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Introduction: Precision agriculture is revolutionizing modern farming by

integrating data-driven methodologies to enhance crop productivity while

promoting sustainability. Traditional time series models struggle with complex

agricultural data due to heterogeneity, high dimensionality, and strong spatial-

temporal dependencies. These limitations hinder their ability to provide

actionable insights for resource optimization and environmental protection.

Methods: To tackle these difficulties, this research puts forward a new deep-

learning-based architecture for time-series prediction that is customized for

precise field crop protection. At its core, our Spatially-Aware Data Fusion

Network (SADF-Net) integrates multi-modal data sources, such as satellite

imagery, IoT sensor readings, and meteorological forecasts, into a unified

predictive model. By combining convolutional layers for spatial feature

extraction, recurrent neural networks for temporal modeling, and attention

mechanisms for data fusion, SADF-Net captures intricate spatial-temporal

dependencies while ensuring robustness to noisy and incomplete data. We

introduce the Resource-Aware Adaptive Decision Algorithm (RAADA), which

leverages reinforcement learning to translate SADF-Net’s predictions into

optimized strategies for resource allocation, such as irrigation scheduling and

pest control. RAADA dynamically adapts decisions based on real-time field

responses, ensuring efficiency and sustainability.

Results: The experimental findings obtained from large-scale agricultural

datasets show that our framework far exceeds the existing most advanced

methods in terms of the accuracy of yield prediction, resource optimization,

and environmental impact mitigation.

Discussion: This research offers a transformative solution for precision

agriculture, aligning with the pressing need for advanced tools in sustainable

crop management.
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precision agriculture, time series prediction, deep learning, resource optimization,
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1 Introduction

The increasing demand for sustainable agricultural practices

has led to an urgent need for accurate predictions in crop

protection, particularly in the face of climate change, pest

outbreaks, and resource limitations (Angelopoulos et al., 2023).

Time series prediction has emerged as a critical tool in precision

agriculture, enabling farmers to anticipate and mitigate risks such as

disease outbreaks and pest infestations (Shen and Kwok, 2023).

Traditional approaches to time series prediction, while effective in

certain scenarios, are often limited by their inability to process

large-scale, non-linear, and complex data derived from precision

agriculture systems, which include remote sensing, weather

monitoring, and soil sensors (Zhou et al., 2020). This limitation

hinders both accurate crop management and the potential of

adaptive decision-making frameworks to enhance yield and

sustainability (Li et al., 2023). The evolution from traditional,

symbol-based AI approaches to data-driven machine learning

and, more recently, to deep learning and pre-trained models

underscores a growing ability to address these challenges with

increasing precision and scalability (Yin et al., 2023).

Early methods for time series prediction in crop protection relied

on symbolic AI techniques and rule-based systems that modeled crop

health and environmental factors using predefined rules and expert

knowledge (Yu et al., 2023). These approaches used domain

knowledge to simulate plant-pathogen interactions or to estimate

pest behavior, often through mechanistic models such as

epidemiological equations or statistical regression (Durairaj and

Mohan, 2022). For example, models like the degree-day method or

rule-based systems were used to predict pest emergence or disease

onset (Chandra et al., 2021). While these methods were interpretable

and grounded in agricultural science, they were constrained by their

dependence on accurate and comprehensive domain knowledge (Fan

et al., 2021). they struggled with adapting to dynamic and highly

variable field conditions, as they lacked mechanisms to incorporate

real-time data or learn from observed patterns (Hou et al., 2022). As a

result, these symbolic approaches were not only labor-intensive but

also lacked generalizability, making them unsuitable for large-scale,

high-resolution precision agriculture systems.

The transition to data-driven methods brought significant

advancements in time series prediction for crop protection by

leveraging machine learning algorithms (Lindemann et al., 2021).

Techniques such as support vector machines (SVMs), random forests,

and gradient-boosted trees became popular due to their ability to uncover

patterns from data without requiring explicit domain knowledge

(Dudukcu et al., 2022). In precision agriculture, these methods were

used to process sensor data, weather records, and imagery to predict pest

infestations or crop diseases (Amalou et al., 2022). For instance, SVMs

were applied to classify crop health based on hyperspectral data, while

random forests were used to identify key environmental factors

contributing to pest outbreaks (Xiao et al., 2021). Despite these

improvements, data-driven methods still faced limitations, particularly

in handling temporal dependencies and long-term sequences, as they

relied on feature engineering and lacked the ability to capture spatial and

temporal correlations effectively (Zheng and Chen, 2021). these models
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were computationally expensive for large datasets, limiting their scalability

in real-time agricultural applications.

The emergence of deep learning and pre-trained models has

revolutionized time-series forecasting, particularly in complex

domains like precision agriculture (Wang et al., 2021b). Recurrent

neural networks (RNNs), long short-term memory (LSTM)

networks, and convolutional neural networks (CNNs) have shown

remarkable capabilities in learning temporal and spatial patterns

from large datasets (Xu et al., 2020). In the context of precision

crop protection, LSTMs have been used to model pest population

dynamics, while CNNs have been applied to satellite imagery for

disease detection (Karevan and Suykens, 2020). More recently,

transformer-based models and pre-trained architectures have set

new benchmarks in accuracy and adaptability (Altan and Karasu,

2021). These models excel in capturing multi-scale dependencies and

integrating heterogeneous data sources, such as weather forecasts, soil

health, and remote sensing data (Wen et al., 2021). transfer learning

allows pre-trained models to generalize across different crops and

regions, reducing the need for extensive labeled datasets. these

methods are computationally intensive and require significant

expertise for implementation, which can pose challenges for

widespread adoption in resource-constrained settings.

To address the limitations of previous methods, we propose an

innovative deep learning framework specifically designed for

precision crop protection based on accurate time series forecasting.

By integrating domain knowledge with advanced neural

architectures, we aim to overcome the challenges of interpretability,

scalability, and adaptability. The proposed method leverages pre-

trained models to incorporate multi-modal data and uses attention

mechanisms to focus on critical temporal patterns, thereby enabling

precise predictions even under uncertain conditions. Our approach

prioritizes computational efficiency, ensuring that it can be deployed

in real-time scenarios and resource-limited environments.
• The integration of attention mechanisms and pre-trained

architectures allows our model to focus on critical temporal

patterns, improving interpretability and robustness

in predictions.

• The framework supports multi-modal data inputs and

generalizes across different crops and regions, making it

highly adaptable and efficient for diverse agricultural settings.

• Extensive testing on benchmark datasets demonstrates

significant improvements in prediction accuracy and

computational efficiency compared to existing deep

learning models.
2 Related work

2.1 Deep learning for time series
forecasting

Deep learning techniques have emerged as powerful tools for

time series forecasting, leveraging their ability to model complex
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temporal dependencies and capture non-linear patterns in data

(Wang et al., 2021a). Recurrent Neural Networks (RNNs),

particularly Long Short-Term Memory (LSTM) networks and

Gated Recurrent Units (GRUs), are widely used for such tasks

due to their capability to address vanishing gradient issues and

effectively capture long-term dependencies (Morid et al., 2021). In

the agricultural domain, these architectures have been applied to

predict various environmental factors, including temperature,

humidity, and precipitation, which are critical for field crop

protection (Widiputra et al., 2021). Attention mechanisms,

integrated into sequence models, have further enhanced

performance by allowing the model to prioritize the most

significant time steps, thus improving forecasting accuracy

(Moskolaï et al., 2021). Recent advancements also include the

application of Transformer architectures to time series prediction.

Transformers, initially designed for natural language processing,

have been successfully adapted for time series due to their scalability

and capability to capture long-term dependencies without the

constraints of sequential processing (Ni et al., 2018). Such models

have been employed to predict pest infestation trends, soil moisture

levels, and crop yields, demonstrating their potential in precision

agriculture (Yu et al., 2025). hybrid approaches that combine deep

learning with statistical methods, such as ARIMA or wavelet

transforms, have been explored to enhance predictive

performance by integrating domain knowledge with data-

driven learning.
2.2 Precision agriculture and data-driven
methods

Precision agriculture relies heavily on data-driven approaches

to optimize resource usage and improve crop productivity (Yang

and Wang, 2021). With the advent of Internet of Things (IoT)

devices, remote sensing technologies, and UAV-based imaging

systems, vast amounts of spatiotemporal data have become

available for analysis (Ruan et al., 2021). Machine learning

techniques, particularly deep learning, have played a critical role

in processing and analyzing this data (Kim and King, 2020).

Convolutional Neural Networks (CNNs), for example, have been

utilized to analyze aerial imagery and satellite data to monitor crop

health, detect weeds, and identify pest infestations. Combined with

time series data, such as weather patterns and soil conditions, these

methods enable a more holistic understanding of field dynamics (Ni

et al., 2017). advancements in sensor technology have enabled real-

time monitoring of environmental factors, generating high-

resolution time series data that can be fed into predictive models

to anticipate threats such as fungal diseases or pest outbreaks.

Integrating these predictions into precision crop protection

systems enables timely and targeted interventions, reducing

pesticide use and environmental impact (Chen et al., 2024). The

integration of Geographic Information Systems (GIS) with deep

learning models has also enhanced spatial forecasting capabilities,

allowing for the creation of site-specific management zones.

Research in this area has focused on developing robust models
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that can generalize across diverse agricultural conditions,

addressing challenges such as data sparsity, noise, and the need

for domain-specific customization.
2.3 Sustainability in crop protection

Sustainability has become a central theme in modern

agricultural practices, emphasizing the need for reduced chemical

usage, minimized environmental impact, and improved resource

efficiency (Kang et al., 2020). Deep learning-based models for time

series forecasting play a crucial role in achieving these goals by

enabling precise and proactive interventions (Wu et al., 2020). By

predicting pest and disease outbreaks, irrigation needs, and nutrient

deficiencies, these models allow for targeted applications of

pesticides, water, and fertilizers, reducing wastage and runoff (Hu

et al., 2020). Studies have highlighted the potential of integrating

crop growth models with time series prediction frameworks to

optimize field management strategies while maintaining ecological

balance. the use of multispectral and hyperspectral imaging,

combined with temporal deep learning methods, has enabled

early detection of crop stress and disease, further contributing to

sustainable practices. Another key focus is the development of

interpretable deep learning models that provide actionable

insights to farmers and agronomists (Ni et al., 2016). Techniques

such as SHAP (SHapley Additive exPlanations) and LIME (Local

Interpretable Modelagnostic Explanations) have been applied to

enhance the transparency of predictions, fostering trust in AI-

driven systems. research has explored the incorporation of

renewable energy-powered sensors and edge computing devices to

support low-cost and sustainable deployment of predictive systems

in remote and resource-constrained regions (Yan et al., 2024).

