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Introduction: Understanding the mechanisms of tree mortality in tropical
ecosystems remains challenging, in part due to the high diversity of tree
species and the inherently stochastic nature of mortality. Plant functional traits
offer a mechanistic link between plant physiology and performance, yet their
ability to predict growth and mortality remains poorly understood. Given recent
increases in tree mortality rates in the Amazon forest following extreme drought
and wind events, we tested if lower wood density and acquisitive plant functional
traits were associated with increased growth and mortality for common co-
occurring trees in the Central Amazon.

Methods: Seventeen trees of different species with similar sizes but a range in
wood density (WD) and wood traits were felled, then assessed for 27 different
individual functional parameters, including whole tree architecture, stem xylem
anatomical and hydraulic traits and leaf traits. Traits of the individual trees were
related to stand-level growth and mortality rates collected periodically over 30
years from nearby permanent inventory plots.

Results: Higher wood density was associated with smaller leaf size, lower foliar
base cations, lower stem water content and sapwood fraction, in agreement with
the fast-slow plant economics spectrum. Lower wood density was associated
with more acquisitive characteristics with greater hydraulic capacity and foliar
nutrient concentrations, correlating with greater growth and mortality rates.
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Discussion: Our results show that lower wood density is part of a coordinated
suite of traits linked to high resource acquisition, fast growth, and increased
mortality risk, providing a functional framework for predicting species
performance and forest vulnerability under future climate stress.

KEYWORDS

demographics, hydraulic traits, leaf traits, plant economic spectrum, tree structure,
tropical forest, wood anatomy

1 Introduction

The Amazon rainforest is the largest continuous tropical forest
in the world. It contains a highly diverse tree species assemblage
with large carbon storage that exerts a strong influence on global
biogeochemical cycles (Higuchi et al., 2004; ter Steege et al., 2013;
Flores et al., 2024). One hypothesis that explains the coexistence of
such a high diversity of tree species is their adaptation to niches
across a wide range of resource availability (e.g., light, temperature,
water table depth, wind speed and soil nutrients) (Quesada et al.,
2011; Schietti et al., 2014; Sterck et al., 2011; Gorgens et al., 2021;
Sousa et al, 2022) through shifts in trait performance along
different ecological groups (e.g., fast-slow growth; wood density;
biomass stock) (Sullivan et al., 2025; Saatchi et al., 2007). Earth
system models (ESMs) account for species diversity by grouping
plants with similar structural and functional properties into plant
functional types (PFTs) (Lamour et al., 2023). Functional traits, on
the other hand, are defined as ‘morpho-physio-phenological traits
which affect plant growth, survival and reproduction (Violle et al.,
2007). In this context the study of whole tree architectural
characteristics along with species-specific stem and leaf functional
traits, particularly among species differing in wood density (WD),
growth rates, and mortality, can better represent trade-offs that
equalize competitive performance among species in ESMs (Koven
et al., 2020).

Fast-growing species are characterized by low WD and high
mortality rates compared to slow-growing species (King et al., 2006;
Osunkoya et al., 2007; Chave et al., 2009; Brienen et al., 2020;
Aguirre-Gutierrez et al,, 2025). Fast-growing species have an
acquisitive trait that allows an efficient use of readily available
resources, and as such they proliferate after natural or
anthropogenic disturbances, such as logging, deforestation, gaps,
windthrow and hurricane events (Gaui et al., 2019; Marra et al.,
2014; Simonetti et al., 2023; Vargas et al.,, 2025). In contrast, the
slow-growing species tend to present higher wood densities and are
more conservative, with a tendency to conserve and store resources
and nutrients, and with more investment in defense mechanisms
and structural integrity leading to increased longevity (e.g., using
non-structural carbohydrates (NSC) (Signori-Miiller et al., 2022).
Growth rate usually controls the size, age and allocation of NSC
pool to storage and respiration, with faster-growing trees respiring
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more and storing less of their NSC (Trumbore et al., 2015),
ultimately affecting carbon residence time (Asao et al,, 2025). In
terms of hydraulic architecture, Hajek et al., 2014 observed that
increased growth rate was associated with increased branch
hydraulic efficiency, but not with resistance to cavitation.

In this context of functional trait variation, leaves provide a
critical interface between the plant and the atmosphere, regulating
ecosystem carbon and water exchange. Although there is great
diversity in leaf form, it is possible to observe a spectrum of carbon
and nutrient investment responses that are associated with key
functions (the leaf economic spectrum; Wright et al., 2004). In the
Amazon, fast-growing species tend to have short-lived leaves and
higher deciduousness (Garcia et al., 2025) as well as a large fraction
of nitrogen invested in the carbon-fixing Rubisco enzyme, leading
to greater photosynthetic capacity (Lamour et al., 2023). In contrast,
slow-growing species tend to have relatively long-lived leaves, lower
maximum photosynthetic rates, and slower growth rates (Sterck
etal,, 2006; Lamour et al.,, 2023). Even so, linking carbon uptake and
growth rates solely with leaf age categories in high diversity tree
communities is not recommended due to the large variation in this
trait (Menezes et al., 2021). Leaves also contribute a dynamic and
large fraction of the total hydraulic resistance within the soil-to-leaf
continuum (Wolfe et al., 2023). They are also one of the most
vulnerable organs to drought-induced cavitation (e.g., Johnson
et al.,, 2016). In this sense, leaf traits represent a critical
component in the study of tree hydraulic functioning. However,
recent findings suggest that some functional traits may be limited in
their ability to predict tree growth variability across environmental
gradients (Rosas et al.,, 2021) and severe droughts (Smith-Martin
et al, 2023).

