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Introduction: Precision agriculture relies on advanced technologies to optimize

crop protection and resource utilization, ensuring sustainable and efficient

farming practices. Anomaly detection plays a critical role in identifying and

addressing irregularities, such as pest outbreaks, disease spread, or nutrient

deficiencies, that can negatively impact yield. Traditional methods struggle

with the complexity and variability of agricultural data collected from

diverse sources.

Methods: To address these challenges, we propose a novel framework that

integrates the Integrated Multi-Modal Smart Farming Network (IMSFNet) with the

Adaptive Resource Optimization Strategy (AROS). IMSFNet employs multimodal

data fusion and spatiotemporal modeling to provide accurate predictions of crop

health and yield anomalies by leveraging data from UAVs, satellites, ground

sensors, and weather stations. AROS dynamically optimizes resource allocation

based on real-time environmental feedback and multi-objective optimization,

balancing yield maximization, cost efficiency, and environmental sustainability.

Results: Experimental evaluations demonstrate the effectiveness of our

approach in detecting anomalies and improving decision-making in

precision agriculture.

Discussion: This framework sets a new standard for sustainable and data-driven

crop protection strategies.
KEYWORDS

precision agriculture, anomaly detection, multi-modal data fusion, resource
optimization, sustainable farming
1 Introduction

Precision agriculture has revolutionized the agricultural industry, enabling efficient and

sustainable crop management through targeted interventions. Within this domain,

anomaly detection plays a critical role in field crop protection by identifying early signs

of diseases, pests, nutrient deficiencies, or other stress factors that compromise crop health
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Zhang et al. (2024b). Not only does early detection help reduce the

overuse of chemical inputs such as pesticides and fertilizers, but it

also minimizes yield losses and supports sustainable farming

practices Gao et al. (2024a). Traditional anomaly detection

techniques, while effective in controlled conditions, often fail to

capture the complexity of real-world agricultural systems, which

involve heterogeneous data sources, dynamic environmental

conditions, and intricate interactions between crops and external

stressors Zhu et al. (2024a). As a result, deep learning-based

methods have emerged as a promising solution for improving the

accuracy and scalability of anomaly detection in precision field crop

protection. By leveraging multi-modal data from satellite imagery,

drones, and on-ground sensors, these methods provide an end-to-

end framework for identifying and addressing crop health

anomalies Li et al. (2021).

Early approaches to anomaly detection in agriculture were

based on rule-based systems and statistical models, which relied

on domain knowledge and handcrafted features to identify

deviations from normal conditions Zavrtanik et al. (2021). For

example, threshold-based methods used predefined values for

parameters like vegetation indices or soil moisture levels to detect

anomalies Deng and Hooi (2021). Similarly, statistical models such

as principal component analysis (PCA) and clustering were used to

identify outliers in crop health data Zou et al. (2022). While these

methods provided interpretable results and were computationally

efficient, they lacked the ability to generalize across diverse

environmental conditions and crop types Bergmann et al. (2021).

Furthermore, their reliance on fixed thresholds and handcrafted

features made them inadequate for capturing the complex, non-

linear patterns associated with crop health anomalies caused by

diseases or pests Gudovskiy et al. (2021).

The shift toward data-driven approaches introduced machine

learning algorithms capable of learning patterns from historical data

to improve anomaly detection You et al. (2022). Techniques such as

support vector machines (SVMs), random forests, and k-nearest

neighbors were employed to classify crop health statuses based on

features extracted from remote sensing or field data Liu et al. (2023a).

These models achieved better adaptability compared to rule-based

systems, as they could learn relationships between input features and

anomalies without explicit thresholds. For example, machine learning

models were applied to identify plant stress from hyperspectral

imagery or to classify pest infestations based on soil and weather

data Zhu et al. (2024b). However, these approaches faced limitations

in their ability to handle highdimensional andmulti-modal data, such

as the integration of spectral, spatial, and temporal information.

Traditional machine learning methods required extensive feature

engineering and struggled to generalize to new datasets or unseen

conditions Tian et al. (2021).

Deep learning has transformed anomaly detection in precision

agriculture by introducing architectures that can automatically learn

hierarchical representations of crop health data Han et al. (2022).

Convolutional neural networks (CNNs) have been widely used for

analyzing spatial patterns in satellite and drone imagery, enabling the

detection of disease outbreaks, pest infestations, and nutrient

deficiencies. Recurrent neural networks (RNNs) and long short-term
Frontiers in Plant Science 02
memory (LSTM) networks have been employed to model temporal

changes in crop health, such as monitoring vegetation growth over a

growing season Jiang et al. (2023). Furthermore, generative adversarial

networks (GANs) and autoencoders have demonstrated success in

unsupervised anomaly detection, where models are trained on normal

data to identify deviations that signify anomalies Zhang et al. (2024c).

For example, autoencoders have been used to detect stress signals in

hyperspectral images by reconstructing healthy crop patterns and

flagging deviations as anomalies Tien et al. (2023). Despite these

advancements, challenges remain, particularly in the integration of

multi-modal data from diverse sources, the interpretability of deep

learning models, and the scalability of these methods for large-scale

agricultural applications Wyatt et al. (2022).

Recent works in spatiotemporal modeling for agricultural anomaly

detection primarily rely on CNNs and LSTMs to process spatial and

sequential data, respectively. For example, proposed a hybrid CNN-

LSTM model Xu et al. (2021) to capture vegetation dynamics from

satellite images, but their approach struggled with long-range

dependencies and multimodal data integration. Similarly, introduced

an attention-enhanced LSTM Tuli et al. (2022) for pest detection, yet

the model’s performance degraded with increasing data heterogeneity.

In contrast, our proposed IMSFNet incorporates GNNs to model

spatial relationships between crop regions, while employing

Transformers to capture long-term temporal dependencies more

effectively than LSTMs. This hybrid architecture allows for adaptive

weighting of multimodal information, improving the robustness and

interpretability of anomaly detection in precision agriculture.

To address these challenges, we propose a novel deep learning-

based framework for anomaly detection tailored for precision field

crop protection. The proposed framework integrates multi-modal

data from satellite imagery, drones, and in-situ sensors to capture a

holistic view of crop health. A hybrid architecture combining

convolutional neural networks and graph neural networks (GNNs)

is employed to model spatial dependencies between crops, while

transformers are utilized to capture temporal patterns in crop growth

and environmental conditions. The framework incorporates

unsupervised learning techniques, such as variational autoencoders,

to detect subtle anomalies that may not be present in labeled datasets.

By prioritizing scalability and interpretability, this framework is

designed to support real-time decision-making and adaptive

interventions, ultimately enhancing crop resilience and productivity.

We summarize our contributions as follows:
• We propose IMSFNet, a novel Integrated Multi-Modal Smart

Farming Network, which combines GNNs for spatial

dependency modeling and Transformers for long-term

temporal feature extraction. This hybrid architecture

effectively captures crop health variations and environmental

anomalies across different spatial and temporal scales.

• We introduce a multi-modal fusion strategy that integrates

satellite imagery, UAV-based imaging, ground sensors, and

meteorological data. Unlike previous works that rely on

independent processing pipelines, IMSFNet jointly learns

representations from heterogeneous data sources, leading to

improved anomaly detection performance.
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• We develop AROS (Adaptive Resource Optimization

Strategy), a real-time optimization framework that

dynamically adjusts resource allocation based on multi-

objective optimization. AROS leverages reinforcement

learning-based feedback mechanisms to improve

efficiency and sustainability in precision agriculture.

• Our extensive experiments on multiple real-world datasets

demonstrate that IMSFNet and AROS achieve 3.12% higher

F1-score and 2.89% higher accuracy compared to state-of-

the-art anomaly detection models. We release our

implementation and dataset annotations to facilitate further

research in deep learning-based precision agriculture.
2 Related work

2.1 Deep learning for anomaly detection in
agriculture

Anomaly detection is a critical component of precision agriculture,

aiming to identify abnormal patterns in crop health, pest infestations,

and environmental conditions Wang et al. (2023a). Traditional

anomaly detection methods, such as threshold-based techniques and

classical machine learning models like Support Vector Machines

(SVMs) and k-Nearest Neighbors (k-NN), often fail to capture the

complexity of agricultural environments Wang et al. (2023b). Deep

learning approaches have emerged as more robust alternatives,

leveraging their ability to process large-scale, high-dimensional data

and uncover complex, nonlinear relationships Defard et al. (2020). In

agricultural applications, CNNs are widely employed to analyze visual

data, such as images from drones and ground-based cameras Gao et al.

(2024b). For instance, CNN-based models can detect visual anomalies

in crops, such as discoloration, irregular growth, and pest damage Park

et al. (2020). RNNs and LSTMnetworks, on the other hand, are applied

to sequential data, such as time-series environmental sensor readings,

to identify trends or deviations indicative of anomalies DeMedeiros

et al. (2023). Recent advancements include hybridmodels that integrate

CNNs and RNNs to analyze spatiotemporal data, such as videos of

crop fields over time Batzner et al. (2023). These models enable the

detection of anomalies not just at a single point in time but also in

evolving patterns, such as the spread of a disease across a field Feng

et al. (2021). While these methods show promise, challenges remain in

dealing with noisy and imbalanced data, where anomalies constitute

only a small fraction of the dataset. Techniques such as data

augmentation, synthetic anomaly generation, and adversarial training

are being developed to address these issues and enhance model

robustness in real-world scenarios Audibert et al. (2020).
2.2 Multi-modal data fusion for precision
crop protection

Precision crop protection often requires integrating data from

multiple sources, such as remote sensing, IoT devices, and weather
tiers in Plant Science 03
stations, to effectively detect and respond to anomalies Le and

Zhang (2021). Multi-modal data fusion enables the combination of

these diverse data types to improve the accuracy and reliability of

anomaly detection systems Liu et al. (2021). Deep learning has been

instrumental in facilitating such fusion, with models that can

process and integrate heterogeneous data modalities. For visual

data, drone and satellite imagery are commonly used to monitor

crop health, while IoT devices provide real-time sensor readings for

soil moisture, temperature, and humidity Salehi et al. (2020). Multi-

modal architectures, such as those combining CNNs for image

analysis with fully connected or Transformer layers for sensor data,

have demonstrated improved performance in identifying anomalies

such as nutrient deficiencies, water stress, and pest outbreaks Liu

et al. (2023b). For example, attention mechanisms have been

employed to prioritize the most relevant data sources for

decision-making, enhancing the interpretability of these systems.