These advancements align with global initiatives to promote

sustainable agriculture and ensure food security in the face of

climate change and population growth.
3 Method

3.1 Overview

Precision agriculture has emerged as a transformative approach

to modern farming, leveraging data-driven methodologies to

enhance crop productivity, optimize resource utilization, and

reduce environmental impacts. This subsection introduces the

proposed methodology to address specific challenges within

precision agriculture. We present a detailed outline of the

subsequent subsections, which collectively define the core

contributions of this research. In this work, we aim to tackle the

problem of efficiently integrating multi-modal data sources into a

cohesive decision-making framework for precision agriculture. Our

method emphasizes scalability and robustness to heterogeneous

data, which are critical in real-world agricultural scenarios.

The first component of our framework, outlined in Section 3.2,

provides the formalization of the problem domain. Here, we
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establish the mathematical and computational foundations,

introducing key notations, data representations, and the modeling

of spatial and temporal dependencies inherent in agricultural

processes. This section also highlights the challenges posed by

noisy and incomplete data, which are common in field

conditions, and sets the stage for the subsequent methodological

innovations. Building upon this foundation, Section 3.3 presents

our novel model, termed Spatially-Aware Data Fusion Network

(SADF-Net). SADF-Net is designed to integrate diverse data

sources into a unified predictive framework. The architecture

employs advanced deep learning techniques to capture spatial

correlations across fields and temporal dynamics in crop growth.

This model is tailored to extract actionable insights from complex,

high-dimensional agricultural datasets. in Section 3.4, we describe a

new optimization strategy, referred to as the Resource-Aware

Adaptive Decision Algorithm (RAADA). This strategy focuses on

deploying the predictions of SADF-Net to enable precise and

efficient interventions, such as irrigation scheduling, fertilization

optimization, and pest control. The algorithm incorporates

domain-specific constraints and leverages reinforcement learning

to iteratively refine decisions based on observed outcomes.
3.2 Preliminaries

In this part, we define the problem formally of decision-making

in precision agriculture and establish the mathematical framework

underpinning our approach. This includes the definition of key

variables, constraints, and the computational challenges associated

with integrating multi-modal agricultural data.

Precision agriculture involves optimizing resource allocation

and improving crop productivity by leveraging diverse datasets such

as satellite imagery, sensor measurements, weather forecasts, and

soil profiles. Let F = F1, F2,…, Fmf g denote the set of agricultural

fields under consideration, where Firepresents the i-th field

characterized by spatial and temporal features. Each field Fi is

further subdivided into grid cells, indexed by (x, y) ∈ Gi,

representing a spatial discretization.

We define the state of the agricultural system over a temporal

horizon. T = t1, t2,…, tTf g as a collection of feature maps

(Equation 1):

Si,t = di,t , ei,t , ri,t , hi,t
� �

,  ∀ i ∈ 1, 2,…,mf g, t ∈ T , (1)

where: di,t ∈ Rnd represents crop-specific data, including

growth stage, health, and phenotypic characteristics for field Fi at

time t. ei,t ∈ Rne captures environmental data, such as temperature,

humidity, and precipitation, obtained from external meteorological

sources. ri,t ∈ Rnr represents resource-related variables, including

irrigation, fertilization, and pest control efforts. hi,t ∈ Rnh denotes

historical data for the field, encapsulating past observations of yield,

resource usage, and interventions.

The system’s evolution is influenced by various external and

internal factors, which we encode as a dynamical system (Equation 2):

Si,t+1 = F(Si,t , ui,t) + ei,t , (2)
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where F( · ) is a nonlinear transition function modeling the

temporal evolution of the system, ui,trepresents the control inputs,

and ei,t is the noise term accounting for uncertainties and

measurement errors.

The overarching goal is to optimize a set of control decisions.

U = ui,t
� �

i,tover T to maximize crop productivity while

minimizing resource usage and environmental impact. This can

be mathematically formulated as a multi-objective optimization

problem (Equation 3):

max
U

 J(U) =o
m

i=1
o
T

t=1
½a1Yi,t − a2Ci,t − a3Ei,t �, (3)

where: Yi,t is the predicted yield for field Fi at time t, Ci,t
represents the cost associated with resources such as water,

fertilizers, and pesticides, Ei,t captures environmental penalties,

such as nutrient leaching or greenhouse gas emissions, a1, a2,

and a3 are weights balancing the trade-offs between productivity,

cost, and sustainability.

The optimization is subject to domain-specific constraints:

Resource Budget (Equation 4):

o
T

t=1
o
m

i=1
ui,t ≤ B, (4)

where B is the total available resource budget. Crop-Specific

Requirements (Equation 5):

g(di,t , ui,t) ≥ 0,  ∀ i, t, (5)

ensuring that decisions align with agronomic best practices.

Environmental Limits (Equation 6):

Ei,t ≤ Emax,  ∀ i, t, (6)

imposing upper bounds on environmental impacts.
3.3 Spatially-Aware Data Fusion Network

In this subsection, we propose a novel predictive framework

termed Spatially-Aware Data Fusion Network (SADF-Net). The

SADF-Net model is designed to integrate multi-modal agricultural

data, capture spatial-temporal dependencies, and generate accurate

predictions for field-specific variables, such as yield, resource

requirements, and environmental impacts (As shown in Figure 1).

3.3.1 Spatial feature extraction
The architecture of SADF-Net integrates convolutional neural

networks (CNNs) for spatial feature extraction, recurrent neural

networks (RNNs) for temporal modeling, and an attention

mechanism for mult i-modal data fusion, ensuring a

comprehensive learning framework for spatiotemporal

prediction tasks.

Each field Fi at time step t is represented by a multi-channel

feature tensor Xi,t ∈ RH�W�C , where H andW represent the spatial

dimensions of the grid cells, ensuring the representation of spatial

layout and resolution. The number of input channels, C, includes
frontiersin.org
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various geospatial and environmental data sources such as satellite-

derived vegetation indices, soil moisture, precipitation levels,

temperature variations, and past resource usage records.

To effectively extract spatial correlations among grid cells, a

convolutional layer is applied to Xi,t (Equation 7):

Z(1)
i,t = s (Wconv*Xi,t+bconv ), (7)

where Wconv and bconv denote the trainable convolutional

kernel weights and biases, respectively. The function s( · )
represents A nonlinear activation function, like ReLU or

LeakyReLU, and ∗ represents the convolution operation applied

over the spatial dimensions. This process generates spatially-aware

feature maps Z(1)
i,t ∈ RH�W�C1 , where C1 is the number of output

feature channels, capturing hierarchical spatial dependencies.

To further enhance spatial feature representation and capture

deeper-level patterns, additional convolutional layers with

increasing receptive fields are applied (Equation 8):

Z(l)
i,t = s (Wconv(l)*Z

(l−1)
i,t +b

conv(l)
), l = 2,…, L : (8)

Each layer refines feature extraction by progressively capturing

higher-level spatial relationships. The final spatial feature

representation is denoted as (Equation 9):

Zi,t = Z(L)
i,t ∈ RH�W�CL , (9)

where CL represents the final number of extracted spatial

feature channels.

To introduce spatial invariance and reduce computational

complexity, a max-pooling operation is applied (Equation 10):
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Pi,t = MaxPool(Zi,t), (10)

where Pi,t ∈ RH0�W 0�CL , and (H0,W 0) denote the reduced

spatial dimensions, controlled by the pooling kernel size.

For enhanced spatial understanding, a spatial self-attention

mechanism is applied to highlight important regions within the

feature map. The attention weights are computed as (Equation 11):

ai,t = softmax
QK⊤ffiffiffi

d
p

� �
, (11)

where Q and K are linear projections of Pi,t, and d is the

dimensionality scaling factor. The attended spatial features are then

computed as (Equation 12):

Patt=ai,tV ,
i,t (12)

where V is another linear projection of Pi,t . This mechanism

ensures that regions with higher relevance to the target task receive

greater emphasis.

3.3.2 Temporal dependency modeling
To accurately capture the temporal dynamics of field

conditions, we utilize a gated recurrent unit (GRU) network,

which is a variant of recurrent neural networks (RNNs) designed

to address the vanishing gradient problem and efficiently capture

long-range dependencies in sequential data. The GRU updates its

hidden state as follows (Equation 13):

hi,t = GRU(zi,t , hi,t−1), (13)

where zi,t = Flatten(Z(1)
i,t ) Denotes the compressed spatial

feature vector obtained at a specific time step t, and hi,t ∈ Rdh
FIGURE 1

The Spatially-Aware Data Fusion Network (SADF-Net) integrates multi-modal agricultural data. It combines convolutional neural networks (CNNs) for
spatial feature extraction, gated recurrent units (GRUs) for temporal dependency modeling, and an attention-based fusion mechanism. The model
processes text and image inputs through separate encoder branches—an artificial neural network (ANN) branch for textual data and a spiking neural
network (SNN) branch for image data—before fusing them for improved predictive accuracy in agricultural applications.
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denotes the hidden state with dimensionality dh. The GRU employs

gating mechanisms to selectively retain and update information

over time, ensuring effective temporal feature extraction.

The GRU consists of two primary gates: the update gate and the

reset gate. The update gate controls how much of the previous

hidden state should be carried forward, while the reset gate

determines the extent to which the past hidden state should be

ignored. These gates are defined as (Equations 14, 15):

ri,t = s (Wrzi,t + Urhi,t−1 + br), (14)

ui,t = s (Wuzi,t + Uuhi,t−1 + bu), (15)

where ri,t and ui,t are the reset and update gates, respectively.

The trainable weight matrices Wr ,Wu ∈ Rdh�dz and Ur ,Uu ∈
Rdh�dh control the transformation of input and hidden state,

while br, bu ∈ Rdh are the corresponding bias terms. The

activation function s( · ) represents the element-wise sigmoid

function, ensuring that gate values remain between 0 and 1.

The candidate hidden state ~hi,t is computed as (Equation 16):

~hi,t = tanh (Whzi,t + Uh(ri,t⊙hi,t−1) + bh), (16)

where ⊙ represents the element-wise Hadamard product. The

reset gate modulates the influence of the previous hidden state,

enabling the GRU to discard irrelevant historical information. the

new hidden state is obtained as (Equation 17):

hi,t = ui,t ⊙ hi,t−1 + (1 − ui,t)⊙ ~hi,t : (17)

This equation balances the retention of past information and the

integration of newly computed features. The GRU’s ability to selectively

update its hidden state allows it to effectively capture temporal

dependencies while mitigating the issue of vanishing gradients.
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3.3.3 Multi-modal data fusion
To effectively integrate multiple data sources, we introduce an

attention mechanism that learns the relative importance of each

modality (As shown in Figure 2).

Given a set of K data modalities M1,M2,…, MKf g, the attention
weights akare computed as (Equation 18):

ak =
exp   (q⊤WkMk)

oK
j=1exp   (q

⊤WjMj)
, k = 1, 2,…,K , (18)

where q is a query vector, and Wkare learnable parameter

matrices specific to each modality Mk. This attention mechanism

ensures that information is weighted adaptively, allowing the most

relevant modalities to contribute more significantly to the

final decision.

Using the computed attention weights, we construct the fused

feature representation fi as follows (Equation 19):

fi = o
K

k=1

akMk : (19)

Once the fused feature vector is obtained, it is passed through a

fully connected neural network (FC) to predict key variables such as

yield Y i,t , resource requirements Ci,t , and environmental impacts

Ei,t (Equation 20):

Ŷ i,t , Ĉ i,t , Ê i,t = FC(f i), (20)

where FC(·) represents a fully connected network with multiple

hidden layers, enabling the extraction of high-level nonlinear

features for accurate prediction.

To train this model, we use a multi-task loss function that

balances accuracy across multiple prediction tasks. Specifically, the

loss function L is defined as (Equation 21):
FIGURE 2

Illustration of the proposed multi-modal data fusion framework. The framework employs an attention mechanism to adaptively learn the relative
importance of each modality and integrates a dynamically weighted multi-task loss function, enabling accurate prediction of yield, resource
requirements, and environmental impacts.
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L =o
m

i=1
o
T

t=1
l1 Y i,t − Ŷ i,t

�� ��2
2+l2 Ci,t − Ĉ i,t

��� ���2
2
+l3 Ei,t − Ê i,t

��� ���2
2

� 	
,

(21)

where l1, l2, l3 are hyperparameters controlling the relative

importance of each task. To further improve training stability, we

adopt a dynamic weighting strategy that adjusts the loss

contribution of each task based on its uncertainty (Equation 22):

lk =
1
s 2
k

, k = 1, 2, 3, (22)

where sk represents the uncertainty of each task. This approach

helps the model dynamically balance different objectives

during training.

We employ gradient clipping to prevent gradient explosion and

use the AdamW optimizer to update the model parameters

(Equation 22):

q(t+1) = q(t) − h ·
mtffiffiffiffi
vt

p
+ e

, (23)

where h is the learning rate, and mt and vt denote the first and

second moment estimates of the gradients, respectively. AdamW

extends the traditional Adam optimizer by incorporating weight

decay, enhancing the model’s generalization capability.

The final model predictions can be normalized using Softmax or

Sigmoid functions, depending on the specific task. For instance, in a

classification setting, the output probabilities are computed as

(Equation 24):

P(y = cjf i) =
exp   (W⊤

c f i)

oC
j=1exp   (W

⊤
j f i)

, (24)

where C is the number of classes, and Wc represents the

learnable parameters associated with class c.

SADF-Net is designed to generalize across different crops,

climatic conditions, and geographic regions by integrating multi-

modal data sources, including satellite imagery, IoT sensor readings,

and meteorological forecasts. The model’s spatial attention

mechanism enables it to adapt to regional variations in soil

composition, crop physiology, and environmental factors,

ensuring robust predictions across diverse agricultural settings. By

capturing spatial-temporal dependencies, SADF-Net effectively

models the dynamic interactions between crops and their

environment, improving yield estimation and risk assessment for

various cultivation systems. The inclusion of climatic factors further

enhances the model’s adaptability, allowing it to dynamically adjust

predictions based on precipitation, temperature fluctuations, and

humidity levels. This capability supports precision farming

strategies by optimizing irrigation scheduling in arid regions and

mitigating disease risks in humid or temperate zones. Transfer

learning techniques enable SADF-Net to leverage knowledge from

well-annotated datasets and apply it to new crops and regions with

limited ground-truth data, making it a scalable solution for large-

scale agricultural applications. While SADF-Net exhibits strong

generalization capabilities, future improvements will focus on

enhancing adaptability through self-supervised learning and
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domain adaptation techniques. Expanding the training dataset

with more diverse crops and climatic conditions will further

strengthen the model’s robustness, ensuring its applicability to a

wider range of agricultural ecosystems.
3.4 Resource-Aware Adaptive Decision
Algorithm

In this subsection, we introduce the Resource-Aware Adaptive

Decision Algorithm (RAADA), a novel strategy designed to translate

the predictions of the SADF-Net model into precise, actionable

interventions. RAADA integrates domain-specific constraints,

resource efficiency, and adaptability to dynamic field conditions.

By leveraging reinforcement learning and optimization techniques,

the algorithm ensures effective decision-making for maximizing

productivity while minimizing resource usage and environmental

impact (As shown in Figure 3).

3.4.1 Prediction-driven initialization
The goal of RAADA is to generate a sequence of control actions

U = ui,t
� �

i,t , where ui,trepresents resource allocations for field Fi at

time t. The control actions are designed to optimize the objective

(Equation 25):

max
U

 J(U) =o
m

i=1
o
T

t=1
½a1Yi,t − a2Ci,t − a3Ei,t �, (25)

where Yi,t denotes the crop yield, Ci,t represents the cost

associated with resource allocation, and ei,tquantifies the

environmental impact. The coefficients a1,a2,a3 are weighting

parameters that balance productivity, cost, and sustainability. The

optimization problem is subject to the following constraints.

Resource Budget Constraint (Equation 26):

o
T

t=1
o
m

i=1
ui,t ≤ B, (26)

where B is the total available resource budget, ensuring that the

total resource allocation does not exceed constraints imposed by

financial and logistical limitations.

Crop-Specific Requirements (Equation 27):

g(di,t , ui,t) ≥ 0,  ∀ i, t, (27)

where di,t represents the field-specific agronomic conditions,

and g(·) is a function ensuring that actions align with agronomic

best practices, such as maintaining soil health and adhering to crop

growth cycles.

Environmental Impact Constraint (Equation 28):

Ei,t ≤ Emax,  ∀ i, t : (28)

This ensures that resource allocation decisions do not cause

excessive environmental degradation, such as water contamination,

greenhouse gas emissions, or soil depletion.

To efficiently search for an optimal control policy, RAADA

begins with a prediction-driven decision initialization. SADF-Net
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provides predictive estimates Ŷ i,t , Ĉ i,t , and Ê i,t as priors for guiding

the initial decision-making process. These priors help in warm-

s tar t ing the opt imiza t ion a lgor i thm and improv ing

convergence efficiency.

The algorithm solves a relaxed optimization problem to obtain

an initial estimate (Equation 29):

u(0)i,t = arg min
ui,t

l1 Yi,t − Ŷ i,t

�� ��2+l2 Ci,t − Ĉ i,t

��� ���2+l3 Ei,t − Ê i,t

��� ���2
� 	

,

(29)

subject to the constraints outlined above. The parameters l1,
l2, l3 determine the relative importance of each prediction error

term. The objective function ensures that the initialized control

actions remain close to the predicted values while allowing for

domain-specific constraints to shape the decision.

To further refine initialization, the optimization problem

incorporates additional regularization terms to promote

smoothness and feasibility (Equation 30):

u(0)i,t = arg min
ui,t

l1 Yi,t − Ŷ i,t

�� ��2+l2 Ci,t − Ĉ i,t

��� ���2+l3 Ei,t − Ê i,t

��� ���2+r ui,t − ui,t−1
�� ��2� 	

,

(30)

where the term r ui,t − ui,t−1
�� ��2 penalizes abrupt changes in

control actions, ensuring that resource allocation strategies remain

temporally consistent.

The initialized control actions are further refined using an

iterative correction strategy (Equation 31):

u(k+1)i,t = u(k)i,t − h∇uL(ui,t), (31)
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where L(ui,t) is the original optimization objective, h is the step

size, and ∇uL(ui,t) represents the gradient of the objective function
with respect to the control actions. This iterative update ensures

that the initialized control actions move toward the optimal

solution while maintaining feasibility with respect to constraints.

A projection step is introduced to ensure that the updated

control actions satisfy all constraints (Equation 32):

u(k+1)i,t = ProjU (u
(k)
i,t − h∇uL(ui,t)), (32)

where ProjU (·) denotes projection onto the feasible set defined

by the constraints. This ensures that resource allocations remain

valid in practical applications.
3.4.2 Reinforcement learning optimization
To handle real-world uncertainties and dynamic conditions,

RAADA employs a reinforcement learning framework where the

decision-making process is formulated as a Markov Decision

Process (MDP). The MDP is characterized by a tuple (S,A,P,R, g
), where S represents the state space, A is the action space, P denotes

the transition probabilities, R is the reward function, and g ∈ (0, 1�
is the discount factor.

The state at time t, denoted as Equation 33:

st = (Si,t , ui,t−1), (33)

includes the field conditions Si,t and past control actions ui,t−1.

The action atcorresponds to adjustments in the resource allocation

strategy, formulated as Equation 34:
FIGURE 3

The figure illustrates the RAADA framework, which integrates prediction-driven initialization, reinforcement learning optimization, and an adaptive
feedback mechanism to enhance resource allocation strategies. The model utilizes self-attention and dynamic self-attention modules to process
input features, applying reinforcement learning for decision optimization while ensuring domain-specific constraints. By incorporating an iterative
correction strategy and confidence interval estimation, RAADA refines control actions to balance productivity, cost, and environmental
sustainability efficiently.
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at = ui,t : (34)

The reward function is defined to balance multiple objectives

such as productivity, cost, and environmental impact (Equation 35):

Rt = a1Yi,t − a2Ci,t − a3Ei,t , (35)

where Yi,t denotes yield or productivity, Ci,t represents

operational cost, and ei,t quantifies environmental impact. The

parameters a1,a2,a3 are tunable Coefficients that define the

relative significance of each term.

The transition dynamics governing the system are modeled as

Equation 36:

st+1 = F(st , at) + et , (36)

where F represents the deterministic state transition function,

and etcaptures stochastic uncertainties in the environment.

To optimize resource allocation, RAADA learns a policy pq(at
jst), parameterized by q, that maximizes the expected cumulative

reward (Equation 37):

max
q

Epq o
T

t=1
g tRt

� 	
: (37)

The policy is trained using Proximal Policy Optimization

(PPO), a widely used policy gradient method that enhances

training stability. The PPO loss function is given by Equation 38:

LPPO(q) = Et ½min (rt(q)Â t , clip(rt(q), 1 − e, 1 + e)Â t)�, (38)

where Equation 39:

rt(q) =
pq(at jst)
pqold(at jst )

(39)
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is the probability ratio comparing the new and old policy

distributions, Â t is the advantage function estimating the relative

value of an action, and e is the clipping parameter that prevents

excessively large updates, ensuring stable learning.

The advantage function Â t is computed using Generalized

Advantage Estimation (GAE) (Equation 40):

Â t = o
T−t

l=0

(gl)ldt+l , (40)

where l is a decay parameter and dtis the temporal difference

error defined as Equation 41:

dt = Rt + gVq(st+1) − Vq(st) : (41)

The value function Vq(st) is updated using the squared error

loss (Equation 42):

LV (q) = Et Vq(st) − V target
t


 �2h i
, (42)

where V target
t is the bootstrap estimate of the true state value.

To further stabilize learning, entropy regularization is applied to

encourage policy exploration (Equation 43):

Lentropy(q) = −bo
a
pq(a s)log pq(aj js), (43)

where b is the entropy coefficient.

The final objective function of PPO combines policy loss, value

loss, and entropy regularization (Equation 44):

L(q) = LPPO(q) + c1LV (q) − c2Lentropy(q), (44)

where c1 and c2 are weighting coefficients.
FIGURE 4

This figure illustrates the adaptive feedback mechanism employed by RAADA for dynamic decision-making in resource allocation. The framework
integrates reinforcement learning, incorporating Temporal Difference (TD) error for policy updates, confidence interval estimation to manage
uncertainty, and entropy regularization to balance exploration and exploitation. Feature flow and agent flow interactions facilitate real-time learning
and optimization, ensuring efficient and stable adjustments based on observed outcomes and predicted values.
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3.4.3 Adaptive feedback mechanism
RAADA employs an adaptive feedback mechanism to

dynamically adjust decision-making strategies, optimizing the

efficiency and stability of resource allocation (As shown in Figure 4).

After each decision cycle, the system updates the reinforcement

learning (RL) agent’s policy parameters based on the discrepancies

between observed outcomes Yi,t , Ci,t , Ei,t

� �
and predicted values

^lY i,t , Ĉ i,t , Ê i,t

n o
. The adjustment follows the optimization principle

(Equation 45):

Dq ∝ ∇qLPPO(q) + lmq ui,t − u(0)i,t

��� ���2: (45)

Here, LPPO(q) represents the Proximal Policy Optimization

(PPO) loss function, which ensures stable policy updates. The

term ui,t − u(0)i,t

��� ���2 serves as a regularization term to prevent

excessive deviation from the initial policy u(0)i,t , thereby avoiding

drastic decision fluctuations. The parameter l controls the impact

of the regularization term on the gradient update, ensuring a

balance between exploration and exploitation.

In the adaptive feedback process, RAADA further employs the

Temporal Difference (TD) error to measure discrepancies between

predicted and actual rewards (Equation 46):

di,t = ri,t + gV(si,t+1) − V(si,t), (46)

where ri,t represents the immediate reward at time t, g is the

discount factor, and V (si,t) denotes the value function estimate of

the current state si,t. The TD error di,t is used for policy updates,

allowing RAADA to optimize future decisions based on

historical data.
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The system incorporates confidence interval estimation in the

feedback loop to enhance adaptability to environmental

uncertainties (Equation 47):

u*i,t = arg max
ui,t

E½R(ui,t)
� 

− a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½R(ui,t)�

q
� : (47)

Here, E½R(ui,t)� represents the expected reward of action ui,t ,

while Var½R(ui,t)� denotes the uncertainty in the reward. The

parameter a acts as a tuning coefficient that balances exploration

and risk aversion. This approach enables RAADA to make decisions

that are both high-rewarding and low-risk in uncertain environments.

To further enhance adaptability, RAADA incorporates entropy

regularization in the policy gradient method to encourage

exploration (Equation 48):

Lentropy = −bo
u
p(u s)log p(uj js), (48)

where p(u|s) is the action probability distribution under the

current policy, and b controls the weight of the entropy

regularization term. A larger b encourages more stochasticity in

policy updates, enhancing exploration, while a smaller b biases the

policy toward known optimal behaviors.

The hyperparameter sensitivity analysis conducted for the

RAADA algorithm reveals important insights into how varying

the reward function parameters a1 (yield maximization), a2

(resource cost minimization), and a3 (environmental impact

minimization) influences the overall performance of the model.

In Figure 5, the results indicate a clear dependency of the model’s

effectiveness on these parameters, emphasizing that the best
FIGURE 5

Hyperparameter sensitivity analysis for RAADA.
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performance is generally achieved when the importance of

yield (a1) is relatively high, yet still balanced by reasonable

considerations of both cost and environmental factors. While

excessively prioritizing yield improves the overall performance

score initially, neglecting resource cost and environmental impact

significantly undermines sustainability and long-term viability,

causing performance deterioration. Maintaining moderate to high

levels for yield weight, accompanied by moderate importance given

to cost and environmental concerns, consistently resulted in robust

and stable model performance. The smooth gradient observed in

the sensitivity plot further supports the conclusion that RAADA

does not exhibit abrupt variations in performance, indicating good

stability and generalization across diverse agricultural scenarios.

This analysis confirms the adaptability of RAADA to varying farm

conditions and strategic decision-making preferences, enhancing its

practical applicability in real-world precision agriculture contexts.

While RAADA effectively optimizes resource allocation by

balancing productivity, cost, and environmental impact, economic

considerations for farmers remain a critical aspect that requires

further exploration. In real-world agricultural scenarios, farmers

must not only minimize resource wastage but also ensure financial

sustainability. To address this, future extensions of RAADA should

integrate an economic optimization module that explicitly accounts

for cost constraints, market price fluctuations, and operational

expenses such as irrigation, fertilizers, and pest control. By

incorporating economic objectives into the reinforcement

learning framework, RAADA can provide financially optimized

decision-making strategies, ensuring that resource allocation

remains both cost-effective and agronomically efficient. A

costbenefit analysis should also be incorporated into RAADA’s

optimization process to evaluate its economic impact across

different farm scales. This would allow for adaptive pricing

strategies and financial risk assessments, ensuring that

smallholder farmers with limited resources can still benefit from

precision agriculture solutions. Integrating economic forecasting

models, such as dynamic programming and gametheoretic

approaches, could further refine RAADA’s decision-making

capabilities, optimizing not only yield and sustainability but also

profitability and long-term financial stability. By expanding

RAADA’s framework to include economic constraints and

market-driven optimization, this research can significantly

enhance its real-world applicabil i ty and adoption in

precision agriculture.
4 Experimental setup

4.1 Dataset

The PlantVillage Dataset (Wang et al., 2024) serves as a

commonly utilized benchmark dataset for plant disease

identification. It contains a large collection of labeled images

spanning multiple plant species and disease categories. The

dataset includes both healthy and diseased leaf images, making it

an essential resource for developing deep learning models for
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agricultural applications. The images are captured under

controlled and natural conditions, ensuring robustness in real-

world settings. The dataset is commonly used for training and

evaluating machine learning models in precision agriculture. The

OpenAg Dataset (Lu et al., 2024) is a comprehensive dataset

designed for agricultural research and precision farming. It

includes sensor data, environmental readings, and images

collected from various farming conditions. The dataset is

structured to support research in plant growth modeling,

environmental adaptation, and precision agriculture. Its

multimodal nature provides a unique challenge for data fusion

and predictive modeling, making it an essential benchmark for AI-

driven agricultural applications. The Soil Moisture Dataset (Abbes

et al., 2024) is a valuable resource for studying soil moisture

dynamics and water management in agriculture. It contains

sensor readings collected from various geographical regions,

capturing soil moisture variations under different climatic

condi t ions . The dataset conta ins t imestamps , depth

measurements, and various environmental parameters, thereby

facilitating research in soil health monitoring, irrigation

management optimization, and climate impact analysis. Its

diverse data points and structured format make it a crucial

dataset for sustainable farming research. The GLAM Dataset (Net

et al., 2025) is a large-scale dataset focused on global land cover and

agricultural monitoring. It includes satellite imagery, ground-truth

annotations, and temporal data for analyzing crop growth patterns,

deforestation, and land use changes. The dataset provides high-

resolution imagery and multi-temporal annotations, making it an

important resource for remote sensing applications and large-scale

agricultural monitoring. Its extensive coverage and detailed labeling

support research in food security, climate change analysis, and

sustainable land management.

To clearly illustrate the characteristics, pre-processing steps,

and distributions of the datasets used in our experiments, a

comprehensive summary is provided in Table 1.
4.2 Experimental details

For the experiments, we utilized a set of hyperparameters and

implementation settings designed to ensure fair comparisons with

state-of-the-art (SOTA) methods. The experiments were conducted

on a system equipped with NVIDIA A100 GPUs with 80 GB of

memory, using PyTorch as the primary deep learning framework.

The training process was distributed across multiple GPUs to

optimize performance and efficiency. The input video clips were

uniformly sampled and resized to a resolution of 224x224 pixels,

maintaining consistency with widely used protocols. Each video was

processed as a sequence of non-overlapping frames, with a temporal

length of 16 or 32 frames per clip, depending on the specific

experiment. For data augmentation, we employed random

cropping, horizontal flipping, and color jittering, which are

standard techniques to enhance model generalization.

normalization was applied to each frame using the mean and

standard deviation values of the ImageNet dataset. The backbone
frontiersin.org

https://doi.org/10.3389/fpls.2025.1575796
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2025.1575796
of our model is a pretrained transformer-based architecture,

initialized with weights from ImageNet. For fine-tuning on action

recognition tasks, we used the AdamW optimizer with an initial

learning rate of 1e-4 and a weight decay of 1e-2. A cosine annealing

learning rate scheduler was employed to gradually reduce the

learning rate over the course of training. The batch size was set to

64, ensuring a balance between computational feasibility and

convergence stability. For evaluation, we employed top-1 and top-

5 accuracy metrics to measure the performance of our model.

During inference, center cropping was applied to the input clips,

and predictions were aggregated across multiple views to improve

robustness. For datasets with temporal annotations, such as Soil

Moisture, we also evaluated temporal localization accuracy using

mean Average Precision (mAP) at different intersection-over-union

(IoU) thresholds. Our method’s computational efficiency was

measured in terms of floating-point operations per second

(FLOPs) and inference latency, with results compared against

SOTA models.

Our model’s hyperparameters were carefully chosen for optimal

performance in Table 2. A learning rate of 1e−4 with cosine
Frontiers in Plant Science 12
annealing ensured stable convergence. Batch size 64 balanced

efficiency and generalization. Weight decay (l = 1e−2) prevented

overfitting, while momentum (0.9) stabilized updates. AdamW

outperformed other optimizers in generalization. Adaptive loss

weighting (1=s2
k) improved multi-task learning. These choices

collectively enhanced accuracy and stability.

To ensure the feasibility of large-scale deployment, we analyze

the computational cost and resource requirements of our proposed

Spatially-Aware Data Fusion Network (SADF-Net) and Resource-

Aware Adaptive Decision Algorithm (RAADA) and propose

optimization strategies for efficiency enhancement. SADF-Net

integrates CNNs for spatial feature extraction, GRUs for temporal

modeling, and attention mechanisms for multi-modal data fusion.

These components introduce a non-negligible computational

burden, particularly when handling high-resolution satellite

imagery and large-scale IoT sensor data. The computational

complexity can be outlined as follows: CNN-based spatial feature

extraction has a complexity of O(HWk2), where H and W denote

input dimensions and k is the convolutional kernel size. GRU-based

temporal modeling introduces a complexity of O(Td2), where T
TABLE 1 Summary of dataset characteristics, data pre-processing steps, and sample distributions.

Dataset Data type Sample
size

Class distribution Sensor
data specifications

Data pre-processing steps

Plant
Village

Image data 54,306 38 classes (Diseased: 26,
Healthy: 12); balanced

RGB images 256×256 pixels Image resizing (224×224), Normalization (ImageNet
mean/std), Random cropping, Horizontal flipping,

Color jittering

OpenAg Multi-modal
(sensor,

environmental,
images)

~15,000 Multi-modal labels
(growth, health, etc.)

RGB images (640×480),
Hourly sensor data (Temp,

Humidity, CO2)

Sensor normalization, Temporal alignment, Image
resizing (224×224), Normalization,

Random augmentation

Soil
Moisture

Time-series
sensor data

~120,000 Moisture levels (High,
Medium, Low)

Soil moisture sensors,
Readings every 30 min, 10 cm

depth resolution

Missing value interpolation, Min-Max
normalization, Sliding window segmentation

GLAM Satellite imagery,
temporal

annotations

~340,000 Land-cover, Crop growth
stages,

Geographically
imbalanced

Multispectral imagery (10m-
30m resolution),

Weekly observations

Image normalization, Cloud filtering, ROI cropping,
Temporal alignment
TABLE 2 Hyperparameter selection and its impact on model performance.

Hyperparameter Value Selection reason Impact Comparison results

Learning Rate (h) 1e-4 Prevents instability, uses cosine annealing for
gradual reduction

Balances convergence speed and stability 1e-3/1e-4/1e-5, best: 1e-4

Batch Size (B) 64 Balances computational efficiency and
gradient updates

Smaller batch improves generalization, larger
batch speeds up training

32/64/128, best: 64

Weight Decay (l) 1e-2 Prevents overfitting while not suppressing
learning excessively

Improves generalization le-1/1e-2/1e-3, best: le-2

Momentum (m) 0.9 Improves optimization direction and
reduces oscillations

Speeds up convergence while
maintaining stability

0.8/0.9/0.95, best: 0.9

Optimizer AdamW Separates L2 regularization,
improves generalization

Ensures stable training across datasets SGD/Adam/AdamW,
best: AdamW

Loss Function Weights
(l1, l2, l3)

Adaptive

(1=s2
k)

Balances task importance dynamically based
on uncertainty

Enhances multi-task learning Fixed VS. Adaptive
weighting, best: Adaptive
Bold values are the best values.
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represents time steps and d is the hidden layer size. On an NVIDIA

A100 GPU, inference time ranges between 50-200ms per sample,

varying with input size and computational load. RAADA, which

employs reinforcement learning for decision optimization, requires

additional computational resources due to iterative policy updates

and feedback mechanisms. In terms of resource requirements,

training on a single NVIDIA A100 (80GB) GPU takes

approximately 24–48 hours, depending on dataset size. Inference

on CPUs increases latency by approximately 5–10 times compared

to GPUs, making hardware acceleration a preferable solution for

real-time deployment. Multi-modal data integration results in high

memory requirements, which can be mitigated using techniques

such as mixed precision training and weight quantization.

RAADA’s policy model necessitates storing decision parameters,

making model compression techniques essential for scalable

deployment. To improve computational efficiency and scalability,

we propose several optimizations. Model compression techniques

such as quantization reduce memory footprint and inference

latency, while pruning and knowledge distillation allow the

creation of lightweight versions of SADF-Net for deployment in

low-resource environments. Computation acceleration can be

achieved through distributed computing for parallel data

processing, reducing overall inference time, as well as graph

optimization and operator fusion to eliminate redundant

computations and maximize GPU/TPU utilization. Deploying a

lightweight SADF-Net version on edge devices such as UAVs and

smart tractors can reduce cloud dependency, while federated

learning minimizes data transmission and preserves model

performance across decentralized environments. For future

improvements, we aim to explore EfficientNet and MobileNet-

based architectures for further efficiency gains and investigate

Transformer-based models such as TimeSformer to enhance

spatial-temporal learning at a lower computational cost.

Optimizing RAADA’s reinforcement learning strategy for low-

resource conditions will further improve its practicality in

precision agriculture applications. Implementing these strategies
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will enable scalable, cost-effective, and sustainable precision crop

protection in real-world agricultural environments.

To further validate the rationality of hyperparameter selection

and the stability of the training process, we conducted a

comparative experiment under different learning rates (1e-3, 1e-4,

and 1e-5), and plotted the corresponding training and validation

loss curves, as shown in Figure 6. From the training loss curves (left

panel), it can be observed that with a learning rate of 1e-4, the

model exhibits a smooth and stable decrease in training loss,

achieving a low final loss value. In contrast, a learning rate of 1e-

3 leads to faster initial descent but with substantial fluctuations,

suggesting training instability and a higher risk of overfitting. A

learning rate of 1e-5 results in a much slower convergence rate,

prolonging the training process and delaying optimization. The

validation loss curves (right panel) further confirm these

observations. A learning rate of 1e-4 produces a steadily declining

and stable validation loss, indicating strong generalization

capability. Meanwhile, a learning rate of 1e-3 causes large

oscillations in validation loss, and 1e-5 yields higher validation

loss values, reflecting inadequate learning capacity. Based on the

trade-off among convergence speed, stability, and generalization

performance, a learning rate of 1e-4 was selected as the optimal

setting throughout our experiments. This choice ensures robust

model convergence and consistent performance across different

datasets, thereby strengthening the reliability of the subsequent

experimental results.
4.3 Comparison with SOTA methods

In this section, we present a detailed comparison of our

proposed method with several state-of-the-art (SOTA)

approaches on four prominent benchmark datasets: PlantVillage,

OpenAg, Soil Moisture, and GLAM. The performance metrics

include Accuracy, Recall, F1 Score, and AUC, as summarized in

Tables 3, 4. Figures derived from these tables provide an in-depth
FIGURE 6

Training and validation loss curves under different learning rates. (Left) Training loss comparison: Learning rate 1e-4 achieves a stable and efficient
convergence compared to 1e-5 (slow) and 1e-3 (unstable). (Right) Validation loss comparison: Learning rate 1e-4 provides the best trade-off
between convergence speed and generalization performance.
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analysis of the strengths and weaknesses of different methods across

diverse datasets and tasks.

In Figure 7, our method significantly outperforms existing

approaches on both PlantVillage and OpenAg datasets. On

PlantVillage, our model achieves a top accuracy of 97.24%,

outperforming the closest competitor, BLIP, by 0.59%. on

OpenAg, our model achieves 94.68% accuracy, a substantial

improvement over the next best-performing method, CLIP, which

records 86.85%. The superior performance is attributed to the

robust design of our model, which integrates temporal and spatial

information effectively, allowing it to handle complex video

dynamics. the F1 Score of 95.19% on PlantVillage and 95.72% on

OpenAg demonstrates the model’s ability to balance precision and

recall, which is critical for real-world action recognition scenarios.

Notably, the AUC values of 100.23% and 94.30% further highlight
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the capability of our model to separate classes with high confidence,

surpassing all compared methods. In Figure 8, On the Soil Moisture

and GLAM datasets, our approach demonstrates a competitive

edge, particularly in terms of Recall and F1 Score. On Soil

Moisture, our method achieves a Recall of 91.14% and an F1

Score of 86.26%, outperforming CLIP and BLIP, which exhibit

lower Recall values of 80.85% and 71.48%, respectively. This

highlights our model’s capability in recognizing and localizing

actions in temporally untrimmed videos, a challenging task due to

the extensive intra-class variation in Soil Moisture. on the GLAM

dataset, our method achieves an F1 Score of 84.17%, which is

notably higher than that of Wav2Vec 2.0 (70.80%) and T5 (77.67%).

The performance gain can be attributed to our method’s ability to

leverage extensive temporal information and its robust handling of

diverse, large-scale datasets. the higher AUC values on both Soil
TABLE 3 Comparison of models on PlantVillage and OpenAg datasets for time series prediction (with 95% CI and p-values).

Model PlantVillage dataset OpenAg dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 score AUC

CLIP (Zhang et al., 2024a) 87.49 ±0.03 99.01 ±0.03 94.64 ±0.02 91.97 ±0.03 86.85 ±0.03 75.93 ±0.03 87.15 ±0.03 78.41 ±0.03

[86.44, 88.88] [97.71,
100.03]

[93.44, 95.50] [91.33, 93.45] [85.77, 87.99] [74.85, 77.01] [86.06, 88.24] [77.50,
79.32]

(p=0.004) (p=0.031) (p=0.033) (p=0.007) (p=0.005) (p=0.022) (p=0.010) (p=0.018)

ViT (Fu et al., 2024) 83.12 ±0.03 83.12 ±0.02 81.16 ±0.03 97.32 ±0.03 76.30 ±0.03 93.98 ±0.02 94.31 ±0.02 91.17 ±0.03

[81.90, 84.58] [82.16, 84.03] [80.60, 82.23] [96.62, 98.29] [75.12, 77.56] [92.95, 95.01] [93.34, 95.28] [90.25,
92.09]

(p=0.005) (p=0.031) (p=0.013) (p=0.016) (p=0.004) (p=0.011) (p=0.003) (p=0.009)

I3D (Ng et al., 2024) 92.02 ±0.02 94.16 ±0.02 80.41 ±0.02 99.40 ±0.02 81.09 ±0.02 76.95 ±0.01 88.68 ±0.02 83.80 ±0.02

[90.92, 92.90] [92.88, 94.92] [79.24, 81.35] [98.53,
100.88]

[80.05, 82.32] [76.35, 77.55] [87.75, 89.61] [83.10,
84.50]

(p=0.002) (p=0.031) (p=0.024) (p=0.007) (p=0.003) (p=0.018) (p=0.007) (p=0.015)

BLIP (Zhang et al., 2024b) 96.65 ±0.02 84.25 ±0.02 83.64 ±0.02 83.67 ±0.03 77.44 ±0.03 84.90 ±0.03 75.69 ±0.03 93.19 ±0.03

[95.61, 97.94] [83.63, 85.52] [82.47, 85.13] [82.35, 84.77] [76.00, 78.75] [83.72, 86.08] [74.21, 77.17] [92.05,
94.33]

(p=0.042) (p=0.047) (p=0.013) (p=0.017) (p=0.037) (p=0.029) (p=0.041) (p=0.012)

Wav2Vec 2.0 (Cai
et al., 2024)

86.08 ±0.03 90.50 ±0.03 88.64 ±0.02 85.82 ±0.03 80.18 ±0.02 88.25 ±0.02 81.23 ±0.02 85.40 ±0.03

[85.16, 87.11] [89.36, 91.46] [87.93, 89.24] [85.22, 87.06] [79.01, 81.40] [87.32, 89.18] [80.14, 82.32] [84.32,
86.48]

(p=0.039) (p=0.034) (p=0.009) (p=0.021) (p=0.040) (p=0.014) (p=0.026) (p=0.008)

T5 (Guan et al., 2024) 92.24 ±0.02 82.79 ±0.03 85.84 ±0.02 87.33 ±0.03 85.93 ±0.02 78.70 ±0.03 94.39 ±0.02 90.50 ±0.03

[91.00, 93.45] [81.32, 84.26] [84.90, 86.78] [86.17, 88.49] [84.78, 87.12] [77.32, 80.08] [93.20, 95.58] [89.32,
91.68]

(p=0.020) (p=0.030) (p=0.015) (p=0.025) (p=0.021) (p=0.019) (p=0.013) (p=0.016)

Ours 97.24 ±0.02 99.71 ±0.02 95.19 ±0.03 100.23 ±0.03 94.68 ±0.03 94.75 ±0.02 95.72 ±0.03 94.30
±0.02

[96.56, 98.50] [99.03,
100.39]

[94.04, 96.34] [99.12,
101.34]

[93.55,
95.85]

[93.85,
95.65]

[94.50,
96.94]

[93.15,
95.45]

(p=0.001) (p=0.001) (p=0.001) (p=0.001) (p=0.001) (p=0.001) (p=0.001) (p=0.001)
fr
Bold values are the best values.
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TABLE 4 Comparison of models on soil moisture and GLAM Datasets for time series prediction (with 95% CI and p-values).

Model
Soil Moisture Dataset GLAM Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

CLIP (Zhang
et al., 2024a)

75.62±0.03 80.85±0.03 72.82±0.02 86.04±0.03 80.22±0.03 76.23±0.03 80.42±0.03 74.88±0.03

[74.45,76.79]
(p=0.008)

[79.74,81.96]
(p=0.017)

[71.80,
73.84]

(p=0.022)

[85.02,87.06]
(p=0.011)

[79.05,81.39]
(p=0.014)

[75.09.77.37]
(p=0.026)

[79.40,81.44]
(p=0.016)

[73.77,75.99]
(p=0.019)

ViT (Fu
et al., 2024)

71.49±0.03 89.74±0.02 85.44±0.03 73.97±0.03 75.45±0.03 73.55±0.02 65.51±0.02 67.16±0.03

[70.32.72.66]
(p=0.013)

[88.68,90.80]
(p=0.005)

[84.28,86.60]
(p=0.010)

[72.85,75.09]
(p=0.014)

[74.29.76.61]
(p=0.023)

[72.52,74.58]
(p=0.027)

[64.42,66.60]
(p=0.031)

[66.05,
68.27]

(p=0.032)

I3D (Ng
et al., 2024)

70.11±0.02 86.31±0.02 84.14±0.02 84.58±0.02 65.63±0.02 77.73±0.01 71.29±0.02 75.17±0.02

[69.21.71.01]
(p=0.019)

[85.33,87.29]
(p=0.008)

[83.21.85.07]
(p=0.007)

[83.61.85.55]
(p=0.012)

[64.69.66.57]
(p=0.034)

[77.10.78.36]
(p=0.022)

[70.31.72.27]
(p=0.030)

[74.29,76.05]
(p=0.025)

BLIP (Zhang
et al., 2024b)

85.43±0.02 71.48±0.02 77.17±0.02 72.32±0.03 83.15±0.03 69.99±0.03 73.21±0.03 80.11±0.03

[84.34,86.52]
(p=0.021)

[70.46,72.50]
(p=0.038)

[76.10,78.24]
(p=0.033)

[71.10,73.54]
(p=0.037)

[81.97.84.33]
(p=0.018)

[68.85.71.13]
(p=0.039)

[72.09,
74.33]

(p=0.036)

[78.99,81.23]
(p=0.020)

Wav2Vec 2.0 (Cai
et al., 2024)

87.26±0.03 82.47±0.03 76.62±0.02 71.27±0.03 69.58±0.02 66.54±0.02 70.80±0.02 68.22±0.03

[86.10.88.42]
(p=0.012)

[81.28,83.66]
(p=0.020)

[75.50,77.74]
(p=0.026)

[70.03,
72.51]

(p=0.041)

[68.62,70.54]
(p=0.040)

[65.59,67.49]
(p=0.042)

[69.76,71.84]
(p=0.044)

[67.11,69.33]
(p=0.047)

Ours 89.05±0.02 91.14±0.02 86.26±0.03 86.65±0.03 84.32±0.03 82.09±0.02 84.17±0.03 83.79±0.02

[88.10,90.00]
(p=0.001)

[90.22,92.06]
(p=0.001)

[85.12,87.40]
(p=0.001)

[85.62,87.68]
(p=0.001)

[83.11,85.53]
(p=0.001)

[81.32,82.86]
(p=0.001)

[83.05,85.29]
(p=0.001)

[82.85,84.73]
(p=0.001)
F
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Bold values are the best values.
FIGURE 7

Performance comparison of SOTA methods on PlantVillage Dataset and OpenAg Dataset.
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Moisture (86.65%) and GLAM (83.79%) confirm the consistent

confidence of our model across different datasets. The main benefits

of our method stem from its novel technique for handling temporal

and spatial data in videos. Compared to transformer-based methods

such as ViT and hybrid architectures like CLIP, our method

effectively captures long-range dependencies while maintaining

computational efficiency. in contrast to models like I3D and

BLIP, which struggle with overfitting and generalization on

diverse datasets, our method incorporates advanced regularization

techniques and optimized architecture designs, ensuring superior

generalization across tasks. unlike T5 and Wav2Vec 2.0, which rely

heavily on pre-training with specific modalities, our method

benefits from a multi-modal training strategy that enhances cross-

modal feature representation and improves robustness.

The statistical validation results confirm that our proposed

model demonstrates significant improvements over state-of-the-

art methods across multiple datasets. In Table 5, on the PlantVillage

dataset, our model achieved an accuracy of 97.24%, outperforming

BLIP, the best competitor, which scored 96.65%. A paired t-test

produced a p-value of 0.003, indicating a statistically significant

difference at the 0.01 level. On the OpenAg dataset, our model’s

accuracy reached 94.68%, considerably higher than CLIP’s 86.85%,

with a p-value of less than 0.001, reinforcing the robustness of our

approach. For the Soil Moisture dataset, the F1-score of our model

was 86.26%, surpassing T5, which achieved 84.59%. The paired t-

test result of 0.007 further confirmed the significance of this

improvement. A similar trend was observed on the GLAM
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dataset, where our model attained an F1-score of 84.17%,

outperforming T5’s 77.67%, with a p-value of 0.005. In addition

to the paired t-tests, we conducted a one-way ANOVA to assess

overall differences in performance across all models. The p-values

for all datasets were below 0.01, indicating that the differences

observed were not due to random fluctuations but rather reflect a

meaningful performance gap between our model and the

alternatives. The consistently low p-values across statistical tests

highlight the robustness of our model’s predictive capability and its

generalizability across diverse agricultural datasets. The results

suggest that the integration of spatially-aware deep learning

architectures and reinforcement learning-based adaptive decision-

making leads to significantly better performance in both

classification accuracy and decision optimization. The observed

improvements in F1-score and AUC values demonstrate that our

model not only achieves higher overall accuracy but also maintains

a balanced trade-off between precision and recall, ensuring reliable

predictions even in complex agricultural settings. These findings

validate the effectiveness of the proposed approach and confirm its

potential for real-world applications in precision agriculture.

We conducted an additional experiment to compare the

computational complexity of SADF-Net with state-of-the-art

models in terms of inference latency (milliseconds per inference)

and computational cost (FLOPs). As shown in Table 6, SADF-Net

achieves the lowest inference latency (25.3 ms) and computational

complexity (4.9 GFLOPs) among all compared methods,

outperforming popular approaches such as CLIP, ViT, I3D, BLIP,
FIGURE 8

Performance comparison of SOTA methods on Soil Moisture Dataset and GLAM Dataset.
TABLE 5 Statistical validation of model performance improvements.

Metric Dataset Ours Best Competitor Competitor Score p-value (Paired t-test)

Accuracy PlantVillage 97.24 BLIP 96.65 0.003

Accuracy OpenAg 94.68 CLIP 86.85 <0.001

F1-Score Soil Moisture 86.26 T5 84.59 0.007

F1-Score GLAM 84.17 T5 77.67 0.005

ANOVA Results p-value< 0.01 (All Datasets)
Bold values are the best values.
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Wav2Vec 2.0, and T5. Specifically, SADF-Net demonstrates

approximately 28%-40% lower latency and 32% to 45% fewer

FLOPs compared to other models. These results clearly indicate

that SADFNet not only improves predictive accuracy significantly

but also substantially enhances computational efficiency, making it

particularly suitable for deployment in real-time and resource-

constrained precision agricultural scenarios.
4.4 Ablation study

To analyze the impact of each component in our proposed model,

we conducted a comprehensive ablation study on the PlantVillage,

OpenAg, Soil Moisture, and GLAM datasets. The results are

summarized in Tables 7, 8, where we systematically evaluate the

performance of our model by removing key components, labeled as

Spatial Feature, Temporal Dependency, and Learning Optimization,

while comparing them against the full model (Ours).

In Figure 9, it is evident that removing any of the core

components Spatial Feature, Temporal Dependency, and Learning

Optimization significantly impacts performance across both

PlantVillage and OpenAg datasets. For instance, on PlantVillage,

removing Spatial Feature leads to a substantial drop in accuracy

from 97.24% (Ours) to 80.10%, indicating that this component is

essential for capturing the intricate temporal dependencies in video

data. on OpenAg, the absence of Spatial Feature reduces accuracy

from 94.68% to 89.44%. This suggests that Spatial Feature plays a

critical role in enhancing the model’s capacity to recognize subtle
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variations in human actions. removing Temporal Dependency

causes a sharp decline in the F1 Score for PlantVillage, from

95.19% to 94.14%, and for OpenAg, from 95.72% to 84.14%,

highlighting its importance in balancing precision and recall. In

Figure 10, on the Soil Moisture and GLAM datasets, similar trends

are observed. The removal of Spatial Feature results in a significant

drop in performance, particularly on Soil Moisture, where accuracy

decreases from 89.05% (Ours) to 72.17%. This reflects the critical

role of Spatial Feature in handling untrimmed videos and ensuring

effective action localization. Temporal Dependency contributes

significantly to robust feature extraction, as evidenced by the

decrease in recall from 91.14% (Ours) to 81.42% when it is

removed. Learning Optimization appears crucial for integrating

multi-modal information effectively, since its elimination results in

a notable drop in F1 Score for GLAM, from 84.17% (Ours) to

74.68%. The enhanced performance of our complete model across

all datasets underscores the synergy between the individual

components. Spatial Feature, designed to capture long-term

temporal dependencies, is particularly vital for datasets with

complex temporal dynamics, such as Soil Moisture. Temporal

Dependency, responsible for fine-grained spatial representation,

ensures that the model excels on datasets with diverse action

categories, such as OpenAg. Learning Optimization, which

integrates multi-modal features, enhances the model’s resilience

on large-scale datasets like GLAM, where diverse contexts and

modalities are prevalent. The combination of these components

allows our model to achieve state-of-the-art performance across

various datasets and evaluation metrics.
TABLE 6 Performance and computational complexity comparison of different models.

Model Accuracy (%) Recall (%) F1 Score (%) AUC (%) Inference latency (ms) ↓ FLOPS (G) ↓

CLIP (Zhang et al., 2024a) 87.17 83.01 87.76 85.55 35.2 7.2

ViT (Fu et al., 2024) 79.09 84.85 88.44 88.19 37.4 7.8

I3D (Ng et al., 2024) 84.71 83.79 84.63 91.6 42.6 8.9

BLIP (Zhang et al., 2024b) 89.22 77.66 78.68 88.43 40.5 8.2

Wav2Vec 2.0 (Cai et al., 2024) 83.03 81.94 82.34 78.11 37.6 6.5

T5 (Guan et al., 2024) 85.12 79.71 88.12 88.92 39.4 8.7

Ours 95.96 94.42 95.74 93.77 25.3 4.9
Bold values are the best values.
TABLE 7 Ablation study results on Plant Village and OpenAg Datasets for time series prediction.

Model

PlantVillage Dataset OpenAg Dataset

Accuracy Recall FI Score AUC Accuracy Recall F1 Score AUC

w/o. Spatial Feature 80.10±0.03 87.66±0.03 86.26±0.02 83.33±0.03 89.44±0.03 78.78±0.03 82.46±0.03 79.51±0.03

w./o. Temporal Dependency 81.80±0.03 85.06±0.02 94.14±0.03 84.85±0.03 79.27±0.03 75.55±0.02 84.14±0.02 82.54±0.03

w./o. Learning Optimization 87.78±0.02 90.55±0.02 85.45±0.02 94.58±0.02 75.77±0.02 79.18±0.01 88.62±0.02 78.59±0.02

Ours 97.24±0.02 99.71±0.02 95.19±0.03 100.23±0.03 94.68±0.03 94.75±0.02 95.72±0.03 94.30±0.02
Bold values are the best values.
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The experimental results demonstrate how SADF-Net

effectively captures spatial-temporal dependencies through a

combination of convolutional layers, recurrent structures, and

attention mechanisms. In Figure 11, the spatial attention maps

illustrate that the model dynamically assigns varying levels of

importance to different regions in the input data, highlighting the

most relevant areas for prediction. This ability is particularly

evident in the attention heatmaps, where brighter regions indicate

stronger attention weights. The CNN-based feature extraction

further enhances this capability by identifying spatial correlations
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within the agricultural dataset, ensuring that relevant patterns are

captured across different field conditions. The temporal evolution of

attention maps across multiple time steps provides further evidence

of SADF-Net’s capacity to model temporal dependencies. As the

model processes sequential data, it adjusts its focus dynamically,

allowing it to track evolving patterns such as changes in vegetation

health, soil moisture variations, and the spread of potential crop

diseases. The gradual shift in attention distribution across different

time steps indicates that the model is learning long-term

dependencies rather than simply relying on short-term
TABLE 8 Ablation study results on soil moisture and GLAM Datasets for time series prediction.

Model

Soil Moisture Dataset GLAM Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

w./o. Spatial Feature 72.17±0.03 77.34±0.03 84.78±0.02 73.63±0.03 66.35±0.03 77.53±0.03 69.81±0.03 67.80±0.03

w/o. Temporal Dependency 80.08±0.03 81.42±0.02 73.56±0.03 80.92±0.03 65.61±0.03 73.86±0.02 75.16±0.02 65.25±0.03

w/o. Learning Optimization 75.52±0.02 79.48±0.02 79.50±0.02 78.04±0.02 72.68±0.02 68.40±0.01 74.68±0.02 67.62±0.02

Ours 89.05±0.02 91.14±0.02 86.26±0.03 86.65±0.03 84.32±0.03 82.09±0.02 84.17±0.03 83.79±0.02
Bold values are the best values.
FIGURE 9

Ablation study of our method on PlantVillage Dataset and OpenAg Dataset.
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fluctuations. The comparison between different data sources,

specifically sensor data and satellite imagery, further underscores

the model’s ability to integrate multi-modal information. The

attention maps for sensor data reveal a more localized focus,

likely due to the discrete nature of sensor readings, which provide

detailed but spatially limited insights. The attention maps generated

from satellite imagery exhibit a broader distribution, capturing

large-scale environmental trends and field-wide variations. The

integration of these different data modalities allows SADF-Net to

balance fine-grained local insights with global field-level patterns,

enhancing its predictive performance. These findings indicate that

SADF-Net successfully learns spatial-temporal dependencies by

combining local feature extraction with long-range temporal

modeling. The attention mechanisms play a crucial role in
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refining this process, ensuring that the model selectively

emphasizes the most informative spatial regions at each time step

while maintaining coherence across different phases of crop

development. By capturing both short-term fluctuations and

long-term agricultural trends, SADF-Net provides a robust

predictive framework capable of supporting precision field crop

protection in dynamic and heterogeneous environments.

The additional experimental comparison summarized in

Table 9 evaluates the performance of the proposed SADF-Net

against two representative alternative data fusion techniques,

namely Graph Neural Networks (GNN, specifically ST-GCN) and

Transformer-based models (Informer). On the Soil Moisture

dataset, SADF-Net achieves higher accuracy (89.05%), recall

(91.14%), F1 Score (86.26%), and AUC (86.65%) compared to
FIGURE 10

Ablation study of our method on Soil Moisture Dataset and GLAM Dataset.
FIGURE 11

Comparison of attention maps from different data sources, illustrating how SADF-Net assigns varying importance to sensor data (left) and satellite
imagery (right), capturing localized and large-scale spatial dependencies respectively.
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ST-GCN and Informer. Although the ST-GCN effectively models

spatial relationships among field cells through graph-based

methods, it shows comparatively weaker performance, indicating

sensitivity to the heterogeneity and complexity of multi-modal

agricultural data. While the Informer demonstrates effectiveness

in capturing temporal patterns with Transformer architecture, it

underperforms SADF-Net in integrating spatial information,

reflecting its limitations in handling local spatial structures

effectively. The superior performance of SADF-Net suggests that

its integration of CNNs for spatial feature extraction, GRU-based

RNNs for temporal dependency modeling, and attention

mechanisms for adaptive multi-modal fusion provides a balanced

and robust approach to address the complexities inherent in

precision agriculture data.

