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Introduction: Understanding the mechanisms of tree mortality in tropical

ecosystems remains challenging, in part due to the high diversity of tree

species and the inherently stochastic nature of mortality. Plant functional traits

offer a mechanistic link between plant physiology and performance, yet their

ability to predict growth and mortality remains poorly understood. Given recent

increases in tree mortality rates in the Amazon forest following extreme drought

and wind events, we tested if lower wood density and acquisitive plant functional

traits were associated with increased growth and mortality for common co-

occurring trees in the Central Amazon.

Methods: Seventeen trees of different species with similar sizes but a range in

wood density (WD) and wood traits were felled, then assessed for 27 different

individual functional parameters, including whole tree architecture, stem xylem

anatomical and hydraulic traits and leaf traits. Traits of the individual trees were

related to stand-level growth and mortality rates collected periodically over 30

years from nearby permanent inventory plots.

Results: Higher wood density was associated with smaller leaf size, lower foliar

base cations, lower stemwater content and sapwood fraction, in agreement with

the fast-slow plant economics spectrum. Lower wood density was associated

with more acquisitive characteristics with greater hydraulic capacity and foliar

nutrient concentrations, correlating with greater growth and mortality rates.
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Discussion: Our results show that lower wood density is part of a coordinated

suite of traits linked to high resource acquisition, fast growth, and increased

mortality risk, providing a functional framework for predicting species

performance and forest vulnerability under future climate stress.
KEYWORDS

demographics, hydraulic traits, leaf traits, plant economic spectrum, tree structure,
tropical forest, wood anatomy
1 Introduction

The Amazon rainforest is the largest continuous tropical forest

in the world. It contains a highly diverse tree species assemblage

with large carbon storage that exerts a strong influence on global

biogeochemical cycles (Higuchi et al., 2004; ter Steege et al., 2013;

Flores et al., 2024). One hypothesis that explains the coexistence of

such a high diversity of tree species is their adaptation to niches

across a wide range of resource availability (e.g., light, temperature,

water table depth, wind speed and soil nutrients) (Quesada et al.,

2011; Schietti et al., 2014; Sterck et al., 2011; Gorgens et al., 2021;

Sousa et al., 2022) through shifts in trait performance along

different ecological groups (e.g., fast-slow growth; wood density;

biomass stock) (Sullivan et al., 2025; Saatchi et al., 2007). Earth

system models (ESMs) account for species diversity by grouping

plants with similar structural and functional properties into plant

functional types (PFTs) (Lamour et al., 2023). Functional traits, on

the other hand, are defined as ‘morpho-physio-phenological traits

which affect plant growth, survival and reproduction (Violle et al.,

2007). In this context the study of whole tree architectural

characteristics along with species-specific stem and leaf functional

traits, particularly among species differing in wood density (WD),

growth rates, and mortality, can better represent trade-offs that

equalize competitive performance among species in ESMs (Koven

et al., 2020).

Fast-growing species are characterized by low WD and high

mortality rates compared to slow-growing species (King et al., 2006;

Osunkoya et al., 2007; Chave et al., 2009; Brienen et al., 2020;

Aguirre-Gutiérrez et al., 2025). Fast-growing species have an

acquisitive trait that allows an efficient use of readily available

resources, and as such they proliferate after natural or

anthropogenic disturbances, such as logging, deforestation, gaps,

windthrow and hurricane events (Gaui et al., 2019; Marra et al.,

2014; Simonetti et al., 2023; Vargas et al., 2025). In contrast, the

slow-growing species tend to present higher wood densities and are

more conservative, with a tendency to conserve and store resources

and nutrients, and with more investment in defense mechanisms

and structural integrity leading to increased longevity (e.g., using

non-structural carbohydrates (NSC) (Signori-Müller et al., 2022).

Growth rate usually controls the size, age and allocation of NSC

pool to storage and respiration, with faster-growing trees respiring
02
more and storing less of their NSC (Trumbore et al., 2015),

ultimately affecting carbon residence time (Asao et al., 2025). In

terms of hydraulic architecture, Hajek et al., 2014 observed that

increased growth rate was associated with increased branch

hydraulic efficiency, but not with resistance to cavitation.

In this context of functional trait variation, leaves provide a

critical interface between the plant and the atmosphere, regulating

ecosystem carbon and water exchange. Although there is great

diversity in leaf form, it is possible to observe a spectrum of carbon

and nutrient investment responses that are associated with key

functions (the leaf economic spectrum; Wright et al., 2004). In the

Amazon, fast-growing species tend to have short-lived leaves and

higher deciduousness (Garcia et al., 2025) as well as a large fraction

of nitrogen invested in the carbon-fixing Rubisco enzyme, leading

to greater photosynthetic capacity (Lamour et al., 2023). In contrast,

slow-growing species tend to have relatively long-lived leaves, lower

maximum photosynthetic rates, and slower growth rates (Sterck

et al., 2006; Lamour et al., 2023). Even so, linking carbon uptake and

growth rates solely with leaf age categories in high diversity tree

communities is not recommended due to the large variation in this

trait (Menezes et al., 2021). Leaves also contribute a dynamic and

large fraction of the total hydraulic resistance within the soil-to-leaf

continuum (Wolfe et al., 2023). They are also one of the most

vulnerable organs to drought-induced cavitation (e.g., Johnson

et al., 2016). In this sense, leaf traits represent a critical

component in the study of tree hydraulic functioning. However,

recent findings suggest that some functional traits may be limited in

their ability to predict tree growth variability across environmental

gradients (Rosas et al., 2021) and severe droughts (Smith-Martin

et al., 2023).

In addition to leaf traits, there is variation in plant vascular

system traits that link leaves to soil and regulate soil water access,

root water uptake, xylem transport and transpiration (Tyree and

Ewers, 1991). Diversity in tree hydraulics and architecture spans

functional traits that propagate from tissue to tree scales (Sperry

et al., 2008). Architectural structure is an important determinant of

height extension, light capture, and mechanical stability of trees

(Poorter et al., 2006). Abiotic stressors such as drought or wind, and

competition with neighboring trees necessitate a balance in

architectural structure and hydraulic traits along the soil-plant-

atmosphere pathway to maintain light capture, efficient water
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movement, structural and hydraulic safety. In the tropics, a recent

study found that while hydraulic architecture explains species’ soil

moisture dependency, it does not directly predict mortality rates

(Pivovaroff et al., 2021). Key hydraulic traits include sapwood

depth, xylem vessel diameter and wood density that can vary, for

example, with tree height and topographic position (Cosme et al.,

2017; Hajek et al., 2014). In the Central Amazon, species from

upland plateau areas are generally more adaptable to drought

conditions, and, therefore, invest in a more resistant hydraulic

system with higher wood density, lower mean vessel hydraulic

diameter, lower mean vessel area, and smaller stem cross‐

sectional sapwood area than species from wetter valley areas

(Cosme et al., 2017). Functional traits of plateau species are often

associated with isohydric responses that help maintain leaf water

potential above critical thresholds, including deep rooting,

deciduousness, and stomatal regulation (Fisher et al., 2006;

Chitra-Tarak et al., 2021; Oliveira et al., 2021; Gimenez et al.,

2024). In the hyper-diverse Amazon forest, variation in wood

hydraulic traits, often assessed through proxies such as WD, can

offer insights into species ’ water-use responses across

environmental gradients and drought events.

