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Introduction: The rapid and non-destructive estimation of rice aboveground

biomass (AGB) is vital for accurate growth assessment and yield prediction.

However, vegetation indices (VIs) often suffer from saturation due to high

canopy coverage and vertical organs, limiting their accuracy across multiple

growth stages. Therefore, this study utilizes UAV-acquired RGB and multi-

spectral (MS) images during several critical rice stages to explore the potential of

multi-source data fusion for accurately and cost-effectively estimating rice AGB.

Methods: High-frequency texture features were extracted from RGB images

using discrete wavelet transform (DWT), while low-order color moments in RGB

and Lab color spaces were calculated. VIs were derived from MS images. Feature

selection combined statistical analysis andmodeling techniques, with collinearity

removed through the Variance Inflation Factor (VIF). The relationships between

AGB and the selected features were then analyzed using multiple fitting

functions. Both single-type and multi-type features were used to develop

individual and ensemble machine learning (ML) models for rice AGB estimation.

Results: The findings indicate that: (i) Single-type features result in significant

errors and low accuracy within the same sensor, but multi-feature fusion

improves performance. (ii) Fusing RGB and MS image features enhances AGB

estimation accuracy over single-sensor features. (iii) Ensemble ML models

outperform individual models, providing higher accuracy and stability, with the

best model achieving an R2 of 0.8564 and RMSE of 169.32 g/m2.

Discussion: This study demonstrates that multi-source UAV image feature fusion

with ensemble learning effectively leverages complementary data strengths,

offering an efficient solution for monitoring rice AGB across growth stages.
KEYWORDS

rice, aboveground biomass, unmanned aerial vehicle (UAV), multi-source remote
sensing images, ensemble learning
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1 Introduction

Rice is one of the most crucial food crops globally, playing a

significant role in food security and sustainable development.

Above-ground biomass (AGB) is a key agronomic parameter for

evaluating crop growth. It serves as an important indicator of

overall crop health and productivity, is directly linked to crop

yield, and is also critical for monitoring rice growth and

managing rice fields effectively (Geng et al., 2021; Shu et al.,

2022). Therefore, efficient, non-destructive, and precise

monitoring of AGB at the field scale is vital for high-throughput

screening in rice breeding. It also holds significant value for

decision-making in rice production management and

yield forecasting.

Traditionally, the measurement of AGB has been carried out

through manual, destructive sampling in the field, a method that

can damage the crop and is time-consuming (Yan et al., 2019).

Furthermore, manual sampling is restricted to small areas due to the

limited number of sampling points, making it difficult to monitor

crop AGB over large areas efficiently and quantitatively (Xu et al.,

2018; Kumar et al., 2021). Remote sensing, with its efficiency and

convenience, has proven to be a valuable tool for obtaining crop

AGB at the field scale (Fei et al., 2021). Previous studies have

employed various types of remote sensing data from sensors such as

multi-spectral (MS) and hyperspectral (HS) sensors mounted on

remote sensing platforms (satellites, unmanned aerial vehicles

(UAVs), and ground-based platforms) to monitor crop AGB (Xu

K. et al., 2019; Xu M. et al., 2019). Ground-based platforms provide

high-resolution spectral data with excellent monitoring accuracy,

but their limited coverage restricts their application over larger

areas. Satellite platforms can offer synchronous observation across

extensive regions, but issues such as revisit intervals and

atmospheric conditions often hinder the acquisition of high-

frequency, high-resolution data at specific regional scales (Zhang

et al., 2019; Weiss et al., 2020). Recently, advancements in UAV

remote sensing technology, particularly the miniaturization of

sensors have allowed UAV platforms to capture high-resolution

remote sensing data flexibly, efficiently, and at a relatively low cost.

This has addressed the limitations of both ground-based and

satellite platforms and has made UAVs an increasingly important

tool for modern precision agriculture research (Sagan et al., 2019;

Yang et al., 2020).

Usually, vegetation indices (VIs), textures, and structural

parameters (e.g., plant height, cover, etc.) extracted from remote

sensing images are commonly used as key features for estimating

crop AGB (Shu et al., 2021; Luo et al., 2022). Among them, VIs

reflect changes in reflection peaks and absorption valleys associated

with variations in the physicochemical properties of crop organs

(intra-crop features), while texture and structural parameters

quantify changes in crop canopy structure (extra-crop features)

(Yue et al., 2018). However, research has indicated that relying

solely on VIs for estimating crop AGB across multiple growth stages

can lead to unstable results. For instance, factors such as soil and

water background effects, as well as spectral saturation, can

adversely affect the performance of VIs (Zha et al., 2020; Yue
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et al., 2023). To address these issues, prior studies have sought to

integrate features from visible images (e.g., texture, structure) with

complementary multi-source data, such as hyperspectral or multi-

spectral images (e.g., VIs). For instance (Liu et al., 2023a),

investigated the feasibility of using multi-source remote sensing

feature fusion to estimate potato AGB across multiple growth

stages. They extracted optical vegetation indices, texture, and

structural features from UAV-captured RGB and hyperspectral

images, and combined Gaussian process regression (GPR) with

partial least squares regression (PLSR). Their results demonstrated

that multi-source remote sensing data fusion could effectively

estimate AGB at different growth stages of potatoes, with the

GPR method showing superior estimation accuracy. Similarly

(Cen et al., 2019), used a UAV with a dual-frame camera to

capture RGB and MS images of rice canopies, extracting plant

height and VIs. By combining these features in a random forest (RF)

regression model, they successfully monitored dynamic changes in

rice AGB under different nitrogen treatments. These studies

highlight that image features such as rich color information, high-

frequency textures, and structural features extracted from RGB

images can compensate for the limitations of spectral vegetation

indices in estimating crop AGB. The fusion of multi-source remote

sensing data has gained significant attention for AGB estimation

across multiple growth stages of crops, and its full potential for

application remains to be further explored.

UAV-based remote sensing platforms offer the advantage of

capturing large amounts of high-dimensional data, which, however,

presents challenges for modeling (Montesinos-López et al., 2017).

Recent advancements in computer science have led to the

widespread adoption of machine learning (ML) algorithms in

quantitative remote sensing research (Shu et al., 2021).

Algorithms such as random forest (RF), extreme learning

machine (ELM), and support vector machine (SVM) have been

increasingly used to develop models for estimating crop phenotypic

traits (Fu et al., 2019; Ji et al., 2022). These ML algorithms have

improved the accuracy and stability of crop trait estimations using

UAV remote sensing data. However, using a single ML algorithm,

especially with limited training data, can lead to overfitting

(Masoud et al., 2023). To address this issue and enhance model

performance, various solutions have been proposed (Ribeiro and

Coelho, 2020). One of the most effective is ensemble learning, which

integrates the predictions from multiple ML models to achieve

higher accuracy and stability (Yoosefzadeh-Najafabadi et al., 2021).

