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Introduction: Plant root-associated microbiomes play an important role in plant

health, yet their responses to bacterial wilt remain unclear poorly understood.

Methods: This study investigated spatial variations in microbiome and

metabolome composition across three root-associated niches—root-

surrounding soil, rhizosphere, and endosphere—of healthy and Ralstonia

solanacearum-infected potato plants. A total of 36 samples were analyzed,

with microbial diversity assessed by full-length 16S rRNA and ITS sequencing,

and metabolic profiles characterized using LC-QTOF-MS.

Results: Alpha diversity analysis revealed that bacterial diversity in healthy plants

was consistently higher than in diseased plants, progressively increasing from the

root-surrounding soil to the rhizosphere, and most notably in the endosphere,

where the Shannon index declined from 5.3 (healthy) to 1.2 (diseased). In

contrast, fungal diversity was lower in diseased plants in the root-surrounding

soil and rhizosphere, but significantly elevated in the endosphere, suggesting

niche-specific microbial responses to pathogen stress. Beta diversity confirmed

significant microbiome restructuring under pathogen stress (R² > 0.5, p = 0.001).

Taxonomic analysis showed over 98% dominance of Proteobacteria in the

diseased endosphere, where Burkholderia, Pseudomonas, and Massilia

enriched in healthy plants were significantly reduced. R. solanacearum

infection promotes the enrichment of Fusarium species in both the

rhizosphere and endosphere. Metabolomic analysis revealed extensive

pathogen-induced metabolic reprogramming, with 299 upregulated and 483

downregulated metabolites in the diseased endosphere, including antimicrobial

metabolites such as verruculogen and aurachin A. Network analysis identified

XTP as a central metabolite regulating microbial interactions, whereas

antimicrobial metabolites exhibited targeted pathogen suppression. O2PLS

analysis revealed that pathogen-induced antimicrobial metabolites (e.g.,

Gentamicin X2, Glutathionylspermine) were associated with Clostridia and

Ketobacter in diseased plants, while nucleotide-related compounds (e.g., XTP)
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correlated with Rhodomicrobium and others, indicating infection-driven

microbial adaptation and metabolic restructuring.

Discussion: These findings provide insights into pathogen-driven disruptions in

root microbiomes and suggest potential microbiome engineering strategies for

bacterial wilt management.
KEYWORDS

bacterial wilt, root-associated microbiome, metabolome analysis, microbiome-
metabolome interactions, potato
Introduction

In nature ecosystems, plants do not exist in isolation but

interact with a highly diverse community of microorganisms,

which form complex networks with their host plants and the

surrounding environment (Maurice et al., 2024). Among these

interactions, the plant root microbiome plays a pivotal role,

mediating processes essential for plant health and development,

such as nutrient acquisition, stress tolerance, and disease resistance

(Trivedi et al., 2020; Tao et al., 2022). The assembly of these

microbial communities is not random; instead, it is largely driven

by host selection processes, wherein plants actively recruit beneficial

microbes while excluding harmful ones (Attia et al., 2022). Root-

associated microbiota is spatially structured, forming distinct niches

across the rhizosphere (the soil influenced by root exudates), the

root surface, and the endosphere (the root interior), each with

unique microbial compositions and ecological functions (Bai et al.,

2022; Ku et al., 2023). This spatial differentiation represents a

continuum of microbial diversity transitioning from the bulk soil

to the root interior, driven by the plant’s selective enrichment of

beneficial microbes from the surrounding soil. These microbes

thrive in the root-associated soil and are ultimately internalized

by the plant to establish symbiotic or endophytic relationships (van

der Heijden and Schlaeppi, 2015; Santos-Medellıń et al., 2017).

Microbial diversity and community composition within the root

microbiome are closely associated with plant health, with high

microbial diversity often correlated with robust microbial networks

that enhance plant resilience to pathogens. Complex microbial

interactions in such networks suppress pathogen growth through

mechanisms including competition for resources, production of

antimicrobial compounds, and induction of plant immune

responses (Du et al., 2024). Notably, microbial diversity within

the root microbiome decreases progressively from the rhizosphere

to the endosphere, reflecting both environmental and host-imposed

selection pressures (Dlamini et al., 2023). In this context, the

rhizosphere acts as a dynamic interface and facilitates interactions

between plants and both beneficial and pathogenic microbes,

making it the first line of defense against soil-borne pathogens. In

contrast, endophytic microbes establish more intimate associations

with the host, directly influencing plant physiology and
02
contributing to systemic resistance by promoting plant immune

responses and mitigating pathogen-induced damage (Santoyo et al.,

2016; Chiaramonte et al., 2021).

When plants are challenged by pathogens, they can actively alter

their microbiome composition in a phenomenon known as the “cry

for help hypothesis.” This hypothesis suggests that plants recruit

beneficial microbes from the surrounding soil in response to

pathogen attacks, reassembling the root microbiome to enhance

their defenses (Li et al., 2022; Rolfe et al., 2019). The recruited

microbes may directly inhibit pathogens through the production of

antibiotics or siderophores or indirectly support plant health by

modulating immune responses (Carrión et al., 2019). For example,

Stenotrophomonas rhizophila (SR80) was enriched in the rhizosphere

and endosphere of wheat infected with Fusarium pseudograminearum

(Fp), and re-inoculation of SR80 in soil suppressed disease progression

and enhanced plant growth (Liu et al., 2021); Similarly, Arabidopsis

thaliana selectively promotes the growth of three rhizosphere bacteria

to activate systemic defenses against the invasion of the downymildew

pathogen Hyaloperonospora arabidopsis (Berendsen et al., 2018);

These examples underscore the adaptive capacity of plants to

reshape their microbiomes for improved resilience under pathogen

stress. Despite these advances, significant gaps remain in

understanding how pathogen invasion drives spatial variations in

microbiome composition across different niches. Additionally, the

interplay between microbial community structure and metabolomic

changes in response to pathogen stress is poorly characterized.

Addressing these knowledge gaps will provide crucial insights into

plant-microbiome interactions and inform strategies for sustainable

disease management.

The bacterial wilt pathogen Ralstonia solanacearum (Rs) is a

Gram-negative soil-borne bacterium that infects over 200 plant

species, including economically significant crops such as potato,

tomato, and eggplant (European and Mediterranean Plant

Protection Organization, 2021). The invasion of Rs disrupts the

root-associated microbiome, often triggering stress responses that

reshape microbial community composition. Studies have reported

that plant rhizosphere defenses against Rs invasion were mediated by

bacterial resource competition and the recruitment of key beneficial

microbes, supporting the positive diversity-invasion resistance

relationship observed in healthy plant-associated microbial
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communities (Xiong et al., 2021; Van Elsas et al., 2012). For instance,

previous study in peppers has identified beneficial microbes, including

Pseudomonas and Bacillus, enriched in diseased plants (Gao et al.,

2021).Similarly, some antibiotic-producing bacteria, including

Streptomyces, Bosea and Pseudomonas, are enriched in tobacco with

bacterial wilt, and serve as pathogen antagonists by producing

antibiotics or outcompeting Rs for resources (Tao et al., 2022). We

hypothesize that invading pathogen trigger stress responses in

microbial communities directly or indirectly through plants,

activating antagonistic traits and shifting in microbiome

composition, thereby limiting pathogen invasion. After being

attacked by pathogens, plants can use soil microbial communities to

resist infection. Therefore, in the field with bacterial wilt outbreaks,

although the environmental conditions of healthy and diseased plants

are similar (attacked by pathogens), specific bacterial communities

were hypothesized to be present in the root-associated niches of

healthy plants to maintain the balance of microbial communities

and help plants suppress the occurrence of diseases. However, most

previous studies have only targeted structure changes of rhizosphere

microbial communities, little is known about the ecological responses

of endophytic communities and metabolites across different root-

associated niches to bacterial wilt invasion.