Wood density has been linked to trade-offs between growth and

survival among woody plants (Kitajima and Poorter, 2008; Poorter

et al., 2010), where species with low WD are generally associated

with faster growth and higher hydraulic conductivity, but also

greater risk of hydraulic failure (Tavares et al., 2023). In contrast,

species with high WD has been related to traits that confer

structural and hydraulic safety (e.g., smaller vessel diameters, slow

growth, lower sapwood-specific conductivity), potentially

supporting greater survival under stress (Esquivel-Muelbert et al.,

2020; Gray et al., 2019; Putz et al., 1983). However, it remains

unclear to what extent these anatomical traits directly influence

species performance and hydraulic traits under natural conditions,

with stomata density and vessel element length showing promising

correlations (Simioni et al., 2023). The functional role of stem

hydraulics in long-term survival is still an open question, since older

trees, such as those found in the Amazon with ages reaching up to

1,400 years (Chambers et al., 1998), often lose conductivity in older

xylem, suggesting that other traits or compensatory mechanisms

also play critical roles (e.g., leaf or root adjustments, redundancy in

conductive tissues). The evolution of hydraulic systems in trees

reflects a complex balance of multiple functions such as supporting

vertical growth for competitive advantage and reproductive success,

while also enabling efficient water transport and minimizing the risk

of hydraulic failure (e.g., xylem cavitation) (Brum et al., 2023).

Mechanisms that reduce cavitation risk include osmotic regulation,

stomatal control, leaf shedding, adjustments in leaf-to-xylem area

ratios, and the development of smaller vessel diameters to enhance

embolism resistance (Brodribb, 2009; Tng et al., 2018); However,

the relationship between vessel diameter and embolism

vulnerability is not explicit, as additional structural traits such as

cell wall thickness and pit membrane characteristics are also

important (Lens et al., 2022). Hydraulic traits vary not only

among different woody organs (roots, trunk and branches, e.g.,

Johnson et al., 2016), but also axially within a tree, with trunk height
Frontiers in Plant Science 03
influencing vulnerability to embolism (Domec et al., 2008; Rowland

et al., 2015) and maximum hydraulic conductivity (Woodruff

et al., 2008).

Wood density is directly related to mechanical, physical and

anatomical characteristics (Chave et al., 2009). The base of the tree

may have lower (e.g., Deng et al., 2014) or higher (e.g., Dória et al.,

2019; Quilhó and Pereira, 2001; Weber and Montes, 2005) wood

density or mechanical strength compared to the upper stem,

dependent on traits, ontogeny or environmental factors such as

wind. Thus, trees classified as lower density (<0.5 g cm-3) have

relatively low mechanical resistance (e.g., baobab; Chapotin et al.,

2006) and can have higher mortality rates due to wind events

(Esteban et al., 2021; Fontes et al., 2018; Negrón-Juárez et al., 2018).

For these individuals, increased mechanical resistance, i.e., as WD

near the crown, is thought to help withstand high wind speeds, and

may reflect tension wood (Zink-Sharp, 2004; Ribeiro et al., 2016). In

some ecosystems, such as the archipelago of Puerto Rico, tree

species with short stature and dense wood are better adapted to

frequent hurricane disturbances (Vargas et al., 2025). This

condition is often found in drier environments, where the

prevalence of high WD and low stature may confer mechanical

stability during extreme wind events (Van Bloem et al., 2007;

Helmer et al., 2023; Vargas et al., 2025), especially in

topographically exposed areas (Ibanez et al., 2024).

Beyond mechanical support, vertical variation of WD may

reflect chemical and anatomical changes in the wood, such as

differences in cell wall structure (Ziemińska et al., 2013;

Nascimento et al., 2025). Axial changes in WD may also reflect a

shift in water (Goldstein et al., 1998), nutrient (Lira-Martins et al.,

2022) or non-structural carbohydrate storage (e.g., Woodruff and

Meinzer, 2011) that may interact to buffer daily water stress. A

study with Asian tropical species concluded that hydraulic

conductivity predicted growth rates better than WD (Fan et al.,

2012), adding the necessity of new studies that integrate historical

growth rates, hydraulics and WD. At a broader scale, wood density

and hydraulic traits influence species’ growth response to drought

(Serra-Maluquer et al., 2022). In South America, WD varies

significantly between regions, with the East-Central Amazon

where our study was conducted showing higher wood densities

on average (Sullivan et al., 2025). Sullivan et al. (2025) also observed

that mean annual temperature, cloud frequency and maximum

cumulative water deficit were key drivers of spatial patterns in wood

density. In this sense, understanding how wood density and

hydraulic traits relate to mortality and growth rates is essential

for a more comprehensive understanding of plant community

dynamics under climate change.

Within each tree there is a balance between traits that maintain

function and safety concurrently. Hydraulic traits such as P50

(xylem water potential at 50% loss of conductivity) or the

hydraulic safety margin (how close plants operate to P50) are

widely used to evaluate plant drought vulnerability and response

(Choat et al., 2012; Tavares et al., 2023). Predominantly, research in

the Amazon forest has focused on how these hydraulic thresholds

vary with topographical gradients (e.g., soil texture and water table

depth; Cosme et al., 2017; Fontes et al., 2020; Costa et al., 2023) or
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canopy position (Gimenez et al., 2019; Garcia et al., 2021). The

interaction of tree functional traits with prevailing environmental

conditions are reflected by varying photosynthesis, respiration and

transpiration rates at local scales, thereby affecting species

competition, distribution and net primary productivity (Malhi

et al., 2011; Tavares et al., 2023). Interestingly, hydraulic traits

specifically determine how species and individuals may respond to

future climate changes (Bonal et al., 2016; McDowell et al., 2018),

including longer or more acute droughts such as during El Niño

events (e.g., Jiménez-Muñoz et al., 2016; Powers et al., 2020). As

drought-induced mortality is increasing in tropical forests,

including the Central Amazon (McDowell et al., 2018; Tavares

et al., 2023), it is important to quantify the key hydraulic traits and

their relationships with other tree functional traits as well as with

factors such as NSC reserves (Asao et al., 2025), soil nutrient

availability (Soong et al., 2020) and nutrient storage in plant

tissues (e.g., wood and leaves) (Bauters et al., 2022). These

insights are critical for accurately modeling forest metabolism and

growth under future climate scenarios. In this context, hydraulic

traits may also be linked to shifts in species distributions over time

(Christoffersen et al., 2017; Lavorel and Garnier, 2002).

