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High throughput assessment of
blueberry fruit internal bruising
using deep learning models
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Heeduk Oh2, Rui Xu1 and Massimo Iorizzo2

1Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, United States,
2Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
The rising costs and labor shortages have sparked interest in machine harvesting

of fresh-market blueberries. A major drawback of machine harvesting is the

occurrence of internal bruising, as the fruit undergoes multiple mechanical

impacts during this process. Evaluating fruit internal bruising manually is a

tedious and time-consuming process. In this study, we leveraged deep

learning models to rapidly quantify berry fruit internal bruising. Blueberries

from 61 cultivars of soft to firm types were subjected to bruise over a three-

year period from 2021-2023. Dropped berries were sliced in half along the

equator and digitally photographed. The captured images were first analyzed

using the YOLO detection model to identify and isolate individual fruits with

bounding boxes. Then YOLO segmentation models were performed on each

fruit to obtain the fruit cross-section area and the bruising area, respectively.

Finally, the bruising ratio was calculated by dividing the predicted bruised area by

the predicted cross-sectional area. The mean Average Precision (mAP) of the

bruising segmentation model was 0.94. The correlation between the bruising

ratio and ground truth was 0.69 with amean absolute percentage error (MAPE) of

15.87%. Moreover, analysis of bruising ratios of different cultivars revealed

significant variability in bruising susceptibility and the mean bruising ratio of

0.22 could be an index to differentiate the bruise-resistant and bruise-susceptible

cultivars. Furthermore, the mean bruising ratio was negatively correlated with

mechanical texture parameter, Young’s modulus 20% Burst Strain. Overall, this

study presents an effective and efficient approach with a user-friendly interface

to evaluate blueberry internal bruising using deep learning models, which could

facilitate the breeding of blueberry genotypes optimized for machine harvesting.

The models are available at https://huggingface.co/spaces/c-tan/

blueberrybruisingdet.
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1 Introduction

Blueberry (Vaccinium corymbosum L.) has surged in popularity

in the past decade and the retail per capita availability increased

from 1.2 pounds in 2011 to 2.3 pounds in 2021 (USDA-ERS, 2024).

Blueberries contribute significant amounts of vitamins, minerals,

dietary fiber, and anthocyanins (Golovinskaia andWang, 2021) and

blueberry consumption is associated with many health benefits

(Stull et al., 2024). In the United States, blueberry production

increased from 143 million kg in 2013 to 294 million kg of

blueberries in 2023 (USDA-NASS, 2023). Although machine

harvesting can improve harvest efficiency and labor productivity,

fresh market blueberries are generally hand-harvested, due to

bruising damage from machine harvesting operations (Gallardo

et al., 2018). Recently, researchers improved the catch plates by

installing soft catch surfaces on a catch frame to reduce the impact

bruising (DeVetter et al., 2019; Sargent et al., 2021).

Developing suitable blueberry varieties for machine harvest and

fresh market is also essential. Breeding cultivars with improved

resistance to impact force and thus minimizing internal bruising,

are particularly critical for successful mechanical harvesting.

Bruising is a type of subcutaneous tissue failure without rupture

of the skin, as the cell breakage is caused by mechanical impact,

which leads to softer tissues in bruised fruit compared to healthy

fruit (Hussein et al., 2018). Consequently, firmness may be useful as

an indirect index for fruit bruising assessment. Firmness

measurements have included texture analyzers, penetrometer or

durometer tests, acoustic impulse response analysis, and vibration-

based methods (Yu et al., 2014; Jiang et al., 2016), with varying

success. For instance, FirmTech II and Penefel durometer

performed better in soft fruit but not as well in moderate or firm

fruit (Moggia et al., 2022). Recently, several studies have suggested

that instruments that allow the measurement of multiple

mechanical parameters, such as texture analyzers, can better

dissect texture variation among blueberry genotypes and provide

more robust data (Giongo et al., 2013, 2022; Mengist et al., 2024; Oh

et al., 2024a; Oh et al., 2024b). Despite the advances in blueberry

texture analysis, it is still unknown which mechanical texture

components contribute to reduced internal bruising.

The discolored tissues of bruised fruit provide an obvious

characteristic to differentiate healthy fruits and bruised fruits.

While visual assessment is a simple way to evaluate fruit bruising,

this method is time-consuming, laborious, and subjective.

Additionally, for fruit with dark skin, such as blueberry, it is

difficult to differentiate the discolored area externally. A typical

assessment practice developed for blueberries is to slice blueberries

to expose the internal tissues (Ni et al., 2022). Each blueberry is

sliced along the equator and placed on a flat surface, then

experienced evaluators immediately estimate the bruising ratio

between the bruising area and the entire sliced surface area. As

results are subjective and affected by the evaluator, sliced samples

are photographed, and software is used to select the bruising area

and sliced surface area on the image. The bruising ratio then can be

calculated based on the pixel number of each selected area.