To address these knowledge gap, our study investigates the spatial

variations in microbiome and metabolome composition across three

root-associated niches—the root surrounding soil, the rhizosphere and

the endosphere—of healthy and Rs-infected potato plants. Root

samples were collected from a bacterial wilt outbreak field, and

microbiome diversity was analyzed using 16S rRNA and ITS

sequencing, complemented by untargeted metabolomic profiling.

Following the framework established by Donn et al (Donn et al.,

2015), we classified the root microbiome into loosely associated (L

compartment, mainly representing microorganisms living in root-

surrounding soil and rhizosphere) and tightly associated (T

compartment, mainly representing endophytes) communities to

distinguish epiphytic and endophytic microbes, respectively. The

objectives of this study are threefold: (i) to elucidate taxonomic and

functional shifts in root-associated microbiomes under Rs stress, (ii) to

identify key microbial taxa and metabolites that positively influence

plant health under pathogen attack, and (iii) to compare the microbial

networks and metabolomic profiles of healthy and diseased plants

across different niches to gain insights into community stability. Our

findings provide a detailed assessment of niche-specific responses to

pathogen invasion, highlighting the diverse strategies employed by

beneficial microbes to inhibit Rs. This study advances our

understanding of microbial assembly mechanisms and defense

strategies in plant-microbe interactions and offers potential

applications for sustainable bacterial wilt management.
Materials and methods

Experimental design and sample collection

To investigate microbial diversity and community composition

under bacterial wilt stress, samples were collected from healthy and
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diseased potato plants in a field experiencing an active bacterial wilt

outbreak located at Butuo county, Liangshan (latitude 27.72°N and

longitude 102.79°E, with an elevation of 2,385 meters above sea

level). Sampling was conducted in June 2024, and root-associated

soil compartments were defined based on their physical proximity

to the root system, including root-surrounding soil (soil loosely

shaken from roots), rhizosphere (soil tightly adhering to roots), and

endosphere (internal root tissues). Six healthy and six diseased

plants were selected, and samples were collected from three root-

associated niches: root-surrounding soil, rhizosphere and

endosphere (root interior). A total of 36 samples were collected,

with 12 from each niche (6 healthy and 6 diseased).

Root-surrounding sample was collected by shaking off loosely

adhered soil. Rhizosphere samples were collected by transferring

the root systems into sterile 50 mL centrifuge tubes containing 20

mL of sterile 10 mM phosphate-buffered saline (PBS: 137 mM

NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4).

The tubes were placed on an orbital shaker at 120 rpm for 20

minutes at room temperature to dislodge the rhizosphere soil

(Beckers et al., 2017). After shaking, roots were removed using

sterile forceps, and the remaining suspension was centrifuged at

6,000 × g for 20 minutes at 4°C. The resulting pellet was collected as

the rhizosphere soil fraction. To obtain endosphere samples, roots

were surface-sterilized by sequential washing with sterile water (30

s), 70% ethanol (2 min), 2.5% sodium hypochlorite containing 0.1%

Tween 80 (5 min), and 70% ethanol (30 s), followed by five rinses

with sterile water (Beckers et al., 2017). Sterilized root tissues were

then sectioned with a sterile scalpel and homogenized in phosphate-

buffered saline using a tissue homogenizer under aseptic conditions.

Homogenates were stored at −80 °C until DNA extraction.
DNA extraction and sequencing

For rhizosphere and rhizoplane samples, total genomic DNA

was extracted using the TGuide S96 Magnetic Soil/Stool DNA Kit

(Tiangen Biotech, Beijing, China), following the manufacturer’s

instructions. DNA quality and quantity were assessed using 1.8%

agarose gel electrophoresis and a NanoDrop 2000 UV-Vis

spectrophotometer (Thermo Scientific, Wilmington, USA). Full-

length 16S rRNA genes were amplified using barcoded primer pairs

27F (5’-AGRGTTTGATYNTGGCTCAG-3’) and 1492R (5’-

TASGGHTACCTTGTTASGACTT-3’). For fungal communities,

the full-length ITS region was amplified using primers ITS1F (5’-

CTTGGTCATTTAGAGGAAGTAA-3 ’) and ITS4R (5 ’-

TCCTCCGCTTATTGATATGC-3’). PCR amplification was

performed using KOD One PCR Master Mix (TOYOBO Life

Science) under the following conditions: 95°C for 2 min, 25 cycles

of 98°C for 10 s, 55°C for 30 s, and 72°C for 1 min 30 s, with a final

extension at 72°C for 2 min. PCR products were purified using

VAHTS DNA Clean Beads (Vazyme, Nanjing, China) and

quantified using the Qubit dsDNA HS Assay Kit and Qubit 3.0

Fluorometer (Invitrogen, Thermo Fisher Scientific, Oregon, USA).

Equimolar amplicons were pooled, and SMRTbell libraries were

prepared using the SMRTbell Express Template Prep Kit 2.0
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(Pacific Biosciences). Sequencing was performed on a PacBio Sequel

II platform (Beijing Biomarker Technologies, Beijing, China).

For endosphere samples, DNA was extracted using the same

method. The bacterial 16S rRNA V3–V4 region was amplified using

primers 338F (5′-ACTCCTACGGGAGGCAGCA-3′) and 806R

(5′-GGACTACHVGGGTWTCTAAT-3′), while the ITS1 region

o f f ung i wa s amp l ifi ed u s i n g p r ime r s ITS1F ( 5 ′ -
CTTGGTCATTTAGAGGAAGTAA-3 ′ ) and ITS2 (5 ′ -
GCTGCGTTCTTCATCGATGC-3′). All primers included

Illumina adapter sequences for multiplexing. PCR was carried out

in 20 mL reactions containing 5–50 ng DNA template, 0.3 mL of each
primer (10 mM), 5 mL KOD FX Neo Buffer, 2 mL dNTPs (2 mM

each), 0.2 mL KOD FX Neo polymerase, and nuclease-free water.

The cycling conditions were: 95 °C for 5 min; 20 cycles of 95 °C for

30 s, 50 °C for 30 s, and 72 °C for 40 s; and a final extension at 72 °C

for 7 min. PCR products were purified with the Omega DNA

purification kit (Omega Inc., Norcross, GA, USA), quality-checked

using the Qsep-400 system (BiOptic Inc., Taiwan), and sequenced

using the Illumina NovaSeq 6000 platform (paired-end 2×250 bp;

Beijing Biomarker Technologies, Beijing, China).
Data processing and diversity analysis

Clean reads from PacBio sequencing were processed into

amplicon sequence variants (ASVs) using DADA2 in QIIME2

(Callahan et al., 2016). Reads with less than two counts across all

samples were filtered out. For Illumina sequencing, paired-end

reads were merged, quality filtered, and processed to generate

ASVs using DADA2 (v1.20.0). Taxonomic annotation for all

ASVs was performed with the Naive Bayes classifier in QIIME2

(Bolyen et al., 2019), referencing the SILVA database (release 138.1)

at a confidence threshold of 70% (Quast et al., 2012).

Alpha diversity (e.g., Shannon and Chao1 indices) was calculated

using QIIME2 (version 2020.6) and visualized using the ggplot2

package in R (version 4.2.2) to assess species richness and evenness.

Alpha rarefaction curves were generated using the QIIME diversity

analysis workflow script core_diversity_analyses.py. The Kruskal–

Wallis test was applied to compare alpha diversity among groups.

When significant differences were found, pairwise comparisons were

conducted using the Wilcoxon rank-sum test, and p-values were

corrected for false discovery rate.