As such, the primary objective of this study was to test if growth

and mortality in co-occurring trees in an old-growth Amazonian

upland forest were related to species-specific functional traits

(including wood density, hydraulic traits (e.g., xylem cell

diameter, sapwood to basal area fraction), anatomical traits (e.g.,

% fiber content), leaf traits (e.g., leaf size, nutrient content) and

other characteristics (e.g., tree architecture). We hypothesized that

trees with more acquisitive traits and lower wood density would

have higher growth rates and higher mortality than trees with more

conservative traits and higher wood density. We harvested 17 trees

of different species to explore trait-trait relationships and trait

variation in context of long-term demographics of relative plant

success using a 30-year record of tree growth and mortality from

nearby permanent inventory plots. Results were expected to provide

additional insight into tree functional traits that may be important

for resilience to future climate change.
2 Materials and methods

2.1 Study site

This study was conducted in a mature forest stand within the

National Institute of Amazonian Research (INPA) ZF - 2

Experimental Station (60˚ 9’ 10.17” W, 2˚ 38’ 6.28” S), northwest

of Manaus, Brazil in the Central Amazon. There is a mosaic pattern

in topography in the area, with sandy lowlands close to the water

table and clay uplands well above the water table. Research was

conducted in an upland plateau, which contained a wide diversity of

trees, 70% with a diameter at breast height, (~1.3 m; DBH) between

10 and 23 cm (for all trees >10 cm; Oliveira et al., 2008). The annual

precipitation averages ~2,500 mm, with the driest months of the

year often occurring between July and September (Souza et al., 2021;

Kunert et al., 2017). The area is covered by a dense forest canopy.
Frontiers in Plant Science 04
Population level growth and mortality data were available from

long-term monitoring plots of the BIONTE Project, which was

established in 1986 (Higuchi et al., 1985; Gaui et al., 2019). For this

study, trees were felled up to 500 m outside the BIONTE

permanent plots.
2.2 Tree selection

As the Central Amazon is hyper-diverse, it is difficult to find

suitable replicates for some species. As such, and to maximize the

range of wood density (WD) representation, we selected individuals

across many species. This increased the diversity of functional traits

(e.g., wood density and xylem anatomy, which are conserved by

species, e.g., Hacke and Sperry, 2001; Chave et al., 2009) represented

in our study, and provided a better representation of the forest

functional trait composition. By using many species instead of a few

species with replicates, we were also able to select co-occurring

individuals of the same size, growing in the same area and that

developed under the same edaphic and environmental conditions.

This helped to limit trait variation due to different growing

conditions at different positions on the landscape. We focused

specifically on a well-drained upland plateau area with high clay

content, away from slopes and valleys where soil texture and

microclimate changes. We selected 17 canopy species (n=1)

between 20 and 30 cm DBH, representing the major size class of

this forest, following a systematic randomized sampling at the

individual level, i.e., without reference to species, but stratified

across a wood density (WD) gradient (Table 1). To further

explore the data, we present results using WD as both a gradient

and as a category (low, intermediate and high). The wood density

classes were representative of the range of local variation including

low (0.30 – 0.50 g cm-3), intermediate (0.50 – 0.70 g cm-3) and high

wood densities (0.70 – 0.90 g cm-3) (Melo et al., 1990). For each

individual we measured a wide range of functional traits related to

whole tree architectural characteristics, and stem and leaf traits as

listed in Table 2.
2.3 Whole tree architecture

We measured tree diameter (DBH) at 1.3 m using a diameter

tape. Crown diameter (Cd) was estimated by laying out a

measurement tape along the forest floor (north-south and east-

west axes) and observing vertically where the canopy edge ended.

The four measurements per individual were used to estimate

average Cd. Canopy exposure was estimated from the forest floor

based on crown exposure to direct solar radiation based on Dawkins

and Field (1978), where: 1) canopy receives little direct light; 2)

canopy receives direct lateral light; 3) canopy receives overhead

light on 10 – 90% of the crown; 4) canopy receives full overhead

light on > 90% of the crown; 5) canopy is fully exposed with an

emergent crown. The trees were felled in the early morning (7:00 -

8:30 AM) when tree water stress was minimal (to limit impacts on

active sapwood area assessments, see below). Tree height (Ht) and
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crown length (Cl) were assessed using a measuring tape, then stem

and leaf functional traits were collected and measured.
2.4 Stem wood hydraulic traits

2.4.1 Sapwood area
After the trees were felled, we collected 40 cm long stem sub-

sections (i.e., logs) for further analysis (see Supplementary

Figure 1). To evaluate if stem traits varied along the length of

the main trunk, we collected logs at three positions: one near the

DBH, and the other two at 50% and 100% of the stem length (up to

the base of the canopy). Sapwood area was estimated using 0.05%

acid fuchsin dye dissolved in water to stain the secondary cell walls

in the xylem (Umebayashi et al., 2007). Each log was placed

vertically in containers with the dye solution covering ~ 5 cm of

the log bottom. Over the course of the day the upper surface of the

logs were exposed to evaporation, thereby pulling the dye solution

into the active sapwood. Next, the bottom 10 cm of each log was

removed and the average xylem radius (between inner bark and

the pith) and average dyed sapwood radius measured. From these

radii, the areas of the concentric circles were calculated, such that
Frontiers in Plant Science 05
the unstained area was subtracted from the total area resulting in

the active conductive sapwood area (SWA) of that section

(Aparecido et al., 2019). In addition, the sapwood to basal area

fraction (SWF) and sapwood depth (SWD; smallest radius) of

each section were also measured (Supplementary Figure 1). We

note that cutting may have introduced some embolism in larger

vessels, but that dye was still visible in some vessels throughout the

xylem, reflecting sapwood. We also note that xylem activity (as sap

flow) declines quickly with depth (e.g., Spanner et al., 2022). As

such, our sapwood depth measurements should be considered in

that context.

2.4.2 Wood density and stem water content
Wood density (WD) and saturated stem water content (WC)

were measured for each tree at the Laboratório de Engenharia e

Artefatos da Madeira, at INPA. A wood disc (cookie) was cut from

each log, then six wood subsamples were cut from the disc: three

from the 0 – 2 cm depth and three from the 6 – 8 cm depth in the

radial direction. The wood samples were submerged in water for 20

days to obtain total volume and saturated mass. Subsequently, the

wood samples were oven-dried at 105°C to constant dry mass. WD

and WC were calculated as:
TABLE 1 Wood density and size characteristics of the individual harvested study trees of 17 different species with no replicates.

