on variance

stabilizing transformation (vst) normalized genes to construct a

co-expression network and further identified significant co-

expressed genes at different drought stages. The vst normalized

read count matrix obtained from Stringtie and DESeq2 pipeline was

used for the analysis. The optimal parameters for constructing a

weighted adjacency matrix, essential for capturing the intricate

relationships among genes, were chosen using picksoftthreshold.

The resulting matrix was transformed into a topology overlapping

matrix (TOM) and later to dissTOM (1-TOM) allowing a

comprehensive assessment of network connectivity. Later

unsupervised hierarchical clustering was performed to identify

gene modules exhibiting similar expression patterns, with further

refinement achieved through the DynamicTreecut algorithm. The

relationship between the gene modules and drought stages, such as

2W_5D, 2W_8D, and 2W_11D days was derived using a module-

trait association study and is illustrated as a heatmap. By focusing

on the module with the strongest positive correlation to drought

phase traits, the key regulatory module was identified. This module

was subjected to additional analysis to uncover biological

significance in governing drought responses in both species.

The genes of the selected module were then used to create the

protein-protein interaction network using the Stringapp plugin

(Doncheva et al., 2019) in the Cytoscape tool (Shannon et al.,

2003). A confidence score of >= 0.7 (high confidence) was applied

and the resulting network was analyzed through Cytoscape plugins

like network analyzer. Enriched pathways were identified using the

string enrichment plugin in Cytoscape and significant hubs were

found using the degree centrality of Network analyzer plugin (Chin

et al., 2014).The genes in the blue module were also subjected to GO

analysis and pathway analysis using the STRINGdb.
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3 Results and discussion

3.1 RNA seq analysis

The 36 RNA-seq samples of WT and CT varieties of Solanum

obtained from the NCBI SRA database underwent a FASTQC

quality check which reported no adapter contamination and was

further mapped to the reference genome S. lycopersicum. The

average mapping ratio for the wild type was ~82% and that of the

cultivated one was ~96%.
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3.2 Differential expression analysis of two
contrasting Solanum genotypes across all
time points

A total of 2175 DEGs were obtained at three drought stress time

points for two varieties, including 1459 in CT and 716 in WT based

on an FDR-adjusted p-value (padj) < 0.05 and |log2FC| > 1

(Supplementary Table 1). The number of upregulated genes was

higher in most of the time points (WT_D5, WT_D11, CT_D8, and

CT_D11). It was noticed that DEGs inWT was 8 at day 5 which was
FIGURE 1

Methodology adopted in this study.
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increased to 663 at day 11. Meanwhile, the number of DEGs in CT

increased from 76 on day 5 to 1233 on day 11.

Comparing the DEGs at day 5 on both species, 1 gene was found

to be in common with 75 DEGs specific to CT and 7 DEGs specific

to WT. On day 8, the shared genes were increased to 21 with 129

CT-specific and 24 WT-specific genes. Drought response on day 11

shared 372 genes between both species with 861 exclusively

expressed inWT and 291 expressed in CT (Supplementary Table 1).

In conclusion, the analysis of differential gene expression under

drought stress across three time points revealed significant temporal

and varietal differences in the transcriptional responses of the two

varieties, CT and WT. Comparative analysis highlighted

overlapping and distinct gene expression patterns, with shared

DEGs between the varieties increasing over time. Despite the

overlap, variety-specific DEGs were substantial, emphasizing the

distinct mechanisms employed by CT and WT in drought

adaptation. These findings provide insights into the temporal

dynamics and variety-specific strategies in drought response.

Additionally, the genes which were differentially expressed in all

three days of drought were identified and analysed in the

subsequent section.

3.2.1 Genes present in all three times points and
their expression pattern

Across all time points, 5 genes in WT and 11 in CT were

consistently expressed, suggesting a potential role in drought

response. The expression pattern of these proteins is provided in

Figures 2 and 3.

In the drought-tolerant S. pennellii, five proteins were

consistently expressed across all drought stages (Figure 2). The

down regulated proteins were aquaporin PIP1-7, stemmadenine O-

acetyltransferase, and proline dehydrogenase, with log2 fold
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changes ranging from -1.0 to -5.4. Proline dehydrogenase showed

the most significant downregulation (-5.4 at 2W+11D), suggesting

reduced proline catabolism, which may contribute to

osmoprotectant accumulation (Hayat et al., 2012). Homeobox-

leucine zipper protein ATHB-12 and BAG family molecular

chaperone regulator 6 exhibited strong upregulation, with log2

fold changes peaking at 6.8 and 4.1, respectively, at 2W+11D.

These proteins likely play roles in transcriptional regulation

(Olsson et al., 2004) and protein homeostasis (Echevarrı ́a-
Zomeño et al., 2016) under drought stress. The upregulated

proteins showed a progressive increase in expression over time,

particularly ATHB-12, which increased from 1.39 (2W+5D) to 6.8

(2W+11D), indicating a sustained and amplified stress response in

the tolerant variety.

On the other hand, in the drought-sensitive S. lycopersicum,

eleven proteins were consistently expressed across all three drought

stages (Figure 3). Downregulated proteins included aquaporin

PIP2-1, uncharacterized LOC101259599, and boron transporter 4,

with log2 fold changes ranging from -1.02 to -3.11 by 2W+11D,

indicating a strong suppression of water and nutrient transport

mechanisms under prolonged drought. Proteinase inhibitor,

uncharacterized LOC101255514, ribonuclease 3-like, wound-

induced proteinase inhibitor 1, anthocyanidin synthase,

anthocyanidin-3-O-glucoside rhamnosyltransferase, and

threonine dehydratase biosynthetic (chloroplastic) showed

positive log2 fold changes, ranging from 1.1 to 4.58. The highest

upregulation was observed for uncharacterized LOC101255514

(4.58 at 2W+11D) and threonine dehydratase (4.0 at 2W+5D),

suggesting roles in stress response, secondary metabolite

production, and amino acid metabolism. Most upregulated

proteins maintained or increased expression by 2W+11D, except

for threonine dehydratase, which decreased from 4.0 (2W+5D) to
FIGURE 2

Common DEGs expressed on all three time points of WT identified using an FDR-adjusted p-value (padj) < 0.05 and |log2FC| > 1.
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1.24 (2W+11D), indicating a possible early stress response that

diminishes over time.