Although this method is more accurate, it is much more time
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consuming than rough visual estimation and is destructive. Some

researchers have leveraged techniques as non-destructive

approaches for fruit bruising detection, including X-ray (Diels

et al., 2017; Huang and Liang, 2024), magnetic resonance imaging

(Razavi et al., 2018; Noshad et al., 2020), computed tomography

(Azadbakht et al., 2019; Wood et al., 2024) and hyperspectral

imaging (Fan et al., 2018; Fu and Wang, 2022; Okere et al., 2023;

Bu et al., 2024; Liu et al., 2024). These techniques require expensive

devices and a strict imaging environment. Additionally, data

collection and analysis are very complex for breeders.

With the development of deep learning, many computer vision

tasks, including classification, object detection, and segmentation

can be solved by deep learning-based methods, especially

conventional neural networks (CNNs). Several popular CNNs

used for classification include VGGNet (Simonyan, 2014), ResNet

(He et al., 2016), DenseNet (Huang et al., 2017), and EfficientNet

(Tan and Le, 2019). The CNNs used for object detection can be

categorized as two-stage models and single-stage models (Tan et al.,

2024). The most well-known two-stage models are R-CNN series,

including R-CNN, Fast R-CNN and Faster R-CNN. The region

proposal network was used to predict the candidates of the objects

and then the candidates were further refined to get the bounding

boxes of target objects. The best-known one-stage model is the

YOLO series for the balance between accuracy and inference speed.

The latest version of YOLO series models is YOLO11, which used

Feature Pyramid Network (FPN) and Path Aggregation Network

(PAN) for feature extraction, and the bounding boxes of target

objects were directed regressed. Subsequently, R-CNN and YOLO

series were developed for object segmentation tasks with pixel-wise

prediction to represent the target objects, named Mask R-CNN and

YOLO-seg.

The aforementioned models have been widely employed in

vegetable and fruit postharvest quality assessment due to their

remarkable accuracy and adaptability. Faster R-CNN has been a

popular choice for bruise detection, with several studies improving

its architecture to enhance performance (Hou et al., 2024).

Similarly, Mask R-CNN has also been proven effective,

particularly for segmentation tasks, such as achieving 99.8%

accuracy in olive segmentation (Macıás-Macıás et al., 2023).

YOLO models have gained widespread use for bruising

detection due to their accuracy and speed (Tan et al., 2025). For

instance, YOLOv4 was simplified to detect apple defects using

channel and layer pruning methods, achieving an mAP of 93.74%

with an inference time of 10.82 ms (Fan et al., 2022). Building on the

success of YOLOv5, improvements were made for apple bruising

detection on thermal images, resulting in an impressive mAP of

98.08% (Lin et al., 2023). Similarly, enhancements to YOLOv5s for

kiwifruit defect detection demonstrated high detection accuracies

across various defect categories, including 98.8% for healthy

samples and 95.9% for sunburned samples (Wang et al., 2023).

Another study also employed YOLOv5 to detect hidden bruises of

kiwifruit on hyperspectral images, achieving an mAP of 99.12% (Bu

et al., 2024). Additionally, YOLOv5 was also improved for defect

detection of pears, obtaining an mAP of 0.939 and a detection speed

of 2.2 ms (Wang et al., 2024). Moreover, a study compared Faster R-
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CNN, YOLOv3-Tiny, and YOLOv5s for apple bruising detection on

near-infrared images, and the accuracy of the three algorithms was

higher than 96% (Yuan et al., 2022). Similarly, several CNNs

including YOLOv5, YOLOv8, Faster R-CNN, and Mask R-CNN

were compared for African plum defect detection and YOLOv8

achieved the highest mAP of 93.6% (Fadja et al., 2024).

Although many studies have achieved promising results using

deep learning methods for bruising detection, most have focused on

individual fruit bruising detection and required a conditional

environment for imaging, especially with hyperspectral cameras,

limiting method application and efficiency. In our previous

research, we developed a U-Net-based blueberry bruising

detection method (Ni et al., 2022). Although the method achieved

an mAP of 0.773 for bruising segmentation, this study used a

limited dataset with 68 images, and all images were collected in the

same year. With the recent development of deep learning, many

new models have been proposed with higher accuracy. In this study,

we explored the latest object detection and instance segmentation

algorithms of the YOLO series for blueberry fruit detection and

bruising segmentation. Additionally, over 40 blueberry cultivars

were sampled and photographed for bruising analysis each year for

3 years. Utilizing a texture analyzer, a Young’s modulus parameter,
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Young’s modulus 20% Burst Strain (YM20_BrSt), of each cultivar