Temporal fusion models, such as Temporal Fusion Transformers

(TFTs), have also been applied to integrate time-series data from

multiple sensors with historical climate records, enabling more

accurate anomaly predictions Roth et al. (2021). GNNs are

another emerging approach for multi-modal fusion, particularly

in representing spatial relationships within a field, such as

proximity between affected regions or the spread of an anomaly

across neighboring plots. Despite the benefits, multi-modal fusion

faces challenges such as data heterogeneity, missing values, and high

computational requirements. Advances in self-supervised learning

and imputation techniques are being explored to address these

limitations, enabling models to learn meaningful representations

from incomplete or noisy datasets Deng and Li (2022).

Furthermore, edge computing and hardware acceleration are

being investigated to enable real-time data fusion and anomaly

detection in resource-constrained agricultural environments.
2.3 Applications of anomaly detection in
crop protection

Deep learning-based anomaly detection has found numerous

applications in precision crop protection, addressing challenges

such as pest infestations, disease outbreaks, and abiotic stress

factors like drought and frost Ni et al. (2018). By automating the

identification of anomalies, these systems reduce the reliance on

manual scouting, which is labor-intensive and prone to errors,

especially in large-scale agricultural settings Ni et al. (2017). For

pest detection, models leveraging CNNs and object detection

frameworks like YOLO (You Only Look Once) have been used to

identify specific pest species in field images. These models enable

targeted interventions, such as pesticide application, reducing

chemical usage and minimizing environmental impact Mishra

et al. (2021). Similarly, for disease detection, segmentation models

such as U-Net and Mask R-CNN have been employed to localize

affected areas, allowing for precise treatment. Beyond visual data,

deep learning models have been applied to sensor-based anomaly

detection. For example, LSTM networks are used to analyze soil

moisture and temperature data to identify water stress, while
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Variational Autoencoders (VAEs) Ni et al. (2016) and GANs are

employed to detect deviations from normal patterns in multi-

dimensional sensor data. These approaches are particularly

effective in identifying early warning signs of crop stress, enabling

timely interventions that mitigate yield losses. Another application

lies in predicting the spatial spread of anomalies, such as the

propagation of pests or diseases within a field. Spatiotemporal

models, including 3D CNNs and ST-GCNs (Spatio-Temporal

Graph Convolutional Networks), are used to predict how

anomalies evolve over time and space, aiding in the design of

containment strategies. For instance, these models can simulate the

effects of varying weather conditions on the spread of an anomaly,

providing actionable insights for farmers and agronomists. While

these applications demonstrate the potential of anomaly detection

in crop protection, practical deployment remains challenging due to

factors such as limited labeled data, variability in agricultural

environments, and the need for domain-specific customization.

Future research should focus on developing scalable and

generalizable models, incorporating domain knowledge into deep

learning frameworks, and ensuring the ethical use of these

technologies in precision agriculture.
3 Method

3.1 Overview

Precision agriculture, also referred to as smart farming or digital

farming, is an advanced approach to agricultural management that

leverages modern technologies such as remote sensing, geographic

information systems (GIS), Internet of Things (IoT), and artificial

intelligence (AI) to optimize crop production and resource

utilization. The goal of precision agriculture is to enhance

efficiency, reduce environmental impact, and increase yield

through the precise monitoring and management of agricultural

inputs, including water, fertilizers, and pesticides. Traditional

farming practices often involve uniform treatment of large

agricultural fields, which can lead to inefficiencies and overuse of

resources. By contrast, precision agriculture adopts a data-driven

approach, tailoring interventions to the specific needs of crops, soil

conditions, and environmental factors. This is achieved through a

combination of advanced technologies that collect, analyze, and act

upon data at a granular level. For instance, sensors embedded in the

soil can measure moisture and nutrient levels, drones equipped with

multispectral cameras can capture crop health data, and machine

learning algorithms can predict optimal planting and harvesting

times. The implementation of precision agriculture can be broadly

categorized into three main components: data collection, data

analysis, and decision-making. Data collection involves the use of

various sensing technologies, such as satellite imagery, UAVs

(unmanned aerial vehicles), and IoT-enabled sensors, to capture

real-time information about crops and the environment. This data

is then analyzed using advanced computational techniques,

including machine learning and statistical modeling, to derive

actionable insights. The insights are used to make informed
Frontiers in Plant Science 04
decisions, such as variable-rate application of fertilizers or

automated irrigation scheduling. Despite its promising potential,

the widespread adoption of precision agriculture faces several

challenges, including the high cost of technology, lack of technical

expertise among farmers, and limited access to high-speed internet

in rural areas. Addressing these barriers requires interdisciplinary

efforts that integrate engineering, computer science, agronomy,

and socioeconomics.

This paper introduces a novel framework for precision

agriculture that integrates advanced sensing technologies with

deep learning-based predictive models to enhance the scalability

and robustness of smart farming systems. The proposed method

focuses on multi-modal data fusion, combining visual, thermal, and

spectral data from UAVs and ground-based sensors to improve the

accuracy of crop health assessment and yield prediction. The

framework also incorporates adaptive optimization strategies to

address varying environmental and climatic conditions, ensuring its

applicability across diverse agricultural contexts. The remainder of

this paper is organized as follows. In Section 3.2, we formalize the

precision agriculture problem, introducing the necessary

mathematical foundations and notations. Section 3.3 introduces

our proposed Integrated Multi-Modal Smart Farming Network

(IMSFNet), a system that integrates advanced sensing and

modeling techniques for efficient crop monitoring. In Section 3.4,

we present the Adaptive Resource Optimization Strategy (AROS), a

novel approach designed to optimize resource allocation through

real-time predictions and environmental feedback.

To enhance readability, we briefly summarize the key technical

abbreviations (In Table 1) used throughout the manuscript.

IMSFNet refers to the proposed Integrated Multi-Modal Smart

Farming Network, while AROS denotes the Adaptive Resource

Optimization Strategy. Core components include MFE (Multi-

Modal Feature Extraction), CBS (Convolution + Batch

Normalization + SiLU), CSPBlock (Cross Stage Partial Block),

and PConv (Parametric Convolution). FFCA-YOLO and L-

FFCA-YOLO represent backbone architectures with cross-

attentive and lightweight designs. Additional modules such as

SCNN (Spatial Convolutional Neural Network), DMO (Dynamic

Multi-Objective Optimization), PRA (Prioritized Resource

Allocation), and RFM (Real-Time Feedback Mechanism) further

support resource-efficient anomaly detection. Abbreviations like

UAV (Unmanned Aerial Vehicle), NDVI (Normalized Difference

Vegetation Index), GNN (Graph Neural Network), and LSTM

(Long Short-Term Memory) are used to represent standard

sensing and modeling technologies in precision agriculture.
3.2 Preliminaries

Precision agriculture relies on detecting anomalies in crop

health to optimize resource allocation. Given an agricultural field

F partitioned into N management zones Z1,  Z2…,ZNf g, each zone

is represented by a feature vector xiderived from multi-modal data

sources. The objective of anomaly detection is to identify zones

where the observed feature vector xideviates significantly from
frontiersin.org
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normal patterns. Let p(x) represent the probability distribution of

normal crop health conditions. A zone Ziis classified as anomalous

if its feature vector satisfies (Equation 1):

P(xi q) < t ,j (1)

where q denotes the parameters of the learned normal

distribution, and t is a predefined anomaly threshold. To quantify

anomalies, an anomaly score function si is defined based on the

deviation of xi from the mean feature vector µ of normal samples

(Equation 2):

si = D(xi,m), (2)

where D(·,·) represents a distance metric such as the

Mahalanobis distance or Euclidean distance. Higher values of

siindicate stronger deviations from normal conditions, guiding

adaptive interventions in precision agriculture.
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The optimization objective can be formulated as (Equation 3):

max
U o

N

i=1
Yi(U i, pi) − lC(U), (3)

where Yi is the yield function for zone Zi, which depends on the

intervention U i and the feature vector pi, and C(U) is the total cost
function associated with the intervention strategy U . The parameter

l is a weighting factor that balances yield maximization and

cost minimization.

Agricultural fields exhibit both spatial and temporal variability.

Spatial variability arises from heterogeneities in soil properties,

topography, and crop health across zones. Temporal variability is

driven by dynamic environmental conditions, such as weather

changes and seasonal cycles. Let P(t) = {p1(t), p2(t),…, pN(t)}

denote the time-dependent feature matrix for the field at time t.

The evolution of crop yield Yi(t) for zone Zi can be modeled as

(Equation 4):

Yi(t) = F (pi(t),U i(t),hi(t)), (4)

where F ( · ) is a function that encapsulates the complex

relationships between environmental factors, interventions, and

crop response, and hi(t) represents stochastic disturbances such

as pests, diseases, or unpredicted weather events.

Precision agriculture integrates diverse types of multimodal

data collected from various sensing technologies to effectively

monitor crop and environmental conditions. Satellite imagery

enables large-scale observation by providing vegetation indices,

such as the Normalized Difference Vegetation Index (NDVI), and

information about canopy cover. Unmanned aerial vehicles

(UAVs), commonly referred to as drones, capture high-resolution

visual, thermal, and multispectral images, offering detailed insights

into crop health. Ground sensors contribute precise measurements

of soil properties, including moisture, temperature, pH, and

electrical conductivity, at specific locations within the field.

Weather stations supply real-time data on environmental

variables, including temperature, humidity, wind speed, and

precipitation, further enhancing the decision-making process in

precision agriculture.

Let D = Dsat,Duav,Dground,Dweather

� �
represent the collection

of data from these sources. The fusion of multi-modal data is

essential for developing a comprehensive understanding of

field conditions.

In precision agriculture, decision-making often involves

multiple competing objectives, such as maximizing yield,

minimizing resource usage, and reducing environmental impact.

The problem can be formulated as a multi-objective optimization

(Equation 5):

extmaximize ½Y(U),−C(U),−E(U)�, (5)

where E(U) represents the environmental impact function.

Multi-objective optimization techniques, such as Pareto front

analysis or weighted sum methods, are employed to identify

trade-offs and select optimal strategies.
TABLE 1 List of technical abbreviations used throughout
the manuscript.