Wood density
Class

WD
(g cm-³)

DBH (cm) Height (m) Family Species
Growth
(cm year-1)

Mortality
(% year-1)

Low wood density

0.35 19.7 23.1 Simaroubaceae Simarouba amara Aubl. 1.21 1.67

0.37 26.5 20.2 Bignoniaceae Jacaranda copaia A. Gentry 0.13 0.71

0.42 28.0 16.2 Myristicaceae Virola pavonis (A.DC.) A.C.Sm 0.15 1.37

0.43 19.1 20.5 Malvaceae Sterculia excelsa Mart. 0.20 0.67

0.45 25.0 18.1 Urticaceae
Pourouma
myrmecophila Ducke

0.58 2.54

Intermediate
wood density

0.51 19.4 21.9 Fabaceae Tachigali paniculata Aubl. 0.61 1.42

0.53 28.1 28.5 Euphorbiaceae Hevea guianensis Aubl. 2.21 0.61

0.56 25.4 24.0 Malvaceae
Scleronema micranthum
(Ducke) Ducke

0.27 0.86

0.61 26.7 23.5 Lauraceae
Licaria martiniana
(Mez) Kosterm.

0.07 1.40

0.63 24.9 27.0 Fabaceae Inga paraensis Ducke 0.42 1.28

0.68 26.1 17.4 Sapotaceae
Micropholis guyanensis
(A. DC.) PIERRE

0.14 0.89

0.69 22.0 25.9 Annonaceae Guatteria olivacea R.E.Fr. 0.54 2.05

High wood density

0.73 26.6 19.4 Goupiaceae Goupia glabra Aubl. 0.33 0

0.82 28.4 17.5 Olacaceae Minquartia guianensis Aubl. 0.06 0.21

0.82 21.5 21.3 Lecythidaceae
Eschweilera coriacea
(DC.) S.A.Mori

0.13 0.25

0.84 29.2 22.5 Lecythidaceae Lecythis pisonis Cambess. 0.14 0

0.87 28.5 21.4 Sapotaceae Pouteria venosa (Mart.) Baehni 0.17 0.35
Growth and mortality rates for the same species were based on population demographics collected at adjacent long-term inventory plots.
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WD   (g   cm−3) =
Dry  mass

Saturated   volume
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WC   ( % ) = 100 *
Saturated  mass − Dry  mass

Dry  mass
2.4.3 Wood anatomical traits
For anatomical analysis, we removed three additional wood

samples from the DBH disc at the 0 – 2 cm depth interval.

Histological sections were obtained using a sliding microtome

(American Optical 860) and type C knives, with thickness ranging

from 18 to 22 mm. Histological sections were bleached with sodium

hypochlorite (20%), dehydrated in an ethanol dilution series (30%,

50%, 70% and 100%), stained with safranin, dehydrated again in an

ethanol series (50%, 70% and 100%) and placed in butyl acetate for five

minutes, then the slides were mounted using Entellan resin. Sections

were imaged using a microscope at 40x magnification. Anatomical

traits were measured using publicly available software (ImageJ v. 1.54;

Rasband, 2004) and included vessel diameter (Vd; mm), vessel density

(VD; number of vessels/area) and vessel grouping index (VG; total

vessel number/total vessel groupings number), which is a

dimensionless measure of the proportion of vessels clustered in a

cross section of a tree trunk. Xylem cell types (% fibers, Fp; %

parenchyma, Pp; % vessels, Vp) were measured using supervised

automatic classification software (MultiSpec v. 3.5; Biehl, 2020). For

all anatomical traits we averaged the mean values from the three

replicate wood samples (n=3). Several example microscopy images are

included in Supplementary Figure 2.

2.4.4 Potential hydraulic conductivity
In order to describe tree water transport, we calculated the

potential maximum hydraulic conductivity, Kp (kg m-1 s-1 MPa-1)

and the vulnerability index, VI (μm mm-2) based on wood

anatomical data (Scholz et al., 2013). Kp was calculated according

to the Hagen-Poiseuille law (Sterck et al., 2008; Poorter et al., 2010).

Kp =
p*r
128  h

� �
*VD*D

4
h

where, r is the density of water at 20°C (998.2 kg m-3); h is the

water viscosity index at 20°C (1.002 x 10–3 MPa s); and the mean

hydraulic diameter, Dh (mm), is calculated as:

Dh =
oVd4

n

� �1=4

where, n = number of vessels. Kp is intended to show how easily

water can be conducted through a set of non-interacting perfectly

circular conductive elements.

The vulnerability index was calculated using vessel density

(vessel mm-2) and average vessel diameter (mm) (Rodrıǵuez-

Ramıŕez et al., 2022):

VI =
Vd
VD

Where VI is the vulnerability index, Vd is the average vessel

diameter and VD is the vessel density. Here, values near zero

indicate plants are more resistant to the effects of drought.
TABLE 2 Description of whole tree architectural characteristics and
stem and leaf functional traits, including code abbreviations and units.

Abbreviation Trait
Measure
position

Units

DBH
Diameter at
breast height

Tree cm

Ht Total height Tree m

Sl Stem length Tree m

Cl Crown length Tree m

Cd Crown diameter Tree m

Ce Crown exposure Tree –

SWA Sapwood area Stem (DBH) cm²

SWF
Sapwood to basal
area fraction

Stem (DBH) %

SWD Sapwood depth Stem (DBH) cm

WD Wood density Stem (DBH) g cm-3

WC Wood water content Stem (DBH) %

Vd Vessel diameter Stem (DBH) μm

VD Vessel density Stem (DBH)
vessel
mm-2

VG Vessel grouping Stem (DBH) –

Dh Hydraulic diameter Stem (DBH) μm

Kp
Potential

hydraulic conductivity
Stem (DBH)

kg m-1 s-1

MPa-1

Vp
Vessel area in
cross section

Stem (DBH) %

VI
Hydraulic

vulnerability index
Stem (DBH) μm mm-2

Pp
Parenchyma area in

cross section
Stem (DBH) %

Fp
Fiber area in
cross section

Stem (DBH) %

LS Leaf size Leaf cm²

SLA Specific leaf area Leaf cm² g-1

C Carbon content Leaf %

N Nitrogen content Leaf g kg-1

P Phosphorus content Leaf g kg-1

K Potassium content Leaf g kg-1

Ca Calcium content Leaf g kg-1

Mg Magnesium content Leaf g kg-1

N:P
Nitrogen to

Phosphorus ratio
Leaf –
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2.5 Leaf traits

2.5.1 Specific leaf area
To obtain specific leaf area (SLA, cm2 g-1), 30 sun leaves were

collected from the upper canopy of each felled tree and measured

using a portable scanner (CI - 202 Portable laser leaf area meter;

CID Bio-Science). Subsequently, leaves were oven-dried at 65 °C

until constant weight and ground for chemical analysis.