Several studies have shown that ensemble learning outperforms

individual machine learning models in estimating crop biomass,

yield, and other agronomic traits, offering improved accuracy and

robustness. For instance (Ji et al., 2023), applied stacking ensemble

learning to estimate the AGB and yield of beans, significantly

improving estimation accuracy compared to individual models.

Similarly (Fei et al., 2023), utilized multi-sensor data fusion and

stacking ensemble learning to improve wheat yield predictions.

Ensemble learning methods typically include bagging (Zhang et al.,

2021), boosting (Zhang et al., 2020), and stacking (Tao et al., 2023).

Among ensemble learning methods, bagging and boosting are

typically limited to integrating models of the same type, such as
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decision trees, which makes it challenging to leverage the strengths

of different model types. In contrast, stacking is a hierarchical model

integration approach that allows for the use of diverse base learners,

each trained on the dataset. The outputs of these base learners are

combined into a new training set, which is then used as input for a

meta-learner to generate the final decision (Healey et al., 2018). By

aggregating the predictions from multiple base learners, the

stacking ensemble method can significantly enhance the accuracy,

robustness, and generalization capabilities of the estimation model

(Ju et al., 2018; Feng et al., 2020).

In rice biomass research, single machine-learning models are

commonly applied to estimate AGB using remote sensing data.

However, there is a limited exploration of combining multi-source

image features with ensemble learning techniques to estimate rice

AGB across different growth stages. Thus, the primary aim of this

study is to investigate the potential of using UAV-acquired RGB

and multispectral (MS) images for estimating rice AGB at different

growth stages by integrating image features (such as high-frequency

texture and color features) with spectral features through a stacking

ensemble learning method. Specifically, the study has three main

objectives: (i) to evaluate the effectiveness of spectral features, color

features, and high-frequency texture in estimating rice AGB; (ii) to

compare the performance of individual ML models and ensemble

learning for rice AGB estimation; and (iii) to assess whether the

fusion of multi-source UAV image features and ensemble learning

can improve the accuracy and stability of AGB estimation in rice.
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2 Materials and methods

The workflow of the technical aspects of this study is outlined in

Figure 1. The primary elements of the research include the

acquisition and processing of UAV-based RGB and MS images;

the statistical analysis and feature selection of both the image data

and biomass measurements; the construction of an ensemble

learning model for estimating rice AGB based on multi-source

data; and the evaluation of the mode performance in

AGB estimation.
2.1 Experiment location and design

The field experiment was carried out from June to August 2024

at the Precision Agriculture Aviation Research Base of Shenyang

Agricultural University located in Haicheng City, Anshan, Liaoning

Province, China (Figure 2, 122°39′18″E, 40°58′58″N). Haicheng

City has a temperate continental monsoon climate, with an average

summer temperature of 20°C to 28°C and an average annual

precipitation of 721.3 mm. The region features flat terrain, fertile

soil, and relatively abundant groundwater resources, which are

suitable for rice growth. The experiment comprised 18 plots.

According to the principle of five-point sampling in each plot, a

total of 90 study areas were marked as regions of interest (ROIs) for

data extraction, using 0.5*0.5 m white plastic frames. To assist in
FIGURE 1

The technical flow of this study.
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identifying the research areas from UAV, a 1.5 m long white signage

was inserted in the upper right corner of the white plastic frame, as

the canopy was closed from the jointing stage of rice and shaded the

white frame. The signage was placed at a distance of one hole of rice.

In this study, two rice cultivars (Shennong 9816 and Yanfeng 47)

and four nitrogen levels (N0 = 0 kg/hm2, N1 = 100 kg/hm2, N2 =

200 kg/hm2, N3 = 300 kg/hm2) were used for the experiment. The

rice seedlings of both varieties were transplanted on May 28, 2024.

The application rates of phosphate and potassium fertilizers for

each plot were determined to be 144 kg/hm2 and 192 kg/hm2,

respectively, following the recommended local dosage. All other

field management measures were maintained consistently with local

farmland management.
2.2 AGB measurements

Ground destructive sampling was carried out on June 27

(tillering), July 22 (jointing), and August 19 (heading) in 2024,

respectively. Following the UAV flight operation, three

representative plant holes were collected from the uniformly

growing area near each of the five white sample squares within

each experimental field. These samples were placed in labeled
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plastic bags and brought back to the laboratory. Subsequently, the

plants were rinsed with water. The roots were cut, and the stems and

leaves were separated using scissors and placed into envelopes

labeled with the corresponding sampling areas. All envelopes

containing samples were then placed in an oven and dried at 105°

C for 30 min to deactivate the enzyme, followed by further drying at

80°C until constant weight. An electronic scale with an accuracy

of 0.01 g was used to peel weigh, and convert to AGB per unit area

(g/m2) according to the Equation 1.

AGB =
m� n
3� s

(1)

Wherem is the dry weight of the rice sample, n is the number of

rice plants in the sample area (6 cavities in this study), and s is the

area of the sample (0.25 m2).

A total of 270 AGB samples (90 samples in each period) were

collected in the three periods, and the biomass statistics of each

period are shown in Table 1. The statistical indicators included

maximum value, minimum value, mean value, standard deviation,

and coefficient of variation. Among them, the coefficient of

variation of the total AGB dataset of the three growth stages was

48.55%, which illustrated the large influence of the growth stage on

the canopy structure of rice.
FIGURE 2

Geographic location of the experimental field and experimental design.
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2.3 UAV image acquisition and processing

UAV image data were collected simultaneously with field

sampling. To ensure consistent light and sun angles, all flight

missions took place between 11:00 am and 12:00 pm (Beijing

time) under windless and cloudless conditions. The MS and RGB

images were acquired using P4M and M300 UAV (DJI, Shenzhen,

China), respectively. The UAV flew independently on a predefined

route during each growth period and maintained the same route

plan for image data collection. In this study, the P4M weighing

approximately 1487 g, was equipped with six 1/2.9-inch CMOS

sensors, including five monochrome sensors for B, G, R, red edge

(RE), and near-infrared (NIR), along with an RGB camera. Each

sensor had a resolution of 2.08 megapixels and a focal length of 5.74

mm. The UAV was equipped with a sun sensor positioned on top to

automatically adjust the reflectivity according to the intensity of

sunlight, ensuring the consistency of data under varying weather

conditions. The M300 had a maximum payload of 2.7 kg, a

maximum endurance of approximately 55 minutes, and was

equipped with a Zenmuse P1 (DJI, Shenzhen, China) visible light

camera. The camera weighed about 800 g and has 45 million

effective pixels with a maximum resolution of 8192 × 5460. Flight

operations were carried out at an elevation of 30 m and featured an

overlap ratio of 80%.

