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disease detection model
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Tea pest and disease detection is crucial in tea plantation management, however,

challenges such as multi-target occlusion and complex background impact

detection accuracy and efficiency. To address these issues, this paper

proposes an improved lightweight model, WMC-RTDETR, based on the RT-

DETR model. The model significantly enhances the ability to capture multi-scale

features by introducing wavelet transform convolution, improving the feature

extraction accuracy in complex backgrounds, and increasing detection efficiency

while reducing the number of model parameters. Combined with multiscale

multihead self-attention, global feature fusion across scales is realized, which

effectively overcomes the shortcomings of traditional attention mechanisms in

small target detection. Additionally, a context-guided spatial feature

reconstruction feature pyramid network is designed to refine the target feature

reconstruction through contextual information, thereby improving the

robustness and accuracy of target detection in complex scenes. Experimental

results show that the proposed model achieves 97.7% and 83.1% respectively in

mAP50 and mAP50:95 indicators, which outperform the original model. In

addition, the number of parameters and floating-point operations are reduced

by 35.48% and 40.42% respectively, enabling highly efficient and accurate

detection of pests and diseases in complex scenarios. Furthermore, this paper

successfully deploys the lightweight model on the Raspberry Pi platform, which

proves that it has good real-time performance in resource-constrained

embedded environments, providing a practical solution for low-cost disease

monitoring in agricultural scenarios.
KEYWORDS

tea pest and disease detection, RT-DETR, wavelet transform, multiscale multihead self-
attention, contextual feature reconstruction, embedded deployment
1 Introduction

Tea is a traditional Chinese cash crop with high market demand (Zhuo et al., 2024).

However, tea cultivation faces significant threats by pests and diseases such as tea

anthracnose. Currently, traditional methods for detecting pests and diseases relies on

manual labor, which is inefficient and subject to variability due to operator expertise and

environmental conditions. Therefore, it is of great significance to develop techniques that

can realize timely and accurate detection of tea pests and diseases. Such advancements can
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help mitigate production losses and enhance the economic

outcomes for tea farmers (Hua, 2023).

With the rapid development of computer vision technology,

many researchers have combined image processing with machine

learning for automated identification of tea pests and diseases. For

example, Xie et al. constructed a full-wavelength based Extreme

Learning Machine (ELM) classifier model to recognize early and

late blight on tomato leaves by extracting texture features at five

effective wavelengths (Xie et al., 2015). Hu et al. proposed a feature

segmentation and enhancement method that combined support

vector machine (SVM) and generative adversarial network (C-

DCGAN), and then used the VGG16 model to identify tea

diseases (Hu et al., 2019a). Hossain et al. developed an image

processing system based on Support Vector Machines (SVM),

which classifies the uploaded images of tea diseases by comparing

them with the features in the database (Hossain et al., 2018).

Although traditional machine learning methods have shown

significant advantages over manual inspection in identifying tea

plant diseases and insect pests, they are constrained by limitations,

such as the complex manual feature extraction process, high model

complexity, and slow processing speed.

In contrast, deep learning has gained attention due to its high

prediction accuracy and end-to-end autonomous learning

capability. Convolutional Neural Networks (CNNs), a typical

structure of deep learning, have proven to be highly effective for

feature extraction compared to shallow machine learning

approaches. The development of image recognition technology

has further promoted the widespread application of CNN in

automatic image classification and plant diseases detection

(Kattenborn et al., 2021). For example, Hu et al. added a multi-

scale feature extraction module and depth-separable convolution to

the traditional CNN model to identify lesion points on leaves more

efficiently (Hu et al., 2019b). Li et al. proposed a Faster regional

convolutional neural network (Faster R-CNN) applied in

agricultural greenhouse environments, which showed significant

results in detecting a variety of micro-pests (Li et al., 2021). Su et al.

used the feature pyramid network (FPN) in the ResNet-101

network as the backbone network of the masked region

convolutional neural network (Mask R-CNN) and successfully

achieved accurate recognition of wheat Fusarium wilt (FHB) (Su

et al., 2020). In these studies, scholars have used CNN to

automatically extract the characteristics of crop diseases. The

accuracy of CNN-based image recognition methods has been

significantly improved compared to traditional machine learning

methods. However, such models are usually highly complex and

difficult to meet real-time requirements.

In recent years, with the introduction of YOLO (You Only Look

Once) series (Redmon et al., 2016), the one-stage detection network

model has demonstrated higher efficiency than the traditional two-

stage detection model and has achieved remarkable results in the field

of image recognition. Wu et al. proposed a cost-effective drone target

detection method based on YOLOv3 for the early diagnosis of pine

wilt disease (PWD) (Wu et al., 2021). Xue et al. integrated the self-

attention mechanism and various improvement modules based on

YOLOv5, which significantly improved the accuracy and efficiency of
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tea pest and disease detection (Xue et al., 2023). Wang et al.

constructed a new multi-scale feature fusion module based on the

improved YOLOv6 to enhance the feature fusion expression, thereby

improving the detection performance and generalization ability of

diseased tomato leaves (Wang et al., 2024e). Ye et al. developed a

small-target disease detection method based on YOLOv8, which

successfully solved the challenges of complex tea disease

backgrounds, difficulties in detecting small lesions and low

recognition rates of similar phenotypic symptoms (Ye et al., 2024).