2.5.2 Leaf chemical analysis
To assess potential trait-trait linkages between stem hydraulic

anatomy and foliar physiological function we measured key foliar

chemical concentrations. Foliar carbon content (C, g kg-1) was

determined using a plasma emission spectrometer and elemental

analyzer. Nitrogen (N, g kg-1) was determined by the Kjeldahl

method. Phosphorus (P, g kg-1) was obtained by colorimetry and

the absorbance readings performed at 660 nm using ammonium

molybdate and 3% ascorbic acid. Potassium (K, g kg-1) was

determined by flame photometry, and calcium (Ca, g kg-1) and

magnesium (Mg, g kg-1) by atomic absorption spectrophotometry.
2.6 Growth and mortality rate

Growth and mortality rates were obtained from 12 permanent,

1-ha forest inventory plots, known as the BIONTE Project,

managed by INPA (Higuchi et al., 1985). This project provided a

large dataset of annual growth and mortality rates for all trees >10

cm DBH (~1500 trees). In every monitored year, additional trees

were added to the inventory (recruitment), after attaining the

minimum DBH of 10 cm, and the trees that died (mortality) were

removed. Using this 30-year (1990 - 2020) dataset, we calculated

annual diameter growth and mortality rates for our 17 selected

species. We then assessed correlations between measured wood/leaf

traits of our specific harvested trees and population level growth

and mortality rates. As there were no replicates of tree species used

in this study, conclusions about growth or mortality rates linked to

traits of individual species cannot be made. Even so, regression

across all 17 individuals or comparisons by density class can yield

insight into trait linkages to demographics for discussion.
2.7 Statistical analysis

A principal component analysis (PCA) was conducted to assess

the relationships between the different tree characteristics and

functional traits. A correlation matrix was used to measure the

degree of correlation between wood density and the functional

traits. To verify if there were differences in wood density, water

content, sapwood area, and sapwood fraction along the stem, an

ANOVA was used. Pearson correlation was used to explore how

individual functional traits may be related to long-term growth and

mortality rates based on their correlation coefficients (r) and

significance level (p < 0.05). All statistical analyses were
Frontiers in Plant Science 07
performed using R 4.2.2 with the FactoMineR package used for

PCA analysis (R Core Team, 2022).
3 Results

3.1 Wood density and tree, stem and leaf
functional traits

To assess associations of plant trait relationships, we used a

PCA of 11 key plant functional traits (PFTs), plus growth and

mortality rates (Figure 1). For reference, we also explored a PCA of

all 27 measured whole tree characteristics and functional traits

(Supplementary Table 1). Wood density has a strong relationship

with mechanical traits; therefore, it was expected that whole tree

architectural characteristics would be positively correlated with

wood density. However, none of the tree-level characteristics were

significantly related to WD. Water content had the greatest

correlation to wood density; WC strongly declined with

increasing WD (Figure 2). Higher water content was correlated

with faster growth and increased mortality rates (Figure 1).

Mortality rate declined with increasing SLA (Figure 1).

Considering the full correlation matrix, six other stem and leaf-

level functional traits were related to wood density (WD) at the

p<0.10 level (Supplementary Table 1). Wood density was negatively

correlated to two of the stem hydraulic traits: sapwood fraction and

sapwood depth. Wood density was correlated with half of the leaf

functional traits; as WD increased, leaf size, leaf calcium and leaf

magnesium levels decreased and the N:P ratio increased

(Supplementary Table 1).
3.2 Relationships between functional traits

The first two components of the PCA explained 52% of the

variation (Figure 3). The first axis explained 30% of the variation

and was related to wood traits, with positive loading for mean vessel

hydraulic diameter, hydraulic vulnerability index and wood fiber

fraction. The second axis explained 22% of the variation and was

related to wood and leaf traits, with negative loading for water

content and foliar C:N and positive loading for wood density,

specific leaf area and foliar N. Lower foliar C:N and N:P ratios

were correlated with larger mean xylem hydraulic diameter

(Figure 1).Growth and mortality rates mirrored WC and were in

opposite direction of WD Faster growing species tended to have

positive loading on the first axis and negative loading on the second

axis, while slower growing species were opposite. There was full

separation of loadings for the high- and low-density

groups (Figure 3B).

Leaf size was correlated with increased wood water content.

Foliar C and nutrient concentrations scaled with increased crown

diameter and crown exposure (Supplementary Table 1). Foliar N

and P were correlated and scaled with SLA. Foliar C:N and N:P

declined as K increased and declined with increasing mean
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hydraulic diameter. As expected, larger vessels had greater mean

hydraulic diameter, increased potential hydraulic conductivity and

a higher vulnerability index. Trees with larger crowns were also

correlated with higher potential hydraulic conductivity.
3.3 Potential trait linkages to demographics

To explore potential linkages between tree functional traits and

growth andmortality rates, we used Pearson correlation (r) of functional

traits of each sampled individual against population level demography.

Faster growth correlated with increasedmortality rate (p=0.01; Figure 4).

Increased wood density (Figures 4, 5D) and lower wood water content

(Figures 5A, C) correlatedwith reduced growth andmortality rates at the

stand level. Increasing specific leaf area also correlated with reduced

growth rates at the stand level (p=0.08, Figure 5B).
3.4 Axial variation of wood density and
hydraulic traits

Initial regression analysis of stem traits across the wood density

gradient showed that the only trait that varied significantly with tree
Frontiers in Plant Science 08
height (e.g., between lower and upper axial positions in the stem)

was sapwood area (p=0.05), which declined with height as expected.

The decline in SWA between DBH and the base of the canopy for

these trees was about 50%.

Analyzing stem traits based on their wood density class revealed

more information about possible wood density-dependent

differences in upper and lower wood traits and revealed high

variation in traits between wood density classes (Figure 6). That

analysis indicated potential differences in water content and wood

density with height. The highest wood density trees had a higher

WC in the upper position, while low and intermediate density trees

had similarWC at upper and lower positions (Figure 6E). There was

also some evidence for a reduction in wood density with height for

trees with the highest wood density trees showing a 5% decline in

WD at the base of the canopy (Figure 6F).
3.5 Functional stem and leaf traits in
relation to wood density

There was wide variation for many of the stem and leaf traits in

our 17 individuals (Figures 7, 8). Based on non-parametric tests, no

significant differences between wood density groups were found.
FIGURE 1

Pearson’s correlation matrix (p<0.05) of the interrelationships among 11 key plant functional traits and their relationship with growth (G) and
mortality (M). Correlation strength and direction are indicated by color intensity and significant correlation statistics appear in the cells. Trait code
abbreviations and units are described in Table 2. Trait values and other tree characteristics are shown in Supplementary Table 2.
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Some traits tended to shift in magnitude with the highest wood

density (e.g., smaller mean hydraulic diameter, Dh in Figure 7;

increased SLA in Figure 8) but our lack of replication limited

finding significant differences in these traits.
4 Discussion

4.1 No evidence for architectural trait
linkage to wood density

Wood density (WD) is often associated with mechanical

strength (Chave et al., 2009), and accordingly, architectural traits

such as tree height and crown dimensions are expected to increase

with WD (e.g., Iida et al., 2012; Francis et al., 2017). However, our

results do not support that relationship and corroborate with

previous studies suggesting that high WD does not necessarily

confer a mechanical advantage for increased height (Aiba and

Nakashizuka, 2009; Anten and Schieving, 2010; King et al., 2006).

