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and An–Ci curves in Lolium
perenne and Triticum aestivum
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Accurate determination of photosynthetic parameters is essential for

understanding how plants respond to environmental changes. In this study, we

evaluated the performance of the Farquhar-von Caemmerer-Berry (FvCB) model

and introduced a novel model to fit photosynthetic rates against ambient CO2

concentration (An–Ca) and intercellular CO2 concentration (An–Ci) curves for

Lolium perenne and Triticum aestivum under 2% and 21% O2 conditions. We

observed significant discrepancies in the FvCB model’s fitting capacity for An–Ca

and An–Ca curves across different oxygen regimes, particularly in estimates of key

parameters such as the maximum carboxylation rate (Vcmax), the day respiratory

rate (Rday), and the maximum electron transport rate for carbon assimilation (JA-

max). Notably, under 2% and 21% O2 conditions, the values of Vcmax and Rday

derived from An–Ca curves using the FvCB model were 46.98%, 44.37%, 46.63%,

and 37.66% lower than those from An–Ci curves for L. perenne, and 47.10%,

44.30%, 47.03%, and 37.36% lower for T. aestivum, respectively. These results

highlight that the FvCB model yields significantly different Vcmax and Rday values

when fitting An–Ca versus An–Ci curves for these two C3 plants. In contrast, the

novel model demonstrated superior fitting capabilities for both An–Ca and An–Ci

curves under 2% and 21% O2 conditions, achieving high determination

coefficients (R2
≥ 0.989). Key parameters such as the maximum net

photosynthetic rate (Amax) and the CO2 compensation point (G) in the presence

of Rday, showed no significant differences across oxygen concentrations.

However, the apparent photorespiratory rate (Rpa0) and photorespiratory rate

(Rp0) derived from An–Ci curves consistently exceeded those from An–Ca curves

for both plant species. Furthermore, Rpa0 values derived from An–Ca curves

closely matched observed values, suggesting that An–Ca curves more accurately
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reflect the physiological state of plants, particularly for estimating

photorespiratory rates. This study underscores the importance of selecting

appropriate CO2-response curves to investigate plant photosynthesis and

photorespiration under diverse environmental conditions, thereby ensuring a

more accurate understanding of plant responses to changing environments
KEYWORDS

photosynthesis models, C 3 plants, FvCB model, parameter estimation, CO 2 -response
to photosynthesis, apparent photorespiratory rate
1 Introduction

In the context of ongoing global climate change and the

persistent increase in atmospheric CO2 concentrations, studying

the response models of plant photosynthesis to intercellular CO2

concentration (Ci) (see Supplementary Table S1 for the list of

abbreviations) and ambient CO2 concentration (Ca) is of critical

importance. Photosynthesis, the process by which plants convert

CO2 into organic matter using light energy, plays a crucial role in

the carbon cycle and the energy flow within ecosystems (Sergio

et al., 2015; Kolari et al., 2014; Roberta et al., 2024). This process is

influenced by both light intensity and CO2 concentrations, making

the development of accurate photosynthesis models essential for

predicting plant growth and ecosystem changes (Eric et al., 2019;

Pleban et al., 2020; Taylor et al., 2024).

The response models of photosynthesis to Ci (An–Ci model,

where An represents the net photosynthetic rate) and to Ca (An–Ca

model) are fundamental for understanding plant photosynthesis,

each addressing different aspects. The An–Ci model primarily

describes the relationship between the internal CO2 concentration

within plant leaves and An. This model incorporates internal gas

exchange and biochemical processes, such as the carboxylation

reaction of Rubisco (Kelly et al., 2016; Ye et al., 2024). Ci denotes

the CO2 concentration in the air space around mesophyll cells,

which is influenced by stomatal conductance (Miner and Bauerle,

2017; Taylor et al., 2024). This model is typically used to analyze

photosynthetic performance under various environmental

conditions, including changes in light, temperature, and CO2

concentrations (De Kauwe et al., 2016; Yiotis et al., 2021; Xiong

et al., 2022). Conversely, the An–Ca model focuses on the

relationship between ambient CO2 concentration and plant

photosynthesis. This model evaluates the impact of changes in

atmospheric CO2 on photosynthesis, particularly in the context of

global climate change and rising CO2 levels (Eric et al., 2019; Qiu

and Katul, 2020). It helps predict future impacts on plant growth

and ecosystem dynamics. In practical applications, the An–Ci model

provides insights into the biochemical mechanisms of

photosynthesis, while the An–Ca model is more frequently used in

ecological and climate change research (Kelly et al., 2016; Miner and
02
Bauerle, 2017; Xiong et al., 2022). Both models are invaluable tools

in plant physiology and global change biology.

As we explore the complex ways in which plant photosynthesis

responds to variations in CO2 levels, a plethora of models has been

developed by scientists. These models can be broadly categorized

into two types: empirical and biochemical. Among the empirical

models, the Michaelis-Menten (M-M) model stands out due to its

foundation in enzyme kinetics, while the exponential equation

model provides a mathematical framework for describing the

photosynthetic response (Watling et al., 2000; Sharkey et al.,

2007; Silva-Pérez et al., 2017), offering a refined method for

fitting photosynthetic curves. These empirical models are utilized

to fit the An–Ca or An–Ci curves of plants, enabling the extraction of

key parameters such as the maximum net photosynthetic rate

(Amax), which indicates the upper limit of photosynthetic

capacity, the CO2 compensation point with day respiratory rate

(G), which reveals the CO2 level at which photosynthesis balances

respiration, and the apparent photorespiratory rate (Rpa0) at CO2

concentration approaching 0 mmol mol−1, a measure of the energy

invested in photorespiration (Leuning, 1995; Medlyn et al., 2011;

Morfopoulos et al., 2014). These three pivotal photosynthetic

parameters are quantifiable (Medlyn et al., 2011; Morfopoulos

et al., 2014; Burnett et al., 2019). Consequently, regardless of the

model used and whether it is for the An–Ca or An–Ci curve, the

parameters derived from these models should closely match the

observed data without significant discrepancies. It is only under

these conditions that we can deem a model to be effective.

Apparently, the M-M model and the exponential equation model,

though both being asymptotic functions, can’t always accurately

depict net CO2 assimilation rates reductions beyond the TPU-

limitation phase in some plant species (Watling et al., 2000; Silva-

Pérez et al., 2017). Furthermore, these two models are unable to

directly estimate the critical transition point from Ribulose-1,5-

bisphosphate (RuBP)-limited to TPU-limited conditions (CTPU).

Among the biochemical models, the one developed by Farquhar

et al. (1980) and its subsequent modifications (Harley and Sharkey,

1991) are central. The model introduced by Farazdaghi and

Edwards (1988) also contributes to the field. The Farquhar model,

widely known as the FvCB model, has been extensively analyzed for
frontiersin.or
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its biochemical mechanisms and is used to fit the An–Ci curve of C3

plants (Dubois et al., 2007; Fan et al., 2011; Busch and Sage, 2017;

Rogers et al., 2017; Walker et al., 2017; Yin et al., 2021). This model

provides five crucial parameters: the maximum electron transport

rate (JA-max) for photosynthesis, the maximum carboxylation rate

(Vcmax), triose phosphate utilization rate (VTPU), day respiratory

rate (Rday), CO2 compensation point (G*) in absence of Rday and

mesophyll conductance (gm) (Long and Bernacchi, 2003; Norby

et al., 2017; Xiao et al., 2021). Despite its extensive use in studying

the photosynthetic response of C3 plants to environmental changes

such as light, temperature, CO2 concentration, and nitrogen (N)

nutrition (Bellasio et al., 2015; Sharkey, 2016; Busch and Sage, 2017;

Anderegg et al., 2018; Cheah and The, 2020; Han et al., 2020; Yin

et al., 2021; Yin and Amthor, 2024), the FvCB model has

limitations. It cannot directly estimate parameters like Amax, G,
and Rpa0, as well as is specific to C3 plants.

In the current research field, the An–Ci curves of plants are

typically analyzed using biochemical models to derive key

photosynthetic parameters (Farquhar et al., 1980; Harley and

Sharkey, 1991; Fan et al., 2011; Vijayakumar et al., 2024). However,

research on fitting the An–Ca curve is limited, probably because Ci is

directly involved in photosynthetic carboxylation while ambient Ca

only indirectly affects Ci (Long and Bernacchi, 2003). Moreover, there

is a paucity of studies examining whether significant differences exist

between important photosynthetic parameters (e.g., Amax, G, and
Rpa0) derived from theAn–Ca andAn–Ci curves and the observed data

(Busch and Sage, 2017). Similarly, the consistency of parameters such

as JA-max, Vcmax, G*, VTPU, and Rday, obtained from fitting gas

exchange data (i.e., An–Ca and An–Ci curves) with biochemical

models, remains underexplored (Medlyn et al., 2011; Morfopoulos

et al., 2014; Yin et al., 2021; Smith et al., 2023). Accurately

determining these parameters is essential for understanding plant

responses to ambient CO2 variations, evaluating carbon assimilation

efficiency, and assessing adaptability to climate change. Thus, a

comparative analysis of model predictions and measured data is

particularly critical.

In this study, we begin with a clear and concise explanation of

the FvCB model, initially introduced by Farquhar et al. in 1980.

Subsequently, we introduce a new model. This model describes the

CO2-response curve of photosynthesis and incorporates an explicit

term for Rday. Additionally, we also introduce another version of the

model that does not explicitly define Rday. Then, we showcase how

to apply both the FvCB model and our newly developed model to fit

An–Ca and An–Ci curves, respectively, in order to estimate key

photosynthetic and biochemical parameters. Finally, we utilize a

modeling-observation intercomparison approach to assess the

photosynthetic parameters derived from An–Ca and An–Ci curves

for both the FvCB model and our newly developed model. For the

FvCB model, these parameters include Vcmax, JA-max, G*, VTPU, and

Rday. For the new model, they encompass Amax, CTPU, G, CO2

compensation point (G*) in the absence of Rday and Rpa0. We then

determine which parameters exhibit different values when derived

from the An–Ca and An–Ci curves. Ultimately, we evaluate whether

there are significant differences in the estimated parameters

obtained from these two types of curves. Through this
Frontiers in Plant Science 03
methodological exploration, we aim to provide novel insights and

tools to enhance research in plant photosynthesis.
2 Materials and methods

2.1 FvCB model description

The FvCB model considers that the carbon assimilation process

of C3 plants includes: the Rubisco enzyme activity limitation stage,

the RuBP regeneration limitation stage, and the triose phosphate

utilization (VTPU) limitation stage.

In the Rubisco limitation stage (Farquhar et al., 1980; Dubois

et al., 2007; Sharkey et al., 2007; Miao et al., 2009; Ellsworth et al.,

2015; Yin et al., 2021), the following equation is used:

Ac =
Vc;max(Ci − G*)

Ci + Kc(1 + O=Ko)
− Rday (1)

where Vc,max is the maximum velocity of the carboxylase

(mmol·m−2·s−1); Ci is the intercellular CO2 concentration; Kc and

Ko are the Michaelis-Menten constants for CO2 and O2, respectively

(Farquhar et al., 1980; Silva-Pérez et al., 2017); O is the partial

pressure of oxygen at the site of Rubisco. Rday is the day

respiratory rate.

During the RuBP-limited phase of photosynthesis, if the

regeneration of RuBP is predominantly constrained by the

availability of NADPH, then the following equation can be applied:

Aj = J
Ci − G* 
4Ci + 8G*

− Rday (2)

where Aj is the carbon assimilation rate limited by RuBP

regeneration capacity. At light saturation, J is equal to JA-max in

Equation 2 (Farquhar et al., 1980; Gu et al., 2010; von Caemmerer,

2013; Farquhar and Busch, 2017; Yin et al., 2021).

When RuBP regeneration is co-determined by the availability of

bothNADPH andATP, the equation assumes a slightlymodified form:

Aj = J
Ci − G* 

4:5Ci + 10:5G*
− Rday (3)

At light saturation, J is equal to JA-max in Equation 3 (von

Caemmerer, 2000; Long and Bernacchi, 2003; Yin et al., 2004; Yin

et al., 2009; Lenz et al., 2010; Bernacchi et al., 2013).

In the TPU limitation stage, we have:

Ap = 3VTPU

Ci − G*
Ci − (1 + 3aG)G* − Rday

(4)

where Ap is the carbon dioxide assimilation rate when the

utilization of phosphate glucose is limited. aG is the proportion of

glycolic acid not returned to chloroplasts and is related to the

release of phosphate (Dubois et al., 2007). aG is between [0, 1].

While  aG is equal to 0, Equation 4 is expressed as Ap = 3VTPU −

Rday (Long and Bernacchi, 2003; Bernacchi et al., 2013).

Based on the analysis above, it can be inferred that fitting the

An–Ca and An–Ci curves separately using the FvCB model should
frontiersin.org
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yield different values for Vcmax, JA-max, and Rday, while the values for

VTPU and G* should be the same. For VTPU and G*, it is not possible
for their values to change simply because Ca or Ci is altered. This

should be consistent with the actual situation.

On the other hand, experimental methodologies facilitate the

accurate quantification of whole-chain electron transport,

represented by Jf, through the application of fluorescence

techniques. As elucidated by von Caemmerer (2000) and Long

and Bernacchi (2003), Jf is partitioned among several pivotal

processes, with photosynthesis being a principal recipient and

denoted by JA. Beyond photosynthesis, Jf contributes to other

synthetic and electron-consuming pathways, including

photorespiration (JO), the reduction of nitrate to ammonium

(JNit), and the light-driven oxygen uptake via the Mehler

ascorbate peroxidase (MAP) reaction (JMAP). Consequently, the

relationship can be encapsulated as Jf = JA + JO + JNit + JMAP. The

analysis underscores a critical correlation between Jf and JA: the

magnitude of Jf must necessarily surpass that of JA. This inference

arises from the understanding that Jf encompasses not only the

electrons associated with JA. It also includes those in other synthetic

and metabolic pathways, such as JO, JNit, and JMAP. Consequently, it

can be deduced that the maximum rate of photosynthesis (JA-max) as

determined by the FvCB model must be inherently lower than the

maximum rate of whole-chain electron transport (Jf-max).

In recent years, significant progress has been made in the field of

plant photosynthesis models. Among them, the FvCB model has

also achieved remarkable advancements in aspects such as dynamic

light response expansion and multi-scale coupling models. Under

dynamic light environments, stomatal conductance also changes

dynamically and interacts with photosynthesis. Previous studies

have coupled the dynamic stomatal model with the FvCB model

(Zhang et al., 2017; Yin and Amthor, 2024). They found that by

using an improved version of the Ball-Berry stomatal model, the

dynamic effects of factors such as light intensity, carbon dioxide

concentration, and air humidity on stomatal conductance can be

considered. Stomatal conductance (gs) can be expressed as: gs = g0 +

m × An/Ca × hs, where g0 is the minimum stomatal conductance, m

is an empirical coefficient, An is the net photosynthetic rate, Ca is the

atmospheric CO2 concentration, and hs is the relative humidity of

the air at the leaf surface. Under dynamic light environments,

changes in light intensity affect the photosynthetic rate, which in

turn dynamically adjusts the stomatal conductance through the

stomatal model and then feedback-affects photosynthesis. This

enables the model to more real ist ical ly simulate the

photosynthesis-stomatal coupling process of plants under

dynamic light environments.
2.2 A new model for describing the CO2–
response curve of photosynthesis with an
explicit Rday

In order to estimate key photosynthetic parameters such as

Amax, CTPU and G*, we have developed a newmodel describing CO2-

resposne curves of photosynthesis (An–C curves) (hereafter referred
Frontiers in Plant Science 04
to Model I). The new model can be written as follows:

An = ac
1 − bcC
1 + gcC

(C − G*) − Rday (5)

where An is the net photosynthetic rate; G* is the CO2

compensation point in the absence of Rday. ac, bc and gc are three
coefficients that depend on plant characteristics and environmental

conditions, and they are independent of C. C can represent both

ambient CO2 concentration (Ca) and intercellular CO2

concentration (Ci).

In addition, Equation 5 can be rearranged as:

An = ac
1 − bcC
1 + gcC

Ci − ac
1 − bcC
1 + gcC

G* − Rday (6)

In contrast to Equation 1, the initial term represents the gross

rate of photosynthesis, while the subsequent term denotes the actual

rate of photorespiration (Rp), assuming no contribution from Rday
Equation 6. Consequently, Rp can be expressed as follows:

Rp = ac
1 − bcC
1 + gcC

G (7)

In Equation 7, Rp will decrease with C. Therefore, it can be used

to investigate the relationship between Rp and C under different

environmental factors. Specially, while C = 0 mmol mol−1, Rp0 = acG
. In this scenario, theoretically, Rp0 will take on two different values

when either Ca or Ci is at 0 mmol mol−1. In practice, there is only a

single value that defines the CO2-response curve for photosynthesis.

Consequently, the Rp0 value serves as a benchmark to assess the

plausibility of different response types. Specifically, the proximity of

the Rp0 values derived from fitting An–Ca and An–Ci curves to the

actual measured data is one of the criteria used to evaluate which

response type is more justifiable.

Supposing that Rday approximates a constant or is independent

of C, the first derivative of Equation 5 is expressed as follows:

dAn

dC
= ac

1 − 2bcC − bcgcC2 + (bc + gc)G*
(1 + gcC)2

(8)

where dAn/dC is the slope of the An–C curve, and dAn/dC

decreases with increasing C. As C tends to zero in Equation 8, dAn/

dC equals ac½1 + (bc + gc)G*�, and it is referred to as the initial slope

of the An–C curve (a0 = ac½1 + (bc + gc)G*�). When dAn/dC equals

zero, CTPU can be calculated, then dAn/dC will be negative when C

surpasses CTPU. Therefore, Equation 5 is a non-asymptotic function.

When dAn/dC= 0, CTPU can be calculated Equation 9:

CTPU =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bc + gc)(1 + gcG*)=bc

q
− 1

gc
(9)

And Amax can be calculated Equation 10:

Amax = ac

ffiffiffiffiffiffiffiffiffiffiffiffiffi
bc + gc

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bc(1 + gcG*)

q
gc

2
4

3
52

−Rday (10)

In addition, when An equals zero in Equation 5, G can be

calculated Equation 11:
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G =
ð1 + bcG* −

gcRday

ac
Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 + bcG* −

gcRday

ac
)2 − 4bc(

Rday

ac
+ G*)

q
2bc

(11)

Indeed, in practical terms, there is but a single set of values for

Amax and G that characterizes the CO2-response curve of

photosynthesis. These values are pivotal as they provide a

reference point to evaluate the reasonableness of various response

types. Notably, the closeness of the Amax and G values, as

determined by fitting the An–Ca and An–Ci curves, to the

observed data obtained serves as a critical criterion. This

comparison helps in ascertaining which response type is more

rational and aligned with the actual physiological processes

of photosynthesis.
2.3 A new model for describing the CO2–
response curve of photosynthesis without
an explicit Rday

Since precisely measuring Rday in plants remains a challenging

(Atkin and Tjoelker, 2003; Yin et al., 2009) (see Tcherkez et al., 2017

for a comprehensive review), we have developed an alternative

model. It can not only accurately fit the CO2–response curve of

photosynthesis (An–C curve) but also minimize potential fitting

discrepancies due to different choices of Rday (hereafter referred to

Model II). The model is expressed as follows:

An = ac1
1 − bc1C
1 + gc1C

(C − G ) (12)

where ac1, bc1, and gc1 are three coefficients that depend on

plant characteristics and environmental conditions; G is the

photorespiratory CO2 compensation point in presence of Rday

(Farquhar et al., 1980; Long and Bernacchi, 2003). Furthermore,

considering the influence of Rday, it is anticipated that the

coefficients of ac1, bc1, and gc1 in Equation 12 will differ from

those of ac, bc and gc in Equation 5.

In addition, Equation 12 can be rearranged as:

An = ac1
1 − bc1C
1 + gc1C

C − ac1
1 − bc1C
1 + gc1C

G (13)

In Equation 13, the first term is the gross photosynthetic rate,

and the second term is the apparent photorespiration rate (Rpa)

including Rday. Therefore, Rpa can be expressed as:

Rpa = ac1
1 − bc1C
1 + gc1C

G (14)

In Equation 14, Rpa decreases as C increases. Therefore, it can be

utilized to explore the relationship between Rp and C for all plant

species under any environmental conditions. Indeed, when C is

exactly 0 mmol mol−1, Rpa0 takes on a particular value. Theoretically,

one might expect Rpa0 to have two different values corresponding to

either Ca or Ci being at 0 mmol mol−1. However, in actuality, there is

but a single value that delineates the CO2-response curve for

photosynthesis. This singular Ca or Ci value thus becomes an

essential criterion for assessing the plausibility of various response
Frontiers in Plant Science 05
types. Notably, the closeness of the Rpa0 values, derived from fitting

An–Ca and An–Ci curves, to the observed data is a pivotal factor in

judging which response type is more reasonable.

The first derivative of Equation 12 may be expressed as follows:

dAn

dC
= ac1

1 − 2bc1C − bc1gc1C2 + (bc1 + gc1)G
(1 + gc1C)2

(15)

where dAn/dC is the slope of the An–C curve, and dAn/dC

decreases with increasing C. As C tends to zero in Equation 15, dAn/

dC equals ac1½1 + (bc1 + gc1)G*�, and it is referred to as the initial

slope of the An–C curve (i.e., a0 = ac1½1 + (bc1 + gc1)G*�). dAn/dC

equals zero when C equals to CTPU, then dAn/dC will be negative

when C surpasses CTPU. It is important to acknowledge that the new

model, distinguishes between two distinct values for the An–C

curve: one is Ci,TPU, which represents An–Ci, and the other is Ca,

TPU, which corresponds to the An–Ca curve. This distinction is

crucial for accurately modeling and understanding the

photosynthetic responses in plants.

Therefore, while the dAn=dC = 0, CTPU is calculated by:

CTPU =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bc1 + gc1)(1 + gc1G )=bc1

p
− 1

gc1
(16)

And Amax can be obtained as:

Amax = ac1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bc1 + gc1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bc1(1 + gc1G )

p
gc1

" #2

−Rday (17)

Besides CTPU and Amax can be calculated by Equations 16, 17,

respectively, G can also be estimated by Equation 12. Indeed, in

practical applications, there is but one definitive set of values for

Amax and G that characterizes the CO2-response curve of

photosynthesis. These values are crucial as they serve as a

benchmark against which the reasonableness of different response

types can be assessed. Importantly, the proximity of the Amax and G
values, derived from fitting the An–Ca and An–Ci curves, to the

actual observed data is a key criterion. This comparison is essential

for determining which response type is more rational and in

accordance with the true phys io log ica l mechanisms

of photosynthesis.

Furthermore, it is important to acknowledge that Equations 5, 12

are fundamentally equivalent when it comes to determining

photosynthetic parameters like Amax and G, irrespective of whether
An–Ca curves or An–Ci curves are being fitted.
2.4 Plant materials

In this study, two typical C3 plants, namely Lolium perenne L.

(Zhongxin 830) and Triticum aestivum L. (Jimai 22), were selected

as the experimental materials. As two important crops, their

photosynthetic characteristics display the typical carbon

assimilation process of C3 plants. Their photosynthesis is highly

sensitive to environmental conditions such as light intensity, carbon

dioxide concentration, and water supply (Höglind et al., 2011;

Pshenichnikova et al., 2019). Therefore, these two crops are
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highly suitable for a comparative study of the differences between

the FvCBmodel (applicable only to C3 plants) and the newmodel in

fitting the An–Ca and An–C i curves and estimating key

photosynthetic parameters under different oxygen concentration

conditions. The two experimental materials were sown in mid-

October 2022 and managed conventionally in the field. Data were

collected on sunny days from April 28 to May 10, 2023. T. aestivum

was at the booting stage to the initial flowering stage, with a plant

height of 60–70 cm, and its flag leaf was selected for measurement.

L. perenne was at the booting stage, with a plant height of about 1.3

m, and the first leaf below its flag leaf was selected for measurement.
2.5 Gas exchange data measurement

A portable photosynthesis system (LI-6400-40, LI-COR INC.,

USA) was used to collect data on sunny days from 9:00 to 11:30 and

14:00 to 17:00, with air temperatures at 30.3 ± 2.5°C and maximum

midday light intensity of about 1,600 mmol·m-2·s-1. After a 1.5- to 2-

hour induction under natural light, the device was turned on for

preheating and checked. The oxygen concentration in the

fluorescence leaf chamber is controlled by connecting external gas

cylinders filled with different gas mixtures. The oxygen

concentrations are set at 2% (2% oxygen and 98% nitrogen; under

this concentration, the plant’s photorespiration can be neglected,

and this serves as the treatment group) and 21% (21% oxygen and

79% nitrogen; this is the atmospheric oxygen concentration, and it

serves as the control group). The high-pressure gas cylinders are

first connected to a self-made buffer bag. A small amount of water is

injected into the buffer bag to simulate the relative humidity in the

atmosphere. After passing through the buffer bag, the mixed gas

enters the leaf chamber through the intake pipe of the

photosynthesis instrument, ensuring the stability of the oxygen

concentration and appropriate humidity. Currently, this buffer

device has been granted a Chinese national utility model patent

(ZL 2015 2 0174847.1). The CO2 injection system was calibrated

using an open gas path with a flow rate of 500 mmol·s-1. Before

measuring the An–Ca and An–Ci curves of the two plants, the light

response curves of photosynthesis (An–I curves, where I is light

intensity) for these two plants were measured first. When

measuring the An–I curve, the CO2 injection system provided a

stable CO2 concentration. Based on measurements of atmospheric

CO2 concentration, the CO2 concentration in the instrument

chamber was set to 420 mmol·mol-1, and the light intensity

gradient was set to: 2,000, 1,800, 1,600, 1,400, 1,200, 1,000, 800,

600, 400, 200, 150, 100, 80, 50, 0 mmol·m-2·s-1. All measurements

used an automatic measurement program, simultaneously

recording leaf gas exchange and chlorophyll fluorescence

parameters. During automatic measurement, the minimum

waiting time for each recording was 2 minutes, and the

maximum waiting time was 3 minutes. Before data recording, the

instrument automatically performed matching between the

reference chamber and the sample chamber. After the data were

measured, the “Photosynthesis Model Fitting Software (PMSS)” at
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http://photosynthetic.sinaapp.com/calc.html (Shenzhen Baoying

Technology Computing Co., Ltd., China) was used to fit the An–I

curves of the two plants in accordance with the photosynthesis

light-response model (Ye et al., 2013). The saturated light intensity

for both plants was found to be 2,000 mmol·m-2·s-1.

While measuring the An–Ca and An–Ci curves of the two plants,

the light intensity was set to 2,000 mmol·m-2·s-1, and the O2

concentrations were 2% and 21%, respectively. The CO2 injection

system provided different external CO2 gradients (Ca): 1,600, 1,400,

1,200, 1,000, 800, 600, 420, 300, 200, 100, 50, and 0 mmol·mol-1. All

measurements used an automatic measurement program,

simultaneously recording leaf gas exchange and chlorophyll

fluorescence parameters. During the process of automatic

measurement, the waiting time for each recording ranged from a

minimum of 2 minutes to a maximum of 3 minutes. Before data

recording, the instrument automatically performed matching

between the reference chamber and the sample chamber. For the

FvCB model, the An–Ci curves of the two plant species were

meticulously fitted using a method developed by Sharkey et al.

(2007) to estimate parameters such as Vcmax, JA-max, VTPU, G*, and

Rday. In particular, the Rday value is derived under the assumption

that it equals 0.015 Vcmax. This method developed by Sharkey et al.

is integrated into the Photosynthesis Model Simulation Software

(PMSS) pla t form, which can be accessed at ht tp : / /

photosynthetic.sinaapp.com/calc.html (Shenzhen Baoying

Technology Computing Co., Ltd., China). Moreover, to determine

the Jf-max, which represents the maximum electron transport rate

associated with Photosystem II (PSII), a comprehensive analysis of

the J–Ci curves obtained though measurements is necessary. The Jf-

max, identified as the uppermost threshold of electron transport rate

within these curves, is a crucial parameter for assessing the

photosynthetic potential of plants. Its significance becomes

particularly pronounced after the J–Ci curves have been

meticulously quantified and analyzed.

Additionally, the parameters Amax, CTPU, G, Rpa0, Rp0, G*, and Rp
can be determined using Model I and Model II with the assistance

of the PMSS platform. The PMSS platform offers a user-friendly

interface for conducting simulations and extracting key parameters

that are essential for analyzing the photosynthetic performance of

plants. It is a valuable tool for researchers and students alike. Please

be aware that there might be temporary network issues that could

prevent the webpage from loading.
2.6 Statistical analysis

All variables were presented as mean values and standard error

(mean ± standard error, n = 3) with three replicates. Data were

analyzed with one-way analysis of variance (ANOVA). A paired-

sample t-test was used to compare whether there was a significant

difference between the fitting results and the corresponding

observed values at the 5% significance level (p < 0.05). The data

analysis was performed using the SPSS 18.5 statistical software

package (SPSS, Chicago, Illinois, USA). One paired-sample t test
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was employed to compare whether there were significant differences

between the fitting results and corresponding observed values at the

5% level of significance (p < 0.05) using the statistical package of

SPSS 18.5 (SPSS, Chicago, IL, United States). Graphs were created

using Origin 2021, and final graphic processing was performed with

Adobe Illustrator CS5. The determination coefficient (R2) was used

to indicate the degree of fit between the model and observed points,

which was calculated as R2 = 1 – SSE/SST, where SST is the total

sum of squares and SSE is the sum of squared errors.
3 Results

3.1 An–Ca and An–Ci curves and their
fitting with the FvCB model at 21% O2
concentration

Figure 1 shows the An–Ca curves and An–Ci curves of L. perenne

and T. aestivum under the conditions of 21% O2 concentration. As
Frontiers in Plant Science 07
analyzed in Figure 1, the FvCB model shows significant differences

when fitting the An–Ca curves and An–Ci curves of these two plants.

Specifically, (1) after fitting the An–Ca curve of T. aestivum with

Equations 1, 2, the obtained curve has a large deviation from the

actual observed data (Figure 1B); (2) as showed in Figure 1A, the

transition point from Rubisco limitation to RuBP limitation (Ci,tr) is

approximately 1,200 mmol·mol-1, which is significantly higher than

the currently accepted empirical range of 300-600 mmol·mol-1,

while the curve of T. aestivum does not show Ci,tr (Figure 1B),

indicating a significant discrepancy from the theory that Ci,tr must

exist. Furthermore, when the FvCB model fits the An–Ci curves of

the two plants, it reveals three key processes affecting C3 plant

carbon assimilation: Rubisco limitation, RuBP regeneration

limitation, and TPU limitation (Figures 1C, D).

Table 1 shows the key parameters obtained by fitting the An–Ca

curves and An–Ci curves of L. perenne and T. aestivum with the

FvCB model, including JA-max, Vcmax, VTPU, G*, and Rday. According
to the results in Table 1, the Vcmax and VTPU predicted by the FvCB

model are two indirect parameters that currently cannot be directly
FIGURE 1

The An–Ca and An–Ci curves for L. perenne and T.aestivum under atmospheric conditions with an oxygen concentration of 21%. The curves have
been fitted with the FvCB model, a comprehensive model that describes the photosynthetic process in C3 plants, taking into account the
carboxylation efficiency of Rubisco, the rate of electron transport, and the triose phosphate utilization. The solid red dots on the curves represent
the observed experimental data, which are the actual measurements obtained from the plants under controlled conditions. Each data point is
expressed as the mean ± standard error (SE), and the experiments were conducted with three replicates (n = 3) to ensure the robustness and
reproducibility of the results.
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measured by experiments; G* and Rday are two parameters that are

difficult to accurately measure in experiments, so there are no

corresponding observed values in this study. Among these

parameters, only the model predicted value of Jmax can be directly

compared with the actual observed value.

However, the data presented in Table 1 indicate that the JA-max

values derived from fitting the An–Ca curve of L. perenne using the

FvCB model is considerably lower than the observed Jf-max value. In

contrast, the JA-max value obtained by fitting the An–Ci curve of L.

perenne aligns closely with the observed Jf-max value, with no

significant discrepancy between the estimated and observed data.

Conversely, for T. aestivum, the JA-max value obtained from fitting

the An–Ca curve is close to the observed Jf-max value.

In addition, the results in Table 1 show that the Vcmax values

obtained by fitting the An–Ca curves with the FvCB model are

smaller than the values obtained by fitting the An–Ci curves with the

model by 46.98% and 44.37% for L. perenne and T. aestivum,

respectively. A similar pattern is observed for the estimation of Rday.

That is, the Rday values obtained by fitting the An–Ca curves with the

FvCB model are significantly smaller than those obtained by fitting

the An–Ci curves with the same model, with reductions of 47.10%

and 44.30% for L. perenne and T. aestivum, respectively.
3.2 An–Ca and An–Ci curves and their
fitting with the FvCB model at 2% O2
concentration

Figure 2 shows the An–Ca curves and An–Ci curves of L. perenne

and T. aestivum under the conditions of 2% O2 concentration. As the

data presented in Figure 2, it can be observed that the fitted curves

using the FvCB model show significant differences in the values of Ci,tr.

Specifically, the FvCB model predicts significantly higher Ci,tr values

when fitting the An–Ca curves of L. perenne and T. aestivum compared

to when fitting their An–Ci curves (Figure 2). Furthermore, the fitting

results of the FvCB model reveal three key biochemical processes

affecting C3 plant carbon assimilation: Rubisco enzyme limitation

process, RuBP regeneration limitation, and TPU limitation. These

processes play a crucial role in plant photosynthesis under varying

oxygen concentration conditions (Figures 2C, D). At 2% O2

concentration, these limitation processes may differ from those at

21% O2 concentration, possibly due to plant’s adaptive regulation in

low-oxygen environments. For example, Rubisco enzyme limitation

may be more prominent as oxygen competes with CO2 for Rubisco’s

active site, and this competition may be intensified in low-oxygen

conditions. At the same time, the regeneration of RuBP and TPU

limitation may also be affected by the reduction of oxygen

concentration, thereby affecting the overall efficiency of photosynthesis.

Table 2 shows the key parameters obtained by fitting the An–Ca

and An–Ci curves of L. perenne and T. aestivum with the FvCB

model, including JA-max, Vcmax, VTPU, G*, and Rday. Similar to the

results in Table 1, the four parameters Vcmax, VTPU, G*, and Rday
have no corresponding observed values. Only the model-predicted

value of JA-max can be directly compared with the observed Jf-max

value. Furthermore, as showed in Table 2, regardless of whether it is

the An–Ca curves or the An–Ci curves of L. perenne and T. aestivum
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fitted with the FvCB model, the derived JA-max values closely

approximate the observed Jf-max value, and there is no significant

difference (p > 0.05) between the estimated values and the observed

data (Table 2).

In addition, the results in Table 2 also show that the Vcmax

values obtained by fitting the An–Ca curves with the FvCBmodel are

significantly smaller (p < 0.05) than the values obtained by fitting

the An–Ci curves with the model by 46.63% and 37.66% for L.

perenne and T. aestivum, respectively. A similar situation applies to

the estimation of Rday. That is, the Rday values derived by fitting the

An–Ca curves with the FvCB model are significantly lower (p < 0.05)

than those obtained by fitting the An–Ci curves with the same

model, with reductions of 47.03% and 37.36% for L. perenne and T.

aestivum, respectively. This discrepancy underscores the

importance of the curve types in fitting, as it can influence

estimated parameters and, in turn, our understanding of the

photosynthetic responses in different plant species. Furthermore,
Frontiers in Plant Science 09
the G* values estimated by the FvCB model for both plant species

appear to be underestimated (Table 2).
3.3 An–Ca and An–Ci curves and their
fitting using the Model I or Model II at 21%
O2 concentration

Figure 3 shows the An–Ca and An–Ci curves of L. perenne and T.

aestivum, along with the fitting curves generated by Model I or

Model II. As shown in Figure 3, both models can accurately

reproduce these plant’s An–Ca and An–Ci curves at 21% O2

concentration, with the determination coefficient (R2) at least 0.995.

Table 3 presents several parameters derived from fitting the An–

Ca and An–Ci curves of L. perenne and T. aestivum using Model I or

Model II, including a0, Amax, Ci,TPU, G*, G, Rp0, and Rpao. The data in
Table 3 indicate that the Amax and G values obtained by fitting the
frontiersin.o
FIGURE 2

The An–Ca and An–Ci curves for L. perenne and T. aestivum under a reduced oxygen concentration of 2%. The curves have been fitted with the
FvCB model, a comprehensive model that describes the photosynthetic process in C3 plants, taking into account the carboxylation efficiency of
Rubisco, the rate of electron transport, and the triose phosphate utilization. The solid red dots on the curves represent the observed experimental
data, which are the actual measurements obtained from the plants under controlled conditions. Each data point is expressed as the mean ±
standard error (SE), and the experiments were conducted with three replicates (n = 3) to ensure the robustness and reproducibility of the results.
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TABLE 2 Observed data and results estimated by FvCB model for two C3 species at 2% O2 concentration (mean ± SE, n = 3).

L. perenne T. aestivum PD (%)

An-Ca An-Ci PD (%) An-Ca An-Ci

FvCB
model

Obs. FvCB
model

Obs. FvCB
model

Obs. FvCB
model

Obs.

Vcmax 71.67 ± 5.56b – 134.29 ± 11.22a – 46.63 72.48 ± 7.14b – 116.27 ± 8.52a – 37.66

JA-
max

240.08 ± 6.55a 246.34
± 5.48a

251.78 ± 6.71a 246.34
± 5.48a

4.65 279.63 ± 11.75a 252.46
± 6.90a

289.66 ± 14.38a 252.46
± 6.90a

3.46

VTPU 20.37 ± 0.42a – 20. 68 ± 0.40a – 1.50 23.74 ± 0.87a – 23.96 ± 0.87a – 0.92

G* 4.42 ± 0.31a – 4.42 ± 0.31a – 0 3.84 ± 0.21a – 3.84 ± 0.21a – 0

Rday 1.07 ± 0.08b – 2.02 ± 0.17a – 47.03 1.09 ± 0.11b – 1.74 ± 0.13a – 37.36
F
rontiers
 in Plant Science
 10
 fron
Estimated and observed parameter values within one plant which are statistically significant different (p < 0.05) are annotated with different superscript letter (e.g. 272.39 ± 4.89a and 246.34 ±
5.48b indicates a significant difference), whereas those which are not statistically significant different (p > 0.05) are annotated with the same superscript letter (e.g. 20.70 ± 0.41a and 20.70 ± 0.41a

indicates no significant difference). Percentage differences (PD, %) = (Value derived from An–Ci curves – Value derived from An–Ca curves) / Value derived from An–Ci curves × 100%. The PD
value is represented by its absolute value. The unit of Vcmax, JA-max, VTPU, and Rday is mmol m-2 s-1; the unit of G* is mmol mol-1.
FIGURE 3

The An–Ca and An–Ci curves of L. perenne and T. aestivum at an ambient oxygen concentration of 21%. These curves are derived from the
photosynthetic response to varying carbon dioxide concentrations, which is a critical parameter in understanding plant carbon assimilation
capabilities. The curves have been precisely fitted using either Equations 5 or 12, which are two new models designed to capture the relationship
between photosynthesis, internal and external carbon dioxide concentrations. The solid red dots scattered across the graphs represent the observed
experimental data points, each carefully measured to ensure accuracy and reliability. These data points are presented as the mean value ± standard
error (SE), with each measurement being replicated three times (n = 3) to ensure statistical significance and to account for biological variability.
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An–Ca curves of L. perenne and T. aestivum with both models do

not significantly differ (p > 0.05) from those obtained from the An–

Ci curves. The Rpa0 values derived from fitting the An–Ca curves of

L. perenne and T. aestivum with Model I or Model II are close to

their respective observed values, with no significant difference (p >

0.05) between them (Table 3). However, the Rpa0 values obtained by

fitting the An–Ci curves of L. perenne and T. aestivum with either

Model I or Model II are considerably higher than the corresponding

observed values, exhibiting a significant discrepancy (p < 0.05,

Table 3). Furthermore, for L. perenne and T. aestivum at 21% O2

conditions, the values of a0 derived from An–Ca curves estimated by

Model I were 57.09% and 52.26% lower than those obtained by

fitting their An–Ci curves (Table 3).
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3.4 An–Ca and An–Ci curves and their
fitting using the Model I or Model II at 2%
O2 concentration

Figure 4 shows the An–Ca and An–Ci curves of L. perenne and T.

aestivum at 2% O2 concentration, along with the fitting curves

generated by Model I or Model II, with the R2 at least 0.989. As

showed in Figure 4, both models can accurately reproduce the An–

Ca and An–Ci curves of these two plants at 2% O2 concentration.

Table 4 shows the parameters obtained by fitting the An–Ca and

An–Ci curves of L. perenne and T. aestivum with Model I and Model II

at 2% O2 concentration, including a0, Amax, Ci,TPU, G, G*, Rp0, and Rpa0.
The data in Table 4 indicate that, similar to the results in Table 3, for
TABLE 3 The observed data and the outcomes generated by Model I and Model II for the two C3 species at a 21% O2 concentration for An-Ca and An-
Ci curves are presented (mean ± SE, n = 3).

L. perenne T. aestivum PD (%)

An-Ca An-Ci PD (%) An-Ca An-Ci

Model I Obs. Model I Obs. Model I Obs. Model I Obs.

a0 0.127
± 0.007b

- 0.296
± 0.018a

- 57.09 0.116
± 0.004b

- 0.243
± 0.007a

- 52.26

Amax 58.12 ± 0.73a 57.80 ± 0.88a 58.66
± 0.61a

57.80 ± 0.88a 0.92 66.44 ± 1.15a 66.28
± 0.98a

66.29 ± 1.14a 66.28 ± 0.98a 0.23

Ci,TPU 1441.12
± 87.03a

1533.26
± 66.72a

908.91
± 36.60a

1075.66
± 120.47a

58.55 1357.05
± 63.31a

1399.91
± 0.16a

1006.74
± 29.46a

1072.49
± 32.85a

34.80

G 49.91 ± 8.35a 55.93 ± 4.63a 47.85
± 8.39a

53.75 ± 4.22a 4.31 69.29 ± 1.92a 69.36
± 1.63a

66.52 ± 0.37a 66.83 ± 0.48a 4.16

G* 38.76 ± 7.39a – 31.03
± 5.86a

– 24.91 40.24 ± 2.09b – 51.57 ± 1.13a – 21.97

Rp0 3.88 ± 0.68b – 10.79
± 2.20a

64.04 4.50 ± 0.40b – 11.68 ± 0.07a – 61.47

Rday 2.59 ± 0.16a – 2.59 ± 0.16a - 0 3.09 ± 0.08a – 3.09 ± 0.08a – 0

R2 0.996 – 0.995 – 0.10 0.999 – 0.999 – 0

An-Ca An-Ci PD (%) An-Ca An-Ci PD (%)

Model II Obs. Model II Obs. Model II Obs. Model II Obs.

a0 0.127
± 0.007b

- 0.296
± 0.018a

- 57.09 0.116
± 0.004b

- 0.243
± 0.007a

- 52.26

Amax 58.12 ± 0.73a 57.80 ± 0.88a 58.66
± 0.61a

57.80 ± 0.88a 0.92 66.44 ± 1.15a 66.28
± 0.98a

66.29 ± 1.14a 66.28 ± 0.98a 0.23

Ci,TPU 1441.12
± 87.03a

1533.26
± 66.72a

908.91
± 36.60a

1075.66
± 120.47a

58.55 1357.05
± 63.31a

1399.91
± 0.16a

1006.74
± 29.46a

1072.49
± 32.85a

34.80

G 49.91 ± 8.35a 55.93 ± 4.63a 47.85
± 8.39a

53.75 ± 4.22a 4.31 69.29 ± 1.92a 69.36
± 1.63a

66.52 ± 0.37a 66.83 ± 0.48a 4.16

Rpa0 6.47 ± 0.67a 5.82 ± 0.49a 13.38
± 2.17a

5.82 ± 0.49b 51.64 7.76 ± 0.28a 7.21 ± 0.11a 14.77 ± 0.01a 7.21 ± 0.11b 47.46

R2 0.996 – 0.995 – 0.10 0.999 – 0.999 – 0
fron
For a single plant, calculated and observed parameter values that exhibit a statistically significant difference (p < 0.05) are marked with distinct superscript letters. For instance, 0.127 ± 0.007b and
0.296 ± 0.018a signify a significant discrepancy. Conversely, values that do not show a statistically significant difference (p > 0.05) are denoted with the same superscript letter, indicating no
significant variation. An example of this would be 58.12 ± 0.73a and 57.80 ± 0.88a, which suggest no significant difference. Percentage differences (PD, %) = (Value derived from An–Ci curves –
Value derived from An–Ca curves) / Value derived from An–Ci curves × 100%. The PD value is represented by its absolute value. The unit of Amax, Rp0, Rpa0 and Rday is mmol m-2 s-1; the unit of G,
G* and Ci,TPU is mmol mol-1. It is important to highlight that a comparative analysis has been conducted in Table 3, examining the parameters G*, Rp0 and Rday between An–Ca and An–Ci curves to
ascertain whether there are significant differences between these parameters.
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both theAn–Ca andAn–Ci curves, theAmax and G values obtained from

fitting with the two models do not significantly differ (p > 0.05) from

the corresponding observed values (except for the G values of T.

aestivum obtained from the An–Ca curve fitting with Model II). In

addition, for L. perenne, the Rpa0 value obtained by fitting the An–Ca

curve with Model II is close to the observed value, and there is no

significant difference (p > 0.05) between the two (Table 4). On the

contrary, when Model II is employed to fit the An–Ci curves of L.

perenne and T. aestivum, the Rpa0 value obtained is significantly higher

(p < 0.05) than the corresponding observed value (Table 4). Moreover,

we found that there is a significant difference (p < 0.05) between the

Rpa0 value calculated by Model II and the observed data at 2% O2

concentration for T. aestivum. To avoid potential issues with the

results, we opted to use Model II for fitting the An–Ca curve within

the range of 0 to 300 mmol·mol−¹. By doing this, the Rpa0 value

calculated with Model II is (2.45 ± 0.15) mmol·m−²·s−¹, which shows

no significant difference when compared to the observed value of

(2.31 ± 0.17) mmol·m−²·s−¹. In this instance, the coefficient of

determination (R2) exceeds 0.9995, signifying an exceptionally high

level of agreement between the fitted and observed data points. For L.
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perenne, following the same procedures, we determined the Rpa0 value

using Model II to be (3.09 ± 0.38) mmol·m−²·s−¹. This value is in close

proximity to the observed value, which is (3.03 ± 0.23) mmol·m−²·s−¹,

with no significant divergence between them.When compared with the

initial value of (3.68 ± 0.41) mmol·m−²·s−¹ presented in Table 4, the

calculated value of (3.09 ± 0.38) mmol·m−²·s−¹ is more closely aligned

with the observed values. Here as well, with an R2 value surpassing

0.9977, we observe a remarkable alignment between the model’s

predictions and the empirical data, reinforcing the model’s efficacy

and reliability.

It is noteworthy that there is a significant difference (p < 0.05) in

the a0 values obtained by fitting the An–Ca and An–Ci curves of L.

perenne and T. aestivum with the Model I. The values of a0 derived

from An–Ca curves estimated by Model I were 63.41% and 51.79%

lower than those obtained by fitting their An–Ci curves for L.

perenne and T. aestivum at 2% O2 conditions. This finding may

indicate that the model is sensitive to different CO2 response curves.

Furthermore, when comparing Tables 2, 4, it can be observed that

the G* values derived from Model I are higher than those estimated

by the FvCB model for both plant species.
FIGURE 4

The An–Ca and An–Ci response curves for both L. perenne and T. aestivum under an oxygen concentration of 2%. These curves have been
meticulously fitted using either Equations 5 or 12, which is indicated in the respective graphs. The solid red dots scattered across the curves
correspond to the observed experimental data points, providing a visual representation of the actual measurements taken during the study. Each
data point is presented as the mean value, with error bars indicating the standard error of the mean (SEM) to convey the variability within the dataset.
It is important to note that the data are based on three replicates (n = 3), ensuring a robust statistical foundation for the analysis.
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4 Discussions

4.1 The FvCB model in fitting CO2-
response curve of photosynthesis and
estimating photosynthetic parameters

In this study, the application of the FvCB model and Model I

highlighted the importance of model selection in simulating the

process of photosynthesis in C3 plant species. The differences in the

performance of the two models across different oxygen

concentrations provided valuable information about the

applicability and parameter sensitivity of these models.
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The FvCB model is a widely used photosynthesis model in plant

physiological research, based on the photosynthetic biochemical

mechanism proposed by Farquhar et al. (1980). This model predicts

the photosynthetic rate of plants under different environmental

conditions by simulating key biochemical processes in

photosynthesis, such as the carboxylation reaction of Rubisco, the

regeneration of RuBP, and photorespiration. The FvCB model is

particularly suitable for analyzing the photosynthetic performance

of C3 plant species under changing environmental conditions, such

as different CO2 concentrations, temperatures, and light intensities

(von Caemmerer and Farquhar, 1981; Walker et al., 2017;

Miyazawa et al., 2020; Xiao et al., 2021; Yin et al., 2021). In
TABLE 4 The observed data and the outcomes generated by Model I and Model II for the two C3 species at a 2% O2 concentration for An-Ca and An-
Ci curves are presented (mean ± SE, n = 3).

L. perenne T. aestivum PD (%)

An-Ca An-Ci PD (%) An-Ca An-Ci

Model I Obs. Model I Obs. Model I Obs. Model I Obs.

a0 0.150
± 0.001b

- 0.410
± 0.035a

- 63.41 0.189
± 0.006b

- 0.392
± 0.012a

- 51.79

Amax 61.72 ± 1.92a 63.10 ± 2.07a 61.63
± 1.75a

63.10 ± 2.07a 0.15 71.83
± 3.43a

71.18 ± 3.44a 72.61
± 3.72a

71.18 ± 3.44a 1.07

Ci,TPU 1245.12
± 28.85a

1266.55
± 133.42a

821.27
± 44.99a

895.56
± 162.09a

51.61 1197.18
± 6.35a

1400.58
± 115.97a

846.74
± 36.82a

1077.12
± 190.73a

41.39

G 25.22 ± 3.02a 24.74 ± 3.53a 24.94
± 2.61a

23.79 ± 3.65a 1.12 22.39
± 0.98a

17.92 ± 1.11b 20.54
± 0.81a

17.36 ± 1.17a 9.01

G* 17.70 ± 2.36a – 21.84
± 2.47a

– 18.96 16.35
± 1.66a

– 15.61
± 1.17a

– 4.74

Rp0 2.60 ± 0.32b – 7.45 ± 1.40a 65.10 3.05 ± 0.38b – 5.86 ± 0.55a – 47.95

Rday 1.07 ± 0.08b – 2.02 ± 0.17a - 47.03 1.09 ± 0.11b – 1.74 ± 0.13a – 37.36

R2 0.997 – 0.990 – 0.71 0.996 – 0.989 – 0.71

An-Ca An-Ci PD (%) An-Ca An-Ci PD (%)

Model II Obs. Model II Obs. Model II Obs. Model II Obs.

a0 0.150
± 0.001b

- 0.410
± 0.035a

- 63.41 0.189
± 0.006b

- 0.392
± 0.012a

- 51.79

Amax 61.72 ± 1.92a 63.10 ± 2.07a 61.63
± 1.75a

63.10 ± 2.07a 0.15 71.83
± 3.43a

71.18 ± 3.44a 72.61
± 3.72a

71.18 ± 3.44a 1.07

Ci,TPU 1245.12
± 28.85a

1266.55
± 133.42a

821.27
± 44.99a

895.56
± 162.09a

51.61 1197.18
± 6.35a

1400.58
± 115.97a

846.74
± 36.82a

1077.12
± 190.73a

41.39

G 25.22 ± 3.02a 24.74 ± 3.53a 24.94
± 2.61a

23.79 ± 3.65a 1.12 22.39
± 0.98a

17.92 ± 1.11b 20.54
± 0.81a

17.36 ± 1.17a 9.01

Rpa0 3.68 ± 0.41a 3.03 ± 0.23a 9.47 ± 1.56a 3.03 ± 0.23b 61.14 3.81 ± 0.33a 2.31 ± 0.17b 7.61 ± 0.44a 2.31 ± 0.17b 49.93

R2 0.997 – 0.990 – 0.71 0.996 – 0.989 – 0.71
fron
For a single plant, calculated and observed parameter values that exhibit a statistically significant difference (p < 0.05) are marked with distinct superscript letters. For instance, 0.150 ± 0.001b and
0.410 ± 0.035a signify a significant discrepancy. Conversely, values that do not show a statistically significant difference (p > 0.05) are denoted with the same superscript letter, indicating no
significant variation. An example of this would be 61.72 ± 1.92a and 63.10 ± 2.07a, which suggest no significant difference. Percentage differences (PD, %) = (Value derived from An–Ci curves -
Value derived from An–Ca curves) / Value derived from An–Ci curves × 100%. The PD value is represented by its absolute value. The unit of Amax, Rp0, Rpa0 and Rday is mmol m-2 s-1; the unit of G,
G* and Ci,TPU is mmol mol-1. It is important to highlight that a comparative analysis has been conducted in Table 4, examining the parameters G*, Rp0 and Rday between An–Ca and An–Ci curves to
ascertain whether there are significant differences between these parameters.
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practical applications, the FvCB model has been used to assess the

potential impact of climate change on crop yields (Long and

Bernacchi, 2003; Fan et al., 2011) and to study plant adaptability

to environmental changes (Morfopoulos et al., 2014; Han et al.,

2020). For example, by simulating photosynthesis under different

CO2 concentrations, researchers can predict the future impact of

increasing atmospheric CO2 concentrations on plant growth and

ecosystem carbon cycling (Ainsworth and Long, 2005, 2021). In

addition, the FvCB model has also been used to optimize

agricultural management practices, such as irrigation and

fertilization, to improve the light energy utilization efficiency and

yield of crops (Zhu et al., 2010; De Kauwe et al., 2016; Vijayakumar

et al., 2024).

Although the FvCB model holds significant value in plant

physiological ecology research, its accuracy and applicability are

still constrained by the model parameterization method and

changes in environmental conditions. For example, in this study,

fitting the An–Ca curves or An–Ci curves of plants with the model

produced five important photosynthetic parameters: JA-max, Vcmax,

VTPU, G*, and Rday (Tables 1, 2). However, only the estimated

parameter JA-max can be directly compared with the observed Jf-max

value (Tables 1, 2). At the same time, under normal conditions, the

distribution of the electron flow from Photosystem II clearly

indicates that the JA-max allocated for carbon assimilation is

significantly lower than the Jf-max. In the FvCB model, this

parameter is not obtained by fitting the electron transport rate to

the CO2 response (J–Ci) data, but is indirectly estimated by fitting

the An–Ca curve or An–Ci curve. This may lead to the model

overestimating or underestimating the JA-max in plants. In this

study, it was found that the JA-max value obtained by fitting the

An–Ca curve of L. perenne with the FvCB model was significantly

lower (p < 0.05) than the observed value at 21% O2 concentration

(Table 1), whereas the JA-max value obtained by fitting the An–Ci

curve of L. perenne was close to the observed value (Table 1). In

contrast, the JA-max values obtained by fitting the An–Ca and An–Ci

curves of T. aestivum with the FvCB model showed the opposite

trend (Table 1). However, the JA-max value derived from fitting the

An–Ci curve of T. aestivum is markedly higher than the observed Jf-

max value, indicating a significant divergence between the estimated

value and the empirical data (Table 1). Given the starkly contrasting

outcomes for JA-max when fitting the An–Ca and An–Ci curves with

the FvCB model, it remains uncertain which response curve is more

justified. This phenomenon may be related to the inaccurate

simulation of the carboxylation reaction of the key enzyme

Rubisco in photosynthesis by the model. Under the condition of

21% O2 concentration, the oxygenation of Rubisco may be

overestimated, resulting in the model’s prediction of JA-max being

either too high or too low.

On the other hand, as explained by von Caemmerer (2000) and

Long and Bernacchi (2003), under 21% O2 conditions, Jf supports not

only JA but also JO, JNit, and JMAP. This relationship can be expressed

as Jf = JA + JO + JNit + JMAP. Consequently, JA-max must be less than Jf-

max. Under 2% O2 conditions, JO can be neglected. In this case, the

relationship can be expressed as Jf = JA + JNit + JMAP, and JA-max must

still be less than Jf-max. Based on this criterion, we observed that under
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21% O2 concentration the JA-max estimated by the FvCB model when

fitting the An–Ci curve of T. aestivum exceeds the Jf-max (Table 1).

Taking into account that JNit and JMAP are non-zero, we further found

that the JA-max estimated by the FvCB model when fitting both the

An–Ca and An–Ci curves of L. perenne and T. aestivum also surpasses

the Jf-max under 2% O2 concentration (Table 2).

Furthermore, the findings in Table 1 reveal a pattern in the

Vcmax values derived from the FvCB model when it is applied to the

An–Ca and An–Ci curves of L. perenne and T. aestivum. Specifically,

the Vcmax values obtained from fitting the An–Ca curves are

consistently lower than those derived from fitting the An–Ci

curves for both plant species. A similar trend is observed for the

estimation of Rday; that is, the Rday values derived from the An–Ca

curve fits are also consistently lower than those from the An–Ci

curve fits using the FvCB model for L. perenne and T. aestivum.

Despite these observations, it remains challenging to discern which

set of values—those from the An–Ca or An–Ci curve fits—provides a

more accurate representation of the true Vcmax and Rday values for

these two plant species. This uncertainty highlights the complexity

of accurately modeling photosynthetic parameters. Thus, there is a

need for further investigation to refine our understanding of how

different models perform across various plant species and under

different physiological conditions.

It is noteworthy that the choice between An–Ca and An–Ci curve

fitting may be influenced by factors such as the atmospheric CO2

concentration, the specific photosynthetic pathway of the plant, and

the presence of other environmental stressors. Therefore, a

comprehensive analysis considering these factors and more

experimental data may be necessary to determine the most

appropriate model for accurately predicting Vcmax and Rday values.

This could involve comparing the FvCB model’s predictive power

with other models, examining its sensitivity to initial conditions, and

assessing its robustness under varying environments.

At 2% oxygen concentration, the FvCB model’s fitting results

differ significantly from those at the typical atmospheric

concentration of 21% O2 (Figures 1, 2; Tables 1, 2). This

discrepancy may indicate the plant’s adaptive responses in its

photosynthetic machinery under hypoxic conditions. Notably, the

model’s estimations of JA-max for both L. perenne and T. aestivum

closely approximate the actual observations, regardless of whether

the An–Ca curve or the An–Ci curve is fitted (Table 2). It is

important to highlight that the JA-max value predicted by the

FvCB model exceeds the observed Jf-max value for T. aestivum

when either the An–Ca curve or the An–Ci curve is modeled. This

outcome is perplexing given the prevailing photosynthetic theory as

articulated by von Caemmerer (2000), which posits that JA-max

should be less than Jf-max. Consequently, the findings are currently

challenging to interpret.

Under hypoxic conditions of 2% O2, the carboxylation

efficiency of Rubisco is likely impeded, and photorespiration gains

prominence, as indicated by Busch and Sage (2017). The FvCB

model reveals that Rubisco limitation, RuBP regeneration

limitation, and TPU limitation, which are all pivotal to the

photosynthetic process in C3 plants. Under low O2 environments,

these limitations may become more pronounced and dampen the
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overall photosynthetic efficiency, as supported by Zhu et al. (2010).

Furthermore, at 21% O2 (normoxic condition), the FvCB model-

calculated Vcmax values for the An–Ca curve are systematically lower

than those for the An–Ci curve when analyzing the two plant species

(Table 1). This suggests that photosynthetic parameters are

sensitive to oxygen levels, and the FvCB model may require

refinements to accurately estimate them under different

environmental conditions.
4.2 Model I and Model II in fitting CO2-
response curve of photosynthesis and
estimating photosynthetic parameters

In this study, both Model I and Model II exhibited a high R2

when fitting the An–Ca and An–Ci curves of L. perenne and T.

aestivum, indicating that the two models have high accuracy in

simulating the photosynthesis curves under varying oxygen

concentrations (Figures 3, 4). This result may be attributed to the

advantages of the Model I and Model II in parameterization and

model structure, enabling them to better capture the photosynthetic

response of plants under different environmental conditions.

Moreover, both models effectively capture the An–Ca and An–Ci

curves, demonstrating the reduction in carbon assimilation rates

under elevated CO2 concentrations. They also enable the direct

calculation of CTPU (Tables 3, 4). The results of our study show that

the models’ estimation of the Amax and G values for L. perenne and

T. aestivum under the two O2 concentrations does not show

significant differences from the corresponding observed values

(Tables 3, 4). Indeed, a notable discrepancy is observed between

the Rpa0 values derived from fitting the An–Ca curves and those

derived from fitting the An–Ci curves, as shown in Tables 3, 4.

Despite this, the scientific community has not yet reached a

definitive conclusion on which of these Rpa0 values—obtained

from the An–Ca curve or the An–Ci curve—more accurately

represents the true Rpa0 value. However, considering the nuances

of measurement technology, it is plausible to suggest that the Rpa0
value obtained from the An–Ca curve may be closer to the actual

Rpa0 value. This assumption is based on the belief that the Rpa0
values, particularly those fitted for L. perenne and T. aestivum using

Model II, reflect the true Rpa0 values for these plant species. This

belief is further supported by the An–Ca curve’s more direct

measurement of CO2 assimilation and its lesser influenced by

internal CO2 concentration changes compared to the An–Ci

curve. Therefore, the Rpa0 derived from the An–Ca curve is often

considered to be more representative of the plant’s true

photorespiratory rate at CO2 concentrations approaching zero.

Furthermore, the rationale behind this preference is rooted in

the technology used in plant photosynthesis measurement

instruments. These instruments utilize non-diffusive infrared CO2

analysis technology to measure CO2 concentrations. This method

takes advantage of the significant absorption of CO2 at a specific

wavelength of infrared light, a characteristic not shared by O2.

Consequently, it is advisable to use the An–Ca curves derived from
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such measurements for quantitative studies of plant Rpa0. Given

this, when conducting research on Rpa0 in plants, it is more logical

to fit the An–Ca curves using Model II rather than the An–Ci curves.

Model II’s curve- fitting approach better matches the capabilities of

non-diffusive infrared CO2 analysis technology, making it a more

suitable choice for accurate and reliable Rpa0 assessments. In this

study, another notable finding is that once Model I can determine

the value of Rday, it can also compute the value of Rp0 (Tables 3, 4).

However, the precision of determining Rday presents a challenge,

which in turn affects the accuracy of the derived Rp0. Nevertheless,

our research suggests that when Rday can be accurately ascertained,

our methodology offers a viable approach for estimating Rp0.
4.3 Comparative analysis of the FvCB
model and the new models

The FvCB model and Model I/II represent fundamentally

divergent paradigms in photosynthetic modeling. As a

biochemical mechanistic framework, the FvCB model simulates

enzymatic processes governing carbon assimilation (Farquhar et al.,

1980), whereas Model I/II adopts an empirical approach

emphasizing practical parameterization. This dichotomy reflects

their core objectives: the FvCB model prioritizes biochemical

fidelity, while Model I/II emphasizes operational simplicity and

environmental adaptability.

Our comparative analysis demonstrates that the superior

predictive performance of Models I/II in estimating Rpa0 and

critical photosynthetic parameters (Amax, G, and CTPU) across

oxygen gradients stems from their dist inct structural

architectures. The FvCB model’s dependence on rigid biochemical

constraints–including fixed Rday/Vcmax ratios (von Caemmerer,

2013; De Kauwe et al. , 2016), stoichiometric electron

requirements (4 e- per CO2; Long and Bernacchi, 2003), and

invariant photorespiratory CO2 release (0.5 mol/RuBP

oxygenation; Farquhar et al., 1980)–introduces systematic biases.

In contrast, Model I dynamically parameterizes Rday (Equation 5),

while Model II integrates photorespiration into an apparent rate

(Rpa; Equation 14), effectively decoupling photorespiratory flux

from predefined biochemical ratios. This innovation enables

direct empirical estimation of Rpa0 from gas exchange data,

especially under hypoxic conditions (e.g., 2% O2) where

photorespiration suppression exposes the FvCB model ’s

limitations. Specifically, the fixed Rday/Vcmax assumption the FvCB

model (von Caemmerer, 2013) leads to 46%-47% underestimation

of respiratory activity compared to experimental data (Tables 1, 2),

whereas the new models’ dynamic parameterization achieves

precise alignment with observations.

Methodologically, the FvCB model’s indirect estimation of JA-

max via An–Ci curve fitting propagates errors from uncertain

electron transport partitioning (Sharkey et al., 2007). Models I/II

circumvent this limitation through direct quantification of Amax, G,
CTPU, and Rpa0, eliminating error accumulation inherent to multi-

step biochemical approximations. This distinction explains their
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robust performance across 2% and 21% O2 environments

(Figures 3, 4), demonstrating adaptability to oxygen fluctuations

in both agricultural and natural ecosystems.

The FvCB model’s systematic underestimation of Vcmax and

Rday during An–Ca curve fitting further highlights its sensitivity to

stomatal conductance dynamics—a confounding factor absent in

An–Ci analyses. Models I/II address this through unified Ca-Ci

treatment within a single analytical framework (Equations 5, 12),

minimizing stomatal-induced artifacts. This proves critical under

2% O2, where stomatal closure amplifies discrepancies in FvCB-

derived parameters. Additionally, the non-asymptotic formulation

of Models I/II (Equations 5, 12) better captures CTPU inflection

points than the FvCB model’s segmented approach (Figures 3, 4),

which struggles to resolve RuBP- versus TPU-limited transitions

under dynamic conditions.

However, these advancements come with trade-offs: Models I/II

cannot estimate Vcmax or JA-max—parameters critical for Rubisco

kinetic analyses (Farquhar et al., 1980; Bernacchi et al., 2013). This

reflects the inherent tension between empirical accuracy and

biochemical interpretability, necessitating context-specific model

selection. Future hybrid frameworks could integrate Model I/II’s

empirical strengths with the FvCB model’s biochemical resolution,

particularly to disentangle photorespiratory and respiratory fluxes

—a capability demonstrated in low-O2 environments where

traditional partitioning assumptions fail (Xiong et al., 2022).

Enhanced predictive accuracy comes with increased

parameterization complexity. Determining nuanced parameters

like Rday requires high-precision gas exchange measurements and

measured method under controlled conditions (Medlyn et al., 2011;

Yin and Amthor, 2024), posing challenges for resource-limited

studies. Furthermore, while coefficients ac/ac1, bc/bc1 and gc/gc1
in Models I/II are environment-dependent (Equations 5, 12), their

biochemical basis—particularly regarding Rubisco carboxylation-

oxygenation kinetics—remains unresolved. Clarifying these

relationships through multi-omics approaches (e.g., concurrent

chlorophyll fluorescence and metabolomic profiling) could bridge

empirical models with photosynthetic biochemistry (Smith et al.,

2023), transforming them into mechanistically robust tools for

climate resilience research.

Furthermore, the limited sample size in our study may

compromise the generalizability of our findings. Our experiments

focused exclusively on two C3 plant species, L. perenne and T.

aestivum. As such, additional validation is essential to establish the

broader applicability of the new models to other plant species,

particularly those with distinct photosynthetic pathways, such as C4

and CAM plants. Moreover, the models were evaluated under

spec ific environmenta l condi t ions (2% and 21% O2

concentrations), and their performance under other stressors—

such as high temperature, drought, or elevated CO2 levels—has

yet to be fully explored. Additionally, to enhance the accuracy of

Rpa0 estimation, we recommend incorporating several additional

measurement points at low CO2 concentrations (below 200

mmol·mol−¹), specifically at 30, 80, and 150 mmol·mol−¹. This

refinement, however, necessitates increased time and effort to

obtain comprehensive An–Ca or An–Ci curves.
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In conclusion, this study underscores the essential requirement

for accurate model parameters and their relevance when selecting

photosynthesis models. It also highlights the significance of ongoing

efforts to enhance these models to improve predictions of plant

photosynthesis under diverse environmental conditions. Further

exploration into the molecular mechanisms underlying Rubisco-

catalyzed reactions and photorespiration is crucial, as it will not

only refine model accuracy but also bolster our predictive

capabilities in the face of environmental changes. Such

advancements are pivotal to optimizing agricultural strategies and

ecological preservation.

Moreover, both Model I and Model II have shown remarkable

performance, particularly under varying oxygen levels, positioning

them as valuable tools for analyzing C3 plant photosynthesis. Their

consistent and reliable estimation of key parameters such as Amax,

G, and Rpa0, coupled with their proficiency in fitting both An–Ca and

An–C i curves, offers a more precise depiction of plant

photosynthetic mechanisms. As research progresses, future

research should focus on validating these models across a broader

range of temperatures, light intensities, and CO2 levels to enhance

their robustness. Additionally, adapting these models for C4 and

CAM plants by incorporating their unique biochemical pathways,

such as PEPCase activity in C4 plants and temporal CO2 uptake in

CAM plants, would significantly expand their applicability.

Extensive validation across multiple species and conditions is

essential to refine the models and ensure their accuracy.

Comparative studies across different photosynthetic pathways will

highlight areas for improvement and contribute to the development

of generalized frameworks applicable across diverse plant types.

Integrating these models into ecosystem models could also provide

valuable insights into carbon cycling and ecosystem dynamics.

Overall, although the new models are promising, more adaptation

and validation are required to fully tap their potential in predicting

photosynthetic responses among different plant species under

various environmental conditions.
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Silva-Pérez, V., Furbank, R. T., Condon, A. G., and Evans, J. R. (2017). Biochemical
model of C3 photosynthesis applied to wheat at different temperatures. Plant Cell
Environ. 40, 1552–1564. doi: 10.1111/pce.12953

Smith, E. N., Aalst, M. V., Tosens, T., Niinemets, L., Stich, B., Morosinotto, T., et al.
(2023). Improving photosynthetic efficiency toward food security: strategies, advances,
and perspectives. Mol. Plant 16, 1547–1563. doi: 10.1016/j.molp.2023.08.017
Frontiers in Plant Science 18
Taylor, G., Walter, J., and Kromdijk, J. (2024). Illuminating stomatal responses to red
light: establishing the role of Ci-dependent versus -independent mechanisms in control
of stomatal behavior. J. Exp. Bot. 75, 6810–6822. doi: 10.1093/jxb/erae093

Tcherkez, G., Gauthier, P., Buckley, T. N., Busch, F. A., Barbour, M. M., Bruhn, D.,
et al. (2017). Leaf day respiration: low CO2 flux but high significance for metabolism
and carbon balance. New Phytol. 216, 986–1001. doi: 10.1111/nph.14816

Vijayakumar, S., Wang, Y., and Lehretz, E. L. S. (2024). Kinetic modeling identifies
targets for engineering improved photosynthetic efficiency in potato (Solanum
tuberosum cv. Solara). Plant J. 117, 561–572. doi: 10.1111/tpj.16512

von Caemmerer, S. (2000). Biochemical models of leaf photosynthesis (Victoria,
Australia: CSIRO Publishing). doi: 10.1071/9780643103405

von Caemmerer, S. (2013). Steady-state models of photosynthesis. Plant Cell
Environ. 36, 1617–1630. doi: 10.1111/pce.12098

von Caemmerer, S., and Farquhar, G. D. (1981). Some relationships between the
biochemistry of photosynthesis and the gas exchange of leaves. Planta 153, 376–387.
doi: 10.1007/BF00384257

Walker, A. P., Quaife, T., Bodegom, P. V., Kauwe, M., Keenan, T. F., Joiner, J., et al.
(2017). The impact of alternative trait–scaling hypotheses for the maximum
photosynthetic carboxylation rate (Vcmax) on global gross primary production. New
Phytol. 215, 1370–1386. doi: 10.1111/nph.14623

Watling, J. R., Press, M. C., and Quick, W. P. (2000). Elevated CO2 induces
biochemical and ultrastructural changes in leaves of the C4 cereal sorghum. Plant
Physiol. 123, 1143–1152. doi: 10.1104/pp.123.3.1143

Xiao, Y., Sloan, J., Hepworth, C., Osborne, C. P., Fleming, A. J., Chen, X., et al. (2021).
Estimating uncertainty: A Bayesian approach to modelling photosynthesis in C3 leaves.
Plant Cell Environ. 44, 1436–1450. doi: 10.1111/pce.13995

Xiong, Z., Xiong, D., Cai, D., Wang, W., Cui, K., Peng, S. B., et al. (2022). Effect of
stomatal morphology on leaf photosynthetic induction under fluctuating light across
diploid and tetraploid rice. Environ. Exp. Bot. 194, 104757. doi: 10.1016/
j.envexpbot.2021.104757

Ye, Z., He, J., An, T., Duan, S., Kang, H., and Wang, F. (2024). Influences of residual
stomatal conductance on the intrinsic water use efficiency of two C3 and two C4 species.
Agric. Water Manage. 306, 109136. doi: 10.1016/j.agwat.2024.109136

Ye, Z., Suggett, D., Robakowski, P., and Kang, J. (2013). A mechanistic model for the
photosynthesis–light response based on the photosynthetic electron transport of
photosystem II in C3 and C4 species.New Phytol. 199, 110–120. doi: 10.1111/nph.12242

Yin, X., and Amthor, J. S. (2024). Estimating leaf day respiration from conventional
gas exchange measurements. New Phytol. 241, 52–58. doi: 10.1111/nph.19330

Yin, X., Busch, F. A., Struik, P. C., and Sharkey, T. D. (2021). Evolution of a
biochemical model of steady-state photosynthesis. Plant Cell Environ. 44, 2811–2837.
doi: 10.1111/pce.14070

Yin, X., Struik, P. C., Romero, P., Harbinson, J., Evers, J. B., van der Putten, P. E. L., et al.
(2009). Using combined measurements of gas exchange and chlorophyll fluorescence to
estimate parameters of a biochemical C3 photosynthesis model: a critical appraisal and a
new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Plant
Cell Environ. 32, 448–464. doi: 10.1111/j.1365-3040.2009.01934.x

Yin, X., van Oijen, M., and Schapendonk, A. H. C. M. (2004). Extension of a
biochemical model for the generalized stoichiometry of electron transport limited C3

photosynthesis. Plant Cell Environ. 27, 1211–1222. doi: 10.1111/j.1365-3040.2004.01224.x

Yiotis, C., McElwain, J. C., and Osborne, B. A. (2021). Enhancing the productivity of
ryegrass at elevated CO2 is dependent on tillering and leaf area development rather
than leaf-level photosynthesis. J. Exp. Bot. 72, 1962–1977. doi: 10.1093/jxb/eraa584

Zhang, N. Y., Li, G., Yu, S. X., An, D. S., Sun, Q., Luo, W. H., et al. (2017). Can the
responses of photosynthesis and stomatal conductance to water and nitrogen stress
combinations be modeled using a single set of parameters? Front. Plant Sci. 8.
doi: 10.3389/fpls.2017.00328

Zhu, X. G., Long, S. P., and Ort, D. R. (2010). Improving photosynthetic efficiency for
greater yield. Annu. Rev. Plant Biol. 61, 235–261. doi: 10.1146/annurev-arplant-
042809-112206
frontiersin.org

https://doi.org/10.1111/j.1365-3040.1995.tb00370.x
https://doi.org/10.1093/jxb/erg262
https://doi.org/10.1111/j.1365-2486.2010.02375.x
https://doi.org/10.1111/j.1365-2486.2010.02375.x
https://doi.org/10.1111/j.1365-3040.2008.01900.x
https://doi.org/10.1111/j.1365-3040.2008.01900.x
https://doi.org/10.1111/pce.12990
https://doi.org/10.1007/s10265-020-01169-0
https://doi.org/10.1111/nph.12770
https://doi.org/10.1111/nph.14319
https://doi.org/10.1104/pp.19.00375
https://doi.org/10.1007/s00425-018-3049-9
https://doi.org/10.1111/tpj.14553
https://doi.org/10.1093/plcell/koae132
https://doi.org/10.1111/nph.14740
https://doi.org/10.3389/fpls.2015.00973
https://doi.org/10.1111/pce.12641
https://doi.org/10.1111/j.1365-3040.2007.01710.x
https://doi.org/10.1111/pce.12953
https://doi.org/10.1016/j.molp.2023.08.017
https://doi.org/10.1093/jxb/erae093
https://doi.org/10.1111/nph.14816
https://doi.org/10.1111/tpj.16512
https://doi.org/10.1071/9780643103405
https://doi.org/10.1111/pce.12098
https://doi.org/10.1007/BF00384257
https://doi.org/10.1111/nph.14623
https://doi.org/10.1104/pp.123.3.1143
https://doi.org/10.1111/pce.13995
https://doi.org/10.1016/j.envexpbot.2021.104757
https://doi.org/10.1016/j.envexpbot.2021.104757
https://doi.org/10.1016/j.agwat.2024.109136
https://doi.org/10.1111/nph.12242
https://doi.org/10.1111/nph.19330
https://doi.org/10.1111/pce.14070
https://doi.org/10.1111/j.1365-3040.2009.01934.x
https://doi.org/10.1111/j.1365-3040.2004.01224.x
https://doi.org/10.1093/jxb/eraa584
https://doi.org/10.3389/fpls.2017.00328
https://doi.org/10.1146/annurev-arplant-042809-112206
https://doi.org/10.1146/annurev-arplant-042809-112206
https://doi.org/10.3389/fpls.2025.1575217
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Evaluating photosynthetic models and their potency in assessing plant responses to changing oxygen concentrations: a comparative analysis of An–Ca and An–Ci curves in Lolium perenne and Triticum aestivum
	1 Introduction
	2 Materials and methods
	2.1 FvCB model description
	2.2 A new model for describing the CO2–response curve of photosynthesis with an explicit Rday
	2.3 A new model for describing the CO2–response curve of photosynthesis without an explicit Rday
	2.4 Plant materials
	2.5 Gas exchange data measurement
	2.6 Statistical analysis

	3 Results
	3.1 An–Ca and An–Ci curves and their fitting with the FvCB model at 21% O2 concentration
	3.2 An–Ca and An–Ci curves and their fitting with the FvCB model at 2% O2 concentration
	3.3 An–Ca and An–Ci curves and their fitting using the Model I or Model II at 21% O2 concentration
	3.4 An–Ca and An–Ci curves and their fitting using the Model I or Model II at 2% O2 concentration

	4 Discussions
	4.1 The FvCB model in fitting CO2-response curve of photosynthesis and estimating photosynthetic parameters
	4.2 Model I and Model II in fitting CO2-response curve of photosynthesis and estimating photosynthetic parameters
	4.3 Comparative analysis of the FvCB model and the new models

	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