Although the single-stage detection architecture of the YOLO

model enables it to complete target localization and classification in

a single forward propagation with high real-time detection

capability, there are still some limitations when dealing with

targets in unstructured environments, which are susceptible to

factors such as light changes, foliage occlusion and complex

backgrounds. In scenarios involving mutual target occlusion or

complex backgrounds, non-maximal suppression (NMS) is often

required to address overlapping detection frames. This not only

increases the inference time, but also requires manual tuning of

hyper-parameters to balance speed and accuracy.

To address these issues, a novel end-to-end model DETR

(Detection Transformer) was proposed (Carion et al., 2020). The

original intention of DETRwas to simplify the target detection process

and eliminate the dependence on anchor points and NMS, but its

inference speed and real-time detection capabilities have not yet fully

met actual needs. Subsequently, the Real Time-Detection Transformer

(RT-DETR) model was optimized based on the DETR architecture by

introducing a newly designed hybrid encoder to efficiently handle

multi-scale features (Zhao et al., 2024). Compared with YOLOv8, RT-

DETR shows superior detection accuracy and stability in complex

environments, especially in multi-target detection and tasks with

complex relationships between targets. Feng et al. proposed a new

framework for fusion of multi-source forest remote sensing data that

combines soft thresholding and cascaded group attention (CGA)

modules based on RT-DETR to further improve the accuracy and

robustness of the target recognition task (Feng et al., 2024).Wang et al.

proposed a lightweight algorithm called PDSI-RTDETR for tomato

maturity detection, which combines high accuracy and fast response

with model lightweighting, showing potential in detecting different

maturity levels of tomatoes (Wang et al., 2024d). Wang et al. proposed

a lightweight UAV aerial infrared small target detection algorithm that

can effectively capture small target features and ensure recognition

accuracy even in complex environments and long target distances

(Wang et al., 2024c). While RT-DETR has been successfully applied in

diverse object detection tasks, its use in tea disease identification

remains underexplored, highlighting an area of opportunity for

further research.

To address the challenges in tea disease detection, this paper

proposes a lightweight tea disease detection model based on the

improved RT-DETR. The contributions of this paper are as follows:
(1) Wavelet transform convolution (WTConv) for backbone

enhancement: An enhanced WTConv_Block module is

constructed by integrating wavelet transform convolution

with the residual block. This improvement not only reduces
frontiersin.org
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Fron
the number of model parameters, but also enhances the

model’s ability to capture multi-scale features and improves

overall robustness.

(2) Introduction of multiscale multihead self-attention (M2SA)

module: The multiscale multihead self-attention module is

integrated into the attention-based intrascale feature

interaction module (AIFI), replacing the traditional multi-

head attention mechanism to form the M2SA-AIFI module.

This method realizes cross-scale global feature fusion,

which effectively address the limitations of the traditional

attention mechanism in small target detection and multi-

scale scenarios, and thus locates the key regions in the

image more accurately.

(3) Lightweight neck frame design: By introducing the

independently designed context-guided spatial feature

reconstruction feature pyramid network (CSRFPN) into

the cross-scale feature-fusion module (CCFF), the spatial

features of the target are reconstructed using context

information. This design significantly improves the

detection capability of multi-scale targets while

maintaining detection accuracy, and effectively reduces

the model’s parameter count.

(4) Deployment on Raspberry Pi: The improved lightweight

model is deployed on the low-cost embedded platform

Raspberry Pi, achieving efficient operation in an

environment with limited hardware resources while

ensuring high detection accuracy. This shows that the

improved model is suitable for both high-performance

hardware platforms and resource-limited embedded

systems, providing a practical and cost-effective disease

detection and monitoring systems in the agricultural field.
tiers in Plant Science 03
2 Methods and materials

2.1 Material preparation

2.1.1 Dataset collection
This study collected images of tea tree pests and diseases in a

natural environment. The data collection took place at Maoshan

Tea Garden, Jurong City, Zhenjiang City, Jiangsu Province, China,

July 6, 2024. We captured images with a resolution of 3060*4080

using our phone Honor 50 in full sunlight. All data was collected

manually. The captured images cover scenarios with dense and

sparse disease areas, and leaf occlusion and overlap are obvious in

some photos. The main types of pests and diseases include tea leaf

blight and green mirid bug. Figure 1 shows some typical sample

images in our dataset.

2.1.2 Dataset division
First, we manually screened all the photos we took and selected

a total of 160 images containing tea leaf blight and green mirid bugs.