For instance, a study in the Central Amazon including 186 species

across a broad diameter range found no relationship between WD

and height (r = 0.10, p = 0.07; Nogueira et al., 2005). Similarly, a

cross-continental comparison of species from Panama andMalaysia

found no general relationship between WD and height, except in

the smallest diameter class (< 2 cm) (Francis et al., 2017). While we

found no relationship between WD and height, we did find

increased stem length or height was associated with increased

vessel diameter and lower vessel density, likely reflecting height

dependence on water transport capacity independent of WD.

There is evidence that species with high WD have deeper crowns,

possibly to optimize light interception (Augspurger and Kelly, 1984;

Bohlman and O’Brien, 2006). Another study found crown width and
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depth scaled with WD across a wide diameter range, although not

above 18 or 24 m height, respectively (Iida et al., 2012). However,

crown dimensions, crown exposure and stem length (i.e., height of

lower crown) were not related toWD in our study, opposite to what we

expected. The lack of relationships may be due to the relatively low

number of sample trees in this study or variable crown exposure levels

that impacted resource acquisition and crown development. This may

also be related to the narrow tree diameter (20 – 30 cm) or height range

(16 – 28 m) used in this study, since the presence and strength of the

WD tree architecture relationships may be linked to the ontogeny and

size of the individual. One way to further explore these relationships

would be to use other crown variables such as the shape or volume of

the crown, or crown wood or leaf biomass, which could be approached

with more objective techniques such as laser-based Lidar

measurements (Gorgens et al., 2021). Additionally, in frequently

wind-disturbed environments, the presence of multistemmed

individuals has been interpreted as a structural adaptation to

mechanical stress (Su et al., 2020). In the Central Amazon, wind

disturbances have been shown to influence forest structure and

dynamics by reducing the resilience of live tree biomass, particularly

through the increased mortality of low WD species with shorter life

spans (Magnabosco Marra et al., 2018). In this context, wind

disturbance may play a role in shaping tree architecture

independently of WD, and further investigation is warranted to

understand how these factors interact.
4.2 Importance of wood density to
hydraulic traits

Increasing WD leads to shifting trait-trade offs, such that plants

with low WD are those that invest in high hydraulic transport
FIGURE 2

Saturated stem wood water content in relation to wood density for 17 individuals of different species of co-occurring upland Amazon trees (n=1).
Water content was measured from rehydrated sub-samples collected at ~1.3 m after trees were felled.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1572767
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Menezes et al. 10.3389/fpls.2025.1572767
capacity and water storage, while high wood density trees tend to

have lower xylem conductivity but greater hydraulic safety

(Santiago et al., 2018). In our study, xylem vessel size and

potential hydraulic capacity were not significantly related to WD.

Yet, note that the correlation values of vessel size-related

characteristics Vd, Dh, Kp and Vp declined with WD, and values

of vessel spatial distribution characteristics VD and VG increased

with WD, in agreement with the signs of the hypothesized
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relationships. The low number of species used in this study (as a

tradeoff to the large number of traits measured) likely limited some

findings of significance. Measurements of fewer traits across a larger

sample size is suggested for future research. Trait trade-offs also

necessitate targeting a larger sample size. Using a global database of

P50 and Kp, Gleason et al. (2016) demonstrated that it is not

possible to have both high efficiency and high safety in plant

hydraulic systems. However, many species have low efficiency
FIGURE 3

(a) Principal components analysis (PCA) of multivariate trait associations for 11 functional traits measured for 17 individuals of different species of co-
occurring upland Amazon trees, including growth (G) and mortality (M) rates based on population scale demography. The 10 most significant loadings
are indicated on the graph with arrows reflecting direction and strength of responses, and color intensity indicating contribution magnitude (WD,
wood density; WC, wood water content; Dh, mean hydraulic diameter; VI, vulnerability index; Fp, fiber area; SLA, specific leaf area; CN, foliar carbon:
nitrogen concentration; PK, foliar phosphorus:potassium concentration. (b) PCA grouping by wood density class; low WD < 0.5 g cm-3, intermediate
WD 0.5 - 0.7 g cm-3, and high WD > 0.7 g cm-3. Average values for each wood density group are shown by the larger symbol). Also see Figure 1.
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and low safety, indicating the need to consider other trait tradeoffs

and linkages to plant hydraulics, including investment in

mechanical strength (e.g., fibers) and water or non-structural

carbohydrate storage in parenchyma cells (Bittencourt et al., 2016).

Indeed, while we highlight hydraulic characteristics, wood has

additional key functions related to biomechanical support, carbon

assimilation (for green stems and twigs) and storage (Pratt and

Jacobsen, 2017; Rungwattana and Hietz, 2018). Higher WD in our

trees may reflect a greater investment in mechanical safety (higher

proportion of heartwood, fibers and fiber wall thickness). Yet the

lack of correlation of anatomical traits (Vp, Fp, Vp) with wood

density found in our study corroborates with Ziemińska et al.

(2013) indicating that vessel size or xylem cell types alone are not

the main regulators of WD. Rather, WD is dependent on a variety

of traits.
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4.2.1 Importance of wood water content
Water content of saturated samples may indicate the potential

for water storage in the xylem (e.g., Goldstein et al., 1998). In our

study, water content increased with sapwood fraction (SWF) and

declined with wood density (Supplementary Table 1). WC also

correlated with stand level growth rates (Figure 3). As stored water

can be used to ensure water supply to the canopy in the early hours

during the day or in short periods of water deficit (Goldstein et al.,

1998; Scholz et al., 2011; van der Sande et al., 2015), stored water,

along soil water is a key component of the vegetation water budget

and thus carbon uptake. Higher woodWC of the lower WD trees as

found in our study may help buffer daily development of water

stress in these more acquisitive, faster growing trees. Similar to how

P50 and Kp can act as environmental filters for the establishment of

species (Oliveira et al., 2019; Brum et al., 2023), wood water content
FIGURE 4

Stand level growth and mortality rates in relation to wood density class for the 17 species (n=1) harvested for this study. High wood density was
associated with lower growth (p=0.06) and mortality (p=0.02). In the box plots, n=5–7 per WD class, the median is the thick line, the edges of the
box are the lower and upper quantiles, Q1 and Q2, the whiskers are extreme values less than 1.5 of the interquartile range, and the points are
outliers.
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and water storage are key features that influence water use patterns

and hydraulic traits of tropical species (Goldstein et al., 1998).