The differential protein expression profiles between CT andWT

highlight distinct strategies for coping with drought stress. In the

drought-sensitive CT, the downregulation of aquaporin PIP2-1 and

boron transporter 4 suggests a reduction in water and nutrient

uptake (Conti et al., 2022), potentially exacerbating drought

susceptibility. Drought can lead to a higher concentration of

boron in the soil solution due to reduced water availability. This

can make plants more susceptible to boron toxicity, which can

manifest as leaf necrosis and stunted root growth (Aftab et al.,

2022). Aquaporins facilitate water transport across membranes, and

their suppression may limit water movement, leading to cellular

dehydration under prolonged stress (Chaumont and Tyerman,

2014). Conversely, the upregulation of proteinase inhibitors,

ribonuclease 3-like, and anthocyanidin-related proteins indicates

an activation of defense mechanisms, including protection against

oxidative stress, drought (D’Ippólito et al., 2021) and pathogen

attack (Zhang et al., 2024), which are often exacerbated

during drought.

The high expression of threonine dehydratase early in drought

(2W+5D) may support isoleucine biosynthesis, providing

precursors for stress-related metabolites (Joshi et al., 2010),

though its decline by 2W+11D suggests a limited capacity to

sustain this response. In contrast, the drought-tolerant WT

exhibits a more robust adaptive response. The downregulation of

proline dehydrogenase likely contributes to proline accumulation

(Junaid et al., 2023), a well-known osmoprotectant that stabilizes

cellular structures under water deficit (Yamada et al., 2005) (Wang

et al., 2023). The strong upregulation of homeobox-leucine zipper

protein ATHB-12, a transcription factor (Li Y. et al., 2022), suggests

enhanced regulation of drought-responsive genes, potentially

orchestrating a coordinated stress response. Many studies have
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reported the role of homeobox-leucine zipper protein ATHB-12

during plant abiotic stress (Ariel et al., 2010) (Shen et al., 2019)

(Deng et al., 2002) Similarly, the BAG family molecular chaperone

regulator 6, involved in protein folding and stress tolerance, likely

supports cellular homeostasis under prolonged drought (Arif et al.,

2024). The progressive increase in expression of these proteins over

time indicates a sustained and adaptive response, contrasting with

the more variable expression in CT.

These observations suggest that WT employs a combination of

osmoprotection, transcriptional regulation, and protein

homeostasis to tolerate drought, whereas CT relies on stress

defense mechanisms that may be less effective under prolonged

drought. The proteins identified in WT, particularly proline

dehydrogenase, ATHB-12, and BAG6, are promising candidates

for studying drought tolerance in tomato varieties.

3.2.2 Top up/downregulated genes in all three
time points

To illustrate the overall response of DEGs, the top five

upregulated and downregulated genes from each of the three

drought treatment days were analyzed. This analysis revealed

distinct patterns of pathway enrichment, as shown in Figures 4

and 5.

At 2W + 5D of drought stress in WT, (Figure 4a), the most

significantly upregulated genes included BAG family molecular

chaperone regulator 6 (Log2FC ≈ 1.6) and homeobox-leucine

zipper protein ATHB-12 (Log2FC ≈ 1.4). Studies like 9617808

report similar observations of homeobox-leucine zipper protein

ATHB-12 in Arabidopsis and (Arif et al., 2021) reports AtBAG6,

a close homolog BAG2, to be upregulated under drought and ABA,

enhancing drought survival. Notable downregulated genes were

NAD(P)H:quinone oxidoreductase, acid phosphatase 1, both with

Log2FC values around -1.5 and O-acetyltransferase and GDSL
FIGURE 3

Common DEGs expressed on all three-time points of CT identified using an FDR-adjusted p-value (padj) < 0.05 and |log2FC| > 1.
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esterase/lipase At5g03980 were downregulated, with Log2FC values

of approximately -2, respectively. By 2W + 8D (Figure 4b), the gene

expression profile shifted. Homeobox-leucine zipper protein

ATHB-12 remained highly upregulated (Log2FC ≈ 3.5), alongside
Frontiers in Plant Science 07
BAG family molecular chaperone regulator 6 (Log2FC ≈ 2.5). Other

upregulated genes included phosphatase 2C AHG3 homolog

(Log2FC ≈ 1.5), probable N-acetyltransferase HLS1 (Log2FC ≈

1.5), and ninja-family protein AFP3 (Log2FC ≈ 1.5). Genes like
FIGURE 5

Top up/downregulated in day (a) 2W_5D (b) 2W_8D (c) 2W_11D of CT.
FIGURE 4

Top up/downregulated in day (a) 2W_5D (b) 2W_8D (c) 2W_11D of WT.
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probable histone chaperone ASF1A, histone H4, and aquaporin

TIP1-3-like and stemmadenine O-acetyltransferase showed

moderate downregulation (Log2FC ≈ -1 to -1.5). Proline

dehydrogenase was downregulated (Log2FC ≈ -2). At 2W + 11D

(Figure 4C), the expression of homeobox-leucine zipper protein

ATHB-12 continued to dominate (Log2FC ≈ 7), followed by

expansin-like B1 (Log2FC ≈ 6.5) and metallocarboxypeptidase

inhibitor (Log2FC ≈ 6). Similar upregulation of expansin-like B1

is also reported by (Gonçalves et al., 2019) in sweet oranges during

drought stress. Non-specific lipid-transfer protein 2-like and BAG

family molecular chaperone regulator 6 were also upregulated, with

Log2FC values of approximately 4. Genes such as probable aspartic

proteinase G1P2, probable xyloglucan endotransglucosylase/

hydrolase and peroxidase 45-like showed downregulation

(Log2FC ≈ -3.5 to -4). Proline dehydrogenases were significantly

downregulated, with Log2FC values of approximately -5.5. Proline

dehydrogenase genes as mentioned in the earlier section are

consistently reported to be downregulated under drought, which

leads to proline accumulation, a known osmoprotectant in plants.