Beta diversity was analyzed based on Bray-Curtis distance and

visualized by principal coordinate analysis (PCoA) using the

capscale() function in the vegan package in R (model: capscale

(log2(RA) ~ 1)). Permutational multivariate analysis of variance

(PERMANOVA) was performed using the adonis() function with

999 permutations to test for differences in microbial community

composition. Additionally, analysis of similarities (ANOSIM) was

conducted using the anosim() function to further assess the degree

of group separation, with significance set at p < 0.05 (Oksanen et al.,

2013). Genus-level abundance bar plots, UPGMA clustering

(Gronau and Moran, 2007), and heatmaps were used to further

explore community differences. Statistical significance was tested

using one-way ANOVA.
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Differential abundance and functional
prediction

Differentially abundant taxa between healthy and diseased groups

were identified using Linear Discriminant Analysis Effect Size (LEfSe,

v1.1.1) (Segata et al., 2011). LEfSe analysis was conducted using the

online Galaxy module (https://huttenhower.sph.harvard.edu/galaxy/),

with relative abundances of bacterial taxa as input. Taxonomic

features were filtered at a minimum relative abundance of 0.1%

across all samples. The Kruskal-Wallis test was used to detect

significant differences between groups, followed by pairwise Wilcoxon

tests. A logarithmic LDA score threshold of 4.0 was applied to select

discriminative features. Random Forest (RF) analysis was conducted

using the R package randomForest with microbial taxonomic

abundances at phylum, class, order, family, and genus levels as input

(Liaw andWiener, 2002). For model training, a 10-fold cross-validation

approach was applied to evaluate the classification accuracy. The

minimum cross-validation error was used to determine the optimal

number of taxa for each root-associated niche. Feature importance

scores were calculated, and taxa with the highest importance values

were identified as key biomarkers. Functional prediction of bacterial

communities was performed using FAPROTAX v1.2.6 (Louca et al.,

2016), focusing on ecological roles such as chemoheterotrophy,

nitrogen fixation, plant pathogenesis, and organic matter degradation.

Fungal functional prediction was performed using FUNGuild (August

2021 release), which assigns fungal taxa to ecologically meaningful

guilds based on threemajor trophic modes: pathotrophs, symbiotrophs,

and saprotrophs (Nguyen et al., 2016). All statistical analyses were

performed in R, using the wilcox.test() function with the default paired

= FALSE parameter, and FDR correction was conducted using the

p.adjust() function with the “fdr” method.
Metabolite extraction and sample
preparation

Metabolite extraction was performed using a modified methanol/

acetonitrile/water (2:2:1, v/v/v) protocol. Briefly, 50 mg of soil

samples were mixed with 1000 mL of extraction solution containing

2 mL of L-2-chlorophenylalanine (internal standard, Aladdin, China)

and vortexed. The mixture was homogenized with ceramic beads at

45 Hz for 10 min, followed by ultrasonic treatment on ice for 10 min

and incubation at -20 °C for 1 h. After centrifugation at 12,000 rpm

for 15min at 4 °C, 500 mL of the supernatant was diluted with LC-MS

grade water to a final methanol concentration of 60%. The solution

was transferred to a fresh Eppendorf tube, filtered through a 0.22 mm
membrane, and centrifuged again under the same conditions. Finally,

120 mL of the supernatant was collected into a 2-mL injection vial for

metabolomic analysis.
LC-MS/MS analysis

The metabolomic analysis was conducted using a Waters UPLC

I-Class PLUS system coupled with a Xevo G2-XS QTOF high-
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resolution mass spectrometer (Waters, USA). Chromatographic

separation was performed using a Waters Acquity UPLC HSS T3

column (2.1 mm × 100 mm, 1.8 mm). The mobile phases consisted

of 0.1% (v/v) formic acid in water (A) and 0.1% (v/v) formic acid in

acetonitrile (B) for both positive and negative ionization modes. A 2

mL sample was injected into the system under a gradient elution

program (Wang et al., 2016).

Mass spectrometry data were acquired using MassLynx V4.2

(Waters) in MSe mode, allowing simultaneous collection of low-

energy and high-energy fragmentation spectra. The collision energy

was set to 2V for low-energy and ramped from 10 to 40V for high-

energy acquisition, with a scan frequency of 0.2 seconds per

spectrum. The ESI ion source parameters were as follows:

capillary voltage, 2000V (positive) or -1500V (negative); cone

voltage, 30V; ion source temperature, 150°C; desolvation

temperature, 500°C; backflush gas flow rate, 50 L/h; and

desolvation gas flow rate, 800 L/h.
Data processing and metabolite
identification

Raw LC-MS data were processed using Progenesis QI V2.3

(Nonlinear Dynamics, UK) for peak alignment, retention time

correction, baseline filtering, and feature extraction. The main

processing parameters included a 5 ppm precursor tolerance, 10

ppm product ion tolerance, and 5% product ion threshold. Features

with missing values in more than 50% of the samples were removed,

and zero values were replaced with half of the minimum detected

intensity. Features with a Progenesis QI identification score below

36 (out of 60) were also excluded (Yang et al., 2021). Metabolite

identification was performed by matching MS and MS/MS spectra

against the METLIN (Guijas et al., 2018) database and an in-house

reference library (Biomarker Biotech, Beijing, China). Identification

criteria included precise mass-to-charge ratio (m/z), secondary

fragment patterns, and isotope distribution, with molecular ion

mass deviation set to <100 ppm and fragment ion deviation set to

<50 ppm.

Prior to statistical analysis, data were normalized using Pareto

scaling and log-transformed. Differential metabolites were

identified using a combination of fold change (FC ≥ 2 or FC ≤

0.5), t-test significance (p < 0.05), and variable importance in

projection (VIP > 1) from an orthogonal partial least squares

discriminant analysis (OPLS-DA) model (Thévenot et al., 2015).

The KEGG database was used for functional annotation of

metabolites (Kanehisa and Goto, 2000), while pathway

enrichment analysis was conducted using MetaboAnalyst V5.0

(Pang et al., 2021), integrating KEGG pathway mapping.

Statistical analyses, including principal component analysis (PCA)

and Spearman correlation analysis, were performed to assess

metabolomic variation and quality control. To identify key

metabolic pathways associated with bacterial wilt, hypergeometric

distribution tests were applied to determine the significance of

KEGG pathway enrichment.
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Integrated analysis of metabolomic and
microbial data

Procrustes analysis was performed to assess the concordance

between metabolomic and microbial community data across root-

associated niches (McHardy et al., 2013). PCoA was applied

separately to the microbial abundance matrix (genus level) using

Bayesian distance and the metabolite abundance matrix using

Euclidean distance. The first principal coordinates from both

datasets were extracted and subjected to Procrustes transformation,

minimizing squared deviations to evaluate dataset similarity. O2PLS

analysis was used to model intrinsic correlations between microbial

and metabolomic datasets, with UV scaling applied before

constructing the model (Mayneris-Perxachs et al., 2021). The joint

score plot visualized global interactions, while loading values

identified key taxa and metabolites, selecting the top 15 based on

their contribution to the first two dimensions. Correlation analysis

used Spearman’s method to link microbial taxa (phylum level) with

dimensionally reduced metabolites, while WGCNA clustered

metabolites into co-expression modules to assess microbial-

metabolite associations (Kappel et al., 2020). Differential

metabolite-microbiome correlations were analyzed without

dimensionality reduction to capture direct interactions. Statistical

analyses and visualizations were conducted in R using the vegan,

OmicsPLS, WGCNA, Hmisc, pheatmap, circlize, igraph, and

ggplot2 packages.
Result

Spatial dynamics and functional shifts of
root microbial communities under
bacterial wilt stress

To investigate the spatial dynamics and functional shifts of

root-associated microbial communities under bacterial wilt stress, a

comprehensive analysis was conducted on microbial diversity and

community composition across root-associated niches. The study

compared healthy and bacterial wilt-affected potato plants from the

same field during a bacterial wilt outbreak. A total of 36 samples

were analyzed, including root surrounding, rhizosphere and

endosphere niches, using third-generation full-length 16S rRNA

and ITS sequencing for epiphytic samples and V3+V4/ITS1 regions

for endophytic samples due to primer limitations. Sequencing

yielded an average of 13,000 CCS (Circular Consensus

Sequencing) reads for 16S rRNA and 12,261 CCS reads for ITS in

epiphytic samples, with 400,188 clean reads for 16S rRNA and

87,341 clean reads for ITS in endophytic samples (Supplementary

Tables S1, S2).