Next, we used the Labelimg to annotate all images for subsequent

model training and evaluation. To improve the accuracy of the

experiments and ensure the quality of the dataset, we performed

data augmentation on these annotated 160 images and expanded

them to 1280 images. Data enhancement methods include

horizontal flipping, vertical flipping, rotation, and addition of

Gaussian noise, as shown in Figure 2. The enhanced dataset is

divided into training set, validation set and test set in a ratio of 7:1:2,

specifically the training set contains 896 images, the validation set

contains 256 images, and the test set contains 128 images. After data

augmentation, it contains a total of 1808 tags of tea leaf blight and

2952 tags of green mirid bugs.
FIGURE 1

Some typical sample images. The bug (A) Tea leaf blight, (B) Green mirid.
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2.2 Algorithm design

2.2.1 RT-DETR
RT-DETR is a novel real-time end-to-end target detection

module. It introduces the Efficient Hybrid Encoder, which

combines attention-based intrascale feature interaction module

(AIFI) with Convolution-based cross-scale feature-fusion module

(CCFF). This design effectively reduces computational overhead

and improving the efficiency of multi-scale feature processing,

enabling RT-DETR to achieve the goal of real-time detection

while maintaining high detection accuracy. Additionally, RT-

DETR reduces the training time without the use of mosaic data

enhancement strategies and significantly improves the detection

accuracy while maintaining similar detection speed. The

architecture of RT-DETR mainly consists of three core parts:

backbone network, efficient hybrid encoder and decoder with

auxiliary prediction head.
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In the backbone network, RT-DETR uses convolutional neural

networks to extract key features at three different scales,

corresponding to outputs with strides of 8, 16, and 32, thereby

providing rich feature input for subsequent encoders. The hybrid

encoder processes high-level features from the backbone network

through the AIFI, which significantly reduces the computational

overhead and improves the processing speed. In addition, the

encoder utilizes the CCFF to integrate and interact with multi-

scale features, fusing the high-level feature maps processed by AIFI

with the low-level feature maps. This ensures the model can

efficiently detect target objects across various scales. In the

decoder part, the model generates the initial query from the

encoder output features using an uncertainty minimizing query

selection mechanism. These queries interact with the encoder

feature maps in the decoder through self-attention and cross-

attention mechanisms, and are combined with a feed-forward

neural network to generate the category of the object. Overall,
FIGURE 2

Data enhancement. (A) Fliplr, (B) Flipud, (C) Rotate, (D) Gaussian Noise.
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RT-DETR improves detection efficiency while retaining the speed

advantage of the YOLO series, providing a promising solution for

real-time object detection in practical applications. The specific

structure of RT-DETR is shown in Figure 3.

2.2.2 WMC-RTDETR model architecture
In order to improve the detection capability of tea pests and

diseases, especially when there is severe occlusion between targets,

we constructed a model based on the RT-DETR network and

proposed a new model WMC-RTDETR. This model replaces

traditional convolution with WTConv and integrates it into the

backbone network of RT-DETR (Finder et al., 2024). The

introduction of WTConv extends the receptive field effectively,

enhances the capture of low-frequency shape features, and

significantly reduces both the number of parameters and

computational overhead. Additionally, the M2SA module

mechanism was introduced into the AIFI module (Wu et al.,

2023). M2SA achieves cross-scale global feature fusion through

multi-scale self-attention methods, overcoming the limitations of

traditional attention mechanisms in small target detection and

multi-scale scenarios, and significantly improves the detection

capabilities of RT-DETR in different target scales. In addition, the

CSRFPN is integrated into the CCFF module to use context

information to guide the spatial feature reconstruction of the

target, effectively alleviating the detection difficulties caused by

complex background and target occlusion. As a result, the

robustness of RT-DETR in intricate background scenarios is

significantly enhanced (Ni et al., 2024). Experimental results show

that the proposed improvements significantly reduce the number of

parameters and floating-point operations (FLOPs) of RT-DETR,
Frontiers in Plant Science 05
while improving the efficiency of real-time detection. The improved

model structure is shown in Figure 4.

2.2.3 Wavelet transform convolution
To minimize the introduction of excessive parameters and

floating-point operations in image recognition tasks, we selected

ResNet18 as the baseline of the backbone network (He et al., 2016).

Traditional convolutional neural networks usually rely on fixed-size

receptive fields and convolution kernels to extract features.

Although the receptive field can be expanded by stacking

convolutional layers and pooling operations, it is difficult to

capture both global and local information in a single layer. Such

limitations are particularly evident in multi-scale feature extraction,

especially when processing images containing objects of different

sizes or complex backgrounds (Gong et al., 2024). Therefore, we

introduce WTConv into the backbone network of RT-DETR

(Finder et al., 2024). Unlike traditional convolution, which only

operates in the spatial domain and lacks frequency domain

decomposition capabilities, WTConv use wavelet transform to

decompose the input signal into low-frequency and high-

frequency components. The low-frequency components capture

global structural information, while the high-frequency

components extract detail features. This dual capability enhances

the multi-scale detection capability of the model. This feature of

simultaneous feature extraction in the time domain and frequency

domain makes WTConv excellent in capturing subtle features and

suppressing noise. WTConv enhances the target detection

performance of RT-DETR in complex and noisy environments,

improving robustness without a substantial increase in

computational cost.
FIGURE 3

RT-DETR network structure diagram.
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The FLOPs of WTConv mainly consist of three parts: wavelet

decomposition, convolution operations on each frequency band,

and inverse wavelet transform. The specific process is shown in

Figure 5. We assume that the input feature map size is H �W, the

convolution kernel size is K � K , the number of input channels is

Cin, and the number of output channels is Cout. Wavelet Transform

(WT) decomposes the input feature map into different frequency

bands: low-frequency (LL) and high-frequency (LH, HL, HH)

components. Through decomposition, the spatial dimension of

each frequency band is reduced to 1/2 of the original size

(assuming the use of Haar wavelet), so the size of each frequency

band is H=2�W=2. The FLOPs of wavelet decomposition can be

expressed as Equation 1:

FLOPsWT = Cin �o
‘−1

i=0
4� H �W

2i
(1)

where ‘ is the number of wavelet decomposition layers, and

each layer further decomposes the low-frequency components,

further reducing the spatial resolution. Since the size of the

feature map after decomposition is reduced, the computational

growth for this operation is gradual.