4.2.2 Importance of sapwood area
Sapwood area is a key parameter used to understand and scale

whole tree water use (Meinzer et al., 2003, 2005). The range of

sapwood areas found in this study varied 2-fold despite only a 1.5-

fold difference in tree diameter. Results were similar to those found

in this and other tropical forests, and partially reflect the calculation

of sapwood area, which includes a squared term. We previously

reported active sapwood areas ranging from 202 to 1721 cm2 (8.5-

fold) for dominant trees (DBH = 30 – 114 cm; 3.8-fold) in a nearby

study in the Central Amazon (Spanner et al., 2022). Other studies in

the Amazon found a 7.7-fold range in sapwood area for a 4.3-fold

range of diameters in French Guiana (Granier et al., 1996) and 24.8-

fold range of sapwood area for a 6.6-fold range of diameters in

Venezuela (Anhuf et al., 1999). The wide range reflects the extreme

diversity of tree species, hydraulic traits and size distribution in

tropical forests (e.g., Cardoso et al., 2017). The variation in sapwood

area for trees in the same size cohort as our study reflects the degree

of difficulty for using these data for scaling from tree to stand level,

e.g., for use in estimating total stand sap flow and transpiration

(Spanner et al., 2022). Scaling to the stand level in these diverse

stands may be more successful when considering a larger diameter

range where species-specific differences are overshadowed by size

dependence (e.g., Meinzer et al., 2005).
Frontiers in Plant Science 12
4.2.3 No evidence for shifts in wood density or
hydraulic traits with height

Across the 17 trees sampled, we found no significant differences

in WD or wood hydraulic traits sampled between the lower and

upper stem positions. This contrasts with a larger study conducted

in the Central Amazon with 186 species that reported a general

decrease in WD from the base to the crown (Nogueira et al., 2005).

In that study, 87% of the individuals showed a reduction in WD

with height— up to 57% in some cases—while others exhibited

increases of up to 24%, underscoring the considerable variability in

vertical WD patterns among species in upland Amazonian forests.

The authors also noted that failing to account for this height-

dependent variation could result in an overestimation of mean WD

by approximately 5%. It is important to consider that their study

encompassed a wide range of tree sizes (5 – 122 cm DBH), whereas

our dataset focused on a narrower size range, which may limit the

expression of these vertical trends.

Although no overall variation in wood traits was observed

between stem positions across the WD gradient, some patterns

emerged when individuals were grouped into WD classes. In trees

with low and intermediate WD, we observed a modest decrease in

the proportion of active xylem to sapwood area with height (-2% to

-3.5%, respectively). In contrast, high WD trees exhibited an

increase of approximately +12% (Figure 6). Similar patterns were

observed in water content which, along with sapwood area,

influences water storage and capacitance(e.g., Goldstein et al.,
FIGURE 5

Pearson correlation relationships between select functional traits of the 17 individual harvested trees and stand level growth and mortality rates for
the same species. Relative wood density classes are shown to explore potential interactions with the trait-growth relationships. (a) wood water
content or (b) specific leaf area in relationship to growth rate, (c) wood water content or (d) wood density in relationship to mortality rate.
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1998; Lira-Martins et al., 2022). These findings suggest potential

trait plasticity in water storage, not only across individuals but also

within the same tree, reflecting carbon allocation strategies that

optimize the balance between water transport and hydraulic safety

(Baas et al., 2004; Chave et al., 2009). While these observations were

not significant, it does point to the need for more expansive

measurements axially within the trees across a greater number of

samples than used here in this study. Regarding the relationship

between WD and canopy height, the evaluation of these traits at the

community level—particularly along stronger environmental

gradients such as disturbance regimes, edaphic variation, or

climatic conditions—can potentially reveal clearer stand-level

patterns. For example, at community-level WD tends to be

higher, canopy height shorter, and mortality rates lower in drier

or edaphically drier environments when assessed across broad

gradients (e.g., Vargas et al., 2025). Such patterns suggest that

trait–environment relationships may be more pronounced at

larger spatial or ecological scales than within-individual

comparisons allow as observed by this study.
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4.3 Wood density and trait-trait tradeoffs

The relationship between wood density and tree traits can be

considered as an indication of plant resource acquisition, where

trees with higher wood densities are conservative species with

slower growth rates, and trees with lower wood density are

acquisitive species with faster growth rates (Santiago et al., 2018).

In our sample trees, the correlations between WD and population

demographic rates are consistent with these resource acquisition

traits. More acquisitive species were also expected to have greater

foliar nutrient concentrations, yet in this study there were no

differences in foliar phosphorus or nitrogen between growth rate

classes. However, foliar calcium and magnesium concentrations

declined with increasing wood density. This could indicate more

active root growth resulting in greater passive ion uptake rates that

depend on new unsuberized roots (greater uptake rates) or

increased transpiration rates (Mengel and Kirkby, 2001; Ahmed

et al., 2023) or increased demand by the canopy, all of which are in

agreement with an acquisitive resource response.
FIGURE 6

Relative variation (%) in hydraulic characteristics and traits between upper and lower stem sections; (a) diameter, (b) SWA, (c) SWF, (d) WD, (e) WC
and (f) WD and hydraulic traits measured at different positions of the stem separated by wood density classes. Note that full anatomy measurements
were only conducted at DBH. Relative variation between stem height positions are represented by (upper - lower)/lower) x 100% In the figure, the
diamond represents the average and box plots components are as described in Figure 4.
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We also found leaf size decreased with increased WD. This also

suggests that lower wood density species are generally associated with

the fast-growing characteristic, with larger leaves (e.g., Pouteria and

Cecropia genera), generally associated with higher photosynthetic

rates (Slot and Winter, 2017) and monolayer leaf arrangement

(Poorter et al., 2006). To a lesser extent, specific leaf area tended to

increase with wood density (r=0.32) and decline with growth rate, as

seen in other studies such as a tropical rainforest in Australia (Gray

et al., 2019), which could indicate less photosynthetic capacity if foliar

nutrient concentrations also decline with SLA. However, we found

the opposite, with increasing concentrations of foliar N and P with

increasing SLA. This suggests that growth rates were not solely
Frontiers in Plant Science 14
dependent on foliar nutrient content, which may point to other

factors, such as co-dependence of hydraulic controls on productivity

associated with reduced hydraulic conductivity for slow growing

trees, thereby affecting stomatal conductance and subsequent

photosynthetic carbon uptake.
4.4 Trait correlations with growth and
mortality

As expected, lower wood density was correlated with higher

growth and mortality rates. This agrees with earlier results found
FIGURE 7

Variation in stem hydraulic traits across wood density class (high, intermediate, low), n=5–7 per WD. The box plots components are as described in
Figure 4.
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across neotropical rainforests in Mexico, Panama and Bolivia