Taxonomic analysis revealed distinct microbial compositions

across niches. In diseased plants, Proteobacteria dominated the

endosphere, comprising over 98% of the microbial community,

while healthy plants exhibited greater diversity, with Firmicutes,

Bacteroidota, and Actinobacteriota contributing significantly
frontiersin.org
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alongside Proteobacteria. In the rhizosphere, diseased samples

showed a marked enrichment of Proteobacteria, whereas healthy

samples were enriched with Actinobacteriota and Acidobacteriota.

In root-surrounding soil, Acidobacteriota were abundant in

diseased plants, while Actinobacteriota and Firmicutes was

dominant in addition to Proteobacteria in healthy plants

(Figure 1A). Analyses of the top 20 most abundant bacterial taxa

across niches revealed distinct patterns between healthy and wilt-

affected plants (Figure 1B). In the root-surrounding soil, R.

solanacearum, Pelomonas saccharophila, Acidobacteria bacterium

WWH8, and uncultured Acidobacteria bacterium were significantly

more abundant in diseased plants, with the latter three taxa being

phylogenetically related. In contrast, Pseudomonas putida

dominated in healthy plants. In the rhizosphere, diseased plants

showed increased levels of R. solanacearum, along with Massilia

putida, gamma-proteobacterium OS 28, Trinickia soli, Trinickia

caryophylli, Rhodanobacter glycinis, and Telluria mixta, all

phylogenetically linked to the pathogen Rs. Healthy plants,

however, exhibited enrichment of Acidobacteria taxa such as

WWH8 and RB41, Paenibacillus pasadenensis, and unclassified

Vicinamibacteraceae and Gemmatimonadaceae, forming a

distinct phylogenetic cluster. In the endosphere, Beijerinckia

fluminensis and R. solanacearum were the only taxa significantly

enriched in diseased plants, while all other bacterial taxa were more

abundant in healthy plants, highlighting a pronounced microbial

shift under bacterial wilt stress.

Alpha and beta diversity analyses revealed significant microbial

shifts across root-associated niches under healthy and wilt-affected
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conditions (Supplementary Table S3). Shannon and Chao1 indices

showed consistently higher alpha diversity in healthy plants, with

differences ranging from non-significant in root-surrounding soil to

significant in the rhizosphere and highly significant in the

endosphere, indicating that bacterial wilt disrupts bacterial diversity

most profoundly closer to the root interior (Figure 1C). Beta diversity,

analyzed using Bray-Curtis distance matrices in principal coordinate

analysis (PCoA), revealed clear separation between healthy and

diseased groups. In epiphytic samples, the first coordinate

distinguished health status, while the second separated rhizosphere

from root-surrounding soil (PERMANOVA: R = 0.5177, p = 0.001;

ANOSIM: R² = 0.3244, p = 0.001). In endosphere samples, healthy

and diseased groups were distinctly separated (PERMANOVA: R = 1,

p = 0.001; ANOSIM: R² = 0.9724, p = 0.001), reflecting significant

bacterial differences (Figure 1D). UPGMA clustering and genus-level

abundance plots confirmed these patterns, showing pathogenic

Ralstonia dominating the diseased group, increasing from

rhizosphere to endosphere, where it became nearly exclusive.

Genera such as Pseudomonas, Massilia, and Burkholderia, which

dominated healthy niches, sharply declined in diseased samples,

becoming nearly absent in the endosphere (Figure 1E). These

findings demonstrate that bacterial wilt profoundly alters bacterial

diversity and composition, with the most severe disruptions observed

in the endosphere, where beneficial taxa are replaced by

pathogen dominance.

Functional predictions using FAPROTAX further highlighted

distinct ecological roles of bacterial communities (Supplementary

Figure S1). In root-surrounding soil and rhizosphere, diseased
FIGURE 1

Taxonomic composition, alpha diversity, beta diversity, and hierarchical clustering of bacterial communities across root-associated niches in healthy (CK)
and wilt-affected plants (RS). (A) Taxonomic composition analysis of bacterial communities at the phylum level, comparing healthy and diseased plant
samples across root-surrounding soil, rhizosphere, and endosphere niches. (B) Sample community distribution based on phylogenetic trees. The circular
tree represents the phylogenetic relationships among taxa, with taxa belonging to the same phylum labeled in the same color. The outer bar plot shows
the relative abundance of taxa, with blue bars indicating diseased plant samples and red bars indicating healthy plant samples. (C) Alpha diversity analysis
(Shannon and Chao1 indices) showing microbial richness and evenness differences between healthy and diseased plants. (D) Beta diversity analysis using
Bray-Curtis distance-based Principal Coordinate Analysis (PCoA), illustrating the distinct clustering of microbial communities between healthy and
diseased groups (S, root surrounding soils; R, rhizosphere; E, endosphere). (E) UPGMA clustering tree combined with phylum-level relative abundance
bar plots, highlighting phylogenetic relationships and compositional differences between bacterial communities in different root-associated niches.
Statistical significance was tested using one-way ANOVA. * and **, significant at P < 0.05 and 0.01, respectively.
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plants showed functional enrichment in plant pathogenesis and

organic matter degradation (e.g., chitinolysis, ureolysis), and

fermentation, indicating pathogen-driven decomposition.

Conversely, healthy plants exhibited functions linked to

chemoheterotrophy, aerobic chemoheterotrophy, nitrate

reduction, and nitrogen fixation, underscoring their contribution

to nutrient cycling. Within the endosphere, healthy plants

maintained functionally diverse microbial communities involved

in nitrogen fixation, fermentation, and parasitic or symbiotic

interactions, while diseased plants were dominated by pathogen-

associated functions. These findings illustrate a functional shift

from beneficial microbial processes in healthy plants to pathogen-

centric activities in diseased plants, reflecting the impact of bacterial

wilt on root-associated microbial ecology.

In terms of fungal compositions, while root-surrounding fungal

composition exhibited minor variations, the rhizosphere displayed

significant divergence, with Gymnoascus reessii and Fusarium

foetens markedly enriched in diseased plants, whereas Penicillium

cremeogriseum, dominant in healthy plants, showed a sharp decline.

Endophytic fungal composition remained largely stable, except for a

significant increase in Fusarium circinatum abundance in the

diseased plants. These findings suggest that R. solanacearum

infection promotes the enrichment of Fusarium species in both

the rhizosphere and endosphere (Supplementary Figure S2). Alpha

diversity analysis of fungal communities revealed contrasting

patterns across root-associated niches (Supplementary Figure S3).

Both root-surrounding and rhizosphere fungal diversity were

higher in healthy plants compared to diseased plants, whereas in

the endosphere, Shannon and Chao1 indices were elevated in

diseased plants. This suggests that bacterial wilt infection

suppresses fungal diversity in external root compartments while

promoting a more diverse fungal community within the

endosphere. Additionally, the clear separation of fungal

communities in PCoA between healthy and diseased groups

across all root-associated niches indicates that bacterial wilt

infection induces a distinct restructuring of the fungal

microbiome, leading to significant compositional shifts both in

root-external and endophytic compartments (Supplementary

Figure S4).