After decomposition, convolution with a small kernel (e.g., k� k)

is performed on each frequency band. The amount of convolution

calculation for each frequency band can be expressed as Equation 2:

FLOPsWTConv =o
‘

i=1
(
H*W
2i

� k2 � 4� Cin � Cout) (2)

The reduction in resolution by a factor of 2i and convolution on

decomposed frequency bands significantly lowers computational
Frontiers in Plant Science 06
effort compared to applying large kernels on the original

spatial dimensions.

After completing the convolution on all frequency bands,

WTConv uses the inverse wavelet transform (IWT) to reconstruct

the output feature map. The computational complexity of the

inverse wavelet transform is similar to that of the wavelet

decomposition, which can also be expressed as Equation 3:

FLOPsIWT = Cout �o
‘−1

i=0
4� H �W

2i
(3)

Since the spatial dimension of the feature map of WTConv is

reduced after each layer of decomposition, even if the computation

on each frequency band is accumulated, the total FLOPs of

WTConv still grows slowly. Compared to directly using large

convolution kernels on the original feature map, WTConv can

achieve a larger receptive field with less floating-point operations.

2.2.4 Multiscale multihead self-attention
In RT-DETR, the AIFI module adopts a multiscale multihead

self-attention module to achieve adaptive fusion of instance

features. However, since it is limited to fixed-scale feature

processing, the module struggles effectively capture the multi-

scale semantic information between instances (Zhang et al.,

2023a). To solve this problem, this study introduced the

multiscale multihead self-attention module to enhance the AIFI

module’s ability to capture multi-scale features (Wu et al., 2023).

M2SA consists of three parts: multi-scale mechanism, multi-head

self-attention mechanism and channel attention mechanism. This

enables M2SA to not only extract rich global information at
FIGURE 4

The structure diagram of WMC-RTDETR.
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different scales, but also optimize the feature weight distribution

through channel attention. This significantly improves the ability to

model target features in complex scenes. The structure of M2SA is

shown in Figure 6.

In the multi-scale mechanism, the input feature X ∈ RC�H�W

is first reduced to one-fourth of its original size through 1×1

convolution and used as the initial feature. Then multiple

depthwise separable atrous convolutions are used to set different

atrous rates to generate multi-scale features, as specified in Equation

4:

Xi = dwConv3�3
Ri

(Conv1�1(X)),  i ¼ 1; 3; 5 (4)

Among them, dwConv3�3
Ri

() represents atrous convolutions, and

the value of atrous rate can be 1; 3; 5, which is used to extract

features under different receptive fields. Next, the original number

of channels is restored with 1×1 convolution and all scale features

are summed and fused, as specified in Equation 5:

Xout = Conv1�1(X1 + X2 + X3)⨀X (5)

The fused feature contains multi-scale global context

information and is multiplied element-wise ( o ̇ represents
element-by-element multiplication) with the input feature X to

generate the final multi-scale fused information feature, as specified

in Equation 6:

Xmsa = Xout ⨀X (6)

In the multi-head self-attention mechanism, in order to reduce

the computational complexity, the downsampled multi-scale

features Xmsa are used to generate K (Key) and V (Value), while

the original feature is used for the Q (Query), which is specifically

expressed as Equation 7:

(Q,K ,V) = (XWq,XmsaW
k,XmsaW

v) (7)

whereWq,Wk,Wv are the linear transformation matrixs. Then,

Q,K ,V are sent to the multi-head self-attention module to calculate

the self-attention features, as specified in Equation 8:

Attention = Softmax (
Q� KTffiffiffiffiffi

dk
p )� V (8)
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where
ffiffiffiffiffi
dk

p
is the channel dimension of K . This process

captures long-range dependencies in space by taking a weighted

average at each position in space.

Nevertheless, in the channel attention mechanism, the input

feature X is globally averaged and pooled to generate a C � 1� 1

channel descriptor Xp to better fit the 2-D image structure, as

specified in Equation 9:

Xp = AvgPool(X) (9)

Then, the channel descriptor Xp passes through a series of 1×1

convolution operations. First, the channel dimension is reduced

through a 1×1 convolution, then a nonlinear transformation is

performed through an activation function (ReLU6), and finally

another 1×1 convolution is performed to restore the original

number of channels. Next, the Sigmoid activation function is used

to generate the channel attention weight distribution Attentionc.