(Poorter et al., 2008; Wright et al., 2010), and tropical rainforests

in Venezuela and Brazil (Chao et al., 2008; Aleixo et al., 2019). In

the latter study, growth rate and wood density together could be

used to model mortality across species. Size was another predictor

in that study, although this depended on location. In our study,

crown exposure reflects more dominant trees within our narrow

20 – 30 cm diameter class, and the negative correlation of canopy

exposure (Ce) with mortality indicates trees that have greater

resource availability may be more successful. Higher WD was also

correlated to lower theoretical hydraulic conductivity and lower

mortality in a large study in Barro Colorado Island (BCI), Panama
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(Hietz et al., 2017). However, in that study, potential hydraulic

conductivity (Kp) was not correlated with mortality, similar to the

results of our study, reinforcing the variability in trait relationships

due to trait-trait tradeoffs. Even so, our PCA results showing

negative loading for WD and positive loading for vessel diameter

(Vd) and Kp, along with lower water content with higher WD

support the assumption that trees with larger vessels, greater

hydraulic efficiencies and higher water storage have a more

acquisitive life-response resulting in faster growth, albeit at

greater risk of mortality. Nonetheless, the wide variation in some

traits (e.g., SLA and N) within growth classes indicates a large range

of different responses for resource acquisition and success.
FIGURE 8

Variation in leaf traits across wood density class (high, intermediate, low), n=5–7 per WD class, +/- SD. The box plots components are as described
in Figure 4.
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5 Conclusion

WD was more correlated with stem hydraulic and leaf functional

traits than with whole tree architectural characteristics. While we found

no relationship between WD and height, we did find vessel diameter

increased with increased stem length or height, likely reflecting height

dependence on water transport capacity independent of WD. Lower

wood density was associated with increased leaf size, foliar base cations,

stem water content and sapwood fraction, and lower foliar N:P, in

agreement with the fast-slow plant economics spectrum. Growth and

mortality rates were greater for the intermediate and low wood

densities trees as expected. While the correlation between wood

density and other traits was weak in this small sample size,

classifying trees as functional groups based on wood density revealed

differences in these leaf and wood anatomical traits. This supports the

hypothesis that trees assemble along trait space dimensions along a

wood density axis.
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SUPPLEMENTARY TABLE 1

Pearson correlation matrix of all tree measured tree characteristics and
functional traits in respect to wood density and each other. Significant

correlations at the p<0.05 level are shown in bold and at the p<0.10 level
underlined. Tree characteristics and architectural traits are highlighted in

green, stem wood traits in yellow and leaf traits in blue. Trait code

abbreviations and units are described in Table 2.

SUPPLEMENTARY TABLE 2

Tree characteristics and functional trait measurements for 17 individual sample

trees of different species. Population level growth andmortality data for specific
species based on long term demography plots are included for reference. Trait

code abbreviations and units are described in Table 2.

SUPPLEMENTARY TABLE 3

Principal Component Analysis (PCA) loadings for select key functional traits,
plus population level growth (G) and mortality (M) rates. PCA differentiates the

nature of variable contributions, where positive loadings suggest a positive
correlation, and negative loadings a negative one. The magnitude of these

loadings underscores the significance of each variable in constituting the

principal components. Trait code abbreviations and units are described
in Table 2.

SUPPLEMENTARY FIGURE 1

Detailed flowchart of sapwood area measurement process. This figure
depicts the sequential steps involved in quantifying the active xylem area,

commonly referred to as sapwood area, including (A) tree selection and

felling, (B) precise extraction of samples, (C) immersion in acid fuchsin dye for
enhanced visibility, (D) monitoring dye ascent to delineate sapwood, (E) and
retrieval of discs for conductive area analysis.

SUPPLEMENTARY FIGURE 2

Example images of stem xylem anatomy. Simarouba amara and Tachigali

paniculate had the fastest growth rates and Lecythis pisonis and Minquartia

guianensis had the slowest growth rates.
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Ziemińska, K., Butler, D. W., Gleason, S. M., Wright, I. J., and Westoby, M. (2013).
Fiber wall and lumen fractions drive wood density variation across 24 Australian
angiosperms. AoB Plants 5, 1–14. doi: 10.1093/aobpla/plt046

Zink-Sharp, A. (2004). “Wood formation and properties. Chapter 37,” in
Encyclopedia of Forest Sciences. Eds. J. Burley, J. Evans and J. Youngquist (Academic
Press, London, England), 1806–1815. doi: 10.1016/B0-12-145160-7/00037-5
frontiersin.org

https://doi.org/10.1111/geb.13531
https://doi.org/10.3389/ffgc.2021.723539
https://doi.org/10.3389/fpls.2022.825097
https://doi.org/10.1111/j.1365-3040.2007.01765.x
https://doi.org/10.1073/pnas.1106950108
https://doi.org/10.1086/503056
https://doi.org/10.1093/treephys/28.4.529
https://doi.org/10.1111/jvs.12858
https://doi.org/10.1038/s41467-025-56175-4
https://doi.org/10.1038/s41586-023-05971-3
https://doi.org/10.1126/science.1243092
https://doi.org/10.1002/ece3.4601
https://doi.org/10.1093/treephys/tpv097
https://doi.org/10.1111/j.1469-8137.1991.tb00035.x
https://doi.org/10.1093/treephys/27.7.993
https://doi.org/10.1093/treephys/27.3.475
https://doi.org/10.1007/s00442-015-3220-y
https://doi.org/10.1111/1365-2745.14437
https://doi.org/10.1111/j.2007.0030-1299.15559.x
https://doi.org/10.1111/j.2007.0030-1299.15559.x
https://doi.org/10.1111/pce.14524
https://doi.org/10.1111/j.1365-3040.2011.02388.x
https://doi.org/10.1111/j.1469-8137.2008.02551.x
https://doi.org/10.1111/j.1469-8137.2008.02551.x
https://doi.org/10.1890/09-2335.1
https://doi.org/10.1038/nature02403
https://doi.org/10.1038/nature02403
https://doi.org/10.1093/aobpla/plt046
https://doi.org/10.1016/B0-12-145160-7/00037-5
https://doi.org/10.3389/fpls.2025.1572767
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Mortality correlates with tree functional traits across a wood density gradient in the Central Amazon
	1 Introduction
	2 Materials and methods
	2.1 Study site
	2.2 Tree selection
	2.3 Whole tree architecture
	2.4 Stem wood hydraulic traits
	2.4.1 Sapwood area
	2.4.2 Wood density and stem water content
	2.4.3 Wood anatomical traits
	2.4.4 Potential hydraulic conductivity

	2.5 Leaf traits
	2.5.1 Specific leaf area
	2.5.2 Leaf chemical analysis

	2.6 Growth and mortality rate
	2.7 Statistical analysis

	3 Results
	3.1 Wood density and tree, stem and leaf functional traits
	3.2 Relationships between functional traits
	3.3 Potential trait linkages to demographics
	3.4 Axial variation of wood density and hydraulic traits
	3.5 Functional stem and leaf traits in relation to wood density

	4 Discussion
	4.1 No evidence for architectural trait linkage to wood density
	4.2 Importance of wood density to hydraulic traits
	4.2.1 Importance of wood water content
	4.2.2 Importance of sapwood area
	4.2.3 No evidence for shifts in wood density or hydraulic traits with height

	4.3 Wood density and trait-trait tradeoffs
	4.4 Trait correlations with growth and mortality

	5 Conclusion
	License and permission statement
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