was measured as an index of firmness, and the correlation between

YM20_BrSt and bruising ratio was evaluated. The objectives of this

paper were to: (1) build a blueberry impact bruising dataset, train

and evaluate deep learning models for internal bruising ratio

detection; (2) analyze the bruising ratio over three different years

and 61 cultivars; (3) evaluate the correlation between firmness and

bruising ratio and distinguish bruise-resistant and bruise-

susceptible cultivars, and (4) develop a user-friendly interface for

bruising detection and calculation.
2 Materials and methods

2.1 Overview of the method

The overview pipeline for the blueberry internal bruising

detection is illustrated in Figure 1. It consists of three YOLO-

based models: (1) blueberry detection model, which was used to

detect the bounding box of each individual blueberry; (2) blueberry

segmentation model, which was employed to segment the blueberry

area and (3) bruising segmentation model, which was leveraged to
FIGURE 1

Overview of the developed approach. It consists of three YOLO-based models: (1) blueberry detection model, (2) blueberry segmentation model,
and (3) blueberry internal bruising segmentation model.
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segment the bruising area. After obtaining the blueberry and

bruising area, the bruising ratio of each blueberry was then

calculated based on the pixel number.
2.2 Data collection

Blueberries were collected from the Castle Hayne Research Farm,

NC in 2021, 2022, and 2023 and transported on re-freezable ice in

coolers to Kannapolis NC. A total of 61 cultivars were collected over

three years, with 46 cultivars having complete data for all three years.

All blueberries were held at 4°C overnight then warmed to 15°C and

sorted as firm and fully blue fruit of similar berry sizes within cultivars.

To generate internal bruising for each blueberry, blueberries that were

completely blue and firm were individually dropped 20 cm onto a 300

series stainless steel pan (6.62 L, 26x38x10.5 cm) (Figure 2). Blueberries

were placed on the equatorial side and gently rolled off the end to drop

onto the stainless-steel pan placed at a 15° angle to ensure the contact

surface was around the equator of blueberries. The pan was lined with a

layer of bubble wrap and a 9 cm diameter hole was cut out of the wrap

to ensure that each blueberry hit only once on the pan and bounced to

the bubble wrap. Fifty to sixty bruised berries of one cultivar were held
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for 18 hours at room temperature (22-23°C, 55% RH) in plastic bags.

Blueberries were then cut in half between the stem and calyx end with

single-sided razor blades, and the two halves per berry were placed on

white paper. Each cultivar was photographed with a digital

camera (Figure 3).

Another set of blueberries was separated into three groups, each

consisting of 10 blueberry replicates, which were then placed in

163 ml plastic deli cups. Room-temperature blueberries were

individually tested using a TA.XTPlus Texture Analyzer (Stable

Micro Systems, Hamilton, MA, USA), which is equipped with a

2 mm flat probe (Oh et al., 2024a). A force-deformation profile was

created for each fruit by penetrating the fruit on the equatorial axis

using the following settings: a pre-test speed of 1 mm s–1, an auto-

trigger force of 0.05 N, a test speed of 2 mm s–1, a stopping position

at 90% strain, a post-test speed of 10 mm s–1, and a data collection

rate of 200 points per second. The mechanical texture parameter

YM20_BrSt (MPa/%) was calculated from the texture profile by

determining the slope between the force at the minimum time and

the force at 20% of burst strain (strain at maximum force).
2.3 Dataset establishment for model
training

Three datasets were established for blueberry fruit detection,

segmentation, and internal bruising detection to calculate blueberry

internal bruising ratios. A total of 185 images of about 50 individual

blueberries per image were annotated using RoboFlow (https://

roboflow.com) with bounding boxes for individual berry detection

(Figure 4A). Then all images were randomly split into training,

validation, and testing with a ratio of 8:1:1. After that, the training

images were augmented three times with flipping, rotation, and

changing the saturation, brightness and exposure to enhance the

diversity of the dataset, resulting in 447 training images. Images

(162) of individual blueberries were randomly cropped from the

annotations and annotated using RoboFlow with polygons for

individual berry segmentation (Figure 4B). All images were used

in the same ratio mentioned above to generate the dataset.

Additionally, the training images were augmented three times

with flipping and rotation, creating 478 images for training. The

details of these two datasets are shown in Table 1.
FIGURE 2

Illustration of the mechanism to manually induce berry bruises by
dropping the fruit to a pan.
FIGURE 3

Example images of different cultivars. (A) Abundance (B) Cargo.
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To build a dataset for internal bruising segmentation, two

datasets were developed, with one using two years of images and

the other using three years. The two-year dataset consisted of 676

individual berry images from 2021 and 2022. The three-year dataset

included a total of 1001 images, comprising the same 676 images

from 2021 and 2022 as the two-year dataset, along with an

additional 325 images from 2023. All images were annotated

using RoboFlow with the polygons to represent the machinal

bruising area (Figure 4C). All images were randomly split into

training, validation, and testing with a ratio of 8:1:1. Moreover, the

training images of two datasets were also augmented three times

with flipping and rotation, leading to 1614 and 2390 images for

training, respectively. The details of these two datasets used for

internal bruising segmentation are provided in Table 2.