Based on phenotype prediction using FUNGuild, a tool that

classifies fungal taxa into ecologically meaningful guilds, significant

shifts in fungal functional guilds were observed across all root-

associated compartments in response to R. solanacearum infection

(Supplementary Figure S5). In the root-surrounding soil, disease-

associated enrichment was observed in endophytes, arbuscular

mycorrhizal fungi, and several saprotrophic and animal

pathogenic guilds. Conversely, wood and leaf saprotrophs

significantly declined, suggesting that typical decomposers were

suppressed under pathogen pressure. In the rhizosphere, the

diseased plants showed a marked increase in saprotrophs and

related guilds. However, beneficial guilds such as arbuscular

mycorrhizal fungi, ectomycorrhizal fungi, and wood saprotrophs

were significantly reduced. Endophytic fungal communities

exhibited a notable shift from mutualistic to saprotrophic and
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pathogenic guilds under disease stress. In the diseased plants,

significant enrichment was observed in saprotrophs, plant and

animal pathogens, and epiphytic fungi. In contrast, the healthy

plants harbored higher abundances of mycorrhizal guilds (e.g.,

Ericoid Mycorrhizal, Arbuscular Mycorrhizal) and endophytic-

lichen symbionts, indicating a more stable and beneficial

symbiotic structure. These findings indicate that pathogen stress

drives a functional reorganization of root-associated fungal

communities, shifting from mutualistic and decomposer guilds to

an increased prevalence of opportunistic saprotrophs and

potential pathogens.
Network topology and core microbial taxa
driving community stability

LEfSe analysis revealed distinct biomarker taxa across niches

between healthy and bacterial wilt-affected plants (Figure 2A). In

diseased plants, biomarkers were limited to the pathogen R.

solanacearum, its genus Ralstonia, and its family Burkholderiaceae

across all three niches. In contrast, healthy plants exhibited a broader

range of enriched taxa. In the rhizosphere, biomarkers included

Sphingomonadaceae, Vicinamibacterales, Gemmatimonadaceae,

Pyrinomonadaceae, and RB41. The root-surrounding soil was

enriched with taxa such as Micrococcales, Rhizabiales,

Burkholderia_Caballeronia_Paraburkholderia, and Pseudomonas

putida. The healthy endosphere harbored a diverse set of

biomarkers, including species like Burkholderia ubonensis,

Rhodanobacter humi, and Rhizobium sp. TYb6, highlighting the

healthy group’s microbial diversity and functional enrichment.

For the epiphytic samples, Random Forest analysis further

identified key bacterial taxa differentiating healthy and diseased

groups (Figure 2B). The analysis was conducted across multiple

taxonomic levels, with a 10-fold cross-validation used to

determine the optimal classification model. At the genus level,

this approach achieved the highest classification accuracy with 9

genera in root-surrounding soil and 19 in the rhizosphere. The

most critical biomarkers for the root-surrounding soil included

three genera from the family Burkholderiaceae (Burkholderia_

Caballeronia_Paraburkholderia). Genera such as Pseudomonas,

Paenibacillus, and Rhizobium, alongside pathogenic Ralstonia,

were highlighted as key indicators, aligning with LEfSe results.

In the rhizosphere, Ralstonia emerged as the most significant

biomarker for diseased plants, while RB41, Sphingomonas, and

unclassified Gemmatimonadota, enriched in healthy samples,

were also confirmed. Random Forest additionally identified

genera such as Ochrobactrum, unclassified Chitinophagaceae,

Rhodoplanes, Flavobacterium, and Chujaibacter, which were not

detected in LEfSe analysis. Together, these results demonstrate

bacterial wilt’s significant impact on root-associated microbial

communities, with genus-level biomarkers serving as robust

indicators of microbial shifts in external root niches.

The analysis of bacterial co-occurrence networks across root-

associated niches revealed distinct structural and functional
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dynamics (Figure 3A, Supplementary Table S4). The endosphere

network exhibited the highest complexity and stability, with the

most nodes and edges, the highest average degree (10.0), and strong

local connectivity (the shortest average path length (1.18) and the

highest clustering coefficient 0.88), enabling efficient information

transfer and cooperative subcommunity formation. Its low

modularity (0.15) suggested a uniform structure focused on

overall stability. In contrast, the rhizosphere network displayed

the highest modularity (0.43), indicating functional differentiation

with tightly connected submodules that enhanced adaptability

under stress. It also maintained strong connectivity (relatively

short average path length (1.49) and high clustering coefficient

(0.66)) and efficient information flow, while its low betweenness

centralization (0.02) highlighted a balanced influence among nodes.

The root-surrounding soil network was more dispersed, with the

longest average path length (1.86) and the lowest modularity (0.09),

reflecting reduced connectivity efficiency. However, its reliance on a

few critical nodes, indicated by higher degree (0.32) and

betweenness centralization (0.20), suggested vulnerability

to disruptions.

Zi-Pi analysis of the epiphytic and endosphere networks further

revealed differences in regulatory dynamics (Figure 3B). The

epiphytic network featured higher complexity and diverse key

nodes, with pathogen R. solanacearum acting as a connector

counterbalanced by beneficial taxa such as Acidobacteria WWH8

and RB41. Notable hubs, includingMassilia putida and Paenibacillus

pasadenensis, played essential roles in regulating network dynamics.

M.putida exhibited positive correlations with eight nodes, including

gamma-proteobacterium OS 28 and Telluria mixta, and negative

interactions with unclassified Xanthobacteraceae. Similarly,

Pelomonas saccharophila, as a key inter-module connector,

positively correlated with six nodes, emphasizing its regulatory

significance. In contrast, the endosphere network was dominated
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by R. solanacearum, which served as the sole connector with negative

effects on beneficial taxa such as Rhizobium sp. TYb6,

Rhodanobacter humi and Burkholderia ubonensis. Despite this

pathogen-centric control, positive interactions among the

remaining 19 nodes maintained localized cohesion. These findings

highlight the epiphytic network’s reliance on diverse nodes for

regulatory balance, whereas the endosphere network demonstrates

centralized, pathogen-driven dynamics under bacterial wilt stress.
Pathogen-induced metabolic
reprogramming in root-associated niches

To explore metabolic differences between healthy and bacterial

wilt-affected plants across root-associated niches, a metabolomic

analysis of 36 samples was performed using an LC-QTOF

platform, detecting 8,766 peaks and annotating 1,596 metabolites.

Principal component analysis (PCA) of normalized data (unit

variance scaling) revealed distinct metabolic profiles, with

significant separation observed in the endosphere, indicating

marked pathogen-induced metabolic shifts, while differences in the

root-surrounding soil and rhizosphere were less distinct, highlighting

the localized impact within root tissues (Supplementary Figure S6).

Correlation analysis and heatmap clustering confirmed niche-specific

metabolic variations, with endosphere metabolites exhibiting distinct

functional profiles compared to external root niches (Supplementary

Figure S6). KEGG pathway annotation identified significant

enrichment in secondary metabolite biosynthesis (e.g.,

glucosinolates, alkaloids including tropane, indole and isoquinoline,

phenylpropanoids, and terpenoids) as well as pathways related to

carbohydrate and lipid metabolism, providing insights into the

reconfiguration of plant and microbial metabolic networks under

pathogen stress (Supplementary Figure S7).
FIGURE 2

Differential microbial taxa identified by LEfSe and Random Forest analysis. (A) LEfSe (Linear Discriminant Analysis Effect Size) analysis showing
differentially abundant bacterial taxa between healthy (CK) and diseased plants (RS) across root-associated niches. The LDA score (log10) represents
the effect size of each biomarker taxon, with positive values indicating taxa enriched in diseased plants and negative values indicating taxa enriched
in healthy plants. Only taxa with an LDA score > 4 and p < 0.05 are shown. (B) Random Forest model detecting key bacterial taxa that serve as
biomarkers distinguishing microbial communities in healthy and diseased plants. The top 9 bacterial genera in root-surrounding soil (top panel) and
the top 19 genera in the rhizosphere (bottom panel) were identified based on their importance in classification accuracy. Biomarker taxa are ranked
in descending order of importance to the accuracy of the model. The inset represents the 10-fold cross-validation error as a function of the number
of input taxa used to differentiate healthy and diseased plants in order of variable importance. The heatmap displays the relative abundances of the
selected predictive biomarker genera across the two plant health conditions.
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Comparative analysis of metabolic profiles between healthy and