Then, the channel attention weight distribution is multiplied by the

input feature X by element-by-element multiplication to obtain the

weighted feature map Xca, as described in Equations 10–12:

Xc = Re Lu6(Conv1�1(Xp)) (10)

Attentionc = Sigmoid(Conv1�1(Xc)) (11)

Xca = Attentionc o ̇X (12)

Finally, the features of the above three branches are fused to

obtain the final output features, as defined in Equation 13:

XAIFI = Xmsa + Attention + Xca (13)
2.2.5 Context-guided spatial feature
reconstruction feature pyramid network

In the RT-DETRmodel, the CCFFModule is responsible for the

fusion of multi-scale features, aiming to integrate features from

different scales. However, the feature fusion methods currently used

by CCFF mainly rely on simple feature superposition or layer-by-

layer fusion, which is difficult to effectively capture multi-scale

contextual information, especially when targets vary significantly

in size. To this end, this paper draws on the design concept of
FIGURE 5

The structure of WTConv.
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CGRSeg and introduces two key modules (Ni et al., 2024):

Rectangular Self-Calibration Module (RCM) and Pyramid

Context Extraction Module (PCE) (Wang et al., 2024b). We

replace the original element-wise addition and multiplication with

the independently developed Dynamic Interpolation Fusion (DIF)

and Multi-Feature Fusion (MFF) modules, enhancing multi-scale

feature representation and improving target recognition in complex

backgrounds. The specific structure of CSRFPN is shown

in Figure 7.
2.2.5.1 Rectangular self-calibration module

First, through horizontal and vertical pooling operations, the

global context information of the input feature map in the

horizontal and vertical directions is extracted respectively. This

operation can effectively model the key features of the rectangular

area. If the input feature map is P ∈ RC�H�W , after horizontal

pooling and vertical pooling, an axial feature vector will be obtained,

which are Hp ∈ RC�1�W ,Vp ∈ RC�H�1. Then, the two axial

vectors are fused through broadcast addition to form a

rectangular attention region.

Next, in order to make the generated rectangular attention area

closer to the foreground features, RCM uses two large kernel

convolutions to adjust in the horizontal and vertical directions

respectively. First, convolution is performed in the horizontal
Frontiers in Plant Science 08
direction, then activated by ReLU nonlinearity, and the same

operation is applied in the vertical direction to form a self-

calibrated foreground area, as described in Equation 14:

xc(y) = d (yk�1(f(y1�k(Hp ⊕ Vp)))) (14)

where, y represents large-kernel strip convolution, k represents

the kernel size of the strip convolution, f represents the Batch

Normalization followed by the ReLU function, and d represents the

Sigmoid function.

Finally, the self-calibrated rectangular attention features are

fused with the input feature map (element-wise multiplication) to

enhance the feature expression of the foreground area, as described

in Equation 15:

xF(x, y) = y3�3(x) o ̇ y (15)

Among them, y3�3 represents the deep-wise convolution with

kernel 3×3, y is the attention feature obtained in the previous step,

and ȯ represents element-by-element multiplication.

2.2.5.2 Pyramid context extraction module

This module first downsamples the input multi-scale feature

map to construct a pyramid structure. In RT-DETR, the input

feature maps come from different levels of the feature extraction

network, denoted as P3, P4, P5. After constructing the pyramid
FIGURE 6

The structure of M2SA.
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structure, the PCE module further extracts multi-scale contextual

information by stacking multiple RCM modules. The RCM module

captures global context and performs spatial reconstruction on each

layer of feature maps to ensure that features at each scale in the

pyramid structure can benefit from global information. The

application of multi-layer RCM improves the expressiveness of

features at each scale and enhances the context-awareness of the

model. Subsequently, the contextual information of different scales

is integrated to form the final multi-scale feature output P. These

features contain rich contextual information at the spatial and

semantic levels, providing multi-scale support for subsequent

detection and segmentation tasks. This process can be expressed

as Equation 16:

P = RCM(AP(P3, 8),AP(P4, 4),AP(P5, 2)) (16)

Among them, AP(P,  x) means average pooling of feature P with

factor x.

2.2.5.3 Dynamic interpolation fusion

The DIF module is mainly used to integrate feature maps with

different channel numbers and spatial resolutions. This module

achieves alignment of scale and channel through interpolation and

convolution operations, subsequently completes feature fusion

through element-by-element addition. During forward propagation,

for the input feature map X = (X0,X1), the low-resolution feature

map X1 is first adjusted to the same spatial resolution as X0 through

bilinear interpolation. Then, the interpolated X1 is adjusted to have

the same number of channels as X0 through a 1×1 convolution to

obtain X
0
1, as shown in Equation 17:

X
0
1 = Conv1�1(Interpolate(X1)) (17)

Among them, X0 and X1 represent feature maps of two different

scales, Interpolate is a bilinear interpolation algorithm, and Conv1�1

is a 1×1 convolution. Add the result to X0 element by element to get

the fused feature map, as shown in Equation 18:
Frontiers in Plant Science 09
Xout = X
0
1 ⊕ X0 (18)
2.2.5.4 Multi-feature fusion

The MFF module uses the adaptive activation signal of low-

resolution maps to guide high-resolution feature maps, effectively

fusing detail and context, ideal for adaptive fusion across scales. For

input feature maps (Xh,Xl), both are first convolved, and then the

low-resolution feature map after convolution is normalized using

the activation function h _ sigmoid to control the range of the signal,

and L(Xl) is obtained as Equation 19:

L(Xl) = h _ sigmoid((Conv(Xl))) (19)

Among them, Xl is a low-resolution feature map, and Xh is a high-

resolution feature map. Then bilinear interpolation is applied to adjust

L(Xl) to the resolution of Xh so that the two can be multiplied element

by element. The overall formula can be summarized as Equation 20:

Xout = Interpolate(L(Xl))⊗Conv(Xh) (20)
3 Evaluation indicators

This study evaluated the algorithm performance by comparing

the image detection differences before and after the model

improvements under the same experimental settings. This study

uses precision (P), recall (R), mean average precision (mAP), F1

score, GFLOPs and frames per second (FPS) as evaluation criteria.