In addition, the bruising ratios of 101 testing images were

calculated based on the annotated masks of blueberry and

internal bruising as the ground truth, which were compared with

the bruising ratio calculated based on the predicted masks of

blueberry and internal bruising.
2.4 Models

The YOLO model is well known for its balance between speed

and accuracy. It has been widely used for object detection and object

segmentation in the agricultural domain. The YOLOv8 detection
Frontiers in Plant Science 05
model was designed to detect objects with bounding boxes and the

segmentation model was designed to segment the boundaries of

each object, enabling more accurate measurements and analyses. In

this study, we employed YOLOv8 detection model for individual

blueberry detection, which can help locate the individual blueberry

with bounding box. Subsequently, the segmentation model was

applied to segment both the external boundary and internal

bruising of each detected blueberry. The YOLOv8 for detection

and segmentation (Figure 5) has a very similar architecture. The

backbone and neck of these two models are the same. Both of them

employed the C2f module to build the CSPDarknet backbone.

Moreover, feature pyramid networks (FPN) and path aggregation

networks (PAN) were leveraged in the neck to enhance the feature

fusion over different scales. The difference between detection and

segmentation is the head.

In the YOLOv8 detection model, two convolutional branches

were employed to predict the bounding box and class, respectively. In

the YOLOv8 segmentation model, these two branches were reserved,

and an extra mask branch was added, which followed the principles

of YOLACT (Zhao et al., 2023). The mask branch was leveraged to

predict prototypes with mask coefficients. Mask coefficients and

prototypes were combined using a linear combination of the latter

with the former as coefficients to produce masks (Bolya et al., 2019).

YOLO11 was used for internal bruising segmentation because

mechanical bruising is more challenging compared to blueberry
FIGURE 4

Annotated images for berry fruit detection (A), fruit segmentation (B), and bruised area segmentation (C).
TABLE 1 Datasets used for berry fruit detection and segmentation.

Dataset Training Validation Testing

Fruit detection 447 18 18

Fruit
segmentation

478 20 20
TABLE 2 Datasets used for internal bruising segmentation.

Data
source (year)

Training
images

Validation
images

Testing
images

2021, 2022 540 (1614, augz) 68 68

2021, 2022, 2023 799 (2390, augz) 101 101
zaug represents augmentation and the number before represents the number of images
after augmentation.
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segmentation. C2f was replaced by C3k2 in YOLO11 (Figure 6) to

maintain efficient feature extraction while providing more flexible

configurations to adapt to different computing needs. Additionally, a

C2PSA layer was added to enhance spatial attention in the feature

maps, which allows the model to focus on relevant image regions.

These improvements increased the performance of YOLO11. As the

tasks of individual blueberry detection and segmentation were

relatively simple and YOLOv8 performed well on these two tasks,

YOLO11 was not employed for these two tasks.

After obtaining the masks of individual berries and internal

bruising, the bruising ratio was calculated by dividing the pixel

number of the berry region by the pixel number of the bruising

region. The mean bruising ratio of one cultivar was then calculated by

averaging the bruising ratios of all samples. To distinguish the bruise-

resistant and bruise-susceptible cultivars, the K-means clustering

algorithm was applied to the mean bruising ratio of each cultivar

for each year, with K set to 2. To validate the separation, Welch’s t-

test was conducted to test the null hypothesis that there was no

significant difference between the two clusters. Welch’s t-test was

chosen for its robustness against unequal variances and sample sizes,

ensuring a more reliable comparison between bruise-resistant and

bruise-susceptible cultivars.
Frontiers in Plant Science 06
2.5 User interface design

To combine three models and make them easier to use, a user-

friendly interface was developed based on Gradio. Gradio is a

Python library that can be used to create web-based interfaces for

machine learning models. It supports inputs, such as text, image,

and video, and outputs such as image, text, and table. Additionally,

it also provides a shareable link to the created application for quick

testing by users. Moreover, it also can integrate with Hugging Face

for hosting models and apps. The developed blueberry internal

bruising detection user interface contains two main functional

modules (Figure 7). The left part is used to upload images for

processing. After selecting an image and clicking the “Submit”

button, the program automatically allocates the trained models to

detect and segment individual fruits and then segment the internal

bruising. By obtaining the mask of the individual berry and its

internal bruising, the bruising ratio is calculated by dividing the

pixel number of the individual berry by the pixel number of

bruising. The processed image returns to the interface and shows

in the right “Processed Image” module. Additionally, the berry

index with bruising ratio returns to the right table below as well.
FIGURE 5

The architecture of YOLOv8 segmentation model.
 FIGURE 6

The architecture of YOLO11 segmentation model.
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2.6 Training configurations

All models were trained on the HiperGator high-performance

computing cluster, which included 8 AMD EPYC ROME CPU

cores, 1 NVIDIA DGX A100 GPU (80 GB), and 32 GB of memory.

The operating system is Linux, with essential software libraries

including Python 3.10, PyTorch 2.4.1, ultralytics 8.3.3, CUDA 12.1,

OpenCV 4.10, and Gradio 4.44.1.