In addition to leaf traits, there is variation in plant vascular
system traits that link leaves to soil and regulate soil water access,
root water uptake, xylem transport and transpiration (Tyree and
Ewers, 1991). Diversity in tree hydraulics and architecture spans
functional traits that propagate from tissue to tree scales (Sperry
et al,, 2008). Architectural structure is an important determinant of
height extension, light capture, and mechanical stability of trees
(Poorter et al., 2006). Abiotic stressors such as drought or wind, and
competition with neighboring trees necessitate a balance in
architectural structure and hydraulic traits along the soil-plant-
atmosphere pathway to maintain light capture, efficient water
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movement, structural and hydraulic safety. In the tropics, a recent
study found that while hydraulic architecture explains species’ soil
moisture dependency, it does not directly predict mortality rates
(Pivovaroff et al., 2021). Key hydraulic traits include sapwood
depth, xylem vessel diameter and wood density that can vary, for
example, with tree height and topographic position (Cosme et al.,
2017; Hajek et al, 2014). In the Central Amazon, species from
upland plateau areas are generally more adaptable to drought
conditions, and, therefore, invest in a more resistant hydraulic
system with higher wood density, lower mean vessel hydraulic
diameter, lower mean vessel area, and smaller stem cross-
sectional sapwood area than species from wetter valley areas
(Cosme et al., 2017). Functional traits of plateau species are often
associated with isohydric responses that help maintain leaf water
potential above critical thresholds, including deep rooting,
deciduousness, and stomatal regulation (Fisher et al., 2006;
Chitra-Tarak et al., 2021; Oliveira et al., 2021; Gimenez et al.,
2024). In the hyper-diverse Amazon forest, variation in wood
hydraulic traits, often assessed through proxies such as WD, can
offer insights into species’ water-use responses across
environmental gradients and drought events.

Wood density has been linked to trade-offs between growth and
survival among woody plants (Kitajima and Poorter, 2008; Poorter
et al,, 2010), where species with low WD are generally associated
with faster growth and higher hydraulic conductivity, but also
greater risk of hydraulic failure (Tavares et al., 2023). In contrast,
species with high WD has been related to traits that confer
structural and hydraulic safety (e.g., smaller vessel diameters, slow
growth, lower sapwood-specific conductivity), potentially
supporting greater survival under stress (Esquivel-Muelbert et al,
2020; Gray et al, 2019; Putz et al,, 1983). However, it remains
unclear to what extent these anatomical traits directly influence
species performance and hydraulic traits under natural conditions,
with stomata density and vessel element length showing promising
correlations (Simioni et al,, 2023). The functional role of stem
hydraulics in long-term survival is still an open question, since older
trees, such as those found in the Amazon with ages reaching up to
1,400 years (Chambers et al., 1998), often lose conductivity in older
xylem, suggesting that other traits or compensatory mechanisms
also play critical roles (e.g., leaf or root adjustments, redundancy in
conductive tissues). The evolution of hydraulic systems in trees
reflects a complex balance of multiple functions such as supporting
vertical growth for competitive advantage and reproductive success,
while also enabling efficient water transport and minimizing the risk
of hydraulic failure (e.g., xylem cavitation) (Brum et al., 2023).
Mechanisms that reduce cavitation risk include osmotic regulation,
stomatal control, leaf shedding, adjustments in leaf-to-xylem area
ratios, and the development of smaller vessel diameters to enhance
embolism resistance (Brodribb, 2009; Tng et al., 2018); However,
the relationship between vessel diameter and embolism
vulnerability is not explicit, as additional structural traits such as
cell wall thickness and pit membrane characteristics are also
important (Lens et al,, 2022). Hydraulic traits vary not only
among different woody organs (roots, trunk and branches, e.g.,
Johnson et al., 2016), but also axially within a tree, with trunk height
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influencing vulnerability to embolism (Domec et al., 2008; Rowland
et al, 2015) and maximum hydraulic conductivity (Woodruff
et al., 2008).

Wood density is directly related to mechanical, physical and
anatomical characteristics (Chave et al., 2009). The base of the tree
may have lower (e.g., Deng et al., 2014) or higher (e.g., Doria et al.,
2019; Quilho and Pereira, 2001; Weber and Montes, 2005) wood
density or mechanical strength compared to the upper stem,
dependent on traits, ontogeny or environmental factors such as
wind. Thus, trees classified as lower density (<0.5 g cm™) have
relatively low mechanical resistance (e.g., baobab; Chapotin et al.,
2006) and can have higher mortality rates due to wind events
(Esteban et al., 2021; Fontes et al., 2018; Negron-Juarez et al., 2018).
For these individuals, increased mechanical resistance, i.e., as WD
near the crown, is thought to help withstand high wind speeds, and
may reflect tension wood (Zink-Sharp, 2004; Ribeiro et al., 2016). In
some ecosystems, such as the archipelago of Puerto Rico, tree
species with short stature and dense wood are better adapted to
frequent hurricane disturbances (Vargas et al., 2025). This
condition is often found in drier environments, where the
prevalence of high WD and low stature may confer mechanical
stability during extreme wind events (Van Bloem et al, 2007;
Helmer et al., 2023; Vargas et al., 2025), especially in
topographically exposed areas (Ibanez et al., 2024).

Beyond mechanical support, vertical variation of WD may
reflect chemical and anatomical changes in the wood, such as
differences in cell wall structure (Zieminska et al., 2013;
Nascimento et al., 2025). Axial changes in WD may also reflect a
shift in water (Goldstein et al., 1998), nutrient (Lira-Martins et al.,
2022) or non-structural carbohydrate storage (e.g., Woodruff and
Meinzer, 2011) that may interact to buffer daily water stress. A
study with Asian tropical species concluded that hydraulic
conductivity predicted growth rates better than WD (Fan et al,
2012), adding the necessity of new studies that integrate historical
growth rates, hydraulics and WD. At a broader scale, wood density
and hydraulic traits influence species’ growth response to drought
(Serra-Maluquer et al., 2022). In South America, WD varies
significantly between regions, with the East-Central Amazon
where our study was conducted showing higher wood densities
on average (Sullivan et al., 2025). Sullivan et al. (2025) also observed
that mean annual temperature, cloud frequency and maximum
cumulative water deficit were key drivers of spatial patterns in wood
density. In this sense, understanding how wood density and
hydraulic traits relate to mortality and growth rates is essential
for a more comprehensive understanding of plant community
dynamics under climate change.

Within each tree there is a balance between traits that maintain
function and safety concurrently. Hydraulic traits such as P50
(xylem water potential at 50% loss of conductivity) or the
hydraulic safety margin (how close plants operate to P50) are
widely used to evaluate plant drought vulnerability and response
(Choat et al,, 2012; Tavares et al., 2023). Predominantly, research in
the Amazon forest has focused on how these hydraulic thresholds
vary with topographical gradients (e.g., soil texture and water table
depth; Cosme et al., 2017; Fontes et al., 2020; Costa et al., 2023) or
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canopy position (Gimenez et al., 2019; Garcia et al, 2021). The
interaction of tree functional traits with prevailing environmental
conditions are reflected by varying photosynthesis, respiration and
transpiration rates at local scales, thereby affecting species
competition, distribution and net primary productivity (Malhi
et al, 2011; Tavares et al, 2023). Interestingly, hydraulic traits
specifically determine how species and individuals may respond to
future climate changes (Bonal et al., 2016; McDowell et al., 2018),
including longer or more acute droughts such as during El Nifio
events (e.g., Jiménez-Munoz et al., 2016; Powers et al., 2020). As
drought-induced mortality is increasing in tropical forests,
including the Central Amazon (McDowell et al., 2018; Tavares
et al,, 2023), it is important to quantify the key hydraulic traits and
their relationships with other tree functional traits as well as with
factors such as NSC reserves (Asao et al, 2025), soil nutrient
availability (Soong et al., 2020) and nutrient storage in plant
tissues (e.g., wood and leaves) (Bauters et al., 2022). These
insights are critical for accurately modeling forest metabolism and
growth under future climate scenarios. In this context, hydraulic
traits may also be linked to shifts in species distributions over time
(Christoftersen et al., 2017; Lavorel and Garnier, 2002).

As such, the primary objective of this study was to test if growth
and mortality in co-occurring trees in an old-growth Amazonian
upland forest were related to species-specific functional traits
(including wood density, hydraulic traits (e.g., xylem cell
diameter, sapwood to basal area fraction), anatomical traits (e.g.,
% fiber content), leaf traits (e.g., leaf size, nutrient content) and
other characteristics (e.g., tree architecture). We hypothesized that
trees with more acquisitive traits and lower wood density would
have higher growth rates and higher mortality than trees with more
conservative traits and higher wood density. We harvested 17 trees
of different species to explore trait-trait relationships and trait
variation in context of long-term demographics of relative plant
success using a 30-year record of tree growth and mortality from
nearby permanent inventory plots. Results were expected to provide
additional insight into tree functional traits that may be important
for resilience to future climate change.

2 Materials and methods

2.1 Study site

This study was conducted in a mature forest stand within the
National Institute of Amazonian Research (INPA) ZF - 2
Experimental Station (60° 9* 10.17” W, 2° 38 6.28” S), northwest
of Manaus, Brazil in the Central Amazon. There is a mosaic pattern
in topography in the area, with sandy lowlands close to the water
table and clay uplands well above the water table. Research was
conducted in an upland plateau, which contained a wide diversity of
trees, 70% with a diameter at breast height, (~1.3 m; DBH) between
10 and 23 cm (for all trees >10 cm; Oliveira et al., 2008). The annual
precipitation averages ~2,500 mm, with the driest months of the
year often occurring between July and September (Souza et al., 2021;
Kunert et al., 2017). The area is covered by a dense forest canopy.
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Population level growth and mortality data were available from
long-term monitoring plots of the BIONTE Project, which was
established in 1986 (Higuchi et al., 1985; Gaui et al., 2019). For this
study, trees were felled up to 500 m outside the BIONTE
permanent plots.

2.2 Tree selection

As the Central Amazon is hyper-diverse, it is difficult to find
suitable replicates for some species. As such, and to maximize the
range of wood density (WD) representation, we selected individuals
across many species. This increased the diversity of functional traits
(e.g., wood density and xylem anatomy, which are conserved by
species, e.g., Hacke and Sperry, 2001; Chave et al., 2009) represented
in our study, and provided a better representation of the forest
functional trait composition. By using many species instead of a few
species with replicates, we were also able to select co-occurring
individuals of the same size, growing in the same area and that
developed under the same edaphic and environmental conditions.
This helped to limit trait variation due to different growing
conditions at different positions on the landscape. We focused
specifically on a well-drained upland plateau area with high clay
content, away from slopes and valleys where soil texture and
microclimate changes. We selected 17 canopy species (n=1)
between 20 and 30 cm DBH, representing the major size class of
this forest, following a systematic randomized sampling at the
individual level, i.e., without reference to species, but stratified
across a wood density (WD) gradient (Table 1). To further
explore the data, we present results using WD as both a gradient
and as a category (low, intermediate and high). The wood density
classes were representative of the range of local variation including
low (0.30-0.50 g cm?), intermediate (0.50 - 0.70 g cm®) and high
wood densities (0.70 — 0.90 g cm™) (Melo et al., 1990). For each
individual we measured a wide range of functional traits related to
whole tree architectural characteristics, and stem and leaf traits as
listed in Table 2.

2.3 Whole tree architecture

We measured tree diameter (DBH) at 1.3 m using a diameter
tape. Crown diameter (Cd) was estimated by laying out a
measurement tape along the forest floor (north-south and east-
west axes) and observing vertically where the canopy edge ended.
The four measurements per individual were used to estimate
average Cd. Canopy exposure was estimated from the forest floor
based on crown exposure to direct solar radiation based on Dawkins
and Field (1978), where: 1) canopy receives little direct light; 2)
canopy receives direct lateral light; 3) canopy receives overhead
light on 10 - 90% of the crown; 4) canopy receives full overhead
light on > 90% of the crown; 5) canopy is fully exposed with an
emergent crown. The trees were felled in the early morning (7:00 -
8:30 AM) when tree water stress was minimal (to limit impacts on
active sapwood area assessments, see below). Tree height (Ht) and
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TABLE 1 Wood density and size characteristics of the individual harvested study trees of 17 different species with no replicates.

Wood densit WD . . . Growth Mortalit
Y -3 DBH (cm) | Height (m) Family Species -1y | o Y
Class (gcm™) (cmyear™) (% year™)
0.35 19.7 23.1 Simaroubaceae Simarouba amara Aubl. 1.21 1.67
0.37 26.5 20.2 Bignoniaceae Jacaranda copaia A. Gentry 0.13 0.71
Low wood density 0.42 28.0 16.2 Myristicaceae Virola pavonis (A.DC.) A.C.Sm 0.15 1.37
0.43 19.1 20.5 Malvaceae Sterculia excelsa Mart. 0.20 0.67
. Pourouma
0.45 25.0 18.1 Urticaceae i 0.58 2.54
myrmecophila Ducke
0.51 19.4 219 Fabaceae Tachigali paniculata Aubl. 0.61 1.42
0.53 28.1 285 Euphorbiaceae Hevea guianensis Aubl. 221 0.61
0.56 254 240 Mal Scleronema micranthum 027 0.86
. . X alvaceae . .
(Ducke) Ducke
Intermediate Licaria martiniana
. 0.61 26.7 23.5 Lauraceae 0.07 1.40
wood density (Mez) Kosterm.
0.63 24.9 27.0 Fabaceae Inga paraensis Ducke 0.42 1.28
0.68 26.1 17.4 Sapotaceae Micropholis guyanensis 0.14 0.89
- : : P (A. DC.) PIERRE : ’
0.69 22.0 25.9 Annonaceae Guatteria olivacea R.E.Fr. 0.54 2.05
0.73 26.6 19.4 Goupiaceae Goupia glabra Aubl. 0.33 0
0.82 284 17.5 Olacaceae Minquartia guianensis Aubl. 0.06 0.21
High wood densit 0.82 215 213 Lecythidaceae Eschuweilera coriacea 0.13 0.25
igh wi i . . . i . .
8 7 v (DC.) S.A.Mori
0.84 292 225 Lecythidaceae Lecythis pisonis Cambess. 0.14 0
0.87 28.5 21.4 Sapotaceae Pouteria venosa (Mart.) Baehni 0.17 0.35

Growth and mortality rates for the same species were based on population demographics collected at adjacent long-term inventory plots.

crown length (Cl) were assessed using a measuring tape, then stem
and leaf functional traits were collected and measured.

2.4 Stem wood hydraulic traits

2.4.1 Sapwood area

After the trees were felled, we collected 40 cm long stem sub-
sections (i.e., logs) for further analysis (see Supplementary
Figure 1). To evaluate if stem traits varied along the length of
the main trunk, we collected logs at three positions: one near the
DBH, and the other two at 50% and 100% of the stem length (up to
the base of the canopy). Sapwood area was estimated using 0.05%
acid fuchsin dye dissolved in water to stain the secondary cell walls
in the xylem (Umebayashi et al, 2007). Each log was placed
vertically in containers with the dye solution covering ~ 5 cm of
the log bottom. Over the course of the day the upper surface of the
logs were exposed to evaporation, thereby pulling the dye solution
into the active sapwood. Next, the bottom 10 cm of each log was
removed and the average xylem radius (between inner bark and
the pith) and average dyed sapwood radius measured. From these
radii, the areas of the concentric circles were calculated, such that
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the unstained area was subtracted from the total area resulting in
the active conductive sapwood area (SWA) of that section
(Aparecido et al,, 2019). In addition, the sapwood to basal area
fraction (SWF) and sapwood depth (SWD; smallest radius) of
each section were also measured (Supplementary Figure 1). We
note that cutting may have introduced some embolism in larger
vessels, but that dye was still visible in some vessels throughout the
xylem, reflecting sapwood. We also note that xylem activity (as sap
flow) declines quickly with depth (e.g., Spanner et al., 2022). As
such, our sapwood depth measurements should be considered in
that context.

2.4.2 Wood density and stem water content

Wood density (WD) and saturated stem water content (WC)
were measured for each tree at the Laboratorio de Engenharia e
Artefatos da Madeira, at INPA. A wood disc (cookie) was cut from
each log, then six wood subsamples were cut from the disc: three
from the 0 — 2 cm depth and three from the 6 — 8 cm depth in the
radial direction. The wood samples were submerged in water for 20
days to obtain total volume and saturated mass. Subsequently, the
wood samples were oven-dried at 105°C to constant dry mass. WD
and WC were calculated as:
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TABLE 2 Description of whole tree architectural characteristics and
stem and leaf functional traits, including code abbreviations and units.

Abbreviation

Diameter at

Measure

position

Units

DBH T
breast height ree em
Ht Total height Tree m
N Stem length Tree m
Cl Crown length Tree m
Cd Crown diameter Tree m
Ce Crown exposure Tree -
SWA Sapwood area Stem (DBH) cm?
S d to basal
SWE apwoad 1o basa Stem (DBH) %
area fraction
SWD Sapwood depth Stem (DBH) cm
WD Wood density Stem (DBH) g cm
WwC ‘Wood water content Stem (DBH) %
vd Vessel diameter Stem (DBH) pum
1
VD Vessel density Stem (DBH) vessi
mm
VG Vessel grouping Stem (DBH) -
Dh Hydraulic diameter Stem (DBH) pum
Potential kgm' s’
Kp . . Stem (DBH) O
hydraulic conductivity MPa
Vessel area in
Vp i Stem (DBH) %
cross section
Hydrauli
VI yeaue Stem (DBH)  pm mm
vulnerability index
Pp Parenchyma jarea in Stem (DBH) %
cross section
Fib i
Fp tber area in Stem (DBH) %
cross section
LS Leaf size Leaf cm?
SLA Specific leaf area Leaf cm? g
C Carbon content Leaf %
N Nitrogen content Leaf gkg!
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2.4.3 Wood anatomical traits

For anatomical analysis, we removed three additional wood
samples from the DBH disc at the 0 - 2 cm depth interval.
Histological sections were obtained using a sliding microtome
(American Optical 860) and type C knives, with thickness ranging
from 18 to 22 pm. Histological sections were bleached with sodium
hypochlorite (20%), dehydrated in an ethanol dilution series (30%,
50%, 70% and 100%), stained with safranin, dehydrated again in an
ethanol series (50%, 70% and 100%) and placed in butyl acetate for five
minutes, then the slides were mounted using Entellan resin. Sections
were imaged using a microscope at 40x magnification. Anatomical
traits were measured using publicly available software (Image] v. 1.54;
Rasband, 2004) and included vessel diameter (Vd; um), vessel density
(VD; number of vessels/area) and vessel grouping index (VG; total
vessel number/total vessel groupings number), which is a
dimensionless measure of the proportion of vessels clustered in a
cross section of a tree trunk. Xylem cell types (% fibers, Fp; %
parenchyma, Pp; % vessels, Vp) were measured using supervised
automatic classification software (MultiSpec v. 3.5; Biehl, 2020). For
all anatomical traits we averaged the mean values from the three
replicate wood samples (n=3). Several example microscopy images are
included in Supplementary Figure 2.

2.4.4 Potential hydraulic conductivity

In order to describe tree water transport, we calculated the
potential maximum hydraulic conductivity, Kp (kg m™" s MPa™)
and the vulnerability index, VI (um mm-2) based on wood
anatomical data (Scholz et al,, 2013). Kp was calculated according
to the Hagen-Poiseuille law (Sterck et al., 2008; Poorter et al., 2010).

™p 4
Kp = *VDxD,
P (128 Tl> o

where, p is the density of water at 20°C (998.2 kg m™); 1) is the
water viscosity index at 20°C (1.002 x 10-> MPa s); and the mean
hydraulic diameter, Dh (Um), is calculated as:

EVdT /4

Dh:|:
n

where, n = number of vessels. Kp is intended to show how easily
water can be conducted through a set of non-interacting perfectly
circular conductive elements.

The vulnerability index was calculated using vessel density
(vessel mm-2) and average vessel diameter (um) (Rodriguez-
Ramirez et al., 2022):

vd

VI=——
VD

Where VI is the vulnerability index, Vd is the average vessel
diameter and VD is the vessel density. Here, values near zero
indicate plants are more resistant to the effects of drought.
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2.5 Leaf traits

2.5.1 Specific leaf area

To obtain specific leaf area (SLA, cm? g’l), 30 sun leaves were
collected from the upper canopy of each felled tree and measured
using a portable scanner (CI - 202 Portable laser leaf area meter;
CID Bio-Science). Subsequently, leaves were oven-dried at 65 °C
until constant weight and ground for chemical analysis.

2.5.2 Leaf chemical analysis

To assess potential trait-trait linkages between stem hydraulic
anatomy and foliar physiological function we measured key foliar
chemical concentrations. Foliar carbon content (C, g kg'l) was
determined using a plasma emission spectrometer and elemental
analyzer. Nitrogen (N, g kg') was determined by the Kjeldahl
method. Phosphorus (P, g kg™') was obtained by colorimetry and
the absorbance readings performed at 660 nm using ammonium
molybdate and 3% ascorbic acid. Potassium (K, g kg™') was
determined by flame photometry, and calcium (Ca, g kg™) and
magnesium (Mg, g kg'') by atomic absorption spectrophotometry.

2.6 Growth and mortality rate

Growth and mortality rates were obtained from 12 permanent,
1-ha forest inventory plots, known as the BIONTE Project,
managed by INPA (Higuchi et al., 1985). This project provided a
large dataset of annual growth and mortality rates for all trees >10
cm DBH (~1500 trees). In every monitored year, additional trees
were added to the inventory (recruitment), after attaining the
minimum DBH of 10 cm, and the trees that died (mortality) were
removed. Using this 30-year (1990 - 2020) dataset, we calculated
annual diameter growth and mortality rates for our 17 selected
species. We then assessed correlations between measured wood/leaf
traits of our specific harvested trees and population level growth
and mortality rates. As there were no replicates of tree species used
in this study, conclusions about growth or mortality rates linked to
traits of individual species cannot be made. Even so, regression
across all 17 individuals or comparisons by density class can yield
insight into trait linkages to demographics for discussion.

2.7 Statistical analysis

A principal component analysis (PCA) was conducted to assess
the relationships between the different tree characteristics and
functional traits. A correlation matrix was used to measure the
degree of correlation between wood density and the functional
traits. To verify if there were differences in wood density, water
content, sapwood area, and sapwood fraction along the stem, an
ANOVA was used. Pearson correlation was used to explore how
individual functional traits may be related to long-term growth and
mortality rates based on their correlation coefficients (r) and
significance level (p < 0.05). All statistical analyses were
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performed using R 4.2.2 with the FactoMineR package used for
PCA analysis (R Core Team, 2022).

3 Results

3.1 Wood density and tree, stem and leaf
functional traits

To assess associations of plant trait relationships, we used a
PCA of 11 key plant functional traits (PFTs), plus growth and
mortality rates (Figure 1). For reference, we also explored a PCA of
all 27 measured whole tree characteristics and functional traits
(Supplementary Table 1). Wood density has a strong relationship
with mechanical traits; therefore, it was expected that whole tree
architectural characteristics would be positively correlated with
wood density. However, none of the tree-level characteristics were
significantly related to WD. Water content had the greatest
correlation to wood density; WC strongly declined with
increasing WD (Figure 2). Higher water content was correlated
with faster growth and increased mortality rates (Figure 1).
Mortality rate declined with increasing SLA (Figure 1).
Considering the full correlation matrix, six other stem and leaf-
level functional traits were related to wood density (WD) at the
p<0.10 level (Supplementary Table 1). Wood density was negatively
correlated to two of the stem hydraulic traits: sapwood fraction and
sapwood depth. Wood density was correlated with half of the leaf
functional traits; as WD increased, leaf size, leaf calcium and leaf
magnesium levels decreased and the N:P ratio increased
(Supplementary Table 1).

3.2 Relationships between functional traits

The first two components of the PCA explained 52% of the
variation (Figure 3). The first axis explained 30% of the variation
and was related to wood traits, with positive loading for mean vessel
hydraulic diameter, hydraulic vulnerability index and wood fiber
fraction. The second axis explained 22% of the variation and was
related to wood and leaf traits, with negative loading for water
content and foliar C:N and positive loading for wood density,
specific leaf area and foliar N. Lower foliar C:N and N:P ratios
were correlated with larger mean xylem hydraulic diameter
(Figure 1).Growth and mortality rates mirrored WC and were in
opposite direction of WD Faster growing species tended to have
positive loading on the first axis and negative loading on the second
axis, while slower growing species were opposite. There was full
separation of loadings for the high- and low-density
groups (Figure 3B).

Leaf size was correlated with increased wood water content.
Foliar C and nutrient concentrations scaled with increased crown
diameter and crown exposure (Supplementary Table 1). Foliar N
and P were correlated and scaled with SLA. Foliar C:N and N:P
declined as K increased and declined with increasing mean
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Pearson'’s correlation matrix (p<0.05) of the interrelationships among 11 key plant functional traits and their relationship with growth (G) and
mortality (M). Correlation strength and direction are indicated by color intensity and significant correlation statistics appear in the cells. Trait code
abbreviations and units are described in Table 2. Trait values and other tree characteristics are shown in Supplementary Table 2.

hydraulic diameter. As expected, larger vessels had greater mean
hydraulic diameter, increased potential hydraulic conductivity and
a higher vulnerability index. Trees with larger crowns were also
correlated with higher potential hydraulic conductivity.

3.3 Potential trait linkages to demographics

To explore potential linkages between tree functional traits and
growth and mortality rates, we used Pearson correlation (r) of functional
traits of each sampled individual against population level demography.
Faster growth correlated with increased mortality rate (p=0.01; Figure 4).
Increased wood density (Figures 4, 5D) and lower wood water content
(Figures 5A, C) correlated with reduced growth and mortality rates at the
stand level. Increasing specific leaf area also correlated with reduced
growth rates at the stand level (p=0.08, Figure 5B).

3.4 Axial variation of wood density and
hydraulic traits

Initial regression analysis of stem traits across the wood density
gradient showed that the only trait that varied significantly with tree
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height (e.g., between lower and upper axial positions in the stem)
was sapwood area (p=0.05), which declined with height as expected.
The decline in SWA between DBH and the base of the canopy for
these trees was about 50%.

Analyzing stem traits based on their wood density class revealed
more information about possible wood density-dependent
differences in upper and lower wood traits and revealed high
variation in traits between wood density classes (Figure 6). That
analysis indicated potential differences in water content and wood
density with height. The highest wood density trees had a higher
WC in the upper position, while low and intermediate density trees
had similar WC at upper and lower positions (Figure 6E). There was
also some evidence for a reduction in wood density with height for
trees with the highest wood density trees showing a 5% decline in
WD at the base of the canopy (Figure 6F).

3.5 Functional stem and leaf traits in
relation to wood density

There was wide variation for many of the stem and leaf traits in

our 17 individuals (Figures 7, 8). Based on non-parametric tests, no
significant differences between wood density groups were found.
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FIGURE 2

Saturated stem wood water content in relation to wood density for 17 individuals of different species of co-occurring upland Amazon trees (n=1).
Water content was measured from rehydrated sub-samples collected at ~1.3 m after trees were felled.

Some traits tended to shift in magnitude with the highest wood
density (e.g., smaller mean hydraulic diameter, Dh in Figure 7;
increased SLA in Figure 8) but our lack of replication limited
finding significant differences in these traits.

4 Discussion

4.1 No evidence for architectural trait
linkage to wood density

Wood density (WD) is often associated with mechanical
strength (Chave et al., 2009), and accordingly, architectural traits
such as tree height and crown dimensions are expected to increase
with WD (e.g., lida et al., 2012; Francis et al., 2017). However, our
results do not support that relationship and corroborate with
previous studies suggesting that high WD does not necessarily
confer a mechanical advantage for increased height (Aiba and
Nakashizuka, 2009; Anten and Schieving, 2010; King et al., 2006).
For instance, a study in the Central Amazon including 186 species
across a broad diameter range found no relationship between WD
and height (r = 0.10, p = 0.07; Nogueira et al., 2005). Similarly, a
cross-continental comparison of species from Panama and Malaysia
found no general relationship between WD and height, except in
the smallest diameter class (< 2 cm) (Francis et al., 2017). While we
found no relationship between WD and height, we did find
increased stem length or height was associated with increased
vessel diameter and lower vessel density, likely reflecting height
dependence on water transport capacity independent of WD.

There is evidence that species with high WD have deeper crowns,
possibly to optimize light interception (Augspurger and Kelly, 1984;
Bohlman and O’Brien, 2006). Another study found crown width and
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depth scaled with WD across a wide diameter range, although not
above 18 or 24 m height, respectively (lida et al,, 2012). However,
crown dimensions, crown exposure and stem length (ie., height of
lower crown) were not related to WD in our study, opposite to what we
expected. The lack of relationships may be due to the relatively low
number of sample trees in this study or variable crown exposure levels
that impacted resource acquisition and crown development. This may
also be related to the narrow tree diameter (20 — 30 cm) or height range
(16 — 28 m) used in this study, since the presence and strength of the
WD tree architecture relationships may be linked to the ontogeny and
size of the individual. One way to further explore these relationships
would be to use other crown variables such as the shape or volume of
the crown, or crown wood or leaf biomass, which could be approached
with more objective techniques such as laser-based Lidar
measurements (Gorgens et al, 2021). Additionally, in frequently
wind-disturbed environments, the presence of multistemmed
individuals has been interpreted as a structural adaptation to
mechanical stress (Su et al, 2020). In the Central Amazon, wind
disturbances have been shown to influence forest structure and
dynamics by reducing the resilience of live tree biomass, particularly
through the increased mortality of low WD species with shorter life
spans (Magnabosco Marra et al., 2018). In this context, wind
disturbance may play a role in shaping tree architecture
independently of WD, and further investigation is warranted to
understand how these factors interact.

4.2 Importance of wood density to
hydraulic traits

Increasing WD leads to shifting trait-trade offs, such that plants
with low WD are those that invest in high hydraulic transport
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(a) Principal components analysis (PCA) of multivariate trait associations for 11 functional traits measured for 17 individuals of different species of co-
occurring upland Amazon trees, including growth (G) and mortality (M) rates based on population scale demography. The 10 most significant loadings
are indicated on the graph with arrows reflecting direction and strength of responses, and color intensity indicating contribution magnitude (WD,
wood density; WC, wood water content; Dh, mean hydraulic diameter; VI, vulnerability index; Fp, fiber area; SLA, specific leaf area; CN, foliar carbon:
nitrogen concentration; PK, foliar phosphorus:potassium concentration. (b) PCA grouping by wood density class; low WD < 0.5 g cm™, intermediate
WDO05-07g cm™>, and high WD > 0.7 g cms, Average values for each wood density group are shown by the larger symbol). Also see Figure 1.

capacity and water storage, while high wood density trees tend to
have lower xylem conductivity but greater hydraulic safety
(Santiago et al., 2018). In our study, xylem vessel size and
potential hydraulic capacity were not significantly related to WD.
Yet, note that the correlation values of vessel size-related
characteristics Vd, Dh, Kp and Vp declined with WD, and values
of vessel spatial distribution characteristics VD and VG increased
with WD, in agreement with the signs of the hypothesized
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relationships. The low number of species used in this study (as a
tradeoft to the large number of traits measured) likely limited some
findings of significance. Measurements of fewer traits across a larger
sample size is suggested for future research. Trait trade-offs also
necessitate targeting a larger sample size. Using a global database of
P50 and Kp, Gleason et al. (2016) demonstrated that it is not
possible to have both high efficiency and high safety in plant
hydraulic systems. However, many species have low efficiency
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Stand level growth and mortality rates in relation to wood density class for the 17 species (n=1) harvested for this study. High wood density was
associated with lower growth (p=0.06) and mortality (p=0.02). In the box plots, n=5-7 per WD class, the median is the thick line, the edges of the
box are the lower and upper quantiles, Q1 and Q2, the whiskers are extreme values less than 1.5 of the interquartile range, and the points are

outliers.

and low safety, indicating the need to consider other trait tradeoffs
and linkages to plant hydraulics, including investment in
mechanical strength (e.g., fibers) and water or non-structural
carbohydrate storage in parenchyma cells (Bittencourt et al., 2016).

Indeed, while we highlight hydraulic characteristics, wood has
additional key functions related to biomechanical support, carbon
assimilation (for green stems and twigs) and storage (Pratt and
Jacobsen, 2017; Rungwattana and Hietz, 2018). Higher WD in our
trees may reflect a greater investment in mechanical safety (higher
proportion of heartwood, fibers and fiber wall thickness). Yet the
lack of correlation of anatomical traits (Vp, Fp, Vp) with wood
density found in our study corroborates with Zieminska et al.
(2013) indicating that vessel size or xylem cell types alone are not
the main regulators of WD. Rather, WD is dependent on a variety
of traits.
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4.2.1 Importance of wood water content

Water content of saturated samples may indicate the potential
for water storage in the xylem (e.g., Goldstein et al., 1998). In our
study, water content increased with sapwood fraction (SWF) and
declined with wood density (Supplementary Table 1). WC also
correlated with stand level growth rates (Figure 3). As stored water
can be used to ensure water supply to the canopy in the early hours
during the day or in short periods of water deficit (Goldstein et al.,
1998; Scholz et al., 2011; van der Sande et al., 2015), stored water,
along soil water is a key component of the vegetation water budget
and thus carbon uptake. Higher wood WC of the lower WD trees as
found in our study may help buffer daily development of water
stress in these more acquisitive, faster growing trees. Similar to how
P50 and Kp can act as environmental filters for the establishment of
species (Oliveira et al., 2019; Brum et al., 2023), wood water content
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content or (b) specific leaf area in relationship to growth rate, (c) wood water content or (d) wood density in relationship to mortality rate.

and water storage are key features that influence water use patterns
and hydraulic traits of tropical species (Goldstein et al., 1998).

4.2.2 Importance of sapwood area

Sapwood area is a key parameter used to understand and scale
whole tree water use (Meinzer et al., 2003, 2005). The range of
sapwood areas found in this study varied 2-fold despite only a 1.5-
fold difference in tree diameter. Results were similar to those found
in this and other tropical forests, and partially reflect the calculation
of sapwood area, which includes a squared term. We previously
reported active sapwood areas ranging from 202 to 1721 cm” (8.5-
fold) for dominant trees (DBH = 30 - 114 cm; 3.8-fold) in a nearby
study in the Central Amazon (Spanner et al., 2022). Other studies in
the Amazon found a 7.7-fold range in sapwood area for a 4.3-fold
range of diameters in French Guiana (Granier et al., 1996) and 24.8-
fold range of sapwood area for a 6.6-fold range of diameters in
Venezuela (Anhuf et al., 1999). The wide range reflects the extreme
diversity of tree species, hydraulic traits and size distribution in
tropical forests (e.g., Cardoso et al., 2017). The variation in sapwood
area for trees in the same size cohort as our study reflects the degree
of difficulty for using these data for scaling from tree to stand level,
e.g., for use in estimating total stand sap flow and transpiration
(Spanner et al., 2022). Scaling to the stand level in these diverse
stands may be more successful when considering a larger diameter
range where species-specific differences are overshadowed by size
dependence (e.g., Meinzer et al,, 2005).
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4.2.3 No evidence for shifts in wood density or
hydraulic traits with height

Across the 17 trees sampled, we found no significant differences
in WD or wood hydraulic traits sampled between the lower and
upper stem positions. This contrasts with a larger study conducted
in the Central Amazon with 186 species that reported a general
decrease in WD from the base to the crown (Nogueira et al., 2005).
In that study, 87% of the individuals showed a reduction in WD
with height— up to 57% in some cases—while others exhibited
increases of up to 24%, underscoring the considerable variability in
vertical WD patterns among species in upland Amazonian forests.
The authors also noted that failing to account for this height-
dependent variation could result in an overestimation of mean WD
by approximately 5%. It is important to consider that their study
encompassed a wide range of tree sizes (5 - 122 cm DBH), whereas
our dataset focused on a narrower size range, which may limit the
expression of these vertical trends.