After the completion of the flight operation, Terra (DJI,

Shenzhen, China) software was applied to correct and stitch the

UAV RGB and MS images. The UAV RGB and MS image files

acquired in each period were imported into the software, which

automatically read the positioning and attitude system data, along

with configuration details. For MS image stitching, it was necessary

to perform reflectance correction using the standard whiteboard

image captured by the UAV before takeoff to generate reflectance

images. Subsequently, the processed RGB and MS images were

saved as GeoTIFF files with ground sampling distance (GSD) of

0.36 and 1.86 cm/pixel, respectively. In both images, ENVI 5.3

software was employed to define the regions of interest (ROIs)

according to the areas marked by the white plastic frames. The

“Subset Data from ROIs” was then utilized to crop the study area

and saved as a GeoTIFF file for further data extraction.
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2.4 Feature extraction

Compared with MS images, RGB images acquired at the same

flight altitude have higher spatial resolution. Therefore, in this

study, RGB images are used to extract image feature information

such as texture and color, and MS images are used to obtain spectral

feature information.

2.4.1 VIs calculation
An effective approach commonly used in crop growth

monitoring studies is to construct Vegetation Indices (VIs) with

specific bands to assess the status of crop growth. These VIs have

specific physical meanings, which enhance the specific

characteristics of the vegetation and reduce the impact of factors

like solar irradiance, soil and water background, etc (Yue et al.,

2018). According to previous studies on estimating crop AGB using

VIs (Cen et al., 2019; Yang et al., 2022), We selected five VIs

calculated based on MS images with specific names and definitions

shown in Supplementary Table S1. The band calculation tool (Band

Math) in ENVI 5.3 software was utilized to carry out band

operations and compute these VIs. Subsequently, the average

value of each VI within each designated region at different

periods was extracted as the final VIs of the study area.
2.4.2 Discrete wavelet transform analysis
In recent years, discrete wavelet transform (DWT) technology

with multi-resolution and time-frequency localization

characteristics has gradually become an effective tool for texture

analysis and has been applied in crop phenotypic trait estimation

studies (Zhou et al., 2022). DWT decomposes signals layer by layer

through a set of high-pass (H) and low-pass (L) filters, effectively

extracting contour features and detailed information at different

scales (Yue et al., 2019). Each decomposition produces three high-

frequency sub-images in horizontal (LH), vertical (HL), and

diagonal (HH) directions, as well as a low-frequency sub-image

(LL) containing main contours. Iterative decomposition of the low-

frequency sub-image can generate finer-scale sub-images. In this

study, the two-level DWT decomposition process for rice UAV

imagery is illustrated in Figure 3. As the decomposition level

increases, the spatial resolution of sub-images decreases. Since

high-frequency details are generally considered to represent dense

crop canopies (Yue et al., 2021), this study selected a single-level

DWT decomposition for RGB images to prevent loss of image

details. For DWT implementation, five commonly used wavelet

basis functions were chosen, including four orthogonal bases haar,

daubechies3 (db3), symlets6 (sym6), and coiflet3 (coif3), and one

non-orthogonal basis biorthogonal 3.3 (bior3.3) from the MATLAB

wavelet toolbox. To simplify the representation of decomposition

results, each wavelet basis function was paired with the high-

frequency components in different directions. For example,

“haar_HH” denotes the diagonal high-frequency information

obtained using the haar wavelet basis function.
TABLE 1 Data statistics of AGB.

Parameters
AGB(g/m2)

All data Tillering Jointing Heading

No. of samples 270 90 90 90

Min 344.64 344.64 548.16 628.09

Max 1868.16 618.72 1290.96 1868.16

Mean 1000.64 451.96 994.65 1343.87

SD 485.81 65.02 195.23 346.70

CV(%) 48.55 14.39 19.63 15.13
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2.4.3 Color moment analysis
Color moments are a simple yet effective method for

representing color features, primarily utilizing low-order

moments such as the first-order and second-order moments to

characterize image color distributions (Ge et al., 2021a). The RGB

color space offers intuitive application and widespread adoption,

enabling efficient capture of color information, yet exhibits

sensitivity to illumination variations that may compromise feature

stability (Huang et al., 2020). In contrast, the Lab color space

demonstrates perceptual uniformity and illumination invariance,

effectively mitigating color feature deviations caused by lighting

changes (Larijani et al., 2019). In this study, we computed two low-

order color moments for each of the three channels in both RGB

and Lab color spaces through the mathematical formulations

presented in Equation 2, Equation 3, yielding a total of 12 color

features. For simplified representation, we adopt a combined

notation of color channels and moment types, for example, R_ave

and R_var respectively denote the first-order moment and second-

order moment calculated from the R component in RGB space.
Frontiers in Plant Science 06
mi =
1
No

N

j=1
pi,j (2)

si =
1
No

N

j=1
(pi,j − mi)

2

 !1
2

(3)

Where pi,j represents the probability of the pixels of the gray

value with j in the ith color component (i = R, G, B, L, a, b), N is the

total number of pixels in each image, mi, siand wi represents the

first-order moments and second-order moments in each color

component, respectively.
2.5 Feature selection methods

The Maximal Information Coefficient (MIC), as a non-

parametric statistical method, can effectively quantify the strength

of linear or nonlinear associations between two variables. With

strong generalization capabilities and robustness, it is commonly
FIGURE 3

Discrete wavelet decomposition process of RGB images.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1576212
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1576212
used for feature selection in machine learning. BorutaShap is a

model-based feature selection method that integrates Boruta’s

feature competition framework with SHAP visual analysis to

achieve stable and interpretable feature screening. Specifically, the

Boruta method generates shadow features to compete with original

features and evaluates feature importance based on a random forest

model. SHAP values quantify the marginal contributions of features

to model outputs, providing interpretability of feature importance at

both global and local levels. In this study, these two methods are

comprehensively utilized to fully explore the statistical relevance of

feature variables and the contribution of model decision-making

and to improve the comprehensiveness and reliability of feature

selection, to screen the feature variables that are highly correlated

with the AGB, and to provide more representative input variables

for the construction of the subsequent AGB estimation model.
2.6 Construction of ensemble model

Ensemble learning combines multiple base machine learning

models, synthesizing the performance of each model. Compared

with a single machine learning model, it can effectively improve the

accuracy of regression or classification problems (Li et al., 2020).