diseased plants revealed significant shifts in metabolite abundance

across root-associated niches (Supplementary Figure S8). In the

rhizosphere, 512 metabolites were upregulated and 86

downregulated in diseased plants. Upregulated metabolites, such as

kynurenic acid, phosphatidylcholine (PC(14:1(9Z)/16:1(9Z))), and

5,7-dimethoxyflavone, were linked to defense responses, secondary

metabolism, and antioxidative stress, highlighting active responses to

pathogen invasion. Conversely, downregulated metabolites, including

glyceric acid and 3-carboxy-2-hydroxyadipic semialdehyde, reflected

suppressed carbon metabolism, while reductions in tropane and

flavonoids (e.g., butterfly flavone A) indicated weakened

antimicrobial pathways. In the endosphere, bacterial wilt induced
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significant metabolic reprogramming, with 299 metabolites

upregulated and 483 downregulated. Upregulated metabolites, such

as hydrangeifolin I, isoliquiritin apioside, arachidonic acid, and

diacylglycerol, suggested enhanced disease resistance signaling,

antioxidative activity, membrane remodeling, and signal

transduction. Downregulated metabolites, including camalexin,

thiamine derivatives (e.g., 2-(alpha-hydroxypropyl)thiamine

diphosphate), and tryptophan-related products, indicated

suppressed primary metabolism and antimicrobial pathways. The

reduction of antibiotic-related metabolites, such as 2,3-

dihydrothiazoloquinone, further highlighted weakened pathogen

inhibition. Comparisons between rhizosphere and endosphere in

diseased plants provided additional insights into pathogen-driven
FIGURE 3

Co-occurrence network analysis of microbial communities in the epiphytic (top) and endosphere (bottom) niches of healthy and diseased plants.
(A) Microbial co-occurrence networks, where each node represents a species, and the node size corresponds to the mean abundance of the
species. Edges represent significant correlations between species, with edge thickness indicating the strength of correlation. Red edges denote
positive correlations, whereas green edges indicate negative correlations. (B) Zi-Pi plot illustrating the topological roles of operational taxonomic
units (OTUs) within the network. Each symbol represents an OTU, with classification thresholds of Zi > 2.5 and Pi > 0.62 (Olesen et al., 2007). Species
identified as Connectors, Module hubs, and Network hubs are labeled.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1577123
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lai et al. 10.3389/fpls.2025.1577123
reprogramming. The endosphere showed 748 upregulated and 352

downregulated metabolites compared to the rhizosphere, with

elevated levels of antimicrobial metabolites such as verruculogen,

paclitaxel, and aurachin A, reflecting intensified chemical defenses.

Increased glutamylcysteine and peptide metabolites indicated

enhanced signaling and antioxidative responses, while reduced

quinolinic acid and 11a-hydroxytetracycline suggested suppressed

nucleic acid metabolism and antibiotic synthesis due to pathogen

competition and resource reallocation.

K-means clustering of differential metabolites identified eight

distinct clusters, each reflecting niche- and infection-specific

metabolic reprogramming across root-associated compartments

(Figure 4). Clusters 1 and 7 represented core metabolic pathways

with high metabolite abundance across all samples, regardless of

infection status. These metabolites were enriched in pathways such

as biosynthesis of unsaturated fatty acids, alpha-linolenic acid

metabolism, and brassinosteroid biosynthesis, essential for

maintaining cellular integrity, membrane stability, and basal

metabolic processes. Cluster 3 and Cluster 5 showed similar

abundance patterns that were associated with pathogen-induced

responses, particularly in the rhizosphere and endosphere. Cluster 3

metabolites, highly enriched in the infected endosphere and

rhizosphere, were linked to pyrimidine metabolism, phenylpropanoid

biosynthesis, and gingerol-related pathways, showing their roles in

defense and stress signaling. Cluster 5 metabolites, predominantly

enriched in the infected endosphere and elevated in the infected

rhizosphere compared to the healthy rhizosphere, were associated

with sesquiterpenoid and triterpenoid biosynthesis, glucosinolate

biosynthesis and sphingolipid metabolism, critical for antimicrobial

activity and cell wall reinforcement. Clusters 2, 4, and 8 exhibited

niche-specific patterns. Cluster 2 metabolites, abundant in both healthy

and infected endosphere, were enriched in purine metabolism,

nucleotide sugar biosynthesis, and tryptophan metabolism,

suggesting their role in core metabolic processes essential for

endosphere stability. Cluster 4 metabolites, consistently abundant in

the endosphere, were involved in nucleotide sugar biosynthesis and

ABC transporters, highlighting their role in maintaining cellular

homeostasis and metabolic regulation. In contrast, Cluster 8

metabolites were enriched in root-surrounding soil and rhizosphere

but depleted in the endosphere, reflecting their roles in 2-oxocarboxylic

acid metabolism, tropane, piperidine and pyridine alkaloid

biosynthesis, indole alkaloid and phenylpropanoid biosynthesis,

indicating their role in antimicrobial activity, oxidative stress

response, and sustaining external microbial communities. These

findings highlight distinct metabolic shifts under bacterial wilt stress:

Clusters 3 and 5 emphasize the dynamic antimicrobial and signaling

responses in the rhizosphere and endosphere, Clusters 2 and 4 focus on

endosphere stability, and Cluster 8 showed a crucial role in stabilizing

root-associated microbial interactions and environmental adaptation,

fostering a balanced rhizosphere community by supporting beneficial

microbes and suppressing pathogens. This coordinated metabolic

reprogramming provides insights into the biochemical foundations

of plant-microbe-pathogen interactions.
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Integrated insights into microbiome-
metabolome interactions shaping plant
health

Procrustes analysis highlighted distinct microbiome-metabolome

interactions across root-associated niches under healthy and diseased

conditions (Figure 5A). In the endosphere, healthy plants exhibited

more diverse and dispersed arrow directions with longer lengths,

reflecting a complex and varied relationship between microbial

communities and metabolic functions. Conversely, diseased plants

showed concentrated arrow directions and shorter lengths, indicating

pathogen-induced reshaping of metabolic networks and microbial

composition to adapt to the endosphere environment. In the

rhizosphere, healthy plants displayed relatively concentrated

arrows, suggesting stable microbiome-metabolome interactions,

whereas diseased plants had more dispersed arrows, reflecting

dynamic reorganization in response to pathogen stress. These

results demonstrate the pathogen’s niche-specific strategies for

metabolic and microbial adaptation.

O2PLS analysis further elucidated cross-omic relationships,

revealing stable microbiome-metabolome coordination in healthy

states and significant remodeling under pathogen stress (Figure 5B).

In the endosphere, healthy plants showed compact clustering in joint

score plot, indicating coordinated microbial and metabolic stability,

while diseased plants exhibited dispersed distributions, reflecting

disrupted microbial-metabolic networks following pathogen invasion.

Key associations included dominant taxa Hespellia with Niacinamide

and LysoPE 180 in healthy plants, supporting antioxidative and

metabolic functions, and Uncultured_Clostridia_bacterium and

Ketobacter with Glutathionylspermine and Gentamicin X2 in

diseased plants, indicating enhanced antimicrobial and antioxidative

responses. In the rhizosphere, a critical interface for pathogen-host

interactions, both healthy and diseased plants displayed relatively

dispersed distributions in joint score plot, underscoring the highly

dynamic interplay between microbiomes and metabolomes. Healthy

plants enriched metabolites like Citric acid and 4-Hydroxybutanoic

acid, reflecting stable carbon metabolism and energy balance indicative

of a stable environment, while infected plants exhibited chemical

defense-related metabolites such as Mesendanin Q and Saikosaponin

L. Pathogen invasion also enriched taxa like Pseudochrobactrum,

Alsobacter, and Nitrospina, suggesting a role in infection-driven

metabolic remodeling by interacting with defense-related metabolites.