Precision refers to the proportion of correctly predicted positive

classes to all predicted positive classes. It reflects the reliability of

model predictions. If the precision is high, it means that the model

is more reliable in predicting the correctness. The specific formula

can be expressed as Equation 21:

Precision =
TP

TP + FP
(21)
FIGURE 7

The structure diagram of CSRFPN. (A) CSRFPN, (B) RCM, (C) MMF, (D) PCE, (E) DIF.
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Among them, TP (True Positive) indicates the number of

correctly detected targets, while FP (False Positive) indicates the

number of targets that were incorrectly detected, that is, the

background or other objects are mistakenly identified as targets.

Recall refers to the proportion of targets successfully detected by the

model to all actual targets. Recall reflects the coverage ability of the

model. If the recall rate is high, it means that themodel can identifymost

of the targets. The specific formula can be expressed as Equation 22:

Re call =
TP

TP + FN
(22)

Among them, FN (False Negative) represents the number of

targets that were missed, that is, they are actually targets but are not

detected by the model.

Average Precision (AP) is the area under the PR curve of a

category within all predicted pictures. The Mean Average Precision

(mAP) averages these APs across different categories to evaluate the

overall performance of the object detection model. It is a

comprehensive indicator suitable for multi-category object

detection tasks. The specific formula can be expressed as

Equations 23, 24:

AP =
Z 1

0
P(r)dr (23)

mAP =
o
N

j=1
AP(j)

N
(24)

where N is the number of all categories.
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The F1 score is the harmonic mean of Precision and Recall, and

is an indicator that comprehensively reflects the accuracy and

comprehensiveness of detection. The F1 score ranges from 0 to 1.

With values closer to 1 indicating superior model performance in

terms of accuracy and comprehensiveness, as shown in Equation 25.

F1 = 2*
P*R
P + R

(25)

GFLOP (Giga Floating Point Operations Per Second) is an

indicator to measure the complexity and computational complexity

of a model. It indicates the number of floating-point operations

required for a model to perform one inference, measured in billions

of operations. Models with high GFLOPs are usually more complex,

computationally intensive, and require more computing resources.

FPS (Frames Per Second) refers to the number of image frames

that the model can process per second in a test environment, it is an

important indicator for measuring the speed of model reasoning, as

shown in Equation 26.

FPS =
1
tavg

(26)

where tavg represents the average inference time.
4 Results analysis

4.1 Experimental configuration

All training and evaluation in this paper are completed under

the same parameter setting. The specific environment is shown in

Table 1. The batch size is set to 4, the number of training rounds is

300 epochs, the learning rate is set to 1×10−4, and the image size of

640×640 is selected for the experiment. The loss function during

training is uniformly set to GIOU.
4.2 Backbone network comparative
experiment

In order to verify the superior performance of Wavelet

Transform Convolution, we selected advanced convolutional

networks in recent years as a comparison, and the specific results

are shown in Table 2.
TABLE 1 Hardware configuration and model parameters.

Environment Disposition

Operating system Linux

CPU Intel(R) Xeon(R) Gold 5418Y * 12 core

GPU NVIDIA RTX 4090

Pytorch 2.2.2

CUDA 12.1

Python 3.10

optimizer AdamW
TABLE 2 Comparative experiments of different backbone networks.

Backbone Precision (%) Recall (%) mAP50 (%) mAP50:95 (%) Params (M) GFLOPS (G)

Basic 96.8 99 96.2 69.9 19.87 56.9

AKConv 93.7 99 95.9 75.8 15.6 48.5

DCNv2 93.4 99 94.5 74.5 20.22 53.7

PConv 94.1 99 95.8 78 14.1 43.2

StarConv 94.6 99 97.6 80 22.17 60.5

WTConv 94.6 99 97.4 80.9 13.95 42.6
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From Table 2, it is easy to see that compared with AKConv

(Zhang et al., 2023b), Deformable Convolution v2 (Zhu et al., 2019),

PConv (Chen et al., 2023), and StarConv (Ma et al., 2024), our

WTConv effectively reduces the amount of computation while

maximizing the accuracy. Although StarConv performs well on

the mAP50 metric, the number of parameters and floating-point

computation are significantly increased compared to the original

backbone network, which does not satisfy the requirement of

lightweighting. In summary, WTConv offers the best balance of

accuracy and lightness.
4.3 Ablation experiment

To verify the effectiveness of each improved module, we use the

original RT-DETR as the base network for ablation experiments.

The detailed experimental results are listed in detail in Table 3.