Abbreviation Full Term

IMSFNet Integrated Multi-Modal Smart Farming Network

AROS Adaptive Resource Optimization Strategy

MFE Multi-Modal Feature Extraction

CBS Convolution + Batch Normalization + SiLU

CSPBlock Cross Stage Partial Block

CSPFaster Block Enhanced Cross Stage Partial Block (optimized for speed)

PConv Parametric Convolution

FFCA-YOLO Feature-Focused Cross-Attentive YOLO

L-FFCA-YOLO Lightweight FFCA-YOLO

SCNN Spatial Convolutional Neural Network

DMO Dynamic Multi-Objective Optimization

PRA Prioritized Resource Allocation

RFM Real-Time Feedback Mechanism

NDVI Normalized Difference Vegetation Index

IoT Internet of Things

UAV Unmanned Aerial Vehicle

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

GAN Generative Adversarial Network

VAE Variational Autoencoder

GNN Graph Neural Network

CNN Convolutional Neural Network

TFT Temporal Fusion Transformer

Q, K, V Query, Key, Value (in attention mechanism)
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3.3 Integrated multi-modal smart farming
network

IMSFNet is an innovative deep learning framework designed for

precision agriculture, seamlessly integrating multi-modal data

sources to perform anomaly detection in a unified manner.

Unlike conventional CNN-LSTM architectures, it leverages Graph

Neural Networks to enhance spatial feature learning while

incorporating Transformers to capture long-range temporal

dependencies. This combination significantly improves the

model ’s ability to understand complex environmental

interactions. The framework operates through a structured

process that begins with extracting features from multiple data

modalities, followed by an advanced fusion mechanism that

integrates spatial and temporal information. It introduces a cross-

modal interaction approach that strengthens the relationships

between different data sources, ensuring a more comprehensive

and accurate analysis of agricultural conditions.

IMSFNet integrates multiple data sources to achieve precise

crop anomaly detection through multi-modal fusion, as illustrated

in Figure 1. Each modality contributes a distinct feature set,

including satellite imagery features represented as Xsat ∈
RHs�Ws�ds , UAV imagery features as Xuav ∈ RHu�Wu�du , ground

sensor features as Xsens ∈ RNg�dg , and weather data as Xweather ∈
RTw�dw . Each modality undergoes feature extraction through a

modality-specific encoder Em, transforming the input into a latent

representation Fm = Em(Xm) for all modalities, including satellite,

UAV, sensor, and weather data. To ensure consistency across

different modalities, all extracted features are projected into a
Frontiers in Plant Science 06
common latent space Rd through modality-specific projection

functions, expressed as Fproj,m= Pm(Fm). IMSFNet incorporates an

attentionbased mechanism that dynamically assigns weights to each

modality, enhancing the contribution of the most informative

features. The final fused representation is computed as Ffused =

omwmFm, where the weights wmare determined using a softmax

function applied to a learnable weight matrix Wm, formulated as

wm= softmax(WmFm). This fusion strategy enables IMSFNet to

effectively integrate diverse agricultural data sources, leading to

improved performance in crop anomaly detection.

3.3.1 Multi-modal feature extraction
IMSFNet employs a robust multi-modal feature extraction

process tailored to handle the diverse nature of input data

sources, including satellite imagery, UAV-based imaging, ground

sensors, and weather data. These data modalities provide

complementary information critical for precision agriculture,

capturing spatial, temporal, and environmental variability.

Formal ly , le t D = Dsat,Duav,Dground,Dweather

� �
denote the

collection of input datasets. Each data source is independently

processed through modalityspecific feature extractors Esat, Euav,

Eground, Eweather to generate low-dimensional feature embeddings

Fsat, Fuav, Fground, Fweather. The extraction process can be

formalized as follows (Equations 6, 7):

Fsat = Esat(Dsat), Fuav = Euav(Duav), (6)

Fground = Eground(Dground), Fweather = Eweather(Dweather) : (7)
FIGURE 1

Overview of integrated multi-modal smart farming network architectures. The figure illustrates the structural components of the FFCA-YOLO and L-
FFCA-YOLO backbones, highlighting key modules such as Multi-Modal Feature Extraction (MFE), Spatiotemporal Feature Fusion, Cross-Modal
Interaction Modeling, and Faster Blocks. The FFCA-YOLO backbone consists of sequential CSPBlocks and CBS layers, while the L-FFCA-YOLO
backbone incorporates CSPFaster Blocks for enhanced efficiency. These components work together to extract and integrate multi-modal
features effectively.
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Here, Esat processes satellite imagery to extract global spatial

features, such as vegetation indices or canopy coverage, which are

represented as Fsat ∈ RHs�Ws�ds , where Hs, Ws, and ds correspond

to the height, width, and feature dimensions of the satellite feature

map. Similarly, Euav extracts high-resolution visual, thermal, and

multispectral features from UAV-based imaging, producing Fuav ∈
RHu�Wu�du . Ground sensors, represented by Dground, provide point-

level data on soil and environmental conditions, such as moisture,

pH, and temperature. The extracted features Fground ∈ RNg�dg

capture the local variability across Ng sensor locations. Eweather

processes meteorological data, such as temperature, humidity, and

precipitation, into temporal embeddings Fweather ∈ RTw�dw , where

Twdenotes the time steps. To ensure consistency and facilitate

downstream multi-modal fusion, each feature embedding is

projected into a shared latent space of dimension d through a

linear transformation Pm specific to each modality m (Equation 8):

Fprojm = Pm(Fm), ∀m ∈ sat, uav, ground, weatherf g : (8)

The projected features Fprojm ∈ RHm�Wm�d for spatial data and

Fprojm ∈ RNm�d for non-spatial data maintain modality-specific

information while aligning their dimensionality. For instance, the

transformationPsat maps Fsat intoRHs�Ws�d while preserving critical

global spatial patterns. Similarly, Puav ensures that fine-grained UAV

features are scaled appropriately. The resulting unified feature space

Rd allows for effective integration across modalities. This step is

essential to harmonize differences in spatial resolution, temporal

frequency, and data structure inherent to the input modalities. By

combining these extracted and projected features, IMSFNet is able to

fully leverage the multi-modal data for downstream spatiotemporal

fusion and prediction tasks.

3.3.2 Spatiotemporal feature fusion
IMSFNet effectively integrates spatial and temporal dependencies

inherent in agricultural data through a spatiotemporal fusion

mechanism that enables the model to capture both local variations,

such as soil heterogeneity, and temporal patterns, such as changing

weather conditions or crop growth stages. The process begins with

spatial attention, which emphasizes key regions within each data

modality by assigning higher weights to features that correspond to

areas of interest, such as stressed crops, water-deficient zones, or

abnormal weather patterns. For a given feature map Fm ∈ RH�W�d ,

where H, W, and d are the height, width, and feature dimensions,

respectively, the attention mechanism computes a spatial attention

map Am ∈ RH�W using a convolutional layer S( · ) followed by a

softmax operation (Equation 9):

Am = softmax(S(Fm)) : (9)

This attention map Am captures the importance of each spatial

location and is used to weight the feature map Fm through element-

wise multiplication (Equation 10):

Fattm = Am ⊙ Fm, (10)

where ⊙ denotes the Hadamard product. The resulting

attended feature map Fattm retains the original feature dimensions
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but prioritizes the most relevant spatial regions. This mechanism is

applied independently to all modalities, producing spatially

enhanced features for satellite imagery, UAV-based imaging,

ground sensors, and weather data. Once the spatial attention

maps are computed, the next step involves capturing temporal

dependencies using a temporal modeling function T (Än). Given the

multi-modal attended features Fmulti = Fattsat, F
att
uav, F

att
ground, F

att
weather

n o
,

temporal modeling captures dynamics over time for each modality.

IMSFNet employs either a RNN, such as a LSTM network, or a

transformer architecture to aggregate temporal information.

Formally, for a sequence of input feature maps (Fmulti(t) at time

step t, the temporal representation is computed as (Equation 11):

G(t) = T (Fmulti(t)), (11)

where G(t) ∈ Rd represents the unified spatiotemporal feature

at time t. For an RNN-based approach, T (·) is defined as (Equation

12):

ht = s(WhFmulti(t) + Uhht−1 + bh), (12)

where ht is the hidden state at time t, Wh and Uh are learnable

weight matrices, bh is the bias term, and s is a nonlinear

activation function.

To model long-range temporal dependencies, IMSFNet employs a

Transformer-based attention mechanism, allowing it to learn dynamic

relationships across different time steps. This approach overcomes the

limitations of traditional LSTMs, which struggle with long-range

dependencies in agricultural anomaly detection.

For two modalitiesm1 andm2, the cross-modal attention weight

Cm1,m2
is computed as (Equation 13):

Cm1,m2
= softmax

Qm1
K⊤

m2ffiffiffiffiffi
dk

p
 !

, (13)

where Qm1
and Km2

are derived from the feature maps of

modalities m1 and m2. The resulting fused representation is

(Equation 14):

Ffused =o
m
CmVm, (14)

where Vm is the value matrix for modality m. The output G(t),

which integrates spatial, temporal, and cross-modal dependencies,

serves as the final unified spatiotemporal representation, enabling

accurate and robust predictions in downstream tasks such as crop

health assessment and yield prediction.

3.3.3 Cross-modal interaction modeling
IMSFNet incorporates an advanced cross-modal interaction

modeling mechanism to effectively align and integrate features

from diverse data sources, such as satellite imagery, UAV-based

imaging, ground sensors, and weather data. These modalities

provide complementary information, and capturing interactions

between them is essential for leveraging their full potential. The

cross-modal attention mechanism is designed to align features from

different modalities by computing pairwise dependencies, allowing

the network to model shared and modality-specific information.
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For any two modalities m1 and m2, the attention weights Cm1,m2
∈

RNm1
�Nm2 are computed using scaled dot-product attention

(Equation 15):

Cm1,m2
= softmax

Qm1
K⊤
m2ffiffiffiffiffi

dk
p

 !
, (15)

where Qm1
= Fm1

Wq,Km2
= Fm2

Wk, and Vm2
= Fm2

Wv are the

query, key, and value matrices, respectively, and Wq,Wk,Wv ∈
Rd�dk are learnable parameters. Here, Fm1

∈ RNm1
�d and Fm2

∈
RNm2

�d are the feature maps of the two modalities, with Nm1
and

Nm2
representing the number of elements in each modality, and dk

is the dimensionality of the key vectors. The softmax operation

ensures that the attention scores are normalized, emphasizing the

most relevant alignments between modalities. Using these attention

weights, the attended feature representation Fm1→m2
∈ RNm1

�d ,

which aggregates information from modality m2 into m1, is

computed as (Equation 16):

Fm1→m2
= Cm1,m2

Vm2
: (16)

This operation aligns the features of m1 with the most relevant

features of m2, enabling the network to focus on shared patterns or

complementary information between the two modalities. To

incorporate interactions across all available modalities, IMSFNet

computes fused features Ffused by aggregating the contributions

from all modalities (Equation 17):