These findings underscore distinct pathogen-induced changes in

microbiome-metabolome coordination across niches.

WGCNA-based correlation analysis revealed distinct metabolite-

microbe interaction patterns in the endosphere and rhizosphere,

reflecting niche-specific responses to bacterial wilt infection

(Figure 5C). In the endosphere, the ME2 module, enriched in energy

metabolism and amino acid metabolism-related compounds, including

Citric acid and L-Glutamine, showed a negative correlation with

Proteobacteria, but a significant positive correlation with multiple

phyla such as Firmicutes, Acidobacteriota, and Actinobacteriota (r >

0.4, p < 0.05). Module ME5 was enriched in Gentamicin X2,
frontiersin.org

https://doi.org/10.3389/fpls.2025.1577123
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lai et al. 10.3389/fpls.2025.1577123
FIGURE 4

K-means clustering of differential metabolites and KEGG functional enrichment analysis. The left panel showed K-means clustering of differential
metabolites identified eight distinct clusters. The clustering pattern reveals niche- and infection-specific metabolic shifts in root-associated
compartments. The right panel presented KEGG functional enrichment analysis of metabolites in each cluster. The top five enriched KEGG pathways
are shown for each cluster. Pathway significance was determined based on enrichment scores.
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Glutathionylspermine and Tropane alkaloids, a class of secondary

metabolites closely associated with plant defense mechanisms against

microbial pathogens. This module was positively correlated with

Proteobacteria (r > 0.5, p < 0.05) but negatively correlated with other

bacterial phyla, suggesting that pathogen-induced stress may promote

the accumulation of these antimicrobial compounds. Module ME4 was

linked to the neomycin biosynthesis pathway, which is potentially

involved in synergistic antimicrobial activity. Similar to ME5, this

module displayed a strong positive correlation with Proteobacteria (r >

0.5, p < 0.05) while showing a negative correlation with other microbial

groups, reinforcing the role of these metabolites in pathogen defense. In

the rhizosphere, the ME3 module exhibited a strong positive

correlation with Proteobacteria (r = 0.8, p < 0.01) and a negative

correlation with Gemmatimonadota (r = -0.65, p < 0.05), emphasizing

the role of Proteobacteria in carbon and nitrogen cycling via

metabolites like Citric acid and Saikosaponin L. Bacteroidota, which

negatively correlated with multiple modules, showed reduced

metabolic interactions, indicating limited involvement in pathogen-
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driven metabolic shifts. The ME1 module positively correlated with

Actinobacteriota (r = 0.72, p < 0.05) and was enriched in metabolites

such as Prostaglandin E2 and Mesendanin Q, associated with oxidative

stress and plant defense responses. These findings revealed distinct

metabolic reprogramming under pathogen stress: the endosphere

prioritizes antimicrobial metabolite upregulation while suppressing

energy and nitrogen metabolism, whereas the rhizosphere undergoes

metabolic shifts closely aligned with microbial community dynamics,

with taxa such as Proteobacteria and Actinobacteriota shaping

ecosystem functionality.

Correlation analysis of differential metabolites and microbial

genera in the endosphere and rhizosphere revealed distinct

differences in metabolite-microbe interactions between healthy and

diseased plants under bacterial wilt stress (Figure 5D). In the

endosphere, antimicrobial metabolites such as 5-Methylsulfinylpentyl

glucosinolate and Arachidonic acid showed strong negative

correlations with Aggregatibacter and Tropicibacter (r < -0.7, p <

0.01), suggesting their role in microbial suppression and pathogen
FIGURE 5

Integrated analysis of microbiome-metabolome interactions across root-associated niches. (A) Procrustes analysis showing the alignment between
microbial community composition and metabolomic profiles in healthy and diseased plants. The upper section represents the endosphere, the lower
section represents the rhizosphere. Longer arrow lengths indicated a dispersed and complex microbiome-metabolome relationship, whereas shorter
and aligned arrows suggested convergence of microbial and metabolic networks. (B) O2PLS analysis of microbial and metabolite associations. The
left panel displays the joint score plot, showing sample distribution based on O2PLS modeling of microbial and metabolic data. The right panel presents
loading plots, selecting the top 15metabolites and microbial taxa with the highest loadings in the first two dimensions, highlighting key drivers of infection-
induced metabolic shifts. The upper section corresponds to the endosphere, and the lower section to the rhizosphere. (C)WGCNA-based correlation
analysis heatmap, illustrating module-trait relationships between microbial taxa and metabolite modules in the endosphere (upper) and rhizosphere (lower).
(D) Correlation analysis between differential metabolites and microbial genera in the endosphere and rhizosphere. The left panel displays a chord diagram
ranking the top 30microbe-metabolite correlations by correlation coefficient. The right panel presents a co-occurrence network, where nodes represent
metabolites or microbial genera, and edges indicate significant correlations, with line thickness reflecting correlation strength.
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defense. Arachidonic acid, an inflammation-associated lipid, may also

mediate host immune responses, influencing microbial dynamics.

Conversely, XTP and 2,3-Dihydrothienamycin exhibited strong

positive correlations with Rhodomicrobium, Acetatifactor, and

Aliiroseovarius (r > 0.7, p < 0.01), indicating enhanced microbial

metabolic activity and potential antimicrobial compound

reorganization under infection. Network analysis positioned XTP as

a core node with dense microbial associations, reflecting its central role

in infection-induced metabolic shifts, while antimicrobial metabolites

such as Arachidonic acid and 5-Methylsulfinylpentyl glucosinolate

were located at peripheral nodes, exerting targeted inhibitory effects

on specific microbes. In the rhizosphere, Paspaline B and 8-Amino-8-

demethylriboflavin correlated positively with Ralstonia and its

associated genera, Luteimonas and Actimicrobium, suggesting their

involvement in pathogen proliferation, either as nutrient sources or

regulatory signals. Conversely, L-Tyrosine and Coniferyl alcohol

displayed strong negative correlations with genera such as Dongia

and Sphingomonas, implying their role in suppressing pathogen activity

and maintaining ecosystem stability. Network analysis identified

Benfuresate and Red chlorophyll catabolite as central metabolites

with extensive microbial associations, playing dual roles in

rhizosphere regulation by promoting microbial community function

while inhibiting potential pathogens. In contrast, L-Tyrosine and

Coniferyl alcohol were positioned at the network periphery, with

fewer but strong targeted associations, indicating their localized

regulatory significance. These findings suggest that antimicrobial

metabolites function through negative associations to inhibit

pathogens, while metabolically active compounds such as XTP and

2,3-Dihydrothienamycin participate in microbial metabolic

restructuring. In the rhizosphere, core metabolites act as ecological

regulators balancing microbial activity and pathogen suppression,

while peripheral metabolites mediate targeted interactions,

highlighting the complex metabolic-microbial interplay shaping

plant-associated ecosystems.
Discussion

Bacterial wilt imposes profound disruptions on root-associated

microbial communities, leading to extensive metabolic and

ecological reprogramming. The observed niche-specific shifts in

microbial diversity and composition suggest that the pathogen-

driven restructuring is not a uniform process but rather a spatially

regulated adaptation that varies across root-associated

compartments. The endosphere exhibited the most severe

microbial collapse, with R. solanacearum dominating the

microbial niche, while other non-dominant commensal taxa were

largely reduced. This suggests that pathogen invasion selectively

eliminates or suppresses competitive microbiota, potentially

through allelopathic interactions or immune suppression

strategies that allow its unchecked proliferation. Similar microbial

dominance by R. solanacearum has been reported in various plant

systems, where it outcompetes native microbiota through quorum
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sensing, effector-mediated suppression, and secretion of