The pre-trained weights on the COCO dataset were employed

when training the individual blueberry detection and segmentation

models, which can benefit the training of a small dataset by

leveraging the knowledge learned from a large dataset to improve

the model performance and reduce training epochs. To train the

internal bruising segmentation models, YOLOv8 and YOLO11

segmentation models were trained on 2-year data and 3-year

data, respectively. Additionally, to evaluate the effectiveness of

pre-training and data augmentation, each model was trained with

and without pre-training and augmentation, respectively.
2.7 Evaluation metrics

To evaluate the detection and segmentation performance, P

(Precision), R (Recall), and mAP were employed in this paper.

Precision measures the proportion of true positive detections

among all detections. Recall measures the proportion of true

positive detections relative to the total ground truth detections.

Average Precision (AP) captures the overall shape of the precision/

recall curve, evaluating both precision and recall comprehensively.
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The mAP is calculated by averaging the AP values across all

classification categories. Moreover, linear regression tests were

employed in this study to evaluate the correlation between the

predicted bruising ratio and the ground truth, as well as the

correlation between the bruising ratio and YM20_BrSt with

evaluation metrics including the fitted slope, coefficient of

determination (R2), and Root Mean Squared Error (RMSE).

Furthermore, MAPE was also calculated to evaluate the

performance between the predicted bruising ratio and ground

truth. The calculations of the metrics are shown in Equations 1–6.

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

AP =
Z 1

0
P(Ri)dRi (3)

mAP =
1
C o

C

n=1
APi (4)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

0 (Pfi − P0
i)
2

N

s
(5)

MAPE =
1
No

N

0

Pi − P0
i

Pi

����
���� (6)
FIGURE 7

Snapshot of the blueberry bruising detection web app.
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where, TP, FP, and FN represent true positives, false positives,

and false negatives, respectively. C denotes the number of class

categories. APi represents the area under the P-R curve of the ith

class. N denotes the total number of samples. Pfi, P
0
i and Pi represent

the predicted result from fitted curve, predicted bruising ratio and

ground truth of the ith sample, respectively.
3 Results

3.1 Results of blueberry fruit detection and
segmentation

The performances of individual blueberry detection and

segmentation were evaluated on the testing datasets and the

results illustrate that the trained models achieved very high

accuracy (Table 3). Specifically, the blueberry detection achieved

an mAP0.5 of 0.995 and 0.993 on a stricter metric mAP0.5:0.95. The

qualitative result demonstrated in Figure 8 also showed that the

trained blueberry detector can detect each blueberry with a

bounding box correctly, even the vertically placed sample. The

segmentation model also achieved a high mAP0.5 of 0.995 and an
Frontiers in Plant Science 08
mAP0.5:0.95 of 0.990. Although bruising or compression by

dropping the fruit on a hard surface may cause deformation and

create the irregular shape of the blueberry fruit, the segmentation

model still can obtain the correct mask of the cross-section

area (Figure 9).
3.2 Results of bruised tissue segmentation

Comparisons between two datasets (2-year data and 3-year

data) and two models (YOLOv8 and YOLO11) revealed that using

3-year data significantly improved the segmentation performance of

YOLO models for internal bruising, with YOLO11 outperforming

YOLOv8 (Figures 10, 11). The results showed that both YOLOv8

and YOLO11 achieved higher performances when they were trained

on 3-year data. Compared to the best model trained on 2-year data,

the best models of YOLOv8 and YOLO11 trained on 3-year data

increased 3% and 5.1% on mAP0.5, respectively. The best model of

YOLO11 achieved an mAP0.5 of 0.940 on 3-year data, which was

4.7% higher than that of YOLOv8.

The comparison between YOLOv8 and YOLO11 indicated that

the polygons of the bruised tissue predicted by YOLO11 were closer

to ground truth compared to those predicted by YOLOv8

(Figure 12). Additionally, the segmentation model trained on 2-

year data also exhibited the generalization ability to segment

bruising on the data from 2023. The YOLOv8 and YOLO11

models trained on 2-year data achieved mAP0.5 of 0.917 and

0.930 on the 2023’s testing dataset, which were 3.5% and 3%

lower than those models trained on 3-year data, respectively.
TABLE 3 Performance on blueberry fruit detection and segmentation.

Task P R mAP0.5 mAP0.5:0.95

Blueberry detection 1 1 0.995 0.993

Blueberry segmentation 1 1 0.995 0.990
FIGURE 8

Blueberry fruit detection result.
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Additionally, the effectiveness of pre-training and augmentation

techniques were also evaluated when training the model. In

Figure 10, pre-training and augmentation improved the mAP0.5

on 2-year data by 2.3% compared to the model without using these

two techniques. A similar trend was also observed in YOLO11;

mAP0.5 increased from 0.871 to 0.887, although using the

augmentation may cause the mAP0.5 to slightly decrease. Using a

larger dataset containing 3 years’ data, pertaining and augmentation

techniques did not improve the segmentation performance of

YOLOv8. However, when only using augmented 3-year data to

train YOLO11, the mAP0.5 slightly increased (1%) compared to the

model without using augmentation. Overall, using all 3-year data

achieved better segmentation performance. Additionally, YOLO11

outperformed YOLOv8 for internal bruising segmentation.