Stacking regression is a common hierarchical ensemble learning

strategy, which is generally divided into two levels: base model and

meta-model. The base model includes several different machine

learning models that are trained based on the original input data,

and the results obtained from the base model are aggregated into a

new feature set and applied as new inputs to the meta-model for

training to obtain the final results. In this study, the base models

include AdaBoost, support vector regression (SVR), gradient

boosting decision tree (GBDT), random forest (RF), and K-

Nearest Neighbor (KNN), and the meta-model used ridge
Frontiers in Plant Science 07
regression (RR). The range of parameter settings for each model

is shown in Supplementary Table S9 of the Supplementary

Materials, and the parameters of the individual models were

tuned using the grid search cross-validation algorithm to improve

the performance of the ML models. In this study, the original data

were split into training and test sets in the ratio of 4:1 and repeated

50 times to eliminate random errors. The same data partitioning

method was applied across all data sources to ensure a fair

comparison of the estimation accuracies of different models. To

prevent overfitting, five-fold cross-validation was employed during

the training of each model. The framework for the ensemble

learning model is illustrated in Figure 4.
2.7 Model performance evaluation

In this study, the dataset was divided into training and

validation sets according to 1:4, and the model results were

averaged over 50 times to assess the stability and accuracy of the

estimates. The accuracy of rice AGB estimation was quantitatively

assessed using the coefficient of determination (R²) and root mean

square error (RMSE), calculated according to Equations 4, 5.

R2 = 1 −o
n
i=1(by i − yi)

2

on
i=1(yi − y)2

(4)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(by i − yi)
2

n

s
(5)

Where yi and ŷ i are the measured and estimated AGB of rice,

respectively, y are the mean values of AGB of rice, and n is the total

number of samples. A higher R2 and lower RMSE correspond to a

higher accuracy of AGB estimation in rice.
FIGURE 4

The flow of ensemble learning for estimating rice AGB.
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3 Results and analysis

3.1 Statistical analyses of biomass and
characterization variables

To assess the reliability of aboveground biomass (AGB) and

characteristic variable data in this study and ensure their validity for

constructing AGB estimation models, the Shapiro-Francia test was

employed to conduct normality tests on AGB and characteristic

variables (Supplementary Table S2). Results revealed non-normal

distributions for all datasets across growth stages (p<0.05).

Consequently, the Kruskal-Wallis test was applied to analyze

distribution differences of AGB and characteristic variables

among distinct growth stages (Supplementary Table S3), with the

Dunn post-test further evaluating significant inter-stage differences

(Supplementary Table S4). The Kruskal-Wallis test demonstrated

significant AGB variations across growth stages (p<0.05), consistent

with rice growth patterns. All characteristic variables also exhibited

statistically significant distributional differences corresponding to

AGB dynamics, indicating their potential value for AGB estimation.

Dunn post-test specifically identified significant AGB differences

between tillering-jointing, jointing-heading, and tillering-heading

stages (p<0.05), with particularly pronounced disparities between

tillering-heading stages, aligning with rice phenological

characteristics. Regarding characteristic variables, VIs showed

significant differences between tillering-jointing and tillering-

heading stages (p<0.05) but not between jointing-heading stages

(p>0.05), suggesting possible VIs saturation during jointing-

heading stages that may compromise multi-stage AGB estimation.

High-frequency texture features exhibited significance across all

growth stage combinations (p<0.05), indicating that it can

effectively reflect the changes in different fertility stages of rice

and is valuable for AGB monitoring. In the results of color moment

analysis, the test results of the tillering-heading stage were all

significant (p<0.05), which was in line with the trend of rice color

characteristics changes in the two growth stages. However, some of
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the color moment changes were not significant at the tillering-

jointing and jointing-heading stage, for example, L_ave (p>0.05) at

the tillering-jointing stage and R_ave (p>0.05) at the jointing-

heading stage, implying that some of the color moments change

slowly and may have a limited contribution to the AGB estimate.

The results of the above statistical analyses suggest that the features

extracted in this study can be used to monitor changes in rice AGB.

However, it may be difficult for a single feature variable to reflect the

complexity of AGB changes, so the selection and integration of

feature variables, especially those that show significant changes

across growth stages, will help construct a more accurate model for

AGB estimation.
3.2 Feature selection analysis based on the
combination of statistics and modeling

The results of combining MIC with BorutaShap for feature

screening are shown in Figure 5. Specifically, Figure 5a shows the

MIC values of VIs, high-frequency texture and color moment

features for AGB. Compared to high-frequency texture and color

moments, there are higher MIC values between VIs and AGB,

indicating a stronger correlation between VIs and AGB. Based on

related studies (Cao et al., 2020) and the results of current research,

a total of 10 features with stronger correlation with AGB, namely

NDVI, MTCI, GNDVI, CIre, OSAVI, haar-HH, db3-LH, sym6-LH,

bior3.3-HH and coif3-HL, were screened using MIC=0.5 as the

threshold value. The results of selecting features based on the

BorutaShap model are shown in Figure 5b, where the importance

of each feature in the model is distinguished by different colors,

respectively. Among them, green means important features, red

means unimportant features, and yellow means pending features

(uncertain importance). Based on the statistics of the results of 100

tests, the BorutaShap model selected a total of 23 important

features, 6 unimportant features, and 3 pending features. To

further obtain the final features, this study combined the results
FIGURE 5

Results of feature selection based on MIC and BorutaShap. (a) MIC, (b) BorutaShap.
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of the two methods and prioritized the intersection of the features

obtained by the two methods, and a total of 9 features were

preferred, including NDVI, MTCI, GNDVI, CIre, OSAVI, db3-

LH, sym6-LH, bior3.3-HH, and coif3-HL. To obtain the important

features more comprehensively, for the remaining important

features and pending features selected by the BorutaShap

model, this study preferred the features extracted from the same

wavelet basis function and the same color space based on the

maximum value of MIC and selected a total of four features,

including haar-HH, a_ave, b_var, and G_ave. In summary, this

study combined the two feature screening methods to finally select

13 important features.
3.3 Evaluation of the relationship between
features and AGB

3.3.1 Relationship analysis between VIs and AGB
To assess the relationship between the optimal features and

AGB, this study used linear, exponential, logarithmic, and power

functions to establish the estimation model of AGB and determine

the relationship between the features and AGB. The fitting results of

all features and AGB are shown in Supplementary Tables S5–S8.

Figure 6 presents the optimal relationships between VIs and rice

AGB. The VIs account for approximately 43-63% of the observed

variation in rice AGB across multiple growth stages, where MTCI

and CIre exhibited a logarithmic relationship with AGB, while

GNDVI, NDVI, and OSAVI demonstrated an exponential

relationship. Notably, NDVI showed the most accurate estimation

of AGB at multiple growth stages, achieving an R² of 0.63. The

results in Figure 6 also highlight that the performance of the same
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VIs fluctuated considerably among the different stages of rice

growth. Specifically, the nonlinear relationship between VIs and

rice AGB followed an increasing and then decreasing trend as the

growth stage progressed. As shown in Figure 6a, the relationship

between NDVI and AGB showed that tillering (R2 = 0.46) was

weaker than jointing (R2 = 0.64), and the jointing was stronger than

heading (R2 = 0.51). In the single growth stage of rice, the highest

nonlinear relationship between VIs and rice AGB was found at the

jointing stage. Among them, two VIs based on the red-edge (MTCI:

R2 = 0.68 and CIre: R2 = 0.68) had the best estimation performance

at the jointing stage. At the tillering stage, CIre (R2 = 0.52) and

MTCI (R2 = 0.51) showed consistent results with those at the

jointing stage, but the overall estimation performance was

significantly lower compared to the jointing stage. However, the

performance of estimating AGB among all VIs at the heading stage

showed an overall decreasing trend compared to the jointing stage.

In addition, the performance of VIs was generally stronger at the

individual rice growth stage than at multiple growth stages,

suggesting a limitation in the application of VIs for estimating

AGB at multiple growth stages in rice.
3.3.2 Relationship analysis between image
features and AGB

Figure 7 shows the best relationship between the optimal high-

frequency texture features extracted using various wavelet basis

functions and rice AGB. The optimal power function relationship

between the selected high-frequency texture features and rice AGB

across multiple growth stages explains 38-42% of the variation in

rice AGB, highlighting the effectiveness of high-frequency texture

features in capturing key information about rice growth. Among the
FIGURE 6

Relationship between VIs and AGB. (a) NDVI, (b) OSAVI, (c) MTCI, (d) GNDVI, (e) CIre.
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three individual growth stages, the accuracy of estimating AGB at

single growth stages using high-frequency texture was overall low,

while the accuracy of estimating AGB at the jointing stage was

generally better than that at the tillering and heading stages. This

may be because the rapid growth of leaves at the jointing stage has a

more significant effect on AGB, and high-frequency texture can

effectively reflect this growth change. In contrast, the selected high-

frequency textures extracted using different wavelet basis functions

provided significantly more accurate AGB estimates across multiple

growth stages compared to estimates from a single growth stage.

The results demonstrate that high-frequency texture features

extracted from RGB images using wavelet transform effectively

capture the changes in rice AGB across multiple growth stages,

thereby enhancing the accuracy of AGB estimation throughout the

rice growth stage. In addition, as shown in Figure 7, the difference in

R2 variation of rice AGB estimated based on high-frequency
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textures preferred by different wavelet basis functions is small in

rice multi-growth and single-growth stages. This suggests that the

selection of wavelet basis functions may have less influence on the

estimation accuracy of AGB. Therefore, the high-frequency texture

of RGB images extracted using the wavelet transform technique can

be used for the estimation of AGB in rice at multiple growth stages.

The best relationship between the optimal color moments and

AGB is shown in Figure 8, where the three color moments exhibit

an exponential relationship with AGB and explain 8-20% of the

variation of rice AGB at multiple growth stages. The poor and

fluctuating accuracy of the three color moments in estimating AGB

at different growth stages illustrates the unstable ability of color

moments to estimate AGB at different growth stages. Even at the

multiple growth stages, the accuracy of estimating AGB based on

the three color moments was low, with the highest AGB estimation

accuracy (R2 = 0.20) achieved using a_ave, which also further
FIGURE 8

Relationship between different color moments and AGB. (a) a_ave, (b) G_ave, (c) a_var.
FIGURE 7

Relationship between high-frequency texture and AGB obtained based on different wavelet basis functions. (a) coif3_HL, (b) db3_LH, (c) haar_HH,
(d) sym6_LH, (e) bior3.3_HH.
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illustrates the limited ability of color moments to explain AGB

compared to VIs and high-frequency texture. However, it is worth

noting that due to the limited ability to fit linear and simple

nonlinear functions, the complex relationship between color

moments and AGB may not be adequately captured, which in

turn affects the accuracy of color moments in estimating AGB.

Therefore, complex models need to be used to further explore the

relationship between color moments and AGB to improve the

accuracy of AGB estimation. Additionally, the comparison

between the results of a_ave and G_ave might indicate that the a-

component in the Lab color space can better reflect the color

changes during rice growth while minimizing the impact of

environmental factors such as lighting. Thus improving the

accuracy in estimating AGB across multiple growth stages. In

contrast, the non-independence and light sensitivity of the RGB

space cause G_ave to be seriously affected by factors such as light,

which leads to its weaker estimation ability for AGB at multiple

growth stages. This also suggests that using Lab color space can

provide relatively more stable color information in crop growth

phenotyping studies compared to RGB color space.
3.4 Model performance for estimating rice
AGB

In this study, a comprehensive dataset containing a total of 13

features, including spectrum, color, and high-frequency texture, was

constructed by feature selection. To reduce the impact of

multicollinearity on model stability and accuracy, a variance

inflation factor (VIF) was used to screen out high-collinearity

features. In general, if the VIF value of a feature variable is

greater than 10, it means that the feature has high covariance

with other features, which may affect the interpretation and
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prediction ability of the model and needs to be eliminated (Wang

et al., 2022). Therefore, 10 feature variables were finally screened out

for constructing the AGB estimation model in this study, and the

VIF results are shown in Figure 9.

To assess the impact of feature fusion and variable covariance

on model performance, this study first compares the performance

of different machine learning models for estimating the AGB of rice

across multiple stages based on a Non-collinearity dataset. The

estimation accuracies of each machine learning on the training and

validation sets are shown in Tables 2 and 3, respectively. The results

show that multi-source data fusion significantly improves the

estimation accuracy of AGB, and the models show strong

generalization ability on both the training and validation sets.