antimicrobial compounds (Vannier et al., 2019). The replacement

of a functionally diverse microbiome with a single pathogen further

implies that the endosphere is a particularly vulnerable niche under

pathogen stress, as it lacks the buffering effects of external microbial

interactions found in the rhizosphere. The rhizosphere, in contrast,

displayed a more complex microbial response, with increased

modularity and functional differentiation, suggesting that

microbial networks undergo significant restructuring under

pathogen invasion. While Proteobacteria exhibited significant

enrichment in diseased plants, taxa such as Acidobacteriota and

Actinobacteriota, which were dominant in healthy plants, showed

reduced interactions, likely due to shifts in root exudation profiles

and altered nutrient dynamics. Previous studies have highlighted

that plants can actively modulate rhizosphere microbiomes through

exudate-driven selection, promoting beneficial taxa while

suppressing pathogenic consortia (Chaparro et al., 2014). The

depletion of Acidobacteriota, a group commonly associated with

carbon and nitrogen cycling, suggests that pathogen-induced

metabolic shifts alter rhizosphere nutrient availability, potentially

reducing microbial functional redundancy and thereby facilitating

pathogen colonization (Gonçalves et al., 2024).

Metabolomic analysis revealed substantial pathogen-induced

metabolic reprogramming, particularly in the endosphere, where

upregulation of antimicrobial and oxidative stress-related

metabolites occurred alongside suppression of primary

metabolism. The enrichment of arachidonic acid, an

inflammation-associated lipid, and Gentamicin X2, an

antimicrobial compound, suggests that the plant actively engages

in chemical defense mechanisms against pathogen stress

(Dedyukhina et al., 2014). However, the concomitant increase in

Gflutathionylspermine, a redox-balancing metabolite, and its

correlation with Ketobacter in diseased plants indicate that

oxidative stress plays a central role in disease progression. This

aligns with previous findings that oxidative bursts triggered by

pathogen invasion lead to metabolic shifts that either enhance

immunity or drive tissue degradation (Torres et al., 2006;

Lehmann et al., 2015). The depletion of camalexin, a key

phytoalexin, in diseased plants suggests that the pathogen may

actively suppress host antimicrobial responses, either through

effector-mediated immune modulation or by redirecting

metabolic pathways to favor its proliferation, a mechanism

observed in bacterial wilt infections in ginger and tobacco (Dang

et al., 2023; Li et al., 2017). In the rhizosphere, metabolic shifts were

tightly linked to microbial composition, with Proteobacteria

forming dominant associations with metabolites involved in

carbon and nitrogen cycling, such as citric acid and saikosaponin

L. This suggests that pathogen infection alters root exudation

patterns, potentially benefiting fast-growing copiotrophic

microbes while suppressing slow-growing oligotrophs. The

enrichment of antibiotic-related metabolites such as verruculogen

and aurachin A in the infected endosphere further suggests an

adaptive response aimed at microbial competition and pathogen
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inhibit ion (Kruth and Nett , 2023). Interest ingly, the

downregulation of nucleic acid metabolism-related metabolites,

such as quinolinic acid, may indicate a shift in microbial

community dynamics, where pathogen-driven suppression of

specific biosynthetic pathways limits microbial proliferation and

facilitates its own dominance. Similar metabolic trade-offs have

been observed in other soilborne plant-pathogen interactions,

where pathogen-induced metabolic shifts alter rhizosphere

nutrient fluxes, thereby favoring disease-promoting microbiomes

(Berendsen et al., 2012; Mendes et al., 2018). For example, in ginger

and tobacco, infection led to reduced alpha diversity,

overrepresentation of Proteobacteria, and enrichment of

secondary metabolites involved in defense and oxidative stress

responses (Dang et al., 2023; Li et al., 2017). However, distinct

metabolites such as saikosaponin L and XTP identified in our

potato system highlight host-specific metabolic responses. These

comparative insights suggest that while R. solanacearum employs

conserved infection strategies, host metabolic plasticity and

genotype contribute significantly to the disease outcome and

microbiome restructuring.

To better understand how such metabolic responses may

influence microbial dynamics, we conducted network-level analyses

to explore potential key mediators in these interactions. Network

analysis highlighted key metabolites that acted as central regulators of

microbial interactions. XTP, a nucleotide metabolism intermediate,

displayed extensive positive associations with multiple microbial

genera, suggesting that pathogen invasion enhances microbial

metabolic activity, likely as a response to environmental stress. This

observation aligns with studies showing that nucleotide metabolism is

critical in microbial adaptation to pathogen-induced stress and

energy reallocation (Fitzsimmons et al., 2018). Conversely,

antimicrobial metabolites such as 5-Methylsulfinylpentyl

glucosinolate and arachidonic acid exhibited strong negative

correlations with specific genera, highlighting their selective

suppression of pathogenic taxa. The strategic positioning of these

metabolites at the network periphery suggests that antimicrobial

activity is not broadly distributed but rather targeted, reinforcing

the concept that plants employ selective chemical defenses against

microbial invaders (Shastri and Kumar, 2019). While our integrated

analyses revealed strong correlations between specific microbial taxa

and metabolite abundance, the exact source of these metabolites

remains ambiguous. Compounds like camalexin and arachidonic

acid are typically plant-derived and reflect host immune activation,

whereas others such as Gentamicin X2 may be produced bymicrobial

symbionts. The co-occurrence patterns suggest functional

associations but do not establish causality. Future studies

employing isotope labeling or metatranscriptomics are needed to

disentangle plant versus microbial contributions to the metabolite

pool and clarify the causal direction of these interactions.

The microbiome-metabolome co-analysis provided insights

into the broader ecological implications of these shifts. Procrustes

and O2PLS analyses revealed that microbial and metabolic

networks in healthy plants were more diverse and spatially

dispersed, whereas diseased plants exhibited a more tightly
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coordinated structure, likely driven by pathogen-imposed

constraints. The strong correlation between antimicrobial

metabolites and specific bacterial taxa in infected plants suggests

that metabolic reprogramming is not merely a passive response but

an active, pathogen-mediated process that restructures microbial

ecosystems. This is consistent with findings in other plant-pathogen

interactions, where the metabolic landscape is reshaped to either

support pathogen proliferation or elicit defense responses (Sasse

et al., 2018; Lyu et al., 2019). These microbiome–metabolome

associations are likely governed by complex molecular

mechanisms. For instance, R. solanacearum delivers a suite of

type III secretion system (T3SS) effectors that modulate host

immune responses and interfere with hormone signaling, such as

salicylic acid (SA) and jasmonic acid (JA) pathways (Nakano and

Mukaihara, 2019). This immunosuppression can alter root exudate

composition and local nutrient availability, thereby reshaping the

chemical environment and selecting for specific microbial

assemblages taxa with specific metabolic capabilities, including

the utilization of defense-related secondary metabolites such as

phenolics, flavonoids, and saponins (Yang et al., 2023). These

changes may favor the enrichment of antimicrobial or

copiotrophic bacteria. Similarly, R. solanacearum infection was

shown to alter tobacco root exudate composition, notably

increasing the secretion of caffeic acid, which selectively

suppressed pathogen growth and enriched antagonistic

rhizosphere bacteria (Li et al., 2021). These mechanisms

emphasize the active and dynamic interplay between host defense,

pathogen virulence, and microbial community restructuring.

The selective enrichment of potentially beneficial taxa such as

Sphingomonas, Paenibacillus, and Burkholderia in healthy plants

suggests that microbiome engineering approaches, such as targeted

probiotic applications or root exudate manipulation, could enhance

disease resistance (Compant et al., 2019; Wei et al., 2020). These

strategies, however, must account for environmental variables such

as soil physicochemistry and local microbial ecology to be field-

applