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Joane S. Elleouet1*, Russell Main2, Robin J. L. Hartley2

and Michael S. Watt3

1Data and Geospatial Intelligence, Scion, Wellington, New Zealand, 2Data and Geospatial Intelligence,
Scion, Rotorua, New Zealand, 3Data and Geospatial Intelligence, Scion, Christchurch, New Zealand
Introduction: Phenotyping is critical in tree breeding, but traditional methods are

often labour-intensive and not easily scalable. Resistance to biotic and abiotic

stress is a key focus in tree breeding programmes. While heritable traits derived

from spectral remote sensing have been identified in trees, their application to

tree phenotyping remains unexplored. This study investigates in-situ high-

throughput hyperspectral and thermal imaging for assessing Dothistroma

needle blight (DNB) resistance in Pinus radiata D.Don.

Methods: Using UAV-based hyperspectral and thermal imaging during a severe

DNB outbreak in a clonal trial in New Zealand, we computed narrow-band

hyperspectral indices (NBHIs), canopy temperature indices, radiative transfer

inverted plant traits, and solar-induced fluorescence. Visual severity scores and

remote sensing indices were modelled using spatially explicit mixed-effect linear

models integrating pedigree and genomic data in a single-step genomic

evaluation. Multi-trait models and sampling simulations were used to evaluate

the potential of remote sensing indices to supplement or replace

traditional phenotyping.

Results: Remote sensing indices exhibited narrow-sense heritability values

comparable to severity scores (up to 0.37) and high absolute correlation

coefficients with severity scores (up to 0.79). Carotenoid and chlorophyll-

related NBHIs were the most informative, reflecting physiological impacts of

DNB. Combining partial visual scoring with NBHIs maintained high estimated

breeding value (EBV) accuracy (0.68) at 50% scoring and moderate accuracy

(0.59) at 20% scoring. EBV correlation with full scoring was above 0.8 even at 20%

scoring. Using solely the most heritable NBHI achieved 0.71 breeding value

accuracy and 0.79 absolute EBV correlation with severity scores, suggesting

NBHIs can replace visual scoring with minimal precision loss.

Discussion: By utilising UAV-based hyperspectral and thermal imaging to capture

single-tree phenotypes related to disease in a forestry trial and pairing the data to

genomic evaluation, this study establishes that remote sensing data offers an
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efficient, scalable alternative to traditional phenotyping. Our approach

constitutes a major step towards characterising specific physiological

responses, facilitating the discovery of the genetic architecture of physiological

traits, and significantly enhancing genetic improvement.
KEYWORDS

high-throughput phenotyping, needle disease resistance, hyperspectral imagery,
thermal imagery, Dothistroma needle blight, Pinus radiata , single-step
genomic evaluation
Introduction

Phenotyping refers to the process of observing and measuring an

organism’s physical and biochemical traits. It is a fundamental step in

the process of breeding to genetically improve species of commercial

importance (Isik et al., 2017). It is however a time-consuming

process, especially in large and long-generation organisms such as

trees. Traditional tree phenotyping mostly relies on human

assessment by foot in remote locations, and cannot easily be scaled

up to larger trials, therefore limiting the amount of genetic material

that can be tested. The precision of measurements is also limited for

two main reasons. First, tree breeding trials are established in areas

with limited control over environmental variables, creating extra

variability in observable phenotypes. Secondly, many quantitative

traits are measured subjectively using categorical scores with coarse

scales, limiting the consistency of measurements within and across

breeding trials, especially when the scoring is performed by multiple

people (Poland and Nelson, 2011). The impacts of phenotyping

limitations on selection efficacy and speed in tree breeding for

forestry purposes have been referred to as the “phenotyping

bottleneck” (Dungey et al., 2018). Remote sensing can alleviate

many of these limitations by replacing or supplementing traditional

measures of tree phenotypes, providing faster and objective

measurements to ultimately improve genetic gains. High-

throughput phenotyping has been in operation for more than a

decade in common agricultural crop breeding systems (Song et al.,

2021), with successful recent development of hyperspectral and

thermal phenotyping using unmanned aerial vehicles (UAVs) in

several crops (Liu et al., 2025; Zhang et al., 2025). However, its

application in tree breeding still faces considerable challenges. Our

research addresses the use of UAV hyperspectral and thermal

measurements in breeding for disease resistance traits in a conifer

species widely used in forestry, Pinus radiata D.Don (radiata pine).

Radiata pine is one of the most commercially important tree

species in the southern hemisphere and the most planted forestry

species in New Zealand. A breeding programme was established in

New Zealand in the 1950s and remains very active. As with many

pine species, radiata pine is prone to infection and damage by foliar

diseases. Dothistroma needle blight (DNB), which is primarily

caused by the pathogen Dothistroma septosporum (Dorog.) M.
02
Morelet (Barnes et al., 2004), is characterised by the appearance

of brick-red bands (1–3 mm wide) on needles, expanding to tissue

dessication and eventually needle loss. The substantial productivity

losses associated with the disease in Australia and New Zealand

have prompted the inclusion of DNB resistance in radiata pine

breeding programmes (Carson, 1989; Dungey et al., 2018).

Screening for DNB symptoms is routinely performed in nurseries

and breeding trials, and as DNB primarily affects juvenile stands

(Bulman et al., 2013), the disease can occasionally occur in genetics

trials before or at the usual selection age (6–9 years post

establishment). Field phenotyping for resistance to DNB is

undertaken using severity scores that are determined by a visual

assessment of the percentage of the tree crown that is affected, in 5%

increments (Bulman et al., 2004). Breeding for DNB resistance

would therefore likely benefit from a more precise, objective and

scalable phenotyping approach. Recent research on infected

breeding trials reported narrow-sense heritability values for visual

severity scores mostly between 0.29 and 0.35 (Li et al., 2018; Ismael

et al., 2020; Klápsťě et al., 2020) but up to 0.43 (Klápsťě et al., 2020).

Remote sensing research has shown promising results in

phenotyping individual tree health within forests and tree crops by

detecting changes in physiological functioning caused by biotic

stressors (Hernández-Clemente et al., 2019; Smigaj et al., 2023).

Paired with UAV technology, remote sensing offers an efficient way

to repeatedly collect high spectral and spatial resolution data (Smigaj

et al., 2019; Oerke, 2020; Pan et al., 2023). Spores fromDothistroma ssp.

infect pine needles through the stomata and create chlorotic lesions

that expand into visible necrotic bands caused by the polyketide toxin,

dothistromin (Bassett et al., 1970). Dothistromin targets chloroplasts

and degrades photosynthetic pigments (Bradshaw, 2004; Kabir et al.,

2015). Vegetation indices from spectral imagery can therefore detect

DNB infection and characterise severity, as demonstrated in lodgepole

pine (Smigaj et al., 2019) and radiata pine (Watt et al., 2023a, b). Water

loss is commonly associated with foliar diseases, and a common

physiological response is the closure of stomata to reduce

transpiration. This leads to a reduction in stomatal conductance and

assimilation rate, which can be detected with vegetation indices

(Hernández-Clemente et al., 2019), and to an increase in leaf

temperature, which can be detected using thermal sensing at the

canopy level, as demonstrated in Scots pine (Smigaj et al., 2019).
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The use of UAV hyperspectral data has been extended to the

combination of vegetation indices with plant functional traits

inferred from radiative transfer modelling, improving disease severity

prediction from the use of vegetation indices alone (Watt et al., 2023b).

The potential for spectral data and vegetation indices to be used

as phenotypes in breeding has been explored in a number of tree

species. Virlet et al. (2015) used multispectral imagery to identify

quantitative trait loci associated with yield in an apple tree hybrid

population and found broad-sense heritabilities between 0.60 and

0.77 for three multispectral indices. Tao et al. (2021) assessed the

heritability of several UAV-derived vegetation indices to use in tree

growth assessments in slash pine (Pinus elliottii) and found narrow-

sense heritabilities ranging from 0.07 to 0.26. Čepl et al. (2018)

conducted a similar study on Scots pine and found a similar range of

heritabilities for vegetation indices (0.02 to 0.22) and up to 0.39 for

single wavelength bands at the red edge inflection point, without

however relating these metrics to any measured physiological trait.

Corbin et al. (2024) used a handheld spectrometer to measure

vegetation indices in common gardens of Populus fremontii and

calculated broad-sense heritabilities up to 0.48. These exploratory

studies showed that some spectral measurements can be heritable

enough to be used in breeding. However, further research is needed to

relate those measurements to specific adaptive or desirable traits in

commercially planted tree species and to implement them within

breeding trials in a large-scale phenotyping setup involving UAVs. To

our knowledge, there has been no such attempt to date and no genetic

assessment of spectral or thermal traits for selection of specific

characteristics in tree breeding programmes. Here we address this

key research gap by calculating tree-level UAV-collected

hyperspectral and thermal measurements in a radiata pine breeding
Frontiers in Plant Science 03
trial experiencing a disease outbreak and using derived indices to

directly assess disease susceptibility for genetic selection.

Using UAV collected hyperspectral and thermal data, this study

assesses how high-throughput remote sensing data can replace or

complement visual severity scoring for DNB resistance. Remote

sensing data was collected from a clonal breeding trial located in the

central North Island of New Zealand at the peak of a DNB outbreak

and linked with severity scores of the disease. We used narrow-band

hyperspectral indices (NBHIs), thermal indices and plant traits

calculated at the tree level as a means to supplement or replace time

consuming measurements of disease severity. We first identify the

most promising indices for use in phenotyping DNB severity for

breeding. We then focus on two approaches for using the selected

indices. The first approach assesses whether high-heritability indices

can complement visual scoring, either by enhancing the accuracy of

estimated breeding values (EBVs) for severity scores measured on all

trees, or by maintaining high accuracy of breeding values for severity

scores measured on a reduced proportion of the trial. The second

approach determines whether using only remote sensing indices is a

viable option to phenotype breeding trials for DNB resistance.
Materials and methods

Genetic material

The study focuses on a clonally replicated breeding trial

established by the New Zealand Radiata Pine Breeding Company

(RPBC). The trial is in Kinleith forest in the Waikato region of New

Zealand (Figure 1A) and comprises 60 6×6 row-column incomplete
A B

FIGURE 1

(A) Location of the trial site in the Central North Island, Rotorua, New Zealand. (B) Visualisation of the captured hyperspectral data (within the red
box) overlaid with thermal data.
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blocks of 36 single tree plots, with genotype allocation following the

“Optimal Design” described by Butler (2013), which takes into

account potential spatial correlations in rows and columns within

blocks. In total, 1886 genotypes from 163 full-sib families (181

parents) are represented in the trial, with 1–3 ramets each. A

pedigree with information for up to 5 generations was available

for all tested genotypes. Genomic data was available for 65% of the

tested genotypes and their parents, consisting in a set of ∼ 9.5k

single nucleotide polymorphisms (SNPs) selected from two arrays:

one from exome capture (Telfer et al., 2019) and the second one

from a custom radiata pine Affymetrix Axiom array, NZPRAD02

(Graham et al., 2022). Markers in NZPRAD02 have a reasonably

even distribution across linkage groups (Graham et al., 2022) and a

set of markers almost identical to this used in this study has

successfully been used for pedigree reconstruction in radiata pine

(Klápsťě et al., 2022). Genotypes with <0.2 call rate and SNPs with

<0.1 call rate were discarded from the analysis. The final genomic

dataset had 1453 genotypes and 9570 markers.
Frontiers in Plant Science 04
Disease assessments

A DNB outbreak was observed in the trial at year 5 after trial

establishment. At the peak of the outbreak, severity scores were

obtained on 25 September 2023 for all live trees in the trial (n=

2054). The severity was determined as the percentage of the crown

affected by the disease, in 5% steps (Bulman et al., 2004). As the

disease moves upwards from the base of the crown, this scoring

system provides an objective means of characterising

disease severity.
Remote sensing captures

Remote sensing data captures were undertaken from a UAV close

to the time of visual scoring (Figures 1B, 2). Hyperspectral data were

collected on 20 October 2023 using a Nano series HeadWall Photonics

sensor (HeadWall Photonics, Inc., Bolton, MA, USA) mounted on a
FIGURE 2

The UAV platforms used for data acquisition, namely the DJI Matrice 300 with FLIR Vue® TZ20-R thermal sensor (top left) and DJI Matrice 600 with
HeadWall Nano hyperspectral sensor (bottom left). Also shown are examples of trees exhibiting Dothistroma symptoms (top right) and a UAV pilot in
the process of capturing data over the site (bottom right).
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DJI Matrice 600 Pro platform (DJI, Shenzhen, China). The sensor

featured a 17 mm focal length, with a 15° angular field of view (FOV).

The collected hyperspectral imagers consisted of 270 spectral bands

across the visible to near-infrared (VNIR) range from 400–1000 nm

with a 6 nm full width at half maximum (FWHM). The UAV was

flown at mid-day at 6 m/s and 120 m altitude with 40% side overlap,

resulting in a 5 cm/pixel ground sampling distance (GSD). Solar

irradiance measurements across a range of 350–2500 nm were

recorded concurrently every 15 seconds using a Spectral Evolution

RS-5400 spectroradiometer (Spectral Evolution, Haverhill, MA, USA).

The raw digital numbers from the hyperspectral data were processed

to orthorectified reflectance cubes using SpectralViewTM software

(Headwall Photonics, Fitchburg, MA, USA). Radiance was calculated

with dark current corrections and calibration files, then converted to

reflectance using a 3 × 3 m² ground calibration target located within

the flightpath. The reflectance data cubes underwent an

orthorectification process to accurately geolocate the imagery and

correct any roll, pitch, and yaw imagery distortions. Using post-

processed RTK files, previously collected high-resolution digital

terrain models (DTM), RGB ortho-mosaics, and the GCPs, the

reflectance cubes were orthorectified, mosaiced, and registered to

the Universal TransverseMercator (UTM), Zone 60 South, projection.

Thermal data were collected on 13 October 2023 using a FLIR

Vue® TZ20-R sensor (Teledyne FLIR, USA) mounted on a DJI

Matrice 300 RTK platform (DJI, Shenzhen, China). The sensor has

a 12 mm pixel pitch, operates within the 7.5–13.5 mm spectral range,

and has a reported thermal sensitivity of 85 mK (at F/1.0). To

support flight parameterisation and thermal index calculations,

ambient air temperature and relative humidity were continuously

recorded using an HMP155A probe (Vaisala, Vantaa, Finland)

connected to a CR1000 datalogger (Campbell Scientific, Logan,

UT, USA). Prior to data acquisition the thermal camera was

powered on and allowed to stabilise for 15 minutes. Ambient

temperature, relative humidity, and an emissivity value of 0.98

were entered into the DJI Pilot controller software (DJI, Shenzhen,

China). Data were captured using the 4.9 mm lens (95°FOV) at an

altitude of 80 m and a flight speed of 3 m/s, with 90% forward and

side image overlap. The resulting imagery had an approximate

ground resolution of 23 cm, with radiometric temperature values

embedded in each pixel and stored in the proprietary R-JPEG

format. Images were subsequently processed and orthomosaicked

in Pix4D using the FLIR Vue Pro R camera profile.

To enable extraction of pure canopy pixels from thermal and

hyperspectral data, LiDAR was collected and processed following

Watt et al. (2024b). This facilitated individual tree segmentation

and the generation of canopy polygons for guiding image-based

data extraction. LiDAR was acquired on 8 September 2023 using the

DJI Zenmuse L1 sensor on the Matrice 300 RTK platform (DJI,

Shenzhen, China), flown at 55 m altitude and 3 m/s in a grid pattern

with 10 m line spacing, achieving 85% overlap. The system operated

in repetitive scan mode at 160 Hz, recording up to three returns per

pulse. For accurate geolocation, the DJI Matrice 300 used a real-

time kinematic (RTK) base station and 11 high-contrast ground

control points (GCPs) with matte black and retro-reflective white

panels, evenly distributed across the site. GCP centers were
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identified from the LiDAR point cloud and used to georeference

the imagery. Post-capture, standard pre-processing steps were

undertaken that included denoising, ground point classification,

digital terrain model (DTM) generation and ground normalisation

using LASTools (v2.0.2) following (Watt et al., 2024b).

Tree detection and crown delineation were performed in R (R

Core Team, 2023). A 25 cm resolution canopy height model (CHM)

was generated using the pit-free method of (Khosravipour et al.,

2014) and then smoothed with a 3×3 pixel moving window. Tree

peaks were identified using a local maxima algorithm with a 3 m

window, reflecting initial planting spacing, and verified against

high-resolution imagery and field-validated stem maps. The

“mcws” function in the ForestTools R package (Plowright, 2025)

was used to delineate crowns via the watershed algorithm,

restricting delineation to the top 75% of the CHM to avoid low

vegetation. The resulting crown polygons were visually checked and

erroneous crowns removed.
Extraction of hyperspectral and thermal
predictors

The hyperspectral and thermal data extracted for each canopy

was used to calculate several plant traits and indices that could

highlight tree sensitivity to infection. A range of narrowband

hyperspectral indices (NBHI), designed to capture variations in

plant biochemical and structural properties, were calculated using

the formulations in Supplementary Table S1.

The PRO4SAIL2 radiative transfer model, which couples the leaf

model PROSPECT-D (Féret et al., 2017) with the canopy model

4SAIL2 (Verhoef and Bach, 2007), was used to simulate canopy

structural traits and leaf biochemical properties from pure vegetation

pixels in the radiata pine canopies. By isolating pure canopy pixels,

the influence of shade and soil was minimised reducing structural

artifacts (Zarco-Tejada et al., 2021). This enabled accurate simulation

of chlorophyll a+b (Ca+b), anthocyanin (Anth.), and carotenoid (Cx+c)

concentrations as well as structural parameters such as the leaf

inclination distribution function (LIDFa) and leaf area index (LAI).

A lookup table with 200,000 simulations was generated in forward

mode by running the PRO4SAIL2 model, using the parameters and

ranges in Supplementary Table S2 which were randomly varied based

on continuous uniform distributions, with other model settings kept

at default. Data resampling was undertaken to match the

hyperspectral sensor’s spectral resolution using a Gaussian response

function. Model inversion was performed using Support Vector

Regression (SVR), a non-parametric approach grounded in

statistical learning theory (Vapnik, 1999). SVR models were trained

in parallel using MATLAB (Statistics and Machine Learning, Parallel

Computing, and Deep Learning toolboxes; MathWorks, Natick, MA,

USA), with resampled reflectance as input and predicted biochemical

and structural traits as outputs. A radial basis function kernel was

used, with hyperparameters optimised during training.

Solar-induced fluorescence (SIF), a proxy for photosynthetic

efficiency, was estimated using hyperspectral radiance and solar

irradiance data through the Fraunhofer Line Discriminator (FLD)
frontiersin.org

https://doi.org/10.3389/fpls.2025.1574720
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Elleouet et al. 10.3389/fpls.2025.1574720
approach (Plascyk, 1975). Specifically, the three-band FLD method

(3FLD) proposed by Maier et al. (2004) was applied. This method

extends the traditional FLD technique by incorporating three

spectral bands — two situated outside the O2-A absorption band

and one within it — to improve the accuracy of SIF retrievals.

Thermal imagery data and field-measured ambient temperature

were used to compute the normalised canopy temperature index

(Tc – Ta), where Tc represents canopy-level temperatures and Ta

reflects the ambient air temperature recorded during the flight

period (Smigaj et al., 2023).
Univariate analyses of severity scores and
remote sensing traits

Single phenotypes from visual assessment (severity scores) and

remote sensing captures were analysed using the following linear

mixed model implemented in the ASReml-R statistical package

(Butler et al., 2009):

y = Xb + Zaua + Zgug + Zdud + e

where y is the vector of observed single-tree phenotypes, b is the

vector of fixed effects with the associated design matrix X, ua, ug ,
and ud are the vectors of random additive genetic, nonadditive

genetic, and design effects, respectively, with associated design

matrices Za, Zg , and Zd , and e is the vector of residuals. Random
effects are normally distributed following ua ∼  N(0,Hs 2

a ), ug ∼  N

(0, Is 2
g ), and ud ∼  N(0, Is 2

d ), where I is the identity matrix,H is the

average numerator relationship matrix between genotypes, and s 2
a ,

s 2
g , and s 2

d are variances for additive genetic, nonadditive genetic,

and design effects, respectively. In this model, which is hereafter

referred to as non-spatial, residuals are independent, following e  
∼  N(0, Is2

e ). To account for the spatial correlation between trees in

the trials, we consider an alternative model which allocates a

separable first-order autoregressive process component to

residuals. In this case, e  ∼  N(0,R) where R = ½AR1(rcol)⊗AR1(

rrow)�s 2
x + Is 2

h . AR1(r) is a first-order autoregressive correlation

matrix with autocorrelation parameter r, and s 2
x and s 2

h are spatial

and independent residual variances, respectively.

In the first model instance, the average numerator relationship

matrix H is the pedigree-based relationship matrix A calculated

from the pedigree on all genotypes present in the trial. Alternatively,

a blended matrix Hl was used for the variance structure of the

additive genetic effects. Hl was computed for all genotypes using A
and the genomic marker-based relationship matrix G, calculated on

genotyped individuals. A and G were calculated using the

AGHmatrix R package (Amadeu et al., 2016), using the

VanRaden method for G (VanRaden, 2008). The blended genetic

relationship matrix Hl was calculated using the ASRgenomics

package (Gezan et al., 2022) and can be defined by its inverse as

follows:

Hl − 1 = A−1 +
0 0

0 l(G−1 − A22 − 1)

" #
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where A22 is the genetic relationship matrix for genotyped

individuals and l is a scaling factor bound between 0 and 1

representing the weight associated to G relative to A for

genotyped individuals.

Thorough model building and model selection were performed

on severity scores. The Bayesian Information Criterion (BIC) as

well as graphical checks of model diagnostics and variograms were

used to guide model selection. One-sided likelihood ratio tests on

random effect variances were used to compare models with nested

random effects, and incremental addition or removal of fixed effects

was guided by the Wald test. The model was constructed using the

pedigree-based relationship matrix A. We started with a base model

with an intercept, additive (ua) and nonadditive (ug ) genetic effects,
and block as a design effect (ud). Cubic spline transformations of

trial rows and columns were added as fixed effects in b after visual

examination of residuals against trial rows and columns, to account

for environmental effects at the trial level. Two alternative spatial

models for residuals were tested, one assuming no independent

residual component (s 2
h = 0), and one including the residual

component. Once the most appropriate residual structure was

selected, a reassessment of the relevance of block effects and row

and column spline effects was conducted.

As part of the analysis of severity scores, after selecting the final

set of fixed and random effects and the appropriate residual

structure, we fitted the model using Hl and tested different values

of l in 0.1 increments across its possible range. The optimal l value

was selected based on model BIC. The final model including the

optimal Hl matrix was implemented for the univariate genetic

analyses of all remote sensing traits.

Narrow-sense heritability was calculated as follows:

bh2 =
cs 2
acs 2

a + cs 2
g + cs2

r

where ŝ 2
r = ŝ 2

e for non-spatial models and ŝ 2
r = ŝ2

h for

spatial models.

Estimated breeding values were extracted from random

genotype effects and their accuracy was obtained from univariate

models using the following calculation:

accuracyi =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

dSEi2cs 2
a

vuut
where SEi is the estimated standard error of the breeding value

for genotype i.
Multi-trait analyses

Multi-trait analyses consist of simultaneously modelling several

response traits and allow estimating the correlations between traits

through structured variance matrices. In our case, the genetic

correlation is estimated through appropriate use of the genetic

relationship matrix. When the genetic correlation between two

traits is non-zero, prediction performance of genotypes for one or
frontiersin.org
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more of the modelled traits can be improved. In our case, multi-trait

analyses are advantageous when the trait in focus for selection has a

lower heritability than other measured correlated traits. They can

also be used when measurements for the focus trait are only

available for a subset of observations in the trial: the trait can still

be predicted from unmeasured units using the correlation with

other traits that have been measured. The general multivariate

model with d traits is as follows:

y = Xb + Zaua + Zgug + ex + eh

where y = ½y1,…, yd�T is the stacked column vector of

phenotypic observations relating to each trait. Secondary traits y2,
…, yd were rescaled to a similar scale as y1 if necessary, to improve

convergence of the restricted maximum likelihood (REML)

algorithm. b = ½b1,…, bd �T is the column vector of fixed effects

selected in univariate analyses (intercept and spline functions of
trial rows and columns) with the associated design matrix X =

X1 ⋯ 0
⋮ ⋱ ⋮

24 35. ua = ½ua1,…, uad�T a n d ug = ½ug1,…, ugd �T

0 ⋯ Xd

are the column vectors of random additive genetic and

nonadditive genetic effects, respectively, with associated design

matrices Za =

Za1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ Zad

266664
377775 and Zg =

Zg1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ Zgd

266664
377775. In this
model notation we separated the residuals into a spatially

structured component ex and an independent component eh ,

where ex = ½ex1,…, exd�T and eh = ½eh1,…, ehd�T . Random effects

and residuals are modelled as follows: ug ∼  N(0,og  ⊗ Ip), ua ∼  

N(0,Sa  ⊗Hl), ex  ∼  N(0,  Sx ⊗Rx), and eh  ∼  N(0,Sh ⊗ In),

where Sg , Sa, Sx , and Sh are general heterogenous variance

structures of the form

∑x =

sx
2
1 ⋯ rx1dsx1sxd

⋮ ⋱ ⋮

rxd1sx1sxd ⋯ sx
2
d

2664
3775

In and Ip are identity matrices of sizes n, the number of trees in

the trial, and p, the number of genotypes represented in the trial.Hl

is the blended genetic relationship matrix. Finally, Rx = ½AR1(rcol)
⊗AR1(rrow)� is the separable autoregressive variance structure of

spatially correlated residuals. We note that this multivariate model

has the same fixed effects, random effects, genetic relationship

matrix and type of residual structure as the final univariate model

selected for all studied traits. We also note that this model assumes

the same spatial row and column autocorrelation values rcol and
rrow across jointly modelled traits.

We first identified the remote sensing index with the highest

observed correlation with severity scores. To estimate genetic

correlations between the index and severity scores, and to assess

whether joint modelling enhances the accuracy of estimated

breeding values (EBVs) of severity scores, we performed a
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bivariate analysis with severity scores as the primary trait and the

selected index as the secondary trait.

To test whether visual phenotyping can be reduced to a sample

of trees in the trial and complemented by remote sensing data, we

repeated and modified the previous bivariate analysis. Instead of

using the complete set of severity scores as the primary trait, we

randomly selected from 5% to 100% of severity scores and used the

selected subset of severity scores as the primary trait. We repeated

the procedure 10 times for each sampled proportion.

We then explored the use of remote sensing indices only in

DNB severity phenotyping, by incrementally building a multi-trait

model with a combination of high-heritability indices that are

correlated with severity scores, starting with the most correlated

index and adding additional indices in decreasing order of

heritability values.
Results

Distribution and genetic analysis of severity
scores

The distribution of DNB severity over the 2054 scored trees

covered the full range of possible values, from 5% to 100%, with a

median score of 55% (Figure 3). Tree-level and trial-level spatial

dependence is apparent, (Figure 3), suggesting that tree-to-tree

transmission of the disease and environmental heterogeneity in

the trial had an influence on disease severity.
FIGURE 3

Histogram (left) of severity scores and their spatial distribution (right)
across rows and columns in the trial. The coloured histogram (left)
also acts as a colour legend for the spatial distribution of severity
scores (right).
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Selected genetic models of severity scores were in accordance

with this observation. Model selection was performed using the

pedigree-based relationship matrix A for the estimation of additive

genetic effects. Including a spatial autocorrelation variance structure

of residuals led to a significantly better fit than modelling

independent residuals (Table 1), and the addition of splines for

trial rows and columns in the fixed effects also improved the model.

These results suggest both a landscape effect (variation across the

trial site) and a neighbour effect (proximity related disease

transmission) on the severity of disease. The addition of a

spatially independent residual term gave a likelihood ratio test p-

value of 0.05. Row and column correlations were around 0.5 and the

spatially dependent error variance was five times higher than the

independent error variance, suggesting that most of the residual

structure could be accounted for by spatial factors. However, as the

best model overall (lowest BIC) included both separable

autoregressive and spatially independent error terms, both were

included in the final model. As block effects became insignificant

after accounting for spatial structure in the residuals, we omitted the

block term from the final model, effectively pooling any block effect

variance with the residual variance. Table 1 shows variance

components and estimated genetic parameters for the best spatial

and non-spatial models when using the A matrix.

The test on proportion of G vs. A matrices in the blended Hl

matrix was performed using the model selected above. We found

that values of l between 0.4 and 0.6 were optimal. We set l = 0:5 as

it provided both the lowest BIC and highest heritability for severity

scores. The final model selected to calculate and compare breeding
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values across traditional and remote sensing traits was therefore the

spatial model with the H0:5 matrix, and its variance components

and estimated genetic parameters are presented in Table 1, together

with results for the best non-spatial model for comparison

purposes. Narrow-sense heritability of severity scores using H0:5

was 0.38 with a standard error (SE) of 0.06 when estimated from the

non-spatial model and 0.57 (SE=0.08) when estimated from the

final spatial model.
Univariate analysis of remote sensing
indices

The same final univariate spatial model and H0:5 matrix that

were used in the analysis of visual severity scores were also applied

to model the genetic parameters of each remote sensing metric.

Supplementary Table S1 reports narrow-sense heritability for each

remote sensing index, estimated from variance components from

non-spatial models with design effects. Calculating heritability on

the non-spatial model with design effects makes values more

comparable across indices as design effects are the same across

indices and all the residual variance is included in the calculation.

Narrow-sense heritability of remote sensing indices ranged from 0

to 0.37 when estimated from non-spatial models, reaching values

similar to severity scores (0.38). Absolute observed correlations with

severity scores reached 0.79 (Supplementary Table S1). The

relationship between heritability (h2) and absolute Pearson’s

correlation with severity scores (rP) pictured in Figure 4A allows
TABLE 1 Parameter estimates, narrow-sense heritability, Bayesian information criterion (BIC) and estimated breeding value (EBV) accuracy for four
alternative models of Dothistroma needle blight severity scores.

Model type Non-spatial Spatial Non-spatial Spatial

Genetic relationship matrix A A H0.5 H0.5

Model statistics

BIC 12659.52 12455.74 12650.55 12448.6

Variance components

Additive genetic variance 63.37 (12.60) 61.13 (11.79) 89.83 (16.82) 79.03 (14.19)

Nonadditive genetic variance 37.96 (12.66) 36.9 (10.59) 27.14 (16.82) 31.41 (10.73)

Independent residual variance 117.46 (10.08) 25.43 (11.5) 117.70 (10.08) 27.83 (11.3)

Design (block) variance 21.37 (5.78) 20.95 (5.66)

Spatial residual variance 115.8 (11.63) 112.87 (11.36)

Column AR1 correlation 0.49 (0.05) 0.5 (0.05)

Row AR1 correlation 0.52 (0.05) 0.52 (0.05)

Genetic parameters + predictions

Narrow-sense heritability 0.29 (0.05) 0.50 (0.08) 0.38 (0.06) 0.57 (0.08)

Mean EBV accuracy (all) 0.66 (0.00) 0.67 (0.00) 0.76 (0.00) 0.74 (0.00)

Mean EBV accuracy (clones) 0.70 (0.00) 0.72 (0.00) 0.79 (0.00) 0.77 (0.00)

Mean EBV accuracy (ancestors) 0.50 (0.01) 0.52 (0.01) 0.64 (0.01) 0.61 (0.01)
Numbers in brackets are standard errors.
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the identification of indices with high heritability and high absolute

correlation with severity scores. These traits are potential candidates

to assist or replace visual scoring in genetic selection for

DNB resistance.

The most promising indices were mostly NBHIs (Figure 4B),

some of which included spectral bands that can be calculated from

multispectral instruments (Supplementary Table S1). The index

RNIR_CRI700, RNIR_CRI550 and PSSR_c were the best

performing indices (Figure 4B, Supplementary Table S1), which

are proxies for variation in carotenoid content: RNIR_CRI550 and

RNIR_CRI700 (h2 = 0.37), are carotenoid reflectance indices

(Gitelson et al., 2003, 2006). RNIR_CRI700 is also the NBHI with

the highest absolute correlation with severity scores (rP=-0.79).

Many other important indices (CI, GM1, GM2, GM4, PSSR_a,

PSSR_b, VOG3, BGI2, LIC3) characterise chlorophyll content and

three were sensitive to both chlorophyll content and plant structure

(MCARI3, MSR, SR). Notably, none of the water indices had either

high heritability (h2 = 0.004 - 0.04) or high correlation with disease

(0.065 - 0.375). Mean and median normalised canopy temperature

(TcTa_InMn and TcTa_InMed), derived from thermal captures,

were highly correlated with severity scores but had a lower

heritability. Solar-induced fluorescence only had a low to

moderate correlation with severity scores and low heritability.

Traits inverted from radiative transfer modelling were not as
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useful as the best NBHIs and mainly had heritability values

between 0.15 and 0.28.

We selected the 21 indices with heritability values above 0.30

(Figure 4B) and computed their pairwise correlations using

Pearson’s correlation coefficient (Figure 5). Pairwise correlations

ranged from 0.71 to 1. Many of these NBHIs were highly correlated

to each other as they are derived from similar wavelengths

(Supplementary Table S1). For instance, RNIR_CRI550 and

RNIR_CRI700 (h2 = 0.37), are carotenoid reflectance indices

(Gitelson et al., 2003, 2006) and were strongly correlated with

each other (rP > 0.99). RNIR_CRI700 is also the NBHI with the

highest absolute correlation with severity scores (rP=-0.79). Most

other indices with heritability values > 0.30 were strongly correlated

with RNIR_CRI700, with Pearson’s correlation coefficients ranging

from 0.83 to 0.99.

Figure 6 shows the relationship between severity scores and

RNIR_CRI700 both in terms of phenotypic observations (A) and

EBVs from final spatial univariate models (B). Other promising

indices included three Red/Green/Blue indices: the blue/green index

(BGI2), the ratio analysis of reflectance spectra (RARS) and the

Lichtenthaler index (LIC3). These indices use spectral bands

compatible with multispectral capture. One high-heritability

NBHI, the Sugar Beet Rust Index (SBRI), was developed for

disease assessment (Mahlein et al., 2013). All other high-ranking
A B

FIGURE 4

(A) Relationship between narrow-sense heritability estimated from univariate models of all remote sensing indices, and their absolute observed
correlation with severity scores, by sensor type and derivation type. Note that the multispectral category corresponds to hyperspectral indices whose
calculation is compatible with multispectral capture. The dashed line indicates the estimated narrow-sense heritability of severity scores. The box
delineates the area of (B). RTM, Radiative transfer model; SIF, Solar-induced fluorescence. (B) Expansion of (A) for indices with heritability above 0.3,
with point and index labels coloured by sensitivity to different physiological characteristics.
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indices are NBHI relating to pigments or structural characteristics,

and their description can be found in Supplementary Table S1.
Multi-trait analysis of severity scores

We performed a bivariate spatial analysis with the full set of

severity scores as the primary trait and RNIR_CRI700 as the

secondary trait, as its absolute correlation with severity scores was

the highest (rP = -0.79), and its relationship with severity scores

appeared to be relatively linear (Figure 6A). The bivariate model

estimated a genetic correlation of -0.80 (SE 0.09) between severity

scores and RNIR_CRI700. The accuracy of severity score EBVs was

on average 0.75. This represents little improvement from the mean
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accuracy of 0.74 obtained from the univariate analysis of severity

scores, which is not surprising as severity scores have a higher

estimated heritability than remote sensing indices.

Results from all instances of the bivariate model with various

proportions of scored trees as the primary trait and RNIR_CRI700

as the secondary trait are shown in Figure 7. When 80% or more

trees are scored, mean EBV accuracy of severity scores were similar

or lower than the EBV accuracy of severity scores from the

univariate model, and steadily decreased to around 0.5 with 5%

trees scored (Figure 7A). The precision and accuracy of genetic

correlation estimates decreases as fewer trees are scored, with

estimated values becoming unreliable below 40% of sampled trees

(Figure 7B). Severity score EBVs are highly correlated to EBVs from

the univariate model with full scoring, even at low scoring
FIGURE 5

Pairwise correlation between indices with heritability values above 0.30. The left-to-right and top-to-bottom order of indices reflects their ranking in
decreasing heritability values.
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proportions (Figure 7C). However, a sharper decrease in correlation

is observed when fewer than 25% trees are scored, with correlation

values dropping to below 0.85.
Multi-trait analysis of remote sensing
indices

To assess the ability of remote sensing indices to fully replace

severity scores in DNB resistance phenotyping, we selected the

index most correlated with severity scores, RNIR_CRI700, as the

primary trait in the spatial multi-trait analysis of remote sensing

metrics. We selected remote sensing indices with estimated

heritability higher than 0.2 and an absolute correlation with

RNIR_CRI700 lower or equal to 0.90 as potential secondary

traits. We avoided selecting indices with a higher absolute

correlation as they would add little information compared to the

univariate model of the primary trait and lead to multi-trait model

convergence issues. Resulting EBV accuracies and EBV correlation

with severity scores from a univariate model are presented

in Table 2.

Modelling RNIR_CRI700 with the structure-intensive pigment

index SIPI as the secondary trait increased its EBV accuracy by

6.8%, from 0.71 to 0.76. Modelling RNIR_CRI700 with the blue/

green index BGI2 as the secondary trait increased its EBV accuracy

by 4.3%, from 0.71 to 0.74. Using any other index as a secondary

trait led to a decrease in EBV accuracy from the univariate analysis

of RNIR_CRI700. The absolute correlation between RNIR_CRI700

EBVs and severity score EBVs ranged from 0.55 to 0.79. Figure 6C

shows the relationship between RNIR_CRI700 EBVs from the

bivariate analysis with SIPI, which has a Pearson correlation

coefficient of -0.76 with severity scores. This correlation is less

strong than the correlation calculated with RNIR_CRI700 EBVs

from the univariate analysis (rP = -0.79, Figure 6B), which suggests

that jointly modeling traits adds complexity without necessarily
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improving the alignment of RNIR_CRI700 with severity scores.

Using RNIR_CRI700 alone may therefore be more straightforward

and equally effective.
Discussion

This study leverages a Dothistroma needle blight outbreak

displaying the full range of severity levels within a radiata pine

clonal breeding trial to extend phenotyping methods for the

assessment of disease susceptibility using remote sensing

techniques. We quantified the extent of genetic control of novel

thermal and spectral disease susceptibility phenotypes through a

large set of replicated genotypes in a clonal breeding trial. Our

research focused on identifying the most appropriate phenotypes

and statistical methodologies for estimating genetic parameters and

tested several operational scenarios for phenotyping. These

scenarios included approaches solely based on remote sensing

and those integrating remote sensing with traditional

phenotyping techniques. Although a few studies have calculated

narrow-sense heritability of spectral indices in tree species (Čepl

et al., 2018; Tao et al., 2021), this is the first time that such indices

have been used to characterise disease susceptibility in an

operational breeding trial, and the first time field-based thermal

measurements on forest stands have been used for tree genetic

assessment. The successful combination of these measurement

methods with UAV technology paves the way for a future

implementation of high-throughput phenotyping of plant stress

in forestry breeding trials.

The narrow-sense heritability values for visual severity scores

obtained in this study align with previous estimates from breeding

trials in New Zealand and Australia (Li et al., 2018; Ismael et al.,

2020; Kláps ̌tě et al., 2020). We confirmed that foliar disease

modelling requires the addition of spatial structure through both

trial-level geographical information (here trial rows and columns)
A B C

FIGURE 6

Relationship between severity scores and RNIR_CRI700. (A). Relationship between RNIR_CRI700 and observed severity. (B) Relationship between
RNIR_CRI700 estimated breeding values (EBVs) and EBVs from the univariate model. (C) Relationship between RNIR_CRI700 EBVs from the bivariate
model with SIPI and severity EBVs from the univariate model. A smoothing spline (blue line) has been fitted to aid visualisation and Pearson’s
correlation coefficient is shown for all relationships.
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and neighbourhood effects to take into account the landscape

variability and mode of transmission of the disease. The

application of single-step genomic evaluation, integrating pedigree

and genomic marker information in the genetic relationship matrix,
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improved model performance. The optimal proportion of the G
matrix, which reflects the weighting between pedigree and genomic

marker information, was found to be between 0.4-0.6, which is

consistent with previous studies within the same breeding

programme (Klápsťě et al., 2020, 2022).

UAV hyperspectral and thermal data acquisition at the time of

the outbreak enabled the remote phenotyping of disease severity

through the calculation of spectral, thermal, and fluorescence

indices. Pigment- and structure-sensitive narrow-band

hyperspectral indices had a strong observed correlation with

severity scores and a narrow-sense heritability similar to severity

scores. The importance of these indices is consistent with previous

research describing the impacts of DNB and disease on changes in

tree structure and fundamental leaf-level physiological processes.

Previous research has demonstrated the importance of carotenoids

as a symptom of DNB severity (Watt et al., 2023b) and the

carotenoid:chlorophyll ratio has been found to increase as a result

of increasing disease severity (Watt et al., 2023b). This is consistent

with our results of carotenoid-sensitive indices such as

RNIR_CRI700, RNIR_CRI550, and PSSR_c showing highest

correlation with severity scores. It was interesting to note that the

RTM plant trait that performed best was carotenoid content (CAR).

Although CAR did not perform as well as the pigment-related

NBHIs discussed above, the relative importance of CAR amongst

other RTM traits is consistent with rankings between indices. The

utility of the important PRI indices (PRI_CI, PRI515, PRI550,

PRIm1), which can account for xanthophyll dynamics, are

consistent with a large body of previous research demonstrating

their utility for detecting a range of stresses (Peguero-Pina et al.,

2008; Zarco-Tejada et al., 2009; Watt et al., 2024a). Photochemical

reflectance index is an effective proxy for the reductions in stomatal

conductance and assimilation rate that are associated with pre-

visual and early disease (Hernández-Clemente et al., 2019) and was

found to be one of the most important classifiers of DNB severity

within a different radiata pine field trial (Watt et al., 2023b). It is

interesting to note that non-standard formulations of PRI appeared

to be more important than the standard PRI which uses R531 as a

xanthophyll-sensitive spectral band. Compared to the standard

formulation, the PRI variants using bands from the 500–515 nm

spectral region (i.e., PRIm1 and PRI515) have been shown to be less

sensitive to leaf area index, tree densities, and structural effects in

conifer canopies (Hernández-Clemente et al., 2011), which

highlights again the importance of accounting for stand structure

in identifying changes in pigments.

Canopy temperature indices from thermal captures showed

promising performance in this study. Following energy balance

theory, increases in leaf temperature result from reductions in

stomatal conductance and lower rates of transpiration (Smith

et al., 1986; Still et al., 2019), and our results show that these

modifications are detectable by UAV thermal imagery at the

canopy level.

Through an extensive simulation exercise, we showed that the

joint modelling of severity scores and the best-performing NBHI,

RNIR_CRI700, allows the estimation of severity scores breeding

values with very high fidelity (absolute EBV correlation above 0.9)
A

B

C

FIGURE 7

(A) Accuracy of estimated breeding values (EBVs) for severity scores
for each proportion of severity scores sampled. Grey points
represent each iteration, black points and error bars are the average
and standard deviation for all 10 iterations of a given scoring
proportion. The dashed line is the accuracy of severity scores EBVs
from the univariate model using the full set of severity scores. (B)
Estimated additive genetic correlation between severity scores and
RNIR_CRI700 for each iteration of the simulation. (C) Pearson’s
correlation coefficient between EBVs of sampled severity scores in
each iteration of the bivariate model and EBVs from the univariate
model using the full set of severity scores.
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TABLE 2 Observed correlation, estimated genetic correlation, mean estimated breeding value accuracy and correlation with severity scores resulting
from bivariate models with RNIR_CRI700 as the primary trait.

Trait2
Observed
correlation

Genetic
correlation

Mean
RNIR_CRI700
EBV accuracy

Mean trait 2
EBV accuracy

RNIR_CRI700 EBV
correlation with
severity scores

Trait 2 EBV
correlation with
severity scores

SIPI -0.78 -0.97 0.76 0.76 -0.76 0.76

BGI2 -0.90 -0.97 0.74 0.78 -0.55 0.48

SBRI 0.83 0.90 0.68 0.76 -0.60 -0.43

PRI550 0.88 0.86 0.65 0.76 -0.69 -0.47

MTVI2 0.84 0.88 0.62 0.70 -0.73 -0.55

OSAVI 0.86 0.86 0.62 0.71 -0.75 -0.54

R 0.87 0.84 0.61 0.72 -0.68 -0.39

RDVI 0.81 0.86 0.61 0.69 -0.75 -0.58

MSAVI 0.79 0.86 0.61 0.69 -0.75 -0.59

Car_RTM 0.84 0.85 0.60 0.68 -0.74 -0.53

LIC1 0.90 0.81 0.60 0.72 -0.77 -0.45

MTVI1 0.71 0.84 0.59 0.66 -0.76 -0.61

TVI 0.69 0.81 0.58 0.66 -0.77 -0.60

CAR -0.88 -0.77 0.58 0.71 -0.78 0.46

PRIm4 0.82 0.73 0.58 0.72 -0.76 -0.42

GI 0.82 0.71 0.56 0.70 -0.76 -0.43

CLS -0.63 -0.70 0.56 0.67 -0.78 0.51

G 0.81 0.70 0.56 0.70 -0.76 -0.42

PRIm3 -0.78 -0.67 0.56 0.70 -0.77 0.40

PRIm2 -0.77 -0.65 0.55 0.70 -0.77 0.37

RGI -0.77 -0.65 0.55 0.71 -0.78 0.40

Cab 0.86 0.65 0.55 0.71 -0.77 -0.34

CRI550m 0.90 0.73 0.55 0.68 -0.75 -0.44

TcTa_InMn -0.77 -0.52 0.54 0.68 -0.77 0.66

TcTa_InMed -0.78 -0.50 0.54 0.68 -0.77 0.66

PSRI -0.80 -0.56 0.53 0.70 -0.79 0.37

DRI_PRI -0.81 -0.55 0.53 0.69 -0.78 0.33

DNCabxc 0.85 0.29 0.53 0.66 -0.76 -0.23

REP_Li2 -0.79 -0.56 0.53 0.68 -0.79 0.43

DNIRCabCxc 0.86 0.29 0.53 0.67 -0.76 -0.22

BF2 0.88 0.62 0.53 0.66 -0.77 -0.47

BF1 0.84 0.61 0.53 0.65 -0.77 -0.47

PRI -0.02 -0.05 0.53 0.68 -0.78 -0.06

PRI528 -0.54 -0.36 0.53 0.72 -0.77 0.33

HI 0.74 0.50 0.53 0.70 -0.78 -0.35

BF3 0.88 0.48 0.53 0.66 -0.77 -0.32

REP_LE 0.85 0.41 0.53 0.68 -0.77 -0.31
F
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The results are in order of decreasing mean RNIR_CRI700 EBV accuracy.
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when at least 50% of the trial is manually scored. Even when only

20% of the trial is scored, the fidelity remains relatively high

(absolute EBV correlation above 0.8). The associated loss in

accuracy is minimal, only decreasing from 0.74 to 0.68 at 50%

scoring and to 0.59 at 20% scoring. We found that using the remote

sensing trait RNIR_CRI700 as the sole disease severity phenotype in

a univariate analysis led to an EBV accuracy of 0.71 with an absolute

correlation of 0.79 with severity scores. These results suggest that

partial visual scoring could be entirely replaced by hyperspectral

remote sensing, with little loss in EBV correlation and no reduction

in EBV accuracy compared to a bivariate analysis that incorporates

partial visual scoring. We also assessed the potential benefits of

combining several indices to improve phenotyping from only one

index. However, using a combination of remote sensing indices in a

multi-trait setup did not improve the quality of genetic results over

univariate results, as it only minorly increased EBV accuracy and

considerably reduced the correlation of the selected remote sensing

index EBVs with severity score EBVs. This can be explained by the

redundancy of many of the pigment indices. Indeed, although we

identified 21 promising pigment-related indices, we found a high

level of correlation among them, which can partially be explained by

the similarity in their calculation from spectral bands

(Supplementary Table S1). We therefore suggest that using the

remote sensing trait most correlated with traditional severity scores

in a univariate analysis can be sufficient and leads to EBV

estimations more in line with severity score EBVs than those

estimated from the joint analysis of multiple remote sensing traits.

The focus of this study was restricted to exploring remote

sensing options to supplement or replace currently time-

consuming disease phenotyping methods, with the objective to

maximise high fidelity of alternative methods to traditional ones.

Although the technical requirements of high-quality spectral and

thermal field captures presented here might currently be prohibitive

in the forestry context, we found that many of the high-heritability

indices use spectral bands that can be captured with multispectral

instruments, which are more accessible than hyperspectral ones. As

UAV remote-sensing assessments become more routine and gain

trust among foresters and tree breeders, we believe the advantages

of remote sensing for tree disease phenotyping will expand and

outweigh traditional methods. First, the precision, accuracy, and

consistency of remote-sensing measurements may lead to more

effective breeding outcomes than with traditional phenotyping.

Also, structural traits captured in years following disease using

LiDAR or spectral methods or derived through radiative transfer

modelling such as leaf area index can complement hyperspectral

and thermal data to assess longer-term outcomes of disease on tree

health such as defoliation. As a number of stress responses detected

by hyperspectral and thermal metrics are likely common to several

different diseases, remote sensing phenotyping of stress responses

might be useful in simultaneously selecting for resistance to

multiple foliar diseases. Ismael et al. (2020) showed evidence for

strong genetic correlation of resistance to multiple foliar diseases

such as Dothistroma needle blight and Cyclaneusma needle cast in

radiata pine. More generally, hyperspectral and thermal indices can

be used not only for disease-related phenotypes but also for other
Frontiers in Plant Science 14
biotic and non-biotic stress responses. For instance, canopy

temperature can specifically be used to characterise drought stress

phenotypes, as it is a proxy for stomatal conductance, transpiration

and assimilation rate.
Conclusions

Our study illustrates the potential for the remote sensing

capture of hyperspectral and thermal traits to be used in disease

resistance phenotyping for tree breeding. Genotype performance

for traditional and remote sensing phenotypes was enhanced by the

use of genomic and pedigree data through spatially explicit single-

step predictive modelling and led to high breeding value accuracy.

Single narrow-band hyperspectral indices calculated on all trees in

the breeding trial can be used to complement partial visual disease

scoring or replace it altogether with relatively high fidelity, with

close to no loss in breeding value accuracy. However, the success of

high-throughput single-tree characterisation of hyperspectral and

thermal traits in a field trial setup achieved in this study is highly

innovative and required a large amount of expertise and resources.

Additional advanced experimentation in field methodologies will

help streamline and reduce the cost of data capture processes. This

will enable the extension of this disease phenotyping approach to

other trials and other phenotyping applications and solidify the

adequate identification of remote sensing metrics as phenotypes for

physiological traits of interest.
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Klápsťě, J., Dungey, H. S., Graham, N. J., and Telfer, E. J. (2020). Effect of trait’s
expression level on single-step genomic evaluation of resistance to Dothistroma needle
blight. BMC Plant Biol. 20, 1–13. doi: 10.1186/s12870-020-02403-6
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hyperspectral and thermal imagery. Remote Sens. 16, 1050. doi: 10.3390/rs16061050

Watt, M. S., Jayathunga, S., Hartley, R. J. L., Pearse, G. D., Massam, P. D., Cajes, D., et al.
(2024b). Use of a consumer-grade UAV laser scanner to identify trees and estimate key
tree attributes across a point density range. Forests 15, 899. doi: 10.3390/f15060899

Watt, M. S., Poblete, T., De Silva, D., Estarija, H. J. C., Hartley, R. J. L., Leonardo, E.
M. C., et al. (2023b). Prediction of the severity of Dothistroma needle blight in radiata
pine using plant based traits and narrow band indices derived from UAV hyperspectral
imagery. Agric. For. Meteorol. 330, 109294. doi: 10.1016/j.agrformet.2022.109294

Zarco-Tejada, P. J., Berni, J. A., Suárez, L., Sepulcre-Cantó, G., Morales, F., and
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