Among the RGB extracted features, the model combining texture

and color features has higher AGB estimation accuracy than the

single-feature model, indicating that multi-feature fusion of a single

sensor can effectively improve the model performance. When

integrating RGB-derived features with MS spectral data, the AGB

estimation accuracy of all ML models improved significantly

compared to using single-sensor data alone, further validating the

complementary of multi-source sensor data and its enhancement of

model accuracy and generalization. Compared to the five base

learning models, the ensemble learning model constructed by

integrating the five base models using ridge regression (RR) as a

meta-model outperforms individual machine learning models, both

for multi-type feature data and multi-source image feature data

fusion. With dual-sensor data fusion, the ensemble learning model

achieved the highest estimation accuracy in both the training and

validation sets, with an average R² value of 0.9156 and an average

RMSE value of 127.02 g/m² in the training set, and an average R²

value of 0.8645 and an average RMSE value of 167.82 g/m² in the

validation set. These results indicate that the ensemble learning

model effectively combines the advantages of the base model and
FIGURE 9

Calculation of variance inflation factors among the characteristic variables.
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further improves the accuracy and generalization ability of the

model. For the collinearity data (MS dataset and RGB+MS dataset),

the models have significantly higher accuracy on the training set

than on the non-collinearity dataset. However, the results of the

validation set show that the overall difference in the accuracy of the

models on the collinearity and non-collinearity datasets is not

significant. It is also worth noting that there is a large difference
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between the training and validation set accuracies of the models in

the collinearity dataset. This indicates that the model’s strong

dependence on collinearity features may have led to an overfitting

of the training set and an inability to generalize effectively to the

validation set. It also suggests that the elimination of collinearity

needs to be considered in data preprocessing or feature selection to

improve the stability and generalization of the model.
TABLE 3 Performance of basic and ensemble learning models for estimating AGB on the validation set.

Sensor
Feature
type

Variables
num

Metrics Stacking KNN GBDT RF ADA SVR

RGB

Tex 5
R2 0.6612 0.6104 0.5852 0.5904 0.5903 0.6368

RMSE(g/m2) 272.82 295.70 307.95 302.67 303.49 285.33

Col 3
R2 0.5307 0.4997 0.4802 0.4988 0.5092 0.4270

RMSE(g/m2) 338.11 344.98 351.51 350.22 347.59 369.10

Tex+Col 8
R2 0.7837 0.7447 0.7591 0.7269 0.7471 0.7402

RMSE(g/m2) 208.88 241.09 230.43 249.24 239.21 243.35

MS

Spe
(Non-co)

2
R2 0.6903 0.6004 0.6671 0.6777 0.6670 0.6217

RMSE(g/m2) 261.90 300.90 270.66 268.32 270.77 290.36

Spe
(Co)

5
R2 0.7322 0.7052 0.7127 0.6126 0.7172 0.6041

RMSE(g/m2) 242.94 254.10 251.35 291.73 249.32 294.87

RGB+MS

Spe+Tex+Col
(Non-co)

10
R2 0.8645 0.8122 0.8226 0.8261 0.8257 0.8081

RMSE(g/m2) 167.82 193.77 188.11 187.33 187.42 195.06

Spe+Tex+Col
(Co)

13
R2 0.8819 0.8334 0.8595 0.8030 0.8567 0.8539

RMSE(g/m2) 161.06 199.92 175.13 206.65 176.73 178.90
Spe, spectral features; Tex, texture features; Col, color features; Non-co, Non-collinearity; Co, Collinearity.
TABLE 2 Performance of basic and ensemble learning models for estimating AGB on the training set.

Sensor
Feature
type

Variables
num

Metrics Stacking KNN GBDT RF ADA SVR

RGB

Tex 5
R2 0.7107 0.6905 0.6755 0.6514 0.6859 0.6760

RMSE(g/m2) 254.21 260.43 268.32 276.04 262.32 267.91

Col 3
R2 0.6098 0.5846 0.5635 0.5410 0.5886 0.4719

RMSE(g/m2) 303.15 309.27 329.29 336.31 307.20 353.31

Tex+Col 8
R2 0.8335 0.7928 0.8110 0.8058 0.7891 0.8067

RMSE(g/m2) 184.50 201.94 190.14 196.33 204.91 195.65

MS

Spe
(Non-co)

2
R2 0.7496 0.6318 0.7010 0.7237 0.6928 0.6401

RMSE(g/m2) 242.01 285.48 256.65 249.55 259.53 280.18

Spe
(Co)

5
R2 0.8886 0.8340 0.8328 0.7395 0.8702 0.6777

RMSE(g/m2) 160.77 196.53 197.01 246.23 173.175 273.73

RGB+MS

Spe+Tex+Col
(Non-co)

10
R2 0.9156 0.8693 0.8773 0.8832 0.8605 0.8731

RMSE(g/m2) 127.02 170.35 167.32 164.22 175.45 168.50

Spe+Tex+Col
(Co)

13
R2 0.9793 0.9331 0.9642 0.8817 0.9633 0.9038

RMSE(g/m2) 87.21 124.14 90.62 165.31 91.99 148.99
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3.5 Assessment of the applicability of the
model

To further evaluate the applicability and effectiveness of the

optimal AGB estimation model developed in this research, the

performance of the models was analyzed across three individual rice

growth stages, and the results are presented in Figure 10. The

findings indicate that the Stacking model, which integrates multi-

source image feature data, outperforms all base models in terms of

AGB estimation accuracy at each growth stage. The average R²

values for the model were 0.6509, 0.7565, and 0.6958 at the tillering,

jointing, and heading stages, respectively, surpassing the

performance of the base models. Additionally, the average RMSE

values for the Stacking model were 37.58, 94.86, and 127.05 g/m² at

the same stages, respectively, all lower than those of the base

models. These results demonstrate the effectiveness of the

Stacking model in improving AGB estimation accuracy and

stability across different rice growth stages.
4 Discussion

4.1 Analysis of VIs for estimating rice AGB

Multispectral-based VIs have been widely used in studies for

crop AGB estimation, and their performance varies with band

combinations (Cheng et al., 2017; Sun et al., 2023). In this study,

it was found that five VIs extracted from MS images were superior

for biomass estimation at individual growth stages than when

applied across multiple growth stages (Figure 6). Among them,

two VIs based on red-edge (CIre and MTCI) had the best

estimation performance compared to other VIs at the jointing

stage (Figure 6c, e), and the performance of all VIs decreased

significantly at the tillering and heading periods. However, the

variation differences in performance among them were small. This

was consistent with the conclusions of (Zheng et al., 2019), probably
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because the red-edge VIs were closely related to the AGB of leaves,

but less so to stems or spikes. The canopy was dominated by leaves

before the heading stage of rice. However, during the tillering stage,

rice plants were relatively small with a sparse canopy structure, and

the mixing of the water background in the rice canopy images

acquired by the UAV might have affected the VIs calculations, thus

reducing the performance of the VIs for estimating AGB. As the rice

plants progressed to the jointing stage, leaves became the

predominant canopy component, resulting in a closed canopy

structure, which minimized the influence of water and other

background factors. However, at the heading stage, most plant

nutrients were allocated to rice ear development. The canopy was

composed of a mixture of stems, leaves, and ears, which also

indicated that it was difficult to estimate the biomass of rice ears

based on the VIs alone. Furthermore, the AGB increased as the rice

grew, but the range of the VIs varied less among the three growth

stages. As shown in Figure 11, the changes in NDVI from tillering to

heading were similar, especially from jointing to heading, but the

AGB was increasing rapidly. The present results indicate that

estimating rice AGB at multiple growth stages using VIs alone

may be limited., which is also consistent with the results in the

previous statistical analyses.
4.2 Analysis of RGB image features for
estimating rice AGB

The spatial and color features of images can increase the data

dimension of UAV images with a limited number of bands. Making

full use of these features may provide effective technical support for

precision agriculture based on UAV images. The rice canopy

primarily consisted of stems, leaves, and ears. Consequently, the

RGB images of the rice canopy acquired by UAV contained rich

high-frequency texture and color information. Compared to MS

images, RGB images offer higher resolution and can capture

information such as finer color variations and richer texture
FIGURE 10

Performance of AGB estimation at different growth periods using the best model of this study. (a) Coefficient of determination (R2), (b) Root mean
square error (RMSE).
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details. In this study, we used DWT to extract high-frequency

texture from rice canopy images in frequency domain analysis. The

results showed that the high-frequency texture of the rice canopy

image changed significantly with the growth stage of rice

(Figure 12). The mean value of the optimal high-frequency

texture extracted using various small basis functions continuously

increased from the tillering to the jointing and heading stage. This is

attributed to the canopy structure becoming more complex with the

growth of rice. As shown in Figure 13, the canopy coverage of rice at

the tillering stage was low, resulting in a small extracted high-
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frequency texture. At the jointing stage, rice leaves shade each other,

leading to a relatively closed canopy structure and higher canopy

coverage. The emergence of rice ears during the transition from the

jointing to the heading stage further enhanced the complexity of the

canopy structure. As a result, the high-frequency texture varied with

the canopy structure and increased with the increase of AGB.

However, the value of NDVI remained constant. The results of

the quantitative analysis displayed in Figure 7, indicate that high-

frequency texture derived from images of rice canopy had the

potential to assist in estimating AGB of rice at various growth
FIGURE 11

Statistics of changes in NDVI and AGB at different growth periods.
FIGURE 12

Statistics of changes in high-frequency texture at different growth periods.
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stages. Similarly (Liu et al., 2023b), found that the application of

DWT to extract high-frequency textures from potato canopy

images proved to be effective in estimating the AGB of potatoes

over multiple growth stages. In addition, we found that the

difference in the R2 variation of the optimal high-frequency

texture extracted through various wavelet basis functions for

estimating rice AGB was relatively small (Figure 7). This

observation suggests that the selection of wavelet basis functions

may have a relatively minor impact on the estimation of AGB in

rice. We attribute this result to the consistency of different wavelet

basis functions in the image decomposition process. Because the

wavelet transform achieves feature extraction by decomposing the

high-frequency and low-frequency components of the signal, i.e.,

the basic principles and steps of different wavelet basis functions are

consistent in image decomposition. Although different wavelet basis

functions vary in mathematical form, they show consistent ability in

extracting high-frequency detailed features from rice canopy

images. This consistency suggests that in rice biomass estimation,

the extraction of high-frequency information mainly relies on
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common features rather than specific wavelet basis functions, and

thus high-frequency information extracted by different wavelet

basis functions usually shows similarity in estimation

results (Figure 7).

As another important feature of images, color information also

plays an important role in multiple growth stages of rice. Color

changes at different growth stages can reflect the growth status and

developmental process of rice. In studies considering color

information as a feature variable, e.g. R, G, B or hue (H),

saturation (S), and brightness (V) are often utilized as color

features. Related studies such as (Ge et al., 2021b) improved the

detection accuracy of the rice growth stage by using the DN values

of each color component of RGB and HSV and combining them

with the texture features of the images and VIs. However, studies

focusing on the color moments calculated in this study to estimate

phenotypic parameters such as AGB are rarely reported. In this

study, based on the changing law of plant color from green to yellow

during rice growth, and combined with a related study (Yang et al.,

2024), it is hypothesized that the color information of the image also
FIGURE 13

UAV images at different growth periods. NDVI images, and high-frequency texture images.
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changes with the growth of rice and the increase of AGB and that by

calculating the low-order color moments may be able to further

capture the color features in the image effectively. Specifically, rice

appeared predominantly green before heading, with the jointing

stage exhibiting a darker hue compared to the tillering stage.

However, after the heading stage of rice, although the color of the

leaves remained green, the rice ears started to appear yellowish-

green or golden (UAV images in Figure 13). Quantitative analysis,

illustrated in Figure 14, revealed that the different color moments

varied significantly across multiple growth periods. For example,

from the tillering to the heading stage, G_ave showed an increase

and then a decrease, while a_ave showed a decrease and then an

increase. The main reason for this is that the a-component in Lab

color space represents the component of color on the red-green axis,

and its value is negative the smaller it is, the more green information

there is so that the value of a_ave reaches the minimum at the

jointing stage. These results indicate that the color characteristics of

rice canopy images are closely related to the growth changes of rice.

The significant changes in color moments between different growth
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stages can indirectly and effectively reflect the changes in AGB,

providing a strong analytical basis for monitoring rice growth based

on image color information.
4.3 Comparison of fusion of multi-source
image features for estimating rice AGB

To improve the accuracy of estimating AGB over multiple

growth periods of rice, and evaluated the ability to fuse feature

data from multi-source images for AGB estimation. We explored

the fusion and comparative analysis of multi-type feature data

extracted from RGB and MS images (Table 2). Our study

demonstrated that feature data fusion of multi-source images

captured by UAV enabled a more accurate estimation of rice

AGB over multiple growth periods. Generally, for most ML

models, the accuracy of AGB estimation was higher when using

feature data fusion from single-sensor or multi-sensor data

compared to single-feature data, which was consistent with the
FIGURE 14

Variation of different color moments at different growth periods. (a, c) First-order color moments of Lab and RGB components; (b, d) Second-order
color moments of Lab and RGB components.
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results of other studies (Yue et al., 2019). This was because the

fusion of feature data such as spectra, texture, and color can offer

multidimensional, complementary information, thereby reducing

the uncertainty associated with single feature data. In contrast to

using expensive UAV hyperspectral data for estimating crop AGB

(Liu et al., 2022), integrating various types of features extracted from

both digital and MS images in our study also achieved better

accuracy in estimating rice AGB and saved the cost of

data collection.
4.4 The potential of ensemble learning to
estimate rice AGB

The fusion of multi-source image feature data provides a more

accurate representation of crop growth status. However, analyzing

such multi-source and multi-dimensional data presents a

substantial challenge. Compared with the traditional linear

regression methods, ML techniques are capable of self-learning,

self-adaptive, and achieving high-precision regression or

classification tasks (Tong and Nikoloski, 2021). Previous studies

have utilized ML methods and remote sensing data to estimate

phenotypic traits such as crop biomass (Zhang et al., 2021) and

yield (Shafiee et al., 2021). It has been observed that most studies

typically rely on a single ML method to estimate various crop trait

parameters. However, a single ML approach may have limitations

when dealing with different types of data. This is reflected in this

study as the same method will show different performances under

different modeling conditions (Tables 2, 3), indicating the lack of

generalization ability and stability in estimating AGB using a single

ML method. Due to the limited dataset of 270 sets of data from a

one-year trial in this study, the outputs of individual ML models

may also have large differences compared to a large sample dataset.

Therefore, to integrate the advantages of various ML models and

improve the stability of the models. In this study, five ML methods

were used as basic models to further improve the estimation

accuracy of rice AGB with Stacking ensemble learning. The

findings indicated that the ensemble learning model

demonstrated superior performance compared to individual ML

methods under varying modeling conditions (Table 2), confirming

the reliability of ensemble learning, which was consistent with

previous studies (Feng et al., 2020; Ji et al., 2023). In addition, the

advantage of ensemble learning was also demonstrated by

comparing the performance of the models in estimating AGB at

different growth stages (Figure 10). However, there were significant

differences in the accuracy of the models at different stages, e.g., the

ensemble learning model showed high accuracy at the jointing stage

and significantly lower accuracy at the tillering and heading stages.

On the one hand, most leaves are in the active photosynthesis stage

at the jointing stage contributing more to the canopy spectra. This

makes the relationship between canopy features extracted from

remote sensing images and AGB more stable, and the model can

reflect the changes in AGB more accurately. Therefore, the

ensemble learning model was able to make full use of the stable

canopy features to provide high prediction accuracy during the
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jointing period. On the other hand, due to the limited amount of

sample data in this study, especially at the tillering and tasseling

stages, the diversity of the samples may be insufficient, resulting in

the model not being able to fully learn the diverse features at these

stages. Compared to the jointing stage, the generalization ability of

the model at these stages was constrained by the distribution of data

samples, thus showing lower accuracy.
4.5 Limitations and prospects

This study focused on evaluating the feasibility and

performance of fusing RGB and MS remote sensing image

features and applying ensemble learning models to estimate rice

AGB at different growth stages. The results demonstrated that the

fusion of multi-source UAV image features with ensemble learning

can significantly improve AGB estimation accuracy. Therefore, the

fusion of multi-source remote sensing data is valuable for the

accurate estimation of rice multifertility AGB. However, this

study emphasizes the importance of combining UAV RGB images

with MS images for AGB estimation at multiple growth stages of

rice. These conclusions are based on a one-year dataset involving

only two varieties and different N treatment conditions. Therefore,

future research should consider using rice datasets across years and

locations to validate the applicability and stability of mixing

variables, and further focus on how to further estimate rice yield

based on accurate AGB estimation. Furthermore, thermal infrared

(TIR) imaging, which captures temperature variations within the

crop canopy, has been widely utilized for monitoring water stress

and predicting crop yield (Maimaitijiang et al., 2020). In the future

study, we will integrate UAV thermal infrared data to further

explore its potential in rice AGB estimation. While ensemble

learning methods have proven effective in enhancing AGB

estimation accuracy compared to individual ML models, deep

learning techniques offer superior data extraction capabilities (Niu

et al., 2021). By using raw multi-source UAV images as input for

deep learning models, it may be possible to uncover additional

useful features. In subsequent studies, we aim to explore the

combination of deep learning with ensemble learning to further

assess the potential of multi-source UAV image feature fusion for

AGB estimation across multiple growth stages.
5 Conclusions

This study evaluated the feasibility of using multi-source image

features from UAV RGB and MS to estimate rice AGB at multiple

growth stages. To improve estimation accuracy, an ensemble

learning model combining five widely used ML techniques was

developed. The main findings of the research are as follows:
i. The non-normality of the data acquired in this study was

determined by the Shapiro-Francia test, and the significant

differences between the extracted feature data and AGB

were assessed by combining the Kruskal-Wallis pre-test
frontiersin.org
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Fron
and the Dunn post-test to verify the feasibility of the

extracted spectral, texture, and color features to be used

for estimating AGB;

ii. The best VIs, high-frequency texture, and color moment

features selected based on the synergistic selection of the

statistical selecting method (MIC) and the model selecting

method (BorutaShap) explained 43-63%, 38-42%, and 8-

20% of the spatial variability of rice over multiple growth

stages, respectively;

iii. Among the various modeling approaches, the fusion of

multi-source image features for estimating rice AGB at

multiple growth stages effectively reduces estimation

errors and enhances model accuracy compared to using

single-type features. Additionally, the ensemble learning

model constructed in this study significantly improves

both the accuracy and stability of AGB estimation when

compared to individual ML models.

iv. The optimal accuracy of rice multi-stage AGB estimation

was achieved by fusing multi-source image features using

the ensemble learning model, and the R2 and RMSE of the

validation set were 0.8645 and 167.82 g/m2, respectively.

Compared to the single model, the R2 was improved by

6.4%, 5.1%, 4.6%, 4.7%, and 7.0%, and the RMSE was

reduced by 13.4%, 10.8%, 10.4%, 10.5%, and 14.0%,

respectively. In addition, the model also achieved

satisfactory results in a single key growth stage of rice.
The results of the statistical analysis of data and model

estimation in this study indicate that ensemble learning based on

combining multi-source image features from UAV-based RGB and

MS is feasible and has great potential in estimating rice multi-stage

AGB, providing a low-cost method for field management and

decision making in precision agriculture. To further evaluate the

stability of the method, subsequent studies need to test it under

more rice varieties and growing environments.
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