Although no overall variation in wood traits was observed
between stem positions across the WD gradient, some patterns
emerged when individuals were grouped into WD classes. In trees
with low and intermediate WD, we observed a modest decrease in
the proportion of active xylem to sapwood area with height (-2% to
-3.5%, respectively). In contrast, high WD trees exhibited an
increase of approximately +12% (Figure 6). Similar patterns were
observed in water content which, along with sapwood area,
influences water storage and capacitance(e.g., Goldstein et al,
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Relative variation (%) in hydraulic characteristics and traits between upper and lower stem sections; (a) diameter, (b) SWA, (c) SWF, (d) WD, (e) WC
and (f) WD and hydraulic traits measured at different positions of the stem separated by wood density classes. Note that full anatomy measurements
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diamond represents the average and box plots components are as described in Figure 4.

1998; Lira-Martins et al., 2022). These findings suggest potential
trait plasticity in water storage, not only across individuals but also
within the same tree, reflecting carbon allocation strategies that
optimize the balance between water transport and hydraulic safety
(Baas et al., 2004; Chave et al., 2009). While these observations were
not significant, it does point to the need for more expansive
measurements axially within the trees across a greater number of
samples than used here in this study. Regarding the relationship
between WD and canopy height, the evaluation of these traits at the
community level—particularly along stronger environmental
gradients such as disturbance regimes, edaphic variation, or
climatic conditions—can potentially reveal clearer stand-level
patterns. For example, at community-level WD tends to be
higher, canopy height shorter, and mortality rates lower in drier
or edaphically drier environments when assessed across broad
gradients (e.g., Vargas et al, 2025). Such patterns suggest that
trait-environment relationships may be more pronounced at
larger spatial or ecological scales than within-individual
comparisons allow as observed by this study.
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4.3 Wood density and trait-trait tradeoffs

The relationship between wood density and tree traits can be
considered as an indication of plant resource acquisition, where
trees with higher wood densities are conservative species with
slower growth rates, and trees with lower wood density are
acquisitive species with faster growth rates (Santiago et al., 2018).
In our sample trees, the correlations between WD and population
demographic rates are consistent with these resource acquisition
traits. More acquisitive species were also expected to have greater
foliar nutrient concentrations, yet in this study there were no
differences in foliar phosphorus or nitrogen between growth rate
classes. However, foliar calcium and magnesium concentrations
declined with increasing wood density. This could indicate more
active root growth resulting in greater passive ion uptake rates that
depend on new unsuberized roots (greater uptake rates) or
increased transpiration rates (Mengel and Kirkby, 2001; Ahmed
et al,, 2023) or increased demand by the canopy, all of which are in

agreement with an acquisitive resource response.
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We also found leaf size decreased with increased WD. This also
suggests that lower wood density species are generally associated with
the fast-growing characteristic, with larger leaves (e.g., Pouteria and
Cecropia genera), generally associated with higher photosynthetic
rates (Slot and Winter, 2017) and monolayer leaf arrangement
(Poorter et al., 2006). To a lesser extent, specific leaf area tended to
increase with wood density (r=0.32) and decline with growth rate, as
seen in other studies such as a tropical rainforest in Australia (Gray
etal,, 2019), which could indicate less photosynthetic capacity if foliar
nutrient concentrations also decline with SLA. However, we found
the opposite, with increasing concentrations of foliar N and P with
increasing SLA. This suggests that growth rates were not solely
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dependent on foliar nutrient content, which may point to other
factors, such as co-dependence of hydraulic controls on productivity
associated with reduced hydraulic conductivity for slow growing
trees, thereby affecting stomatal conductance and subsequent
photosynthetic carbon uptake.

4.4 Trait correlations with growth and
mortality

As expected, lower wood density was correlated with higher
growth and mortality rates. This agrees with earlier results found
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across neotropical rainforests in Mexico, Panama and Bolivia
(Poorter et al., 2008; Wright et al., 2010), and tropical rainforests
in Venezuela and Brazil (Chao et al., 2008; Aleixo et al., 2019). In
the latter study, growth rate and wood density together could be
used to model mortality across species. Size was another predictor
in that study, although this depended on location. In our study,
crown exposure reflects more dominant trees within our narrow
20 - 30 cm diameter class, and the negative correlation of canopy
exposure (Ce) with mortality indicates trees that have greater
resource availability may be more successful. Higher WD was also
correlated to lower theoretical hydraulic conductivity and lower
mortality in a large study in Barro Colorado Island (BCI), Panama

Frontiers in Plant Science

(Hietz et al., 2017). However, in that study, potential hydraulic
conductivity (Kp) was not correlated with mortality, similar to the
results of our study, reinforcing the variability in trait relationships
due to trait-trait tradeoffs. Even so, our PCA results showing
negative loading for WD and positive loading for vessel diameter
(Vd) and Kp, along with lower water content with higher WD
support the assumption that trees with larger vessels, greater
hydraulic efficiencies and higher water storage have a more
acquisitive life-response resulting in faster growth, albeit at
greater risk of mortality. Nonetheless, the wide variation in some
traits (e.g., SLA and N) within growth classes indicates a large range
of different responses for resource acquisition and success.
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5 Conclusion

WD was more correlated with stem hydraulic and leaf functional
traits than with whole tree architectural characteristics. While we found
no relationship between WD and height, we did find vessel diameter
increased with increased stem length or height, likely reflecting height
dependence on water transport capacity independent of WD. Lower
wood density was associated with increased leaf size, foliar base cations,
stem water content and sapwood fraction, and lower foliar N:P, in
agreement with the fast-slow plant economics spectrum. Growth and
mortality rates were greater for the intermediate and low wood
densities trees as expected. While the correlation between wood
density and other traits was weak in this small sample size,
classifying trees as functional groups based on wood density revealed
differences in these leaf and wood anatomical traits. This supports the
hypothesis that trees assemble along trait space dimensions along a
wood density axis.
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