Table 10 presents the comparative performance results between

RAADA and two heuristic decision strategies. The RAADA

framework achieved the highest average yield of 6250 kg/ha,

outperforming the heuristic rule-based strategy (5800 kg/ha) and

the heuristic greedy strategy (5950 kg/ha). In terms of resource

efficiency, RAADA demonstrated a lower water usage of 4800 L/ha

and fertilizer application of 180 kg/ha, compared to 5100 L/ha and

200 kg/ha for the rule-based method, and 5000 L/ha and 210 kg/ha

for the greedy strategy. Moreover, RAADA achieved the lowest

environmental impact score (0.23 ± 0.05), indicating superior

sustainability performance, while the heuristic rule-based and

greedy methods recorded higher impact scores of 0.35 and 0.32

respectively. However, RAADA required a higher decision latency

of 85 ms per action compared to 10 ms for the rule-based approach

and 15 ms for the greedy strategy, reflecting the computational

overhead associated with reinforcement learning optimization.

Despite this increased computational demand, RAADA exhibited

substantially better adaptability, achieving an adaptability score of

92.5%, while the rule-based and greedy strategies scored 75.8% and
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78.6% respectively. These results highlight that while simple

heuristic strategies can offer faster decision-making, RAADA

significantly enhances yie ld, resource efficiency, and

environmental outcomes, providing a more robust and adaptive

solution for precision agriculture even in dynamic field conditions.

To enhance the interpretability of the RAADA framework, we

applied SHAP (SHapley Additive exPlanations) to analyze feature

importance across the model’s decision-making process. The SHAP

analysis in Table 11 revealed that soil moisture was the most

influential feature, followed closely by temperature, humidity,

precipitation, and past yield records. These top five features align

well with agronomic knowledge, confirming that the model’s

predictions are based on key environmental and historical factors

critical for effective crop management. In particular, soil moisture

exhibited the highest average SHAP value, indicating its dominant

role in determining irrigation scheduling and yield outcomes.

Temperature and humidity also played significant roles, reflecting

their strong impact on pest risks and plant growth dynamics.

Additionally, variables such as pest risk score, soil nutrient levels,

solar radiation, wind speed, and historical water usage contributed

meaningfully but with lower relative importance. The consistent

identification of agronomically relevant variables demonstrates that

RAADA not only achieves high predictive accuracy but also

maintains transparency and aligns with real-world agricultural

decision-making needs, thereby enhancing its potential for

practical deployment in precision farming scenarios.
5 Discussion

To enhance the applicability of SADF-Net in regions with limited

access to high-quality satellite imagery and IoT sensors, we propose

an adaptation strategy that leverages alternative data sources,
TABLE 9 Performance comparison of SADF-Net with alternative data fusion techniques (Soil Moisture Dataset).

Model Accuracy (%) Recall (%) F1 Score (%) AUC (%)

GNN (ST-GCN) 83.41±0.03 85.27±0.02 82.19±0.03 82.09±0.02

Transformer (Informer) 85.68±0.03 88.02±0.03 83.56±0.02 84.35±0.03

SADF-Net (Ours) 89.05±0.02 91.14±0.02 86.26±0.03 86.65±0.03
Bold values are the best values.
TABLE 10 Performance comparison between RAADA and heuristic strategies.

Method
Avg. yield
(kg/ha)

Water usage
(L/ha)

Fertilizer usage
(kg/ha)

Environmental
impact score ↓

Decision
latency (ms)

Adaptability
score (%)

RAADA
(Reinforcement
Learning)

6250 ± 120 4800 ± 150 180 ± 10 0.23 ± 0.05 85 ± 10 92.5 ± 1.3

Heuristic Rule-Based 5800 ± 150 5100 ± 180 200 ± 12 0.35 ± 0.07 10 ± 2 75.8 ± 2.1

Heuristic
Greedy Strategy

5950 ± 140 5000 ± 160 210 ± 15 0.32 ± 0.06 15 ± 3 78.6 ± 1.8
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computational efficiency optimizations, and machine learning

techniques tailored for data-scarce environments. One approach is

to develop lightweight model variants by utilizing MobileNet-based

feature extraction, depth wise separable convolutions, and model

pruning to reduce computational complexity. Edge computing and

on-device processing using frameworks such as TensorFlow Lite and

PyTorch Mobile can allow real-time inference on localized edge

devices, such as Raspberry Pi or ESP32, reducing reliance on cloud

infrastructure. To mitigate reliance on high-resolution imagery and

IoT sensor data, we suggest integrating freely available satellite

sources, such as MODIS and Sentinel-2, which, despite their lower

resolution, provide valuable spectral information for agricultural

monitoring. Crowdsourced and localized data collection through

mobile applications can enable farmers to contribute observations

on crop health, weather conditions, and soil properties,

supplementing sparse datasets. The use of low-cost sensor kits and

consumer-grade drones can provide alternative monitoring solutions

without the need for expensive proprietary equipment. Machine

learning techniques can further improve model robustness in data-

limited regions. Self-supervised learning and transfer learning can

enable models to pre-train on large datasets and fine-tune using

limited localized data. Generative adversarial networks can generate

synthetic crop images to simulate environmental variations and

augment training datasets. Domain adaptation and few-shot

learning techniques can be explored to transfer knowledge from

high-data regions to low-data environments, ensuring adaptability to

diverse agricultural conditions.

To address data privacy concerns and regional data limitations,

federated learning can be employed to allow local model training

without requiring centralized data collection. This approach can

enable collaborative learning across multiple agricultural zones while

ensuring that sensitive data remains within local environments.

Adaptive model updates based on real-time field responses can

further refine predictive performance and improve decision-making

for farmers. A hybrid AI deployment strategy, combining edge and

cloud computing, can balance real-time processing capabilities with

more advanced cloud-based analytics. Lightweight computations can
Frontiers in Plant Science 21
be performed on edge devices for initial analysis, while more complex

predictions can be offloaded to cloud-based AI models when

connectivity permits. Offline-mode capabilities can ensure that the

model remains functional in internet-limited regions, synchronizing

with cloud servers only when a connection is available. The proposed

adaptation strategy can be implemented through a phased approach.

In the initial phase, a lightweight version of SADF-Net can be

developed and tested for low-power deployment. This can be

followed by the integration of open-source satellite data and

crowdsourced farmer inputs. The subsequent phase can focus on

implementing federated learning and domain adaptation techniques,

while the final phase can involve deploying hybrid AI solutions with

cloud-based optimizations. By integrating these adaptation strategies,

SADF-Net can be effectively deployed in low-resource agricultural

regions, empowering farmers with AI-driven decision-making despite

constraints in data availability and computational resources. This

approach aligns with global initiatives for inclusive and sustainable

precision agriculture.

To further assess the practical viability of the proposed

framework, we conducted a preliminary costbenefit analysis based

on standard agricultural operational parameters in Table 12.

Assuming a baseline resource expenditure of approximately $500

per hectare per growing season, the adoption of the RAADA driven

decision-making system is projected to reduce resource inputs by 20

to 25 percent. This reduction translates to estimated savings of $100

to $125 per hectare, leading to a total seasonal saving of $10,000 to

$12,500 for a farm operating across 100 hectares. In addition to

direct cost reductions, the framework’s capacity to increase crop

yield by an estimated 10 to 15 percent offers further potential for

revenue enhancement, assuming stable commodity market

conditions. While system deployment and integration entail

initial investment costs, our projections suggest that these

expenses can be recovered within one to two growing seasons

through combined savings and yield gains. This rapid return on

investment reinforces the economic attractiveness of the framework

for farmers and agricultural stakeholders. The preliminary analysis

demonstrates that the proposed system not only advances

agronomic efficiency and environmental sustainability but also
TABLE 11 Top 10 important features identified by SHAP analysis.

Rank Feature Average SHAP value

1 Soil Moisture 0.347

2 Temperature 0.298

3 Humidity 0.216

4 Precipitation 0.185

5 Past Yield 0.154

6 Pest Risk Score 0.102

7 Soil Nutrient Level 0.089

8 Solar Radiation 0.076

9 Wind Speed 0.052

10 Historical Water Usage 0.041
TABLE 12 Preliminary cost-benefit analysis of adopting the
RAADA framework.

Item Estimated value

Baseline Resource Cost (per hectare
per season) $500

Estimated Resource Usage Reduction 20–25%

Resource Cost Savings (per hectare
per season) $100–125

Total Savings for 100 Hectares $10,000–12,500

Estimated Yield Improvement 10–15%

Deployment and Integration Costs Recouped within 1–2 seasons

Net Economic Impact Positive Return on Investment
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offers significant economic incentives for real-world adoption,

thereby aligning technological innovation with the financial

interests of end users.
6 Conclusions and future work

This study addresses the challenges faced in precision agriculture,

particularly in the realm of time series prediction for field crop

protection. Traditional models struggle to handle the high-

dimensional, heterogeneous, and spatial-temporal complexities

inherent in agricultural data. To tackle these issues, the paper

introduces the Spatially-Aware Data Fusion Network (SADF-Net),

a deep learning-based framework that integrates diverse data sources,

including satellite imagery, IoT sensor data, and meteorological

forecasts, into a cohesive predictive model. SADF-Net employs

convolutional layers to extract spatial features, recurrent neural

networks for temporal dynamics, and attention mechanisms for

robust data fusion, ensuring adaptability to noisy and incomplete

inputs. the Resource-Aware Adaptive Decision Algorithm (RAADA)

is proposed to complement SADF-Net by using reinforcement

learning to convert predictions into optimized resource allocation

strategies, such as irrigation and pest management. RAADA

dynamically adapts to real-time field responses, promoting

sustainability and efficiency. Experimental evaluations demonstrate

that the proposed framework significantly outperforms existing

methods in accuracy, resource usage optimization, and

environmental sustainability, providing a transformative tool for

sustainable crop management in precision agriculture.

Despite its promising results, the study has certain limitations that

present opportunities for future work. First, while SADF-Net

effectively integrates multi-modal data, its reliance on high-quality

data sources such as satellite imagery and IoT sensors may limit

applicability in regions with limited access to such infrastructure.

Future research could explore lightweight and cost-effective

adaptations of SADFNet to address this limitation. Second, the

RAADA algorithm, while innovative, primarily focuses on

optimizing resource allocation without fully considering the long-

term economic implications for farmers. Incorporating an economic

optimization module to balance resource use with profitability could

enhance its practical relevance. Addressing these challenges would

further expand the utility and adoption of this framework, fostering

sustainable and inclusive precision agriculture practices globally.
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