The progressive increase in ATHB-12 expression across all stages

(Log2FC from 1.4 to 7) highlights its pivotal role in drought stress

adaptation, potentially acting as a master regulator of stress-responsive

gene networks. The consistent upregulation of BAG6 further

emphasizes the importance of protein homeostasis in mitigating

drought-induced cellular damage. The downregulation of metabolic

and growth-related genes, particularly proline dehydrogenase,

underscores a strategic shift toward osmoprotection and resource

conservation as drought severity increases. These findings align with

previous studies on drought stress in Arabidopsis, where

transcriptional reprogramming prioritizes stress tolerance over

growth (Nakashima et al., 2025).

On the other hand, in CT, At 2W + 5D of drought stress, the

most significantly upregulated genes included threonine

dehydratase (Log2FC ≈ 4) and ribonuclease 3-like (Log2FC ≈ 3.5)

(Figure 5A). Threonine dehydratase, also known as threonine

deaminase, plays a crucial role in amino acid metabolism,

specifically catalyzing the conversion of threonine to a-
ketobutyrate and ammonia. This reaction is the first step in the

isoleucine biosynthesis pathway. Although (Ziegler et al., 2025)

reports a downregulation of threonine dehydratase gene in Ribes

nigrum L during drought stress, its specific role in Solanum drought

response is less explored. RNase 3-like belongs to the RNase III

family, which is involved in processing double-stranded RNA

(dsRNA) and regulating RNA stability, including mRNA, rRNA,

and small RNAs (Comella et al., 2008). The role of ribonuclease 3-

like is not extensively detailed in the literature but can likely

contribute to drought stress by regulating RNA turnover and

processing small RNAs to modulate stress-responsive gene

networks. Other upregulated genes were proteinase inhibitor

(Log2FC ≈ 3.5), ribonuclease S-1-like (Log2FC ≈ 3.1), and

wound-induced proteinase inhibitor 1 (Log2FC ≈ 2.6). Proteinase

inhibitors are small proteins that inhibit the activity of proteases

(e.g., serine, cysteine, or metalloproteases), preventing excessive

protein degradation during stress. The upregulation of proteinase

inhibitor (Log2FC ≈ 3.5) and wound-induced proteinase inhibitor 1
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in CT at 2W + 5D suggests a key role in stabilizing critical proteins,

such as enzymes or structural components, to maintain cellular

function (Huang et al., 2007). Interestingly, while certain proteinase

inhibitor (PI) genes such as wound-induced proteinase inhibitor 1

were markedly upregulated under drought stress, others, including

proteinase inhibitor I, showed moderate downregulation. This

apparent contrast likely reflects the functional diversification

within the proteinase inhibitor gene family. Proteinase inhibitors

are a broad group encompassing multiple isoforms and families

(e.g., type I, type II, wound-inducible, and ABA-responsive), each of

which may be differentially regulated depending on the type,

duration, and intensity of stress. The upregulation of wound- or

ABA-inducible proteinase inhibitor under drought suggests a

protective role in limiting stress-induced proteolysis and

maintaining proteostasis. Conversely, the downregulation of

proteinase inhibitor I may facilitate selective protease activity

necessary for stress adaptation or signal transduction. Similar

divergent expression patterns within the proteinase inhibitor gene

family have been reported previously under abiotic stress

conditions, including drought and salinity (Pautot et al., 1991)

underscoring the finely tuned regulatory mechanisms that balance

protein degradation and protection during stress responses. showed

up-regulation of proteinase inhibitor, potato inhibitor I in drought-

tolerant Sorghum variety was reported by (Goche et al., 2020).

Genes such as boron transporter 4, nucleobase-ascorbate

transporter 2, ethylene-responsive transcription factor ERF061,

proteinase inhibitor I showed moderate downregulation (Log2FC

≈ -1 to -1.5). TIP protein was the highest downregulated (Log2FC ≈

-2.3). These observations were consistent with previous reports

where similar drought-responsive downregulation of TIPs was

documented in barley (Kurowska et al., 2019) and common bean

(Zupin et al., 2017), while decreased protease inhibitor expression in

sensitive cereal genotypes has been reviewed (Moloi and Ngara,

2023). Additionally, drought-driven alterations in boron

transporter expression were reported in Arabidopsis (Lv

et al., 2017).

By 2W + 8D (Figure 5B), TAS14 peptide was the most

upregulated (Log2FC ≈ 4.5), similar to the observations made by

(Muñoz-Mayor et al., 2012). This was followed by metallo

carboxypeptidase inhibitor (Log2FC ≈ 3.8) and non-specific lipid-

transfer protein 2 (Log2FC ≈ 3.5) (Fernández et al., 2013). reviews

plant metallocarboxypeptidase inhibitors as stress−responsive

protease regulators and are known to increase under stress. Many

drought studies in plants report upregulation of non-specific lipid-

transfer protein 2 as under water deficit (Morales-Quintana et al.,

2024) (Pan et al., 2016). This upregulation is thought to play a role

in protecting plant cells and tissues from the damaging effects of

water scarcity, specifically by influencing membrane stability and

potentially aiding in the synthesis of protective compounds like

cuticular wax.

Protein phosphatase 2C (PP2C) 51-like and methanol O-

anthraniloyltransferase were also upregulated (Log2FC ≈ 3).

Genome-wide analyses in tomato have identified PP2C family

members as strongly responsive to drought stress, showing both

elevated expression levels and enzyme activity under water deficit
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conditions (Sakib et al., 2024). While specific studies on

anthraniloyltransferases are limited, transferase enzymes involved

in secondary metabolism are commonly noted to increase under

drought stress (Dixon et al., 2010).

Genes like probable galacturonosyltransferase-like 9, xyloglucan

endotransglucosylase LexE12 and ethylene-responsive transcription

factor ERF061 showed moderate downregulation (Log2FC ≈ -1 to

-2.5). Similar to our observation, cell−wall biosynthesis enzymes

such as galacturonosyltransferases are frequently shown to decrease

in expression during drought, consistent with reduced growth and

remodeling of the cell wall under stress in studies like (Veronico

et al., 2022). XTH proteins that modify cell-wall structure were

reported to have an expression dropping in water-stressed tomato

tissues. Ethylene-responsive factors like ERF061 are often

upregulated in drought-tolerant varieties, reflecting their role in

growth and stress cross−talk (Liu et al., 2022).TIP protein remained

downregulated (Log2FC ≈ -3).

At 2W + 11D (Figure 5C), expansin-like B1 was the most

upregulated gene (Log2FC ≈ 8.5), followed by TAS14 peptide

(Log2FC ≈ 8.4) and CEN-like protein 1 (Log2FC ≈ 8). Studies in

potato and other crops show that cell wall modification protein,

expansin−like B1 is strongly drought-induced (Ponce et al., 2022).

TAS14 peptide expression is generally linked to improved drought

tolerance by enhancing the plant’s ability to maintain osmotic

balance (Muñoz-Mayor et al., 2012). The observed TAS14

upregulation in the drought-sensitive genotype may reflect an

attempted but insufficient protective response, indicating that its

induction alone is not sufficient to confer tolerance. Homeobox-

leucine zipper protein ATHB-12 and late embryogenesis abundant

protein 1-like were also significantly upregulated (Log2FC ≈ 8).

LEA proteins accumulate strongly during late drought or

desiccation phases to prevent protein aggregation (Goyal et al.,

2005). Drought can interfere with flowering of a plant and therefore

many plants hasten this process to shorten their life cycle under

water scarcity. CEN-like protein 1 plays a role in regulating

flowering time under drought stress (Wang et al., 2020). reported

activation of this gene delaying flowering by interacting with other

proteins like 14-3-3 proteins and OsFD1, forming a complex that

suppresses the florigen. Genes such as protein EXORDIUM-like 5,

xyloglucan endotransglucosylase/hydrolase (Log2FC ≈ 2), proline-

rich protein, and auxin-binding protein ABP19a showed significant

downregulation (Log2FC ≈ -4) along with arabinogalactan protein

14 was downregulated (Log2FC ≈ -5).

These findings suggest that the CT genotype employs a unique

combination of protease inhibition, osmotic protection, and ABA

signaling to cope with drought stress, differing from the focus on

chaperone activity and proline accumulation by WT. The

progressive upregulation of protective genes like TAS14 peptide

and metallocarboxypeptidase inhibitor across stages highlights the

emphasis of CT genotype on cellular protection and protein

stabilization, distinct from the WT’s reliance on BAG6 and

proline metabolism. The shared upregulation of ATHB-12 at 2W

+ 11D in both genotypes suggests a convergent regulatory

mechanism under severe drought, though the CT genotype

exhibits a broader suite of highly upregulated genes (Log2FC ≈ 8–
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8.5) compared to WT. The consistent downregulation of cell wall

modification and growth-related genes (e.g., xyloglucan

endotransglucosylase/hydrolase, arabinogalactan protein 14) in

CT mirrors WT patterns, indicating a conserved strategy to

minimize energy expenditure.

Drought tolerance in WT likely stems from its early and

sustained activation of osmoprotective (proline dehydrogenase

downregulation) and protein stabilization (BAG6) mechanisms,

coupled with a balanced ATHB-12-mediated stress response that

preserves some growth potential. The intense upregulation of

protective genes and stronger growth suppression in CT suggests

a less efficient, potentially reactive strategy that may compromise

long-term resilience.
3.3 Pathways enriched during all three time
points of drought in WT and CT

To gain an overview of the enriched drought response pathways

on all three days of drought, the pathway analysis of differentially

expressed genes were carried out using ShinyGo. The pathway

enrichment profiles of wild-type (Figure 6) and cultivated (Figure 7)

Solanum under drought stress reveal both similarities and distinct

differences, reflecting their adaptive strategies. Detailed results are

presented in Supplementary Table 2.

The pathway enrichment analysis of wild-type (WT) plants

under drought stress at two time points (2W + 5D and 2W + 11D)

revealed significant changes in metabolic pathways, as depicted in

panels Figures 6a, b. Notably, no pathway enrichment was observed

at 2W + 8D. At 2W + 5D of drought stress, only one pathway was

significantly enriched: arginine and proline metabolism. This

pathway showed a fold enrichment of approximately 120, with a

single gene involved and a false discovery rate (FDR) of -log10

(FDR) ≈ 1.59. By 2W + 11D, multiple pathways were significantly

enriched. The most enriched pathway was cutin suberine and wax

biosynthesis, with a fold enrichment of approximately 12 and 60

genes involved. This was followed by homologous recombination

(fold enrichment ≈ 10, 40 genes, steroid biosynthesis (fold

enrichment ≈ 8) and DNA replication (fold enrichment ≈ 7).

The pathway enrichment analysis highlights a temporal shift in

the metabolic response of WT plants to drought stress. At 2W + 5D,

the sole enrichment of arginine and proline metabolism suggests an

early focus on osmotic adjustment. Proline accumulation as

mentioned in previous sections is a well-documented drought

response mechanism in plants, as it serves as an osmoprotectant

to maintain cellular water balance under stress. The high fold

enrichment (≈120) indicates that this pathway is strongly

activated early in the drought response, even though only one

gene was significantly involved. This also aligns with the earlier

observation of proline dehydrogenase downregulation inWT plants

(Log2FC ≈ -0.5 at 2W + 8D and -5 at 2W + 11D), supporting

proline conservation for osmotic protection. The absence of

pathway enrichment at 2W + 8D may indicate a transitional

phase where the plant is shifting from early metabolic

adjustments to more structural and protective mechanisms. This
frontiersin.org

https://doi.org/10.3389/fpls.2025.1572619
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Rajeev et al. 10.3389/fpls.2025.1572619
lack of enrichment could also reflect a temporary stabilization of

gene expression as the plant adapts to ongoing stress, before a

broader response is triggered by 2W + 11D. At 2W + 11D, the

enrichment of multiple pathways reflects a more comprehensive

drought response. The high enrichment of cutin suberine and wax

biosynthesis (fold enrichment ≈ 12, 60 genes) indicates a focus on

enhancing the plant’s cuticle layer, which reduces water loss

through transpiration—a critical adaptation for prolonged

drought (Chen et al., 2020) (Kosma et al., 2009). The enrichment

of homologous recombination and DNA replication (fold

enrichments ≈ 10 and 7, respectively) suggests that WT plants are

actively repairing DNA damage caused by drought-induced

oxidative stress and maintaining genome stability, which is

essential for long-term survival (Banerjee and Roy, 2021). Steroid

biosynthesis (fold enrichment ≈ 8) may contribute to the

production of sterols, which stabilize cell membranes under stress

(Kumar et al., 2018).

In comparison to the earlier gene expression data, the sustained

downregulation of proline dehydrogenase in WT plants at 2W +

11D (Log2FC ≈ -5) aligns with the early enrichment of arginine and

proline metabolism at 2W + 5D, reinforcing the importance of

proline in WT drought tolerance. Furthermore, the upregulation of

expansin-like B1 (Log2FC ≈ 5) and ATHB-12 (Log2FC ≈ 6) at 2W

+ 11D in WT plants likely contributes to the observed cutin

suberine and wax biosynthesis enrichment, as these genes are

involved in cell wall modification and transcriptional regulation

of stress responses.
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For CT, the pathway enrichment analysis of cultivated-type

(CT) plants under drought stress at three time points (2W + 5D,

2W + 8D, and 2W + 11D) revealed distinct changes in metabolic

pathways, as depicted in panels (a), (b), and (c) of Figure 7.

At 2W + 5D of drought stress, several pathways were

significantly enriched. The most enriched pathway was steroid

biosynthesis, with a fold enrichment of approximately 150 and 16

genes involved (-log10(FDR) ≈ 10.0). This was followed by

biosynthesis of various alkaloids (fold enrichment ≈ 120, -log10

(FDR) ≈ 7.5), zeatin biosynthesis (fold enrichment ≈ 50, -log10

(FDR) ≈ 5.0), butanoate metabolism (fold enrichment ≈ 50, -log10

(FDR) ≈ 5.0), and terpenoid backbone biosynthesis (fold

enrichment ≈ 50, -log10(FDR) ≈ 5.0). Other pathways included

phenylpropanoid biosynthesis (fold enrichment ≈ 40, -log10(FDR)

≈ 2.5), biosynthesis of secondary metabolites (fold enrichment ≈ 20,

-log10(FDR) ≈ 2.5), and metabolic pathways (fold enrichment ≈ 10,

-log10(FDR) ≈ 2.5).

At 2W + 8D, two pathways were significantly enriched. Plant

hormone signal transduction showed a fold enrichment of

approximately 6 (-log10(FDR) ≈ 1.30). Biosynthesis of secondary

metabolites had a fold enrichment of approximately 4 (-log10(FDR)

≈ 1.30).

By 2W + 11D, multiple pathways were enriched, primarily

related to photosynthesis and metabolism. Photosynthesis -

antenna proteins and cutin suberine and wax biosynthesis were

the most enriched, each with a fold enrichment of approximately 15

(-log10(FDR) ≈ 10). Other highly enriched pathways included
FIGURE 6

Major pathways enriched in WT in (a) 2W+5D and (b) 2W+11D days of drought.
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carbon fixation in photosynthetic organisms (fold enrichment ≈ 14,

-log10(FDR) ≈ 10), nitrogen metabolism (fold enrichment ≈ 13,

-log10(FDR) ≈ 10), steroid biosynthesis (fold enrichment ≈ 12,

-log10(FDR) ≈ 20), and DNA replication (fold enrichment ≈ 11,

-log10(FDR) ≈ 10). Pathways such as glyoxylate and dicarboxylate

metabolism, photosynthesis, porphyrin metabolism, fatty acid

metabolism, stilbenoid diarylheptanoid and gingerol biosynthesis,

glycerolipid metabolism, carbon metabolism, biosynthesis of amino

acids, phenylpropanoid biosynthesis, biosynthesis of secondary

metabolites, metabolic pathways, and plant hormone signal

transduction showed fold enrichments ranging from 3 to 10 and

-log10(FDR) values ranging from 10 to 30.

The pathway enrichment analysis of CT plants under drought

stress reveals a distinct temporal response compared to WT plants,

reflecting differences in their adaptive strategies. At 2W + 5D, the

strong enrichment of steroid biosynthesis and biosynthesis of
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various alkaloids suggests an early focus on producing sterols and

secondary metabolites, which may stabilize membranes and provide

antioxidant protection under stress. Zeatin biosynthesis indicates a

potential role for cytokinins in delaying senescence and maintaining

cell division under drought. Butanoate metabolism and terpenoid

backbone biosynthesis further support the production of secondary

metabolites and energy intermediates, while phenylpropanoid

biosynthesis points to the synthesis of lignins and flavonoids for

cell wall reinforcement and ROS scavenging.

At 2W + 8D, the enrichment of plant hormone signal

transduction aligns with the earlier gene expression data, where

ethylene-responsive transcription factor ERF061 and protein

phosphatase 2C 51-like were upregulated, indicating a role for

ethylene and ABA signaling in the mid-stage drought response.

The enrichment of biosynthesis of secondary metabolites continues

the trend of producing protective compounds, though the limited
FIGURE 7

Major pathways enriched in CT in (a) 2W+5D (b) 2W+8D and (c) 2W+11D days of drought.
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number of enriched pathways at this stage suggests a more focused

response compared to the broader metabolic reprogramming seen

in WT plants.

By 2W + 11D, the enrichment of photosynthesis-related

pathways such as photosynthesis - antenna proteins, carbon

fixation in photosynthetic organisms, and photosynthesis indicates

an attempt to maintain photosynthetic efficiency despite prolonged

drought. This is surprising, as drought typically suppresses

photosynthesis due to stomatal closure; the enrichment may reflect

a compensatory mechanism in CT plants to sustain energy

production. Cutin suberine and wax biosynthesis mirrors the WT

response at this stage, suggesting a conserved strategy to reduce water

loss through enhanced cuticle formation. The enrichment of steroid

biosynthesis and DNA replication indicates continued membrane

stabilization and genome maintenance, while nitrogen metabolism,

glyoxylate and dicarboxylate metabolism, and carbon metabolism

reflect metabolic adjustments to optimize resource use under stress.

The presence of plant hormone signal transduction and biosynthesis

of secondary metabolites further supports a role for hormonal

regulation and protective metabolite production.

In comparison to the gene expression data, the upregulation of

TAS14 peptide and expansin-like B1 at 2W + 11D in CT plants

aligns with the enrichment of cutin suberine and wax biosynthesis,
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as these genes contribute to osmotic protection and cell wall

modification. However, unlike WT plants, CT plants do not show

significant enrichment of arginine and proline metabolism at any

stage, consistent with the lack of proline dehydrogenase regulation

observed in earlier gene expression data, which may limit their

osmotic adjustment capacity.

Overall, CT plants exhibit a drought response focused on

secondary metabolite production and hormonal signaling in the

early and mid-stages, transitioning to a photosynthesis-centric

strategy by 2W + 11D. While this response includes some

protective mechanisms like cuticle enhancement, the lack of proline

metabolism enrichment and the heavy reliance on maintaining

photosynthesis under severe stress may indicate a less robust

adaptation compared to WT plants, as discussed previously.
3.4 TFs genes in response to drought
stress in both varieties of Solanum

Transcription factor (TF) enrichment analysis across three

drought time points (2W + 5D, 8D, and 11D) revealed unique

regulatory strategies in WT and CT. The results are presented in

Figures 8–10.
FIGURE 8

Enriched transcription factors in both CT and WT at 2W+5D.
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At 2W + 5D, WT plants showed enrichment exclusively in HB-

HD-ZIP. This family of homeodomain leucine zipper transcription

factors has been strongly implicated in mediating drought stress

tolerance by regulating leaf development, stomatal closure, and

ABA-responsive gene expression (Li Y. et al., 2022). The exclusive

early enrichment of HB-HD-ZIP in WT suggests a rapid and

specific stress-adaptive transcriptional program consistent with

ATHB-12 upregulation, suggesting a targeted ABA/stomatal

regulation response. In contrast, CT plants exhibited a more

diffuse response, with mild enrichment across several families

including AP2/ERF, bHLH, MYB, Tify, and B3. These TFs are

generally associated with various aspects of abiotic stress signaling,

yet their early and simultaneous activation in CT may reflect a non-

specialized and potentially inefficient response with respect to

water deficit.

By 2W + 8D, WT maintained a focused enrichment of HB-HD-

ZIP, reinforcing its central role. CT, however, expanded to seven TF

families, with AP2/ERF-ERF and WRKYmost prominent, indicating

increased ethylene and pathogen/stress signaling (Kong et al., 2023)

(Zhang et al., 2022). Continued enrichment of MYB and bHLH

suggests ongoing growth regulation, while C2H2, C3H, and NF-YA

point to further stress signaling diversity. These families regulate

stress hormone signaling, detoxification, and transcriptional cascades

involved in stress perception and tolerance (Wang et al., 2021) (Qian

et al., 2021) (Han et al., 2020). The tight regulation of a small set of

TFs in WT suggests a refined and targeted approach to stress

mitigation. In contrast, CT plants showed broader TF enrichment,

particularly of AP2/ERF, WRKY, MYB, bHLH, and C2H2 families.
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While many of these are indeed involved in drought stress responses,

their concurrent overrepresentation may reflect a compensatory

transcriptional response triggered by physiological damage rather

than pre-emptive stress management. The activation of NF-YA and

GARP in CT also points to broader developmental reprogramming,

possibly at the expense of water-saving responses.

At the drought stage (2W+11D), CT plants exhibited widespread

transcription factor enrichment across more than 30 TF families,

including AP2/ERF, bHLH, MYB, bZIP, NAC, GRAS, TCP, and

MADS-type factors. This extensive diversification likely represents a

generalized stress-induced transcriptional reprogramming, suggestive

of late-stage stress response rather than proactive acclimation.

Conversely, WT plants maintained a moderate and selective TF

profile, continuing to enrich HB-HD-ZIP, along with WRKY,

NAC, bHLH, and MYB families. These TFs are well-known for

their roles in abiotic stress tolerance. For example,WRKYs and NACs

are implicated in ABA and jasmonic acid pathways, stomatal

regulation, and senescence delay (Qiao et al., 2016) (Xie et al.,

2021) (Han et al., 2023); bHLH TFs regulate ROS homeostasis and

secondarymetabolism;MYBs contribute to cell wall modification and

osmotic adjustment (Guo et al., 2017) (Zhao et al., 2020). The

persistent and coordinated activation of these TFs in WT suggests

that S. pennellii orchestrates a more efficient and anticipatory

regulatory response, minimizing the metabolic cost of stress

response and preserving physiological integrity.

Taken together, these findings support the hypothesis that the

drought tolerance observed in S. pennellii arises from an early,

consistent, and focused activation of core drought-responsive TF
frontiersin.or
FIGURE 9

Enriched transcription factors in both CT and WT at 2W+8D.
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families, particularly HB-HD-ZIP, WRKY, and NAC. These TFs

likely function synergistically to enhance water-use efficiency,

maintain cellular homeostasis, and regulate stress-responsive gene

networks. In contrast, the cultivated S. lycopersicum exhibits a

broader and less coordinated transcriptional response, likely
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reflecting susceptibility to drought-induced damage and a reliance

on reactive stress signaling. These insights underscore the potential

of S. pennellii TF networks as valuable targets for improving

drought resilience in cultivated tomato through breeding or

biotechnological approaches.
FIGURE 10

Enriched transcription factors in both CT and WT at 2W+ 11D.
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3.5 WGCNA and network analysis

To reveal the differences in gene regulation of the drought

response in Solanum varieties with contrasting drought tolerances,

weighted gene coexpression network analysis (WGCNA) was

performed on 24802 genes in WT and 25650 genes in CT

(Figures 11a, c). The vst normalized samples were clustered and

outliers were removed. The soft threshold power of 9 was selected

according to the preconditions of the approximate scale-free

topology. Also, a module trait relationship analysis was

performed using module eigengene and metadata of the two

genotypes at all three days of drought stress. The analysis

identified 28 distinct co-expression modules (Figures 11b, d) in

WT and 25 modules in CT. The significant modules that positively

correlated with day 5 in WT were dark red (correlation coefficient:

0.57, p-value 0.01), day 8 was saddle-brown (correlation coefficient:

0.63, p-value: 0.005), and finally with day 11 was blue (correlation

coefficient: 0.88, p-value: 1e-06). Agreeably, day 5 of CT correlated

with a light-green module (correlation coefficient: 0.56, p-value:

0.02), day 8 with saddle brown (correlation coefficient: 0.57, p-value:

0.01), and day 11 with a blue module (correlation coefficient: 0.91,

p-value: 1e-07). Results are provided in Supplementary Tables 3

and 4.

Day 5 of drought significantly correlated with dark red module

(1800 genes) in WT and light green module (1913 genes) in CT.
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Similarly, WT_8D and CT_8D correlated with saddle brown in

both cases with 1617 and 1917 genes respectively. The above-

mentioned numbers were obtained after conversion of Ensembl

IDs to gene names using the DAVID tool. The resultant genes were

later used for network creation and subsequent pathway

enrichment analysis using STRING db. After applying a stringent

cut-off of 0.7, the high confidence network for both WT_5D,

CT_5D and WT_8D, CT_5D were constructed and analysed.

3.5.1 Early drought response (2W +5D)
Both wild-type (WT_2W_5D) and cultivated (CT_2W_5D)

Solanum show strong initial responses after 5D of drought

(Figures 12, 13). These responses include significant gene

involvement (up to 90 and 150 genes, respectively) and highly

significant pathways (FDR ~4e-07 for wild-type and 1e-12 for

cultivated). Biosynthesis of secondary metabolites and metabolic

pathways predominate in wild type, indicating an early emphasis on

the synthesis of protective compounds and metabolic adaptation.

Like this, cultivated Solanum gives priority to these pathways;

however, it exhibits a more extensive and intense metabolic

reprogramming, as evidenced by its higher gene counts (150) and

lower FDR (1e-12). This discrepancy might be a result of the

cultivated type’s improved genetic ability to quickly mobilise

resources in response to drought stress, perhaps because of

selective breeding. Furthermore, pathways such as amino sugar
FIGURE 11

Dendrogram and significant module of 2W_11D of WT (a, c) and CT (b, d).
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and nucleotide sugar metabolism, which allude to early energy and

structural adjustments, are seen in cultivated Solanum which are

less pronounced in wild type.

3.5.2 Mid-drought response (2W +8D)
The response patterns start to differ more pronouncedly on day

eight. Alongside newer pathways like spliceosome and plant-

pathogen interaction (FDR ~4e-03, 30–60 genes), wild-type

Solanum (WT_2W_8D) retains high significance (FDR ~4e-07)
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in metabolic pathways with ~80 genes, indicating a shift towards

cellular stress management and possible secondary stress responses

(Figures 12 and 13). Cultivated Solanum (CT_2W_8D) on the other

hand exhibits a slight decrease in significance (FDR ~1e-08) and

gene count maximum (90), with metabolic pathways and

biosynthesis of secondary metabolites continuing to be central,

with RNA transport and MAPK signalling pathway - plant (FDR

~1e-04 to 1e-02, 10–40 genes) serving as supplements. This may

indicate a more sophisticated adaptation as the cultivated type
FIGURE 13

Top enriched KEGG terms of light green (2W+5D), saddle brown (2W+8D) and blue modules (2W+11D) of CT.
FIGURE 12

Top enriched KEGG terms of dark red (2W+5D), saddle brown (2W+8D)and blue modules(2W+11D) of WT.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1572619
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Rajeev et al. 10.3389/fpls.2025.1572619
introduces signalling and transport mechanisms while

consolidating its metabolic response. The wider inclusion of

stress-related pathways in the wild-type might suggest a less

specialised response, potentially due to its natural variability and

lack of selective optimization.

3.5.3 Late drought response (2W +11D)
Both types increase their responses at 11D, but they do so with

different emphasis (Figures 12, 13). The systemic metabolic and

protein homeostasis effort under extreme stress is indicated by the

wild-type Solanum (WT_2W_11D) exhibiting metabolic pathways

with an exceptionally low FDR (1e-16) and ~120 genes, as well as

biosynthesis of secondary metabolites and protein processing in

endoplasmic reticulum (FDR ~1e-08 to 1e-06, 50–100 genes). In

cultivated Solanum (CT_2W_11D), metabolic pathways (FDR ~1e-

11, ~120 genes) are also given priority, but phenylpropanoid

biosynthesis and oxidative phosphorylation (FDR ~1e-04 to 1e-

02, 10–50 genes) are introduced, indicating an emphasis on energy

metabolism and secondary metabolite production. As a result of

domestication for resilience, the cultivated type may have a

genetically enhanced capacity to sustain energy production and

protective compound synthesis, as evidenced by its lower FDR (1e-

11 vs. 1e-16) and additional pathways. The wild-type lower FDR

and focus on protein processing could indicate a natural strategy to

maintain cellular integrity under extreme conditions.

Taken together, wild-type Solanum (WT) may exhibit better

drought tolerance than the cultivated type (CT) due to its adaptive
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strategies. Early on, WT efficiently activates biosynthesis of

secondary metabolites and metabolic pathways matching CT’s

response with fewer genes. By day 8, WT sustains high

significance (FDR ~4e-07) and diversifies into spliceosome and

plant-pathogen interaction, reflecting broader stress management.

On day 11, focus on protein processing in the endoplasmic

reticulum to ensure cellular integrity under extreme stress. This

metabolic flexibility and stability likely make WT more resilient to

prolonged drought compared to more specialized responses of CT.

Focusing on day 11, a significant correlation was observed with

the blue module on both species (Figure 11). In the blue module

corresponding to WT_11, 3532 genes were grouped, and, in the CT,

_11 blue module, 4607 genes were present. The ensemble IDs were

converted to gene names using DAVID and the resulting 2330

genes in WT_11 and 3007 genes in CT_11 were utilized for network

creation. Using a stringent confidence score of 0.7, a network with

418 nodes was created for WT_11 and 1464 for CT_11.

The top forty genes were identified using the degree centrality of

the Cytoscape network analyzer plugin and were analyzed to

determine the major genes involved in drought response in both

species. While the majority of the hub genes (~35) in CT belong to the

ribosomal pathway (Figures 14a, b), the WT hub genes are diversified

into different pathways, including metabolic pathways, biosynthesis of

secondary metabolites, carbon metabolism, RNA transport, DNA

replication, starch and sucrose metabolism, ribosome, propanoate

metabolism, citrate cycle, ribosome biogenesis, and glyoxylate and

dicarboxylate metabolism (Figures 15a, b). Apart from the common
FIGURE 14

(a) Top enriched KEGG terms and (b) network representation of the top 40 hub genes in CT.
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ribosomal and cell function genes, A0A3Q7GKC8 (UTP–glucose-1-

phosphate uridylyltransferase, UGPase), A0A3Q7F670 (Sucrose

synthase), and AgpL3 (Glucose-1-phosphate adenylyltransferase),

which are involved in starch and sucrose metabolism, as well as

A0A3Q7FP95 (Malate synthase) and A0A3Q7EHA9 (Citrate

synthase) of the glyoxylate and dicarboxylate metabolism, are

identified as major hub genes in the WT drought response.

UGPase aids in the synthesis of UDP-glucose, a key precursor for

both starch and cell wall polysaccharide biosynthesis (Meng et al., 2009).

During drought stress, plants often shift from growth-related processes

to stress tolerance mechanisms. The ability to produce and store

carbohydrates in the form of starch is vital for maintaining energy

reserves during periods of water scarcity. Additionally, UDP-glucose is

involved in cell wall modifications, which can be important for

maintaining cell turgor pressure and preventing water loss during

drought. By regulating the balance between starch and sucrose,

UGPase can help plants manage osmotic pressure under drought

conditions. Role of UGPase expression is modulated during abiotic

stress that is discussed in Arabidopsis (Ciereszko et al., 2001). Sucrose

synthase plays a pivotal role in sucrose metabolism, a key pathway in

plant carbohydrate allocation, particularly in the conversion between

sucrose and glucose or fructose. Sucrose is a major form of sugar

transported throughout the plants, and under drought stress, plants rely

heavily on sucrose to provide energy for stress responses and to regulate
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osmotic potential. Study reported the regulatory role of sucrose synthase

in pollen viability under heat and drought stress in maize (Li H. et al.,

2022). Similarly, in Cucumis sativus (Chen et al., 2021), drought

tolerance was improved by regulating sucrose metabolism. Although

studies regarding the role of sucrose metabolism during drought is

explored in few plants, the explicit role of sucrose synthase is relatively

unexplored and therefore provide scope for further exploration. AGPL3

is involved in the biosynthesis of ADP-glucose, a precursor for starch

synthesis. Starch is a crucial carbohydrate storage form that can be

mobilised to provide energy during periods of stress, such as drought.

Overexpression of AGPL3 has been linked to increased starch

accumulation and potentially enhanced drought tolerance in rice

(Prathap and Tyagi, 2020). Similarly, downregulation of AGPL3 was

reported during drought stress in Persea americana (Zhang et al., 2023)

and Triticum aestivum (Cui et al., 2019).

Malate synthase is an enzyme in the glyoxylate cycle, which is

involved in the conversion of acetyl-CoA into carbohydrates. The

glyoxylate cycle is important in seedling germination and under

conditions of stress, as it allows plants to produce sugars from fats

or lipids. The activity of malate synthase can help plants adapt to

drought by enablingmore efficient use of energy reserves and ensuring

the continued production of metabolites required for stress responses

(such as osmolytes like proline and sugars). Overexpression of Ricinus

communis L. malate synthase is reported to enhance the seed tolerance
FIGURE 15

(a) Top enriched KEGG terms and (b) network representation of the top 40 hub genes in WT.
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to abiotic stress during germination (Brito et al., 2020). Citrate

synthase is involved in the citric acid cycle (TCA cycle), which is

essential for cellular respiration and energy production. The TCA

cycle generates ATP, which is critical for maintaining cellular function

during stress. Under drought conditions, mitochondrial respiration

becomes even more crucial as the plant reallocates resources to

maintain metabolic functions and osmotic balance. Few studies have

reported the effect of citrate synthase on the plants, for example, thyme

(Ashrafi et al., 2018), Arabidopsis thaliana (Koyama et al., 2000) and

Cynanchum thesioides (Zhang et al., 2021).

Taken together, these enzymes help to regulate energy

production, starch synthesis, and osmotic balance, enabling plants

to conserve resources and adapt to water stress. By optimizing

carbohydrate storage and metabolic processes, they provide better

plant survival under drought conditions, making them potential

targets for improving drought resilience in cultivated tomatoes

Solanum lycopersicum (CT).
4 Conclusions

The present study analyzed RNA-seq data at three-time points

from two Solanum varieties exhibiting contrasting drought tolerance to

gain comprehensive insights into the genes and pathways involved in

regulating drought stress tolerance. Distinct adaptive strategies between

the two varieties were revealed through pathway, TF, and WGCNA

analysis of the identified DEGs. A total of 5 genes in the WT and 11

genes in the CTwere consistently expressed across all three time points.

Wild varieties exhibit superior drought tolerance through early

activation of osmoprotective mechanisms (e.g., proline accumulation

via proline dehydrogenase downregulation), sustained transcriptional

regulation by HB-HD-ZIP transcription factors. The blue module

(WGCNA) was identified to be significantly correlated with day 11

of drought in both species and further GO and pathway analysis of

these genes revealed differences in drought response in both species.

Network analysis revealed several hub genes in WT, such as sucrose

synthase, glucose-1-phosphate adenylyltransferase, malate synthase,

and citrate synthase, which may contribute to enhanced metabolic

flexibility and energy production under stress. In contrast, CT showed

limited response diversity, with ribosome-related pathways being

predominantly enriched, potentially indicating a prioritization of

growth and development over stress adaptation. The identified hub

genes represent novel targets for enhancing drought tolerance in

Solanum lycopersicum. These genes can be experimentally validated

through approaches, such as gene expression profiling, functional

assays, and genome editing to confirm their roles in stress

adaptation. Their successful integration into breeding programs or

genetic engineering efforts provides a promising pathway for

developing drought-resilient Solanum varieties, contributing to

sustainable crop production under water-limited conditions.

Overall, this study highlights the similarities and differences

adopted by two Solanum species during drought stress. Although

few similarities are spotted, noticeable differences in drought

response strategies can be observed in wild and cultivated tomatoes.

The multifaceted and efficient response of WT plants offer valuable
Frontiers in Plant Science 19
insights for improving drought tolerance in cultivated varieties.

Understanding the specific roles of unique TF families and

associated pathways can inform breeding programs to develop more

drought-resistant crops, ensuring food security in water-scarce periods.
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Pereyra-Bistraıń, L. I., Ovando-Vázquez, C., Rougon-Cardoso, A., and Alpuche-
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