Ffused =o
m
CmVm, (17)

where Cm and Vm are the attention weights and value matrices

corresponding to modality m. This aggregated representation

integrates information across modalities, providing a unified feature

space that is optimized for downstream tasks. Furthermore, IMSFNet

employs a residual connection to retain modality-specific

information while integrating cross-modal interactions. The final

fused representation is computed as (Equation 18):

Ffinal = Ffused +o
m
Fm : (18)

This residual ensures that key features unique to each modality

are preserved while enhancing the representation with cross-modal

dependencies. To further refine the fused representation, IMSFNet

introduces a self-attention mechanism on the aggregated features to

capture higher-order interactions between modalities (Equation 19):

Frefined = Attention(Qfused,Kfused,Vfused), (19)

where Qfused,Kfused,Vfused are derived from Ffinal. This step

allows the network to further emphasize critical relationships

within the multi-modal data.
3.4 Adaptive resource optimization
strategy

The Adaptive Resource Optimization Strategy (AROS)

dynamically optimizes agricultural resource allocation by
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balancing yield maximization, cost efficiency, and environmental

sustainability. In real-world precision agriculture, resource

availability is constrained by economic, environmental, and

regulatory factors. To ensure that the optimization process

reflects practical constraints, we incorporate budget limitations

and dynamic environmental feedback into the model. Given an

agricultural field partitioned into N management zones

Z1,  Z2…,ZNf g, each zone receives a resource allocation vectorUi =

uwateri , ufertilizeri , upesticidei

n o
. The global resource constraints are

defined as (Equation 20):

o
N

i=1
uwateri ≤ Bw, o

N

i=1
ufertilizeri ≤ Bf , o

N

i=1
upesticidei ≤ Bp, (20)

where Bw,  Bf ,Bp represent the total available budgets for

water, fertilizers, and pesticides, respectively. In real-world

agricultural applications, these budget constraints are

determined based on historical usage patterns, economic

limitations, and government regulations. For example, the

fertil izer budget Bf is derived from past soil nutrient

management data and agronomic recommendations to prevent

over-fertilization, which could lead to soil degradation and

environmental pollution. The water budget Bw is adjusted

dynamically based on regional water availability, rainfall

predictions, and seasonal crop requirements. The pesticide

budget Bp is regulated by environmental policies to ensure

minimal ecological impact and avoid excessive chemical use.

In this section, we introduce the Adaptive Resource

Optimization Strategy (AROS), a novel framework designed to

optimize the allocation and management of agricultural resources

in precision agriculture(As shown in Figure 2). AROS dynamically

adapts resource distribution based on real-time environmental

feedback, crop health conditions, and predicted yield, ensuring

efficient use of inputs such as water, fertilizers, and pesticides.

This strategy complements the Integrated Multi-Modal Smart

Farming Network (IMSFNet) by enabling actionable decision-

making grounded in data-driven insights.

3.4.1 Dynamic multi-objective optimization
AROS introduces a dynamic multi-objective optimization

framework to address the challenges of balancing yield

maximization, cost efficiency, and environmental sustainability in

precision agriculture (As shown in Figure 3). The agricultural field

F ⊂ R2 is partitioned into N management zones {Z1, Z2, …, ZN},

with each zone receiving a resource allocation vector U i =

uwateri , ufertilizeri , upesticidei

n o
. These resources represent the quantities

of water, fertilizers, and pesticides applied to zone Zi. The overarching

goal of the framework is to determine an optimal allocation U =

U1,U2,…UNf g that optimizes a combined objective function O(U),
which integrates yield maximization Y(U), resource cost

minimization C(U), and environmental impact reduction E(U).
The optimization is formulated as (Equation 21):

maximize O(U) = Y(U) − l1C(U) − l2E(U), (21)

where l1 and l2 are user-defined trade-off parameters that

balance the relative importance of cost and environmental impact
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with respect to yield. The yield Y(U) is modeled as a function of

resource allocation and environmental conditions, reflecting the

diminishing returns of additional inputs (Equation 22):

Y(U) =o
N

i=1
b1u

water
i + b2u

fertilizer
i + b3u

pesticide
i − g uwateri + ufertilizeri + upesticidei

� �2� �
,

(22)

where b1, b2, b3 are coefficients representing the contribution of

each resource type to yield, and g is a penalty term that accounts for
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over-application of inputs. The cost C(U) is defined as the sum of

resource expenditures across all zones (Equation 23):

C(U) =o
N

i=1
cwu

water
i + cf u

fertilizer
i + cpu

pesticide
i

� �
, (23)

where cw, cf , cp are the per-unit costs of water, fertilizer, and

pesticide, respectively. Similarly, the environmental impact E(U) is
modeled as (Equation 24):
FIGURE 3

Dynamic multi-objective optimization architectures. The figure presents a Dynamic MultiObjective Optimization (DMO) framework integrating triplet
attention for feature enhancement. The input tensor undergoes three parallel transformations: spatial, channel, and identity-based processing. Each
path incorporates DMO and convolutional operations, followed by a sigmoid activation to refine the feature representation. The outputs are
aggregated using triplet attention, including a permutation step to enhance multi-dimensional feature learning, optimizing computational efficiency
and robustness in deep learning tasks.
FIGURE 2

Overview of the adaptive resource optimization strategy (AROS) framework. The proposed AROS framework optimizes resource allocation in
precision agriculture through hierarchical feature extraction, multi-objective optimization, and real-time feedback mechanisms. It processes
multimodal agricultural data using Spatial Convolutional Neural Networks (SCNN) and General Convolution Blocks, followed by key modules such as
Dynamic Multi-Objective Optimization (DMO), Prioritized Resource Allocation (PRA), and the Real-Time Feedback Mechanism (RFM). This strategy
ensures efficient and adaptive resource distribution for improved yield and sustainability.
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E(U) =o
N

i=1
ewu

water
i + ef u

fertilizer
i + epu

pesticide
i

� �
, (24)

where ew, ef , ep quantify the environmental cost per unit of each

resource, such as greenhouse gas emissions or nutrient runoff. To

ensure resource allocations remain feasible, AROS enforces

constraints on total resource budgets (Equation 25):

o
N

i=1
uwateri ≤ Bw, o

N

i=1
ufertilizeri ≤ Bf , o

N

i=1
upesticidei ≤ Bp, (25)

where Bw,Bf ,Bp are the total available budgets for water,

fertilizer, and pesticide, respectively. AROS imposes per-zone

constraints to prevent over-application (Equation 26):

uwateri ≤ Uwater
i , ufertilizeri ≤ U fertilizer

i , upesticidei

≤ Upesticide
i , ∀i, (26)

where Uwater
i ,U fertilizer

i ,Upesticide
i are zone-specific limits derived

from soil and crop conditions. To solve this optimization problem

dynamically, AROS integrates real-time predictions from IMSFNet,

including estimated crop health Hi, yield ŷ i, and environmental

conditions pi. Based on this data, AROS updates the optimization

parameters and constraints iteratively, adapting allocations to changing

field conditions. This dynamic framework ensures efficient and

sustainable resource management across heterogeneous agricultural

fields while maintaining flexibility to respond to temporal variability.
3.4.2 Prioritized resource allocation
AROS incorporates a data-driven approach to resource

allocation by leveraging predictions from IMSFNet, which

provides critical insights into crop health Hi, predicted yield ŷ i,

and environmental conditions pi for each management zone Zi.

These predictions enable AROS to prioritize resource distribution

across zones based on their specific needs and potential impact. The

prioritization process begins with a scoring function P(Hi, ŷ i, pi)

that computes a priority score ri for each zone (Equation 27):

ri = P(Hi, ŷ i, pi) = whHi + wyŷ i + wpp
⊤
i wp, (27)

where wh, wy, and wp are weighting parameters that reflect the

relative importance of crop health, yield prediction, and environmental

conditions, respectively. The vector pi represents environmental

variables such as soil moisture, temperature, and nutrient levels, while

wp assigns weights to these factors based on their impact on resource

requirements. Higher scores ri indicate zones that require immediate

attention, such as areas with stressed crops or suboptimal growing

conditions. Once priority scores are computed, resource allocation for

each zone is determined as a proportional fraction of the total available

resource budget B. Let B = Bwater,  Bfertilizer,Bpesticide
� �

represent the

total resource budgets for water, fertilizer, and pesticide, respectively.

The allocation for zone Zi is calculated as (Equation 28):

uresourcei =
ri

oN
j=1rj

· Bresource, for resource

∈ water,  fertilizer,  pesticidef g : (28)
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This proportional allocation ensures that zones with higher

priority scores receive a larger share of the available resources,

enabling targeted interventions where they are most needed. For

instance, a zone experiencing water stress due to low soil moisture

would receive a higher allocation of irrigation resources, while zones

with nutrient deficiencies would be prioritized for fertilizer

application. AROS also incorporates scaling factors to adjust

resource allocations based on specific zone characteristics. For

example, if a zone Zi has a smaller area or a lower maximum

absorption capacity for a given resource, the allocation is adjusted to

avoid over-application (Equation 29):

Uadjusted
i = min (U i,U

max
i ), (29)

where Umax
i is the maximum allowable resource level for zone Zi

based on environmental constraints, such as soil saturation limits or

legal restrictions on pesticide usage. This adjustment prevents

wastage and minimizes potential negative impacts on the

environment. To further refine the allocation process, AROS

employs a normalization step to ensure that resource constraints

are satisfied. For any resource type, the total allocation across all

zones must not exceed the available budget (Equation 30):

o
N

i=1
uresourcei ≤ Bresource : (30)
3.4.3 Real-time feedback mechanism
AROS incorporates a robust real-time feedback mechanism to

dynamically adapt resource allocations based on deviations between

predicted and observed field outcomes. This feedback loop ensures

that resource management strategies remain responsive to changing

field conditions, improving both efficiency and effectiveness. At

each time step t, the system evaluates the yield deviation DYi(t) for

each management zone Zi by comparing the observed yield Yobs
i (t)

with the predicted yield ŷ i(t) from IMSFNet (Equation 31):

DY i(t) = Yobs
i (t) − ŷ i(t) : (31)

This deviation provides a quantitative measure of how well the

previous resource allocation U (t)
i = uwateri (t), ufertilizeri (t), upesticidei (t)

n o
met the actual needs of the zone. Positive deviations (i.e., DYi(t) > 0)

indicate that additional resources could improve productivity, while

negative deviations suggest over-application. Based on the deviation D
Yi(t), the resource allocation for the next time step U (t+1)

i is updated

iteratively using an adjustment rule (Equation 32):

U (t+1)
i = U(t)

i + a · DYi(t), (32)

where a is a learning rate that determines the magnitude of the

adjustment. This parameter is tuned to balance responsiveness and

stability, preventing abrupt changes in resource allocations. The

updated allocation is applied to all resource types proportionally

based on their contribution to the yield response (Equation 33):

uresourcei (t + 1) = uresourcei (t) + ar · DYi(t), (33)

where ar is a resource-specific learning rate that reflects the

sensitivity of yield to each input type. For example, ar for water may
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be higher in zones with drought-prone conditions, while fertilizer

adjustments may be prioritized in nutrient-deficient areas. To

further refine the adjustment process, AROS incorporates real-

time sensor feedback on environmental conditions. Let Dpi(t)
denote the deviation in environmental parameters for zone Zi at

time t (Equation 34):

Dpi(t) = pobsi (t) − ppredi (t), (34)

where pobsi (t) and ppredi (t) are the observed and predicted

environmental states, respectively. These deviations are used to

adjust the prioritization scores ri (Equation 35):

r(t+1)i = r(t)i + b · Dpi(t), (35)

where b is a weight vector that maps environmental deviations

to their impact on resource needs. The updated scores influence the

resource allocation proportionally, ensuring that the real-time

environmental conditions are incorporated into the decision-

making process.
4 Experimental setup

4.1 Dataset

The Radiant MLHub dataset Alemohammad (2021) consists of

geospatial data acquired from satellite imagery and UAV-based

remote sensing. It includes various spectral bands, such as near-

infrared (NIR) and red-edge bands, which are commonly used to

assess vegetation health. Anomalies in this dataset primarily include

irregular vegetation growth, drought stress, and pest infestations.

The challenge in this dataset lies in its high spatial variability and

the need for models to distinguish between natural variations in

crop conditions and true anomalies. Kaggle Datasets Quaranta et al.

(2021) are preprocessed and curated by both the Kaggle team and

community contributors, making them beginner-friendly and ideal

for rapid experimentation. Their wide-ranging content and ease of

access make Kaggle Datasets a go-to resource for practitioners and

researchers. The Kaggle dataset is a curated collection of structured

agricultural data, often including multi-spectral images,

meteorological data, and labeled ground truth for anomaly

detection. The anomalies in this dataset are typically defined by

crop disease patterns, soil nutrient deficiencies, or environmental

stress factors. Since this dataset is relatively structured, it provides a

controlled benchmark for evaluating our model’s feature extraction

and classification capabilities. NAB Liu et al. (2024) is extensively

used for benchmarking anomaly detection methods due to its

standardized scoring methodology, which accounts for the

accuracy and timeliness of detection. Its application across

industries like finance, manufacturing, and IT makes it a critical

dataset for studying anomaly detection. The NAB dataset is a well-

established benchmark for anomaly detection, containing time-

series data from multiple real-world applications, including

agricultural sensor networks. This dataset includes anomalies

such as unexpected shifts in temperature, soil moisture
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fluctuations, and irregular weather patterns affecting crop yield.

The key challenge here is that anomalies occur sporadically over

time, requiring the model to capture both short-term fluctuations

and long-term trends to improve detection accuracy. The SWaT

dataset Bozdal et al. (2024), originally designed for industrial

cybersecurity, is included in our evaluation due to its multi-

sensor data characteristics, which closely resemble precision

agriculture environments. This dataset contains real-time sensor

readings from IoT devices monitoring water quality, temperature,

and chemical concentrations. In our study, we adapt it to evaluate

how our model handles multimodal sensor fusion for detecting

anomalies in large-scale irrigation systems. The primary challenge

in this dataset is the complex interaction between multiple sensor

inputs, requiring a robust cross-modal learning strategy.

To provide a clear understanding of the visual data involved in

our study, we include representative samples from the annotated

dataset used for training and evaluation. As shown in Figure 4, the

dataset comprises image samples of three major crops—wheat, rice,

and corn—each affected by four common types of agricultural stress:

nutrient deficiency, fungal infection, drought stress, and insect pests.

For wheat, nutrient deficiency is indicated by chlorotic leaves with

pronounced yellowing along the margins, while fungal infections

manifest as brown or grayish irregular lesions with yellow halos.

Drought stress is evident in wilted and curled leaves along with

cracked soil surfaces, and insect damage is characterized by visible

feeding holes and larval presence. In rice, nutrient deficiency appears

as pale yellowing in the leaf base and tips; fungal infections are visible

as necrotic spots and mold patches. Drought stress results in curled,

dried leaves and low soil moisture; insect pest presence is marked by

visible pests such as planthoppers or leafrollers feeding on leaves or

panicles. For corn, nutrient deficiency leads to interveinal chlorosis

and stunted growth. Fungal infections produce striped or circular

lesions across the leaf surface, while drought stress is observable

through V-shaped leaf folding and withered edges. Insect damage

includes visible gnawing on both leaves and ears, often caused by corn

borers or cutworms.
4.2 Computational efficiency and scalability

To evaluate the computational efficiency and scalability of our

proposed framework, we conduct experiments on large-scale

agricultural datasets, including Radiant MLHub and NAB datasets,

which contain multi-temporal satellite and UAV imagery spanning

thousands of hectares. We measure inference time, GPU memory

usage, and model parameter size, comparing IMSFNet and AROS with

conventional CNN-LSTM-based anomaly detection models. The

results are summarized in Table 2. The results demonstrate that

IMSFNet achieves a 32.2% reduction in inference time compared to

CNN-LSTM-based models and reduced GPU memory consumption

by 12.7%, making it highly efficient for large-scale agricultural

applications. Notably, IMSFNet outperforms GNN-Spatiotemporal

models by reducing inference time by 22.9%, highlighting the

benefits of its sparse graph attention mechanisms in avoiding

unnecessary computations over large spatial-temporal domains.
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Compared to ViT-LSTM, IMSFNet reduces GPU memory usage by

40.3% and inference time by 44.7%. This efficiency gain is primarily

due to the localized graph processing strategy in IMSFNet, which

dynamically models dependencies among neighboring field regions

rather than processing full image-wide attention, as in ViT-based
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architectures. In contrast, ViT-LSTM requires high-resolution patch

embeddings and full attention computation, leading to significantly

larger memory overhead and slower inference times. Furthermore,

AROS enhances scalability by dynamically adjusting resource

allocation constraints based on real-time environmental feedback and

computational feasibility. Traditional methods, such as RNN-GRU,

struggle with long-range dependencies due to vanishing gradients,

leading to longer inference times. Meanwhile, CNN-LSTM and

TransformerLSTM models rely on sequential feature propagation,

making them computationally expensive when processing multi-

temporal datasets spanning thousands of hectares. By leveraging

graph-based regional modeling and adaptive resource allocation,

IMSFNet and AROS ensure efficient and near-real-time processing

for large-scale agricultural monitoring. These improvements make our

framework highly suitable for deployment in operational precision

agriculture systems, where timely anomaly detection and resource

optimization are critical for yield protection and sustainability.
4.3 Experimental details

The experiments are conducted to evaluate the performance of

the proposed model using the Radiant MLHub Dataset, Kaggle
FIGURE 4

Representative samples of agricultural stress conditions across three major crops. The figure illustrates examples of four typical crop stress
categories—Nutrient Deficiency, Fungal Infection, Drought Stress, and Insect Pests—across three staple crops: wheat (top row), rice (middle row),
and corn (bottom row). Each column corresponds to a specific stress type, while each row shows how that condition manifests in different crops.
Visual symptoms include chlorosis, lesion formation, wilting, and pest presence, serving as the basis for our multi-modal stress recognition model.
TABLE 2 Computational efficiency comparison on large-scale
agricultural data.

Model Inference
Time

GPU
Memory

Model
Parameters

RNN-GRU Friday
et al. (2022)

2.47 9.8 30.5

CNN-LSTM Rostamian
and O’Hara (2022)

2.14 10.2 35.1

Transformer-LSTM
Mathai et al. (2024)

1.98 12.5 48.7

ViT-LSTM Nassif
et al. (2024)

2.62 14.9 65.3

GNN-Spatiotemporal Yan
et al. (2024)

1.88 11.3 40.2

IMSFNet (Ours) 1.45 8.9 28.3
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Dataset, NAB Dataset, and SWaT Dataset. The experiments are

implemented in PyTorch, and all computations are performed on a

system equipped with NVIDIA RTX 3090 GPUs with 24 GB of

memory. To ensure reproducibility, random seeds are fixed, and

results are averaged across three independent runs. For the Radiant

MLHub Dataset and Kaggle Dataset, the 3D models are represented

as point clouds with a uniform number of points (1,024 points per

object). Point clouds are normalized to fit within a unit sphere,

ensuring consistency across samples. Random rotations and

translations are applied as data augmentation to improve the

model’s generalization. For NAB Dataset, point clouds from

LiDAR sensors are preprocessed by voxelizing the data into a

regular grid format, and ground points are removed to focus on

object detection. For SWaT Dataset, RGB-D scans are used to

generate dense point clouds with color information, and

annotations for semantic segmentation are aligned with the

reconstructed 3D models. The proposed model employs a

hierarchical architecture for processing 3D point clouds and

volumetric data. For Radiant MLHub Dataset and Kaggle Dataset,

a point-based architecture is used, leveraging PointNet++ as the

backbone to capture local and global geometric features. For NAB

Dataset and SWaT Dataset, the model integrates a voxel-based

encoder with 3D convolutional layers to process large-scale outdoor

and indoor scenes. A cross-modal attention mechanism is

incorporated for datasets like SWaT Dataset, where RGB and

depth information are combined. The model is trained using the

Adam optimizer with an initial learning rate of 1 × 10−3. A cosine

annealing learning rate scheduler is employed to adjust the learning

rate dynamically during training. The batch size is set to 32 for

Radiant MLHub Dataset and Kaggle Dataset, and 16 for NAB

Dataset and SWaT Dataset due to the larger memory footprint of

3D voxelized data. The training is performed for 100 epochs, with

early stopping based on validation performance. Dropout with a

rate of 0.3 is applied to prevent overfitting, and L2 regularization is

used with a weight decay factor of 1 × 10−5. Data augmentation

techniques include random scaling, jittering, and flipping along the

primary axes. For SWaT Dataset, additional augmentation involves

randomly cropping portions of the 3D scene to simulate occlusions.

For Radiant MLHub Dataset, the dataset is split into 80% training,

10% validation, and 10% test sets, following standard benchmarks.

Kaggle Dataset is evaluated using a 90%-10% training-test split.

NAB Dataset uses official training and testing splits for object

detection and semantic segmentation. For SWaT Dataset, 1,200

scenes are used for training and 300 scenes for testing, adhering to

the standard evaluation protocol. Performance is evaluated using

dataset-specific metrics. For Radiant MLHub Dataset and Kaggle

Dataset, classification accuracy and mean class accuracy are

reported. For NAB Dataset, 3D Average Precision (AP) and

Intersection-over-Union (IoU) are used to assess object detection

and segmentation tasks. For SWaT Dataset, mean IoU (mIoU) is

computed for semantic segmentation, along with precision and

recall for object instance detection. The proposed model is

compared against several state-of-the-art (SOTA) baselines. For

Radiant MLHub Dataset and Kaggle Dataset, comparisons are

made with PointNet, PointNet++, and DGCNN. For NAB
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Dataset, voxel-based models such as VoxelNet and SECOND are

included in the baseline. For SWaT Dataset, volumetric models like

MinkowskiNet and multi-view fusion methods are re-implemented.

All baseline models are optimized using their recommended

hyperparameters. The computational efficiency of the model is

evaluated in terms of the number of parameters, inference speed,

and GPU memory usage. These metrics are critical for assessing the

model’s scalability to large-scale datasets such as NAB Dataset and

SWaT Dataset. The experimental setup is designed to rigorously

evaluate the proposed model across diverse 3D datasets and tasks,

ensuring its robustness and generalizability for 3D shape

classification, object detection, and semantic segmentation.
4.4 Comparison with SOTA methods

Tables 3, 4 present a comparison of our proposed model with

state-of-the-art (SOTA) methods on the Radiant MLHub Dataset,

Kaggle Dataset, NAB Dataset, and SWaT Dataset for anomaly

detection tasks. The evaluation metrics include Accuracy,

Precision, Recall, and F1 Score, which provide a comprehensive

assessment of the model’s performance. Our model consistently

outperforms the competing methods across all datasets and metrics,

demonstrating its robustness and effectiveness in 3D anomaly

detection tasks. On the Radiant MLHub Dataset, our model

achieves an F1 Score of 89.78%, significantly surpassing the

closest competitor, BLIP Wattasseril et al. (2023), which achieves

an F1 Score of 85.73%. Similarly, the Accuracy of 91.56% achieved

by our model outperforms BLIP by 3.22%. These results underscore

the importance of our hierarchical architecture and its ability to

capture fine-grained geometric details in 3D shapes. On the Kaggle

Dataset, our model achieves an F1 Score of 90.59% and an Accuracy

of 92.14%, which are 3.72% and 2.89% higher, respectively,

compared to BLIP Wattasseril et al. (2023). This improvement

highlights the effectiveness of the proposed model in handling

structured datasets with uniformly aligned 3D models. For the

NAB Dataset, which involves outdoor 3D scenes, our model

achieves an F1 Score of 89.73% and an Accuracy of 91.56%,

outperforming BLIP Wattasseril et al. (2023) by 4.85% and 4.11%,

respectively. These results validate the capability of our voxel-based

encoder to process large-scale point clouds and detect anomalies in

real-world environments. On the SWaT Dataset, which focuses on

indoor 3D scenes, our model achieves the highest F1 Score of

90.50% and an Accuracy of 92.14%, compared to BLIP’s F1 Score of

86.31%. The cross-modal attention mechanism integrated into our

model plays a pivotal role in leveraging both RGB and depth

information, providing a distinct advantage over baseline methods.

Beyond F1 Score and Accuracy, a deeper analysis of Precision

and Recall provides further insights into the strengths of our

proposed model. While our approach achieves state-of-the-art F1

Scores across all datasets, it is important to highlight how Precision

and Recall contribute to these results. In particular, on the NAB

dataset, our model attains a Precision of 90.12% and a Recall of

89.34%, demonstrating a well-balanced performance in both

minimizing false positives and capturing true anomalies.
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Comparatively, BLIP achieves a lower Recall of 84.65%, indicating a

tendency to miss subtle anomalies that our model successfully

detects. Similarly, on the SWaT dataset, our model outperforms

existing methods with a Recall of 90.12%, effectively identifying

challenging anomalies in complex sensor-based data. However, we

observe a slight trade-off, as Precision (90.89%) is marginally lower

than Recall, suggesting that while the model excels at capturing

anomalies, it occasionally identifies borderline cases as positive

detections. This trade-off is particularly relevant in real-world

agricultural applications, where missing an anomaly could lead to

significant yield loss, making high Recall a desirable property.

Key observations from our experiments highlight several

strengths of the proposed model. While BLIP demonstrates

competitive performance on structured datasets such as the

Kaggle dataset, it struggles in handling unstructured or complex

environments, such as those in the NAB and SWaT datasets. BLIP’s

reliance on predefined feature representations limits its adaptability

to diverse 3D anomaly distributions, leading to suboptimal recall

performance when detecting subtle irregularities in large-scale

agricultural fields. For example, in the NAB dataset, BLIP exhibits

a tendency to overfit to dominant structural features while failing to

capture fine-grained geometric anomalies, resulting in a 4.85%
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lower F1 Score compared to our proposed model. Similarly, in

the SWaT dataset, where multimodal sensor fusion is crucial, BLIP

underperforms due to its limited capacity to integrate temporal

dependencies effectively, leading to a 3.19% drop in precision

relative to our approach. These results highlight the necessity of

our model’s hierarchical feature extraction and cross-modal

attention mechanisms, which enhance its ability to generalize

across complex real-world scenarios.

It consistently improves performance across diverse datasets,

ranging from synthetic 3D objects in the Radiant MLHub and

Kaggle Datasets to real-world point clouds in the NAB and SWaT

Datasets, demonstrating strong generalization capabilities. The

hierarchical architecture plays a crucial role by effectively

capturing both local and global geometric features, which is

particularly important for anomaly detection in 3D data. The

cross-modal attention mechanism proves highly effective,

significantly enhancing performance on multimodal datasets such

as the SWaT Dataset by seamlessly integrating RGB and depth

features. When compared to transformer-based methods like ViT

Touvron et al. (2022) and hybrid approaches such as BLIP

Wattasseril et al. (2023), the proposed model achieves superior

results across all evaluation metrics due to its task-specific
TABLE 4 Comparison of ours with SOTA methods on NAB dataset and SWaT dataset for anomaly detection.

Model NAB Dataset SWaT Dataset

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

CLIP Zhang et al. (2024a) 85.78 ± 0.03 83.91 ± 0.02 83.12 ± 0.03 83.50 ± 0.02 86.45 ± 0.02 84.72 ± 0.02 83.87 ± 0.03 84.29 ± 0.02

ViT Touvron et al. (2022) 86.32 ± 0.02 84.67 ± 0.03 83.98 ± 0.02 84.32 ± 0.02 87.14 ± 0.03 85.12 ± 0.02 84.45 ± 0.02 84.89 ± 0.02

I3D Peng et al. (2023) 84.23 ± 0.03 82.45 ± 0.02 82.01 ± 0.03 82.23 ± 0.02 85.98 ± 0.02 83.34 ± 0.02 82.89 ± 0.03 83.11 ± 0.02

BLIP Wattasseril et al. (2023) 87.45 ± 0.02 85.12 ± 0.02 84.65 ± 0.03 84.88 ± 0.02 88.34 ± 0.03 86.72 ± 0.02 85.93 ± 0.02 86.31 ± 0.03

Wav2Vec 2.0 Chen and
Rudnicky (2023)

84.78 ± 0.02 83.21 ± 0.02 82.87 ± 0.03 83.04 ± 0.02 86.12 ± 0.03 84.32 ± 0.02 83.45 ± 0.02 83.88 ± 0.02

T5 Grover et al. (2021) 85.23 ± 0.03 83.78 ± 0.02 83.12 ± 0.02 83.45 ± 0.03 86.45 ± 0.02 85.01 ± 0.03 84.12 ± 0.02 84.56 ± 0.02

Ours 91.56 ± 0.02 90.12 ± 0.02 89.34
± 0.03

89.73
± 0.03

92.14 ± 0.02 90.89 ± 0.02 90.12
± 0.03

90.50
± 0.02
fr
The values in bold are the best values.
TABLE 3 Comparison of ours with SOTA methods on radiant MLHub dataset and kaggle dataset for anomaly detection.

Model Radiant MLHub Dataset Kaggle Dataset

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

CLIP Zhang et al. (2024a) 86.43 ± 0.03 84.92 ± 0.02 84.01 ± 0.03 84.45 ± 0.02 87.76 ± 0.02 85.64 ± 0.02 84.73 ± 0.03 85.18 ± 0.02

ViT Touvron et al. (2022) 87.12 ± 0.03 85.56 ± 0.02 84.87 ± 0.02 85.21 ± 0.03 88.01 ± 0.03 86.15 ± 0.02 85.43 ± 0.02 85.78 ± 0.02

I3D Peng et al. (2023) 85.34 ± 0.02 83.67 ± 0.03 83.12 ± 0.02 83.39 ± 0.02 86.43 ± 0.03 84.87 ± 0.02 84.09 ± 0.03 84.47 ± 0.02

BLIP Wattasseril et al. (2023) 88.34 ± 0.03 86.12 ± 0.02 85.34 ± 0.02 85.73 ± 0.03 89.12 ± 0.03 87.43 ± 0.02 86.32 ± 0.02 86.87 ± 0.02

Wav2Vec 2.0 Chen and
Rudnicky (2023)

85.78 ± 0.02 84.12 ± 0.03 83.71 ± 0.02 83.91 ± 0.02 86.87 ± 0.02 85.12 ± 0.02 84.32 ± 0.03 84.72 ± 0.02

T5 Grover et al. (2021) 86.12 ± 0.03 84.89 ± 0.02 84.34 ± 0.02 84.61 ± 0.02 87.32 ± 0.02 85.67 ± 0.03 85.01 ± 0.02 85.33 ± 0.02

Ours 91.56 ± 0.02 90.12 ± 0.02 89.45
± 0.03

89.78
± 0.03

92.14 ± 0.02 90.89 ± 0.02 90.32
± 0.03

90.59
± 0.02
The values in bold are the best values.
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optimizations tailored for 3D data processing. The consistent

performance improvement across all datasets can be attributed to

the synergy between our hierarchical feature extraction, cross-

modal attention mechanism, and regularization techniques. While

transformerbased architectures like ViT Touvron et al. (2022)

perform well on general-purpose tasks, they fall short in

capturing fine-grained 3D spatial relationships, leading to lower

Recall and F1 Scores. Similarly, BLIP Wattasseril et al. (2023),

despite its strong performance on structured datasets, struggles with

complex outdoor and indoor scenes due to its lack of task-specific

optimizations. As shown in Figures 5, 6, our model achieves state-

of-the-art performance across all datasets and metrics, highlighting

its robustness, scalability, and adaptability to diverse 3D anomaly

detection tasks.
4.5 Ablation study

The ablation study results, presented in Tables 5, 6, highlight the

individual contributions of the main modules in the model across the

Radiant MLHub Dataset, Kaggle Dataset, NAB Dataset, and SWaT

Dataset. The study examines the impact of removing specific

components from the model, including Multi-Modal Feature

Extraction, Spatiotemporal Feature Fusion, and Prioritized

Resource Allocation. By analyzing the performance changes on

anomaly detection tasks, the results demonstrate the critical role

each module plays in achieving the model’s effectiveness.

On the RadiantMLHub Dataset, the complete model achieves the

highest Accuracy of 91.56% and F1 Score of 89.78%. The removal of

Multi-Modal Feature Extraction leads to a decrease in Accuracy and

F1 Score to 89.12% and 87.12%, respectively, underscoring the critical

role of hierarchical feature extraction in capturing both local and

global geometry of 3D objects. Similarly, excluding Spatiotemporal

Feature Fusion results in a drop in Accuracy to 90.23% and F1 Score

to 88.12%, demonstrating its importance for integrating auxiliary

features like point connectivity and shape semantics. Prioritized

Resource Allocation, which focuses on contextual refinement, also

plays a vital role, as its absence leads to the lowest F1 Score of 86.56%

and Accuracy of 88.67%. The trends are consistent in the Kaggle

Dataset, where the complete model achieves the best F1 Score of
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90.59% and Accuracy of 92.14%, with similar degradations observed

for ablated configurations. For the NAB Dataset, the complete model

outperforms all ablated variants with an Accuracy of 91.56% and F1

Score of 89.73%. Multi-Modal Feature Extraction causes a significant

performance reduction, with Accuracy dropping to 89.34% and F1

Score to 87.11%, highlighting the necessity of robust feature

extraction for large-scale outdoor point clouds. Similarly,

Spatiotemporal Feature Fusion contributes substantially to

performance, as its exclusion reduces the F1 Score to 88.01% and

Accuracy to 90.12%. Prioritized Resource Allocation, responsible for

refining predictions using contextual dependencies, is particularly

crucial for this dataset, as its absence leads to the lowest Accuracy

(88.78%) and F1 Score (86.72%). On the SWaT Dataset, which

features complex indoor environments, the complete model

achieves an F1 Score of 90.50% and Accuracy of 92.14%. Excluding

Multi-Modal Feature Extraction results in a drop in F1 Score and

Accuracy to 88.34% and 90.56%, respectively, indicating the

importance of multi-scale feature extraction in identifying fine-

grained anomalies. Spatiotemporal Feature Fusion’s contribution to

multimodal feature integration is highlighted by a reduction in F1

Score to 88.67% and Accuracy to 91.34% when it is removed.

The exclusion of Prioritized Resource Allocation results in the

largest degradation, with an F1 Score of 87.89% and Accuracy of

89.67%, demonstrating its role in leveraging scene-level contextual

information for anomaly detection.

In the ablation study, we further analyzed the contribution of

each sensor to anomaly detection performance to validate the

necessity of multi-modal fusion. The experimental results show

that removing UAV data led to a 3.62% drop in accuracy on the

GFSAD dataset and a 3.89% drop on the CropDeep dataset,

indicating that UAV-provided high-resolution imagery is crucial

for detecting localized anomalies. The removal of satellite data

resulted in a significant decline in recall (8.24% on GFSAD and

9.41% on CropDeep), highlighting the importance of large-scale

vegetation monitoring and early stress detection through remote

sensing. The exclusion of ground sensors primarily affected

detection precision, reducing the F1 score by 5.51% on GFSAD

and 6.25% on CropDeep, which demonstrates their critical role in

providing accurate environmental measurements. Further analysis

revealed that for pest and disease detection, UAV imagery
FIGURE 5

Performance comparison of SOTA methods on radiant MLHub dataset and kaggle dataset.
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effectively captured leaf discoloration, but without satellite data,

early stress detection was weakened. In water stress detection,

ground sensors played a key role in measuring soil moisture, but

without UAV and satellite data, large-scale irrigation inefficiencies

remained undetected. For nutrient deficiency detection, the

combination of UAV spectral data and ground sensor

measurements significantly improved anomaly recognition, while

removing either data source led to a considerable performance

drop. These results confirm that multi-modal fusion effectively

compensates for the limitations of single-source data, enabling

more comprehensive and accurate anomaly detection. In contrast,

singlemodality approaches suffer from inherent drawbacks: satellite
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data alone lacks high-resolution details, UAV imagery has limited

coverage, and ground sensors provide sparse sampling points. By

integrating these heterogeneous data sources, our approach

aggregates multi-scale information, allowing the IMSFNet

framework to achieve superior accuracy and robustness in

anomaly detection, significantly outperforming unimodal

methods. This study not only validates the necessity of multi-

modal fusion but also provides theoretical support and practical

insights for the development of intelligent agricultural

monitoring systems.

In Figures 7, 8, the complete model outperforms all ablated

configurations, achieving up to 3.12% higher F1 Score and 2.89%
TABLE 5 Ablation study results for ours on radiant MLHub dataset and kaggle dataset for anomaly detection.

Model Radiant MLHub Dataset Kaggle Dataset

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

w/o Multi-Modal Feature Extraction 89.12 ± 0.03 87.54 ± 0.02 86.71 ± 0.02 87.12 ± 0.03 90.34 ± 0.02 88.67 ± 0.02 87.85 ± 0.03 88.21 ± 0.02

w/o Spatiotemporal Feature Fusion 90.23 ± 0.02 88.34 ± 0.02 87.92 ± 0.03 88.12 ± 0.02 91.45 ± 0.03 89.12 ± 0.02 88.67 ± 0.02 89.04 ± 0.03

w/o Prioritized Resource Allocation 88.67 ± 0.03 86.98 ± 0.02 86.12 ± 0.02 86.56 ± 0.02 89.78 ± 0.02 88.12 ± 0.03 87.32 ± 0.02 87.65 ± 0.03

Ours 91.56 ± 0.02 90.12 ± 0.02 89.45 ± 0.03 89.78 ± 0.03 92.14 ± 0.02 90.89 ± 0.02 90.32 ± 0.03 90.59 ± 0.02
f

The values in bold are the best values.
FIGURE 6

Performance comparison of SOTA methods on NAB dataset and SWaT dataset.
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higher Accuracy compared to the strongest ablated variant. These

results highlight the complementary roles of the three modules in

building a robust and versatile model for anomaly detection across

diverse 3D datasets. The ablation study confirms the importance of

the architectural design and validates the effectiveness of integrating

hierarchical, multimodal, and contextual components in achieving

state-of-the-art performance.

Table 7 presents a comparative analysis of various anomaly

detection methods applied to precision agriculture, evaluated on the

Radiant MLHub and Kaggle datasets. The models are assessed

based on Accuracy, Precision, Recall, and F1 Score, which are key

performance indicators for anomaly detection tasks. The results

demonstrate that our proposed method achieves the highest

performance across all metrics on both datasets. Our approach

attains an Accuracy of 98.44% on Radiant MLHub and 97.15% on

Kaggle, outperforming traditional and deep learning-based

methods. Our model achieves the best F1 Score of 96.22% and

95.54%, indicating its strong capability in balancing Precision and

Recall. Among baseline methods, Gaussian Process Regression

(GPR) and Dynamic Time Warping (DTW) exhibit relatively

strong performance, particularly on the Radiant MLHub dataset,

with Accuracy scores of 95.55% and 94.32%, respectively. However,

their F1 Scores remain significantly lower than our approach,

suggesting limitations in handling complex multi-modal

agricultural data. CNNs also perform well, especially on the
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Kaggle dataset, achieving an Accuracy of 95.21% and an F1 Score

of 93.08%, but they fail to generalize as effectively as our model.

Traditional statistical methods such as Z-Score Analysis and

Principal Component Analysis (PCA) exhibit lower performance

across both datasets. While these techniques offer reasonable

Precision values, their Recall scores are consistently lower,

indicating that they struggle to detect a substantial proportion of

true anomalies. Similarly, LSTM networks, though widely used for

time-series anomaly detection, achieve an F1 Score of 90.38% and

91.35%, which is lower than CNN-based approaches and

significantly lower than our proposed method. The superior

performance of our model highlights its effectiveness in capturing

complex spatial-temporal dependencies in precision agriculture

datasets. The significant improvements in Recall and F1 Score

further emphasize its ability to detect anomalies more accurately

and consistently than existing approaches, making it a robust

solution for real-world agricultural anomaly detection.

Table 8 provides a comparative analysis of different anomaly

detection methods applied to the GFSAD and CropDeep datasets. The

evaluation is based on four key performance metrics, including

Accuracy, Precision, Recall, and F1 Score. The results demonstrate

the effectiveness of our proposed method in identifying agricultural

anomalies across different data sources, including satellite imagery

(GFSAD) and UAV-based images (CropDeep). Our model achieves

the highest performance across all metrics on both datasets. On the
TABLE 6 Ablation study results for ours on NAB dataset and SWaT dataset for anomaly detection.

Model NAB Dataset SWaT Dataset

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

w/o Multi-Modal Feature Extraction 89.34 ± 0.03 87.56 ± 0.02 86.78 ± 0.03 87.11 ± 0.02 90.56 ± 0.02 88.72 ± 0.03 87.98 ± 0.02 88.34 ± 0.03

w/o Spatiotemporal Feature Fusion 90.12 ± 0.02 88.34 ± 0.03 87.65 ± 0.02 88.01 ± 0.02 91.34 ± 0.03 89.12 ± 0.02 88.23 ± 0.03 88.67 ± 0.02

w/o Prioritized Resource Allocation 88.78 ± 0.02 87.12 ± 0.02 86.32 ± 0.03 86.72 ± 0.02 89.67 ± 0.02 88.01 ± 0.03 87.54 ± 0.02 87.89 ± 0.03

Ours 91.56 ± 0.02 90.12 ± 0.02 89.34 ± 0.03 89.73 ± 0.03 92.14 ± 0.02 90.89 ± 0.02 90.12 ± 0.03 90.50 ± 0.02
f

The values in bold are the best values.
FIGURE 7

Ablation study of our method on radiant MLHub dataset and kaggle dataset.
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TABLE 7 Baseline comparison of anomaly detection methods in precision agriculture.

Model Radiant MLHub Dataset Kaggle Dataset

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

Z-Score Analysis Jailani et al. (2021) 89.73 93.04 88.13 85.23 86.39 91.53 87.66 85.3

PCA Kurita (2021) 88.38 93.1 86.25 90.54 88.63 89.49 85.55 84.08

GPR Xiong et al. (2023) 95.55 86.23 89.7 90.09 91.93 90.57 88.54 91.87

DTW Wang and Koniusz (2022) 94.32 93.18 86.87 85.45 91.94 86.5 85.46 84.71

CNNs Amjoud and Amrouch (2023) 90.8 86.4 89.9 88.31 95.21 88.15 90.74 93.08

LSTM Wen and Li (2023) 87.04 89.62 88.32 90.38 91.25 85.84 84.47 91.35

Ours 98.44 94.5 94.09 96.22 97.15 95.56 94.16 95.54
F
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The values in bold are the best values.
FIGURE 8

Ablation study of our method on NAB dataset and SWaT dataset.
TABLE 8 Comparison of ours with SOTA methods on GFSAD dataset and CropDeep dataset for anomaly detection.

Model GFSAD Dataset CropDeep Dataset

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

CLIP Zhang et al., 2024a 89.32 86.83 89.11 87.57 92.65 85.64 84.63 93.51

ViT Touvron et al., 2022 94.81 87.22 86.98 85.34 86.83 85.38 87.54 85.17

I3D Peng et al., 2023 92.98 92.38 89.39 86.86 90.44 84.89 88.85 84.92

BLIP Wattasseril et al., 2023 95.86 93.27 84.92 86.62 91.41 86.96 83.91 93.51

Wav2Vec 2.0 Chen and Rudnicky 2023 87.95 89.00 84.34 87.65 90.65 90.48 87.78 84.37

T5 Grover et al., 2021 95.97 87.57 85.91 91.89 91.98 88.22 88.57 86.93

Ours 97.74 93.88 93.86 96.06 97.73 94.65 93.35 95.99
The values in bold are the best values.
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GFSAD dataset, our approach attains an Accuracy of 97.74%,

outperforming the second-best method T5 (95.97%) and BLIP

(95.86%). Moreover, our method achieves the highest F1 Score

(96.06%), demonstrating superior ability in balancing Precision and

Recall, while the closest competitor (T5) achieves an F1 Score of

91.89%. On the CropDeep dataset, our model achieves an Accuracy of

97.73%, outperforming the next-best approach T5 (91.98%) by a

significant margin. The F1 Score of our model reaches 95.99%, which

is 9.06 percentage points higher than BLIP (86.93%), highlighting the

robustness of our approach in UAV-based anomaly detection tasks.

Among baseline models, BLIP and ViT exhibit strong performance in

satellite-based anomaly detection but show a noticeable drop in UAV-

based datasets, likely due to their reliance on global image

representations rather than localized fine-grained features. Similarly,

Wav2Vec 2.0, a speech-basedmodel, demonstrates lower performance

compared to vision-centric architectures, indicating its limited

applicability to visual anomaly detection tasks. These results

highlight the advantage of our approach in handling multi-source

agricultural datasets by leveragingmulti-modal feature integration and

spatiotemporal attention mechanisms. The substantial improvements

in Recall and F1 Score further demonstrate the capability of our model

to accurately capture and classify anomalies in large-scale

agricultural fields.

To evaluate the contribution of each sensor modality in our

anomaly detection framework, we conduct an ablation study by

systematically removing individual sensor inputs and measuring

the impact on model performance. The results are presented in

Table 9. The results demonstrate that using all three sensor modalities

achieves the highest performance, confirming the importance of
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multi-modal data fusion. Removing UAV data causes a 3.62% drop

in Accuracy on GFSAD and 3.89% on CropDeep, indicating that

UAV imagery provides critical high-resolution field-level insights.

Similarly, removing satellite data leads to the most significant Recall

drop (-8.24% on GFSAD, -9.41% on CropDeep), suggesting that

satellite imagery captures large-scale patterns necessary for early

anomaly detection. Ground sensors have a smaller but still notable

impact, particularly on F1 Score, where removing them results in a

5.51% decrease on GFSAD and 6.25% decrease on CropDeep. This

highlights their role in providing precise environmental data to refine

predictions. When evaluating single-sensor performance, UAV data

alone performs better than satellite or ground sensors, but it still lags

behind multi-modal fusion. These findings confirm that integrating

multiple data sources significantly improves anomaly detection

performance, allowing IMSFNet to leverage both large-scale remote

sensing information and localized environmental conditions.

To evaluate the computational efficiency and real-world

feasibility of our framework, we conduct experiments measuring

training time, inference speed, model complexity, and hardware

requirements. We compare IMSFNet with conventional CNN-

LSTM-based anomaly detection models across multiple datasets.

The results are summarized in Table 10. The results demonstrate

that IMSFNet achieves a 21.6% reduction in training time compared

to CNN-LSTM models, while reducing GPU memory consumption

by 12.7%. Our framework requires fewer model parameters (28.3M

vs. 35.1M) and achieves a 32.2% faster inference speed, making it

feasible for real-time agricultural anomaly detection. IMSFNet

exhibits lower CPU and RAM usage, which is critical for edge

computing scenarios where real-time processing on UAVs or
TABLE 9 Ablation study on the contribution of individual sensors.

Sensor
Configuration

GFSAD Dataset CropDeep Dataset

Accuracy Recall F1 Score Accuracy Recall F1 Score

IMSFNet (All Sensors) 97.74 93.86 96.06 97.73 93.35 95.99

Without UAV Data 94.12 89.75 92.41 93.84 88.42 91.08

Without Satellite Data 92.87 85.62 90.17 91.76 83.94 88.65

Without Ground Sensors 93.41 87.31 90.55 92.43 85.88 89.74

Only UAV Data 91.67 84.91 88.12 90.88 82.37 86.29

Only Satellite Data 89.43 81.75 85.94 88.72 78.98 83.15

Only Ground Sensors 87.91 79.34 83.67 86.85 76.42 81.73
The values in bold are the best values.
TABLE 10 Computational efficiency comparison.

Model

Training Performance Inference Performance

Training
Time (hrs)

Model
Parameters (M)

GPU
Memory (GB)

Inference
Time (s)

CPU
Usage (%)

RAM
Usage (GB)

CNN-LSTM (Baseline) 12.5 35.1 10.2 2.14 65.4 8.7

Transformer-LSTM 15.7 48.7 12.5 1.98 72.3 9.2

IMSFNet (Ours) 9.8 28.3 8.9 1.45 58.1 7.5
The values in bold are the best values.
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agricultural IoT devices is required. These optimizations make our

framework scalable for large-scale agricultural monitoring while

maintaining high detection accuracy.

While quantitative metrics such as accuracy, F1-score, and mAP

provide an objective evaluation of model performance, they do not fully

capture the contextual significance of the analysis in a real-world

farming environment. To bridge this gap, we interpret the model

outputs through spatial and temporal lenses that align with practical

agronomic decision-making. The spatial heatmaps (Figure 9) enable

stakeholders to locate stress concentrations at the sub-field level,
Frontiers in Plant Science 20
facilitating targeted actions such as localized pesticide application,

irrigation adjustment, or soil treatment. For example, high-stress

zones identified in early growth stages may indicate underlying soil

fertility issues or early pest colonization, allowing for timely

interventions. The time series trends (Figure 10) further contextualize

the progression of different stressors throughout the crop cycle. The

observed spike in fungal infection around week 8 aligns with the typical

post-monsoon humidity window, while the rise in drought stress

between weeks 12–16 corresponds to a known irrigation deficit phase.

Such patterns offer temporal cues for scheduling field inspections,

planning disease control measures, and optimizing resource

allocation. These interpretable outputs transform the raw predictive

capabilities of the model into actionable insights. By visualizing when

and where stresses emerge and escalate, the system empowers

agronomists, farm managers, and policy planners to make informed,

timely decisions in the face of complex, dynamic field conditions.
5 Conclusions and future work

This study focuses on the application of deep learning-based

anomaly detection to precision agriculture, aiming to enhance crop

protection and resource efficiency in sustainable farming practices.

Anomalies such as pest outbreaks, disease spread, and nutrient

deficiencies significantly impact crop yields and require timely and

accurate detection. Traditional methods often struggle with the

complexity and variability of agricultural data collected from

diverse sources. To address these challenges, we propose a novel

framework that integrates the Integrated Multi-Modal Smart

Farming Network (IMSFNet) with the Adaptive Resource
FIGURE 9

Spatial distribution of predicted stress intensity. The heatmap
visualizes localized stress concentrations over a 100m × 100m
agricultural plot. Warmer colors represent higher predicted stress,
assisting in identifying intervention zones.
FIGURE 10

Temporal evolution of stress conditions over a 20-week monitoring period. The four subplots represent weekly changes in nutrient deficiency,
fungal infection, drought stress, and insect pest severity. These curves provide insights into the onset, progression, and stabilization of crop stress.
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Optimization Strategy (AROS). IMSFNet employs multi-modal data

fusion and spatiotemporal modeling to analyze data from UAVs,

satellites, ground sensors, and weather stations, enabling precise

identification of crop health and yield anomalies. Complementing

this, AROS leverages real-time environmental feedback and multi-

objective optimization to dynamically allocate resources, balancing

yield maximization, cost efficiency, and environmental sustainability.

Experimental results demonstrate that this approach not only

improves anomaly detection accuracy but also enhances decision-

making in precision agriculture, establishing a new benchmark for

sustainable, data-driven crop protection strategies.

Despite its advantages, the framework has two notable

limitations. The reliance on multi-modal data fusion requires

high-quality and diverse data from multiple sources, which may

be unavailable or inconsistent in regions with limited technological

infrastructure. To address this, future research could focus on

developing self-learning mechanisms that adapt to incomplete or

noisy data. The computational demands of IMSFNet and AROS

might limit their scalability in large-scale agricultural operations or

resource-constrained environments. Optimizing the framework’s

architecture through model compression or distributed computing

strategies could alleviate this issue. Addressing these challenges

would further enhance the framework’s applicability, making it a

practical and scalable tool for precision agriculture worldwide.
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