Moreover, the pre-training and augmentation may be more

effective on 2-year data compared to 3-year data.
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3.3 Results of bruising ratio and analysis
across three years

The best-performing models of YOLOv8 and YOLO11 trained

on 3-year data were leveraged to process 101 testing images and the

comparison between the predicted bruising ratios and ground truth

demonstrated that YOLO11 achieved higher accuracy than

YOLOv8 in predicting bruising ratios. The linear regression

results showed that the calculated bruising ratios of YOLO11

were closer to the ground truth compared to those of YOLOv8

(Figure 13). Specifically, the R2 of YOLO11 was 0.14 higher than

that of YOLOv8. The RMSE of YOLO11 was about 0.02 lower than

that of YOLOv8. In addition, the MAE and MAPE of YOLO11 were

0.025 and 15.87%, which were 0.009 and 12.29% lower than those of

YOLOv8. However, a sample containing a discolored area caused by

impact and other factors (Figure 14A) led to overestimations by

both models, resulting in significant errors in the comparison

results. Overall, the bruising ratios calculated based on the

predictions of YOLO11 outperformed YOLOv8, which was

consistent with the evaluation results of bruising segmentation.

Analysis of blueberry bruising across cultivars and years using the

YOLO11 segmentation model revealed significant variability in

bruise susceptibility, with some cultivars consistently demonstrating

low bruising ratios while others exhibited high bruising tendencies

and considerable year-to-year variation (Figure 15). For example,

cultivars like “Indigocrisp” and “Pinnacle” (considered crisp and firm

cultivars) maintain relatively low bruising ratios over years, making

them potential candidates for breeding programs targeting for

enhancing suitability for machine harvesting. In contrast, cultivars

such as “Robeson”, “Montgomery”, and “Mini Blues” (well known to

be soft cultivars) maintained relatively high bruising ratios over years,

reflecting their greater susceptibility to bruising. Additionally, many
FIGURE 9

Blueberry fruit segmentation result.
FIGURE 10

Performance of bruising segmentation using YOLO8-seg. Tr and Ts represent training dataset and testing dataset, respectively. The numbers 2 and 3
represent the datasets from 2-year data and 3-year data, respectively, and 23 represents the dataset from the year 2023. None represents without
using both pre-trained weights and augmented training dataset. PT represents using pre-trained weights from the COCO dataset when training. Aug
represents using the augmented training dataset for training. All the tests were performed on the corresponding testing datasets.
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cultivars showed clear year-to-year variation. For instance,

“Heintooga” demonstrated a pronounced increase in bruising ratio

in 2023. Similarly, “South Moon” also showed inconsistent

performance across the years. On the other hand, “Pinnacle” and

“Indigocrisp” exhibit relatively low bruising ratios over time,

suggesting a higher level of resilience to external factors such as
Frontiers in Plant Science 10
environmental conditions or handling practices during harvest.

Within-year variation further distinguishes the cultivars. For

instance, some cultivars, such as “Rebel” and “Keecrisp”, show tight

distributions within a single year, indicating consistent bruising ratios

among samples. Conversely, cultivars such as “Premier” and “Mini

Blues” exhibit wide variation within a year, suggesting varied
FIGURE 11

Performance of bruising segmentation using YOLO11-seg. Tr and Ts represent training dataset and testing dataset, respectively. The numbers 2 and
3 represent the datasets from 2-year data and 3-year data, respectively, and 23 represents the dataset from the year 2023. None represents without
using both pre-trained weights and augmented training dataset. PT represents using pre-trained weights from the COCO dataset when training. Aug
represents using the augmented training dataset for training. All the tests were performed on the corresponding testing datasets.
FIGURE 12

Examples of bruised area segmentation results.
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responses to environmental or postharvest handling conditions.

Although blueberry fruits were carefully selected for full color and

firmness, blueberries exhibit asynchronous ripening. It is possible that

some fruits were slightly riper than others within the same harvest, or

that softening is slightly more accelerated for some cultivars

(especially the softer types) than others.

Moreover, the K-means clustering algorithm was employed on

mean bruising ratios to distinguish bruise-resistant and bruise-

susceptible cultivars and the results showed that a threshold of 0.22

could be used to separate these two groups of cultivars (Figure 16).

The clustering result of 2021 showed that the distinction between

clusters was clear, with Cluster 1 containing many genotypes

exceeding a mean bruising ratio of 0.25, while Cluster 0 clusters

below 0.20. The clustering result of 2023 retained a similar

distribution to 2021 although the gap between two clusters

narrowed. The gap between clusters further narrowed among

2022’s data and the distinction between the clusters becomes less

pronounced compared to 2021 and 2023. The t-test results, with

extremely low p-values (2021: 1.33e-08, 2022: 2.23e-07, and 2023:
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1.65e-5), confirm significant differences between the two clusters

identified by K-means across all three years.

A snapshot of the developed web app with a processed image was

illustrated in Figure 17. The left shows the uploaded image for

processing. The processed image returns to the interface on the

right with the bounding box that separates each blueberry with the

index and bruising ratio shown above the bounding box.

Additionally, the green mask and red mask shown on each

blueberry represent the healthy region and the bruising region,

respectively. The index with bruising ratio also returns to the table

below, facilitating easier saving and further analysis.
3.4 Results of the correlation between
bruising ratio and YM20_BrSt

The linear regression tests between the calculated mean bruising

ratio and YM20_BrSt exhibited a moderate correlation and the mean

bruising ratio is inversely proportional to YM20_BrSt (Figure 18).
FIGURE 13

Comparison of predicted bruising ratio with the ground truth. (A) YOLOv8-seg and (B) YOLO11-seg.
FIGURE 14

Incorrect segmentation examples. The first row is the ground truth and the second row is the segmentation results. (A) represents false positives and
(B, C) represent false negatives.
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Specifically, a moderate correlation (R2 = 0.35) with an RMSE of 1.01

was observed in 2021’s data. 2022’s data displayed a stronger

correlation (R2 = 0.45) with the lowest RMSE (0.89). 2023’s data

exhibited the strongest correlation (R2 = 0.53) but had a slightly higher

RMSE (1.1). Overall, the relationship between the mean bruising ratio
Frontiers in Plant Science 12
and YM20_BrSt was consistent over three years and the observed

variations may relate to the sample characteristics or experimental

conditions. Additionally, we mapped the clustering results based on

bruising ratio to the YM20_BrSt values. Cultivars with higher

YM20_BrSt values exhibit greater resistance to bruising, while those
FIGURE 15

A comparison of bruising ratio distribution of 61 blueberry cultivars, and 46 cultivars have all three-year data. Error bars extend to the minimum and
maximum values, excluding outliers. Boxes indicate the interquartile range, which contains the middle 50% of the data points for each genotype in a
given year. The center line inside each box indicates the median bruising ratio for that year.
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with lower YM20_BrSt values are more susceptible. Furthermore,

Welch’s t-test was performed on the YM20_BrSt values of the two

categories identified through clustering. The t-test results showed low

p-values (2021: 3.54e-07, 2022: 0.008, and 2023: 1.06e-10), indicating

significant differences between the two categories of YM20_BrST

values identified through the mean bruising ratios.
4 Discussion

This paper demonstrated a deep learning-based high-

throughput approach for blueberry internal bruising detection on
Frontiers in Plant Science 13
RGB images, which can benefit the breeding of bruise-resistant

cultivars for mechanical harvesting. Additionally, a user-friendly

interface was designed to easily use the trained models. A batch of

blueberries can be analyzed simultaneously, which increases the

processing efficiency. Moreover, the developed approach does not

require expensive imaging systems, such as hyperspectral cameras

and special lighting conditions, and is suitable for fast and portable

detection with only RGB cameras.

Although the developed approach achieved a high mAP0.5 in

bruising segmentation and promising bruising ratio estimation results,

the moderate correlation suggests room for improvement in predicting

masks. A prediction is deemed a true positive if its overlap with the
FIGURE 17

The graphical user interface (GUI) of the blueberry bruising detection web app with a raw image (left panel) and a processed image (right panel).
FIGURE 16

K-means clustering results of mean bruising ratio over three different years.
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ground truth exceeds 0.5; however, this still allows for up to 50% of the

prediction to be incorrect, potentially introducing errors in the

estimated bruising area. Moreover, the R² value is particularly

sensitive to samples with large errors, which further exacerbates the

lower correlation. In addition, the developed approach still has a few

potential limitations. For example, the bruising was generated by

dropping the blueberry onto the pan. The bruising area was

controlled to the equator of the fruit. To avoid the second bruising,

the bubble wraps were used to catch the bounced fruit. However, the

contact surface of the fruit was not always on the equator due to the

spinning of the fruit during the dropping, which may cause an

inaccurate bruising ratio prediction. Therefore, the bruising

generation system could be further improved by restricting the

orientation of the fruit during dropping to make sure the contact

surface is along the equator. This approach also requires manual slicing

of the blueberry along the equator to get two halves using the razor

blade. If the slicing position does not align with the center of the

bruised area, the bruising ratio may be underestimated, limiting the

feasibility of this method for real-time field applications. A more

convenient tool with fixture and automatic cutter could be designed

and built to streamline the slicing process and enhance efficiency.

The performance of individual blueberry detection and

segmentation was exceptionally high, even with a relatively small

dataset. This could be attributed to the simplicity of the background,

which lacked significant interference, despite variations in the shape,

placement angles, and color of the blueberries. As a result, a small

dataset was sufficient to achieve highly accurate results. However, if

the background includes noise, the detection accuracy could be

affected. Future work could include training and evaluating the

model on images with varied and complex backgrounds to improve

its robustness under diverse conditions. Additionally, the discolored

area on the blueberry may not be generated by impact, which may

affect the segmentation accuracy of the trained bruising segmentation

model. The bruise caused by impact usually occurs on the impact

point and then spreads to the inner tissue and the shape is like a

triangle (Figure 4C). Figure 14A shows an example that contains both

impact bruising and other bruising. Although there is a discolored

area inside the core, this area is not caused by the impact bruising; the

segmentation model still segmented this area as impact bruising,

resulting in overestimation. Conversely, some small discolored areas
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(Figure 14B) and lightly discolored areas (Figure 14C) may be missed

by the segmentation model, leading to underestimation of bruising.

Moreover, variability in bruising susceptibility (the onset of the

discolored area as the bruising symptom) due to environmental

factors, such as temperature, humidity, and handling practices, may

also impact the robustness of the model. More samples with complex

bruising areas could be added to the training dataset in the future to

further improve the segmentation accuracy. Compared to our

previous research (Ni et al., 2022), the R² achieved in their study is

0.729, which is slightly higher. Our approach achieves a bruise ratio

accuracy of 87.7%, surpassing their 79.0% due to the use of the latest

segmentation model.

In this paper, only mature blueberries were examined in this study

because only mature fruit was harvested, which is a typical practice in

blueberry harvesting. The models’ performances that were trained with

two-year data and three-year data were compared. Using only two-year

data (2021 and 2022) to train the bruising segmentation model still

achieved a high mAP on the 2023 data, whichmeans the trainedmodel

had a generalization ability to segment bruising on new data. After

using all three years of data, the results were further improved, which

may be attributed to the enhanced data variability from images of 2023.

Additionally, the pre-training and augmentation may be more effective

on 2-year data compared to 3-year data. This is because the number of

images in the 2-year dataset is relatively smaller than that in the 3-year

dataset. Moreover, variability was observed between each cultivar over

three years, whichmay have been caused bymany factors. For example,

different harvesting times over three years can result in slight maturity

differences among blueberry samples within cultivars. Overripe (softer)

blueberries are more likely to be bruised leading to a larger bruising

ratio. In addition to maturity, the fruit size may also affect the bruising

ratio. Earlier papers indicate that smaller berries exhibit more bruising

(Yu et al., 2014), possibly because there is less volume to spread out the

force that occurs upon impact. Moreover, factors such as berry

morphology (relative roundness, peel thickness) and composition

(cell wall thickness and components) may also affect bruise response.

Recent work demonstrated that the mechanical parameter

YM20_BrSt is related to the firmness of blueberries (Mengist

et al., 2024; Oh et al., 2024a; Oh et al., 2024b). In this study, we

found a negative correlation between bruising ratio and

YM20_BrSt, which supported a widely accepted assumption that
FIGURE 18

Correlation between bruising ratio and Young’s modulus parameter, YM20_BrSt, over three years: (A) 2021, (B) 2022, and (C) 2023. Red dots
represent bruise-resistant cultivars and green dots represent bruise-susceptible cultivars that were categorized by clustering results.
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firmer berries exhibit greater resistance to internal bruising. This

highlights the potential of using instrumental measurements from a

texture analyzer as indicators of bruise resistance that breeding

programs could use for selection, particularly given the moderate to

high heritability of mechanical texture in blueberry (Ferrão et al.,

2024; Oh et al., 2025). However, it is important to note that the

bruising ratio and measured firmness are not equivalent. Firmness

reflects the mechanical resistance of fruit tissue to deformation

while the bruising ratio quantifies the visible damage that occurs

after impact. While firmer fruit generally tends to bruise less, the

bruising ratio is influenced by additional factors such as tissue

structure and internal composition. As shown in Figure 18, cultivars

with similar YM20_BrST values (e.g., between 2 and 4) can display a

wide range of bruising ratios, indicating that additional traits

contribute to bruise susceptibility beyond firmness alone.
5 Conclusions

This study developed a high throughput blueberry bruising

detection approach using deep learning models for sliced fruit.

YOLOv8 models were used for individual blueberry detection and

segmentation, which achieved high mAP for both detection and

segmentation tasks. Additionally, YOLOv8 and YOLO11

segmentation models were compared for bruising segmentation and

YOLO11 achieved higher segmentation accuracy by training on all

three-year data with data augmentation. After analyzing more than 40

cultivars repeatedly over three years, the mean bruising ratio of 0.22

could be used as a target threshold for distinguishing bruise-resistant

and bruise-susceptible cultivars. Moreover, the mean bruising ratio was

negatively correlated with the mechanical firmness parameter

YM20_BrSt, indicating that a texture analyzer could be useful in

screening blueberry germplasm for bruise resistance. The developed

user interface makes it easier for blueberry breeders, growers, and

shippers/packers to access the deep-learning models. Overall, this study

introduced an effective and efficient method for assessing blueberry

internal bruising using deep learning models, which can support the

development of blueberry cultivars tailored for machine harvesting.
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