The results of the ablation study presented in Table 3

demonstrate that the original RT-DETR model performs at 96.2%

on the mAP50 metric. Based on the original model, Model 1

effectively enhances the image feature extraction capability by

incorporating WTConv, increases mAP50 to 97.4%, and reduces

the number of model parameters. Model 2 adds the M2SA module

further, which slightly improves the mAP50 and greatly improves

the Fps of the model. Finally, our model integrates the three

improved modules, with an mAP50 of 97.7% and an FPS of 58.8,

while the number of parameters, floating-point operations, and

model size are reduced by 35.48%, 40.42%, and 32.09%,

respectively. The data shows that this comprehensive

improvement strategy not only improve the detection

performance, but also effectively reduce the model size and

improve the processing speed.
4.4 Comparative experiment

To further verify the effectiveness of the proposed model, we

compare the various performance indicators of the model with

other models, including Faster R-CNN (Ren et al., 2016), SSD (Liu
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et al., 2016), YOLOv5 (Jocher et al., 2022), YOLOv6 (Li et al., 2022),

YOLOv8, YOLOv9, YOLOv10 (Wang et al., 2024a), YOLOv11, as

shown in Table 4.

The improved model has 3.4%, 2.7%, 2%, 1.4%, 3.5%, and 1.7%

higher map50 than YOLOv5, YOLOv6, YOLOv8, YOLOv9,

YOLOv10, and YOLOv11, respectively. Compared with the

original RT-DETR model, mAP50 and mAP50:95 are improved

by 1.5% and 13.2%, respectively. Therefore, compared with other

object detection networks, our model shows superior performance

in detecting tea pests and diseases in natural environments.
4.5 Visual comparison of detection results

During the training process of the original model and the

WMC-RTDETR model, identical datasets and parameter settings

are utilized. Based on the log files generated during training, the

mAP50 and mAP50:95 training curves of the original model and

the improved model during training are plotted, as shown in

Figure 8. The blue curve represents the basic RT-DETR model,

and the orange curve represents our improved WMC-RTDETR

model. As illustrated in the figure, the improved model exceeds the

original model in terms of mAP50 and mAP50:95 indicators at all

stages of training, indicating that WMC-RTDETR has higher

accuracy and effectiveness in tea pest and disease detection.

In order to more clearly compare the performance differences of

the models in the object detection task, we used the EigenCAM heat

map method to perform a visual analysis of the two tea pests and

diseases detected and generated heat maps (Muhammad and

Yeasin, 2020), as shown in Figures 9 and 10.

The above heat map uses a gradient color scale (Jet palette) to

visualize the strong focus of the model on the characteristics of the

infested area. Specifically, the red area indicates the high response

area of the model, which the model considers to contain key

features (e.g., disease areas or pest morphology) with the highest

level of confidence. Yellow to green regions indicate moderate

response strength, corresponding to target edges or secondary

features in the background that are relevant to the target. Blue

areas indicate low or no response and represent background or

irrelevant areas not attended to by the model.
TABLE 3 Ablation results.

Model WTConv M2SA CGRFPN Params
(M)

GFLOPS (G) Size (M) Fps (f/s) mAP50 (%)

Base 19.87 56.9 40.5 23.1 96.2

1 ✓ 13.95 42.6 27 23.8 97.4

✓ 19.9 57.1 40.6 71.9 97.6

2 ✓ ✓ 13.31 40.3 28.9 54.8 97.6

✓ 19.23 48.2 39 25.9 97.5

Ours ✓ ✓ ✓ 12.82 33.9 27.5 58.8 97.7
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The visualization results show that the basic model’s feature

extraction is limited in the target area, with a small high-response

heatmap, leading to missed or false detections, particularly in

complex backgrounds. At the same time, the confidence of the

basic model is generally low, and it pays less attention to the edge

area of the target, indicating that it is insufficiently sensitive to

detailed features.

In comparison, our improved model shows significant

advantages. In the heat map, the high-response area covers the

key feature area of the target and shows stronger adaptability in

edge areas and complex background scenes. This shows that the

improved model can capture target features more comprehensively

and effectively reduce missed detections. Meanwhile, from the
Frontiers in Plant Science 12
perspective of confidence comparison, the confidence level of the

improved model in classification tasks is generally higher than that

of the basic model, which further proves its classification accuracy

and robustness.
4.6 Detection system based on embedded
raspberry Pi

With the continuous improvement in the performance of small

embedded platforms, they have the ability to support some deep

learning-based target detection technologies. We will deploy the

independently improved lightweight algorithm WMC-RTDETR on
FIGURE 8

Comparison of mean average precision between base model and ours.
TABLE 4 Comparison of results.

Model Precision (%) Recall (%) mAP50 (%) mAP50:95 (%) F1 (%) Weight (MB)

Faster R-CNN 16.77 30.42 10.44 5.8 21 108

SSD 55.55 4.1 10.22 4.2 7.5 91.1

YOLOv5n 94.3 97 94.3 76.7 94 5.3

YOLOv6n 95.8 97 95 78.3 94 8.7

YOLOv8n 95.5 98 95.7 78.4 95 6.3

YOLOv9s 96.9 98 96.3 81.9 96 15.3

YOLOv10n 96.6 97 94.2 75.1 91 6.5

YOLOv11n 96.7 92.9 96 76.7 95 5.5

RT-DETR 96.8 99 96.2 69.9 94 40.5

RT-DETR-R34 95.7 99 97.1 82.8 96 63

RT-DETR-R50 96.7 99 97.7 82.8 97 86.1

WMC-RTDETR 96.8 99 97.7 83.1 96 27.5
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FIGURE 10

Visualization of heat map of tea leaf blight. (A, D) images of tea leaf blight, (B, E) heatmaps of RT-DETR, and (C, F) heatmaps of WMC-RTDETR.
FIGURE 9

Visualization of heat map of green mirid bug. (A, D) images of green mirid bug, (B, E) heatmaps of RT-DETR, and (C, F) heatmaps of WMC-RTDETR.
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the Raspberry Pi to detect tea pests and diseases, in order to achieve

efficient transplantation and wide application of the algorithm on

low-cost embedded hardware. As a high-performance ARM

architecture single-board computer, Raspberry Pi 4B, as shown in

Figures 11. The specific hardware parameters are shown in Table 5.

4.6.1 Model deployment
For the manually labeled tea pest and disease dataset, this study

trained based on RT-DETR model and further improved the

proposed WMC-RTDETR tea pest and disease detection

algorithm. The optimized model is deployed to the Raspberry Pi

4B platform to validate the effectiveness and platform adaptability

of the algorithm in this paper. The specific process is shown in

Figure 12 (Li, 2023). The experimental results show that the

improved model is able to display the detection parameters in

real time on the Raspberry Pi platform and accurately recognize

various tea pest and disease information, which verifies its efficiency

and practicality on low-cost embedded hardware.
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4.6.2 Test results analysis
In order to verify the application performance of the WMC-

RTDETR tea pest and disease detection algorithm in the Raspberry

Pi 4B environment, two testing methods are employed: video

stream recording and real-time camera capture (Leng, 2022).

4.6.2.1 Video input test

The detection video was recorded when the image was collected

on the afternoon of July 6, 2024, and was cropped to a duration of 5

sec. The video is transferred to the Raspberry Pi, which will detect

tea pests and diseases in the video stream and save the identified

content to the specified folder. As shown in Figure 13, the Raspberry

Pi successfully identified the tea leaf blight in the video.
TABLE 5 Raspberry Pi 4B hardware parameters.

Name Raspberry Pi 4B

SOC Broadcom BCM2711

CPU 64-bit 1.5GHz quad-core

GPU 500MHz VideoCore VI

Memory 1-8GB DDR4

Maximum resolution 4K 60Hz+1080p or 2*4K 30Hz

USB port 2 USB3.0/2 USB2.0

Charging port USB Type-C

Wired network Gigabit Ethernet

Wireless 802.11ac (2.4/5G)

Power demand 3A,5V
FIGURE 12

Detection system integration flow chart.
FIGURE 11

Raspberry Pi 4B physical image.
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4.6.2.2 Camera acquisition test

With Raspberry Pi as the core, the camera is used to monitor the

pictures displayed on the PC. Figure 14A shows the experimental

process of the embedded tea pest and disease detection system.

Figure 14B is an enlarged screenshot of the detection result in

Figure 14A. The experimental results show that Raspberry Pi can

accurately identify tea pests and diseases on the display screen.

We successfully implemented and tested the WMC-RTDETR

lightweight algorithm on cost-effective embedded devices. The tests

on video streams and image data demonstrated that the Raspberry

Pi accurately identified pests and diseases on tea leaves. This not

only confirms the effectiveness of the algorithm in real-world

applications, but also demonstrates the wide range of

its applicability.
5 Conclusion

The WMC-RTDETR model proposed in this paper shows

significant performance improvement in the tea disease
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detection task. The various components of the RT-DETR model

were optimized and improved. The wavelet transform convolution

module enhanced the model’s ability to capture multi-scale

features by decomposing the input signal in the frequency

domain. The multiscale multihead self-attention module

overcomes the limitations of the traditional attention

mechanism in small object detection; The context-guided spatial

feature reconstruction feature pyramid network effectively

alleviates the detection difficulties caused by complex

background and target occlusion. The experimental results show

that the improved model outperforms the original model in key

metrics such as mAP50, FPS, and the number of parameters. In

addition, the successful deployment of the WMC-RTDETR model

on the embedded platform Raspberry Pi, a low-cost pest and

disease detection system was realized. This deployment further

validated the practicality and feasibility of the model and provided

a practical solution for real-time disease monitoring in

agricultural scenarios.

Although the experimental results prove the superiority of the

model, there is still room for improvement. First, the robustness of

the model under extreme environmental conditions, such as bright

light or low-light environments, still needs to be further verified.

Second, the generalization ability of the model can be limited due

to the small size of the collected dataset and the fact that no

experiments have been conducted on other datasets. Future

research can further optimize model performance by introducing

large-scale, diverse datasets and applying multiple data

enhancement strategies. Furthermore, in terms of hardware

deployment, although the model achieves accurate recognition

on the Raspberry Pi, a low-cost embedded platform, there is still

room for improvement in detection speed. The next step could

explore the use of faster recognition strategies and higher

performance hardware platforms in more complex real-time

systems to further improve the overall performance and utility of

the system.
FIGURE 13

Detection results from the video.
FIGURE 14

Detection of Embedded tea leaf disease symbols. (A) Embedded detection experiment, (B) Raspberry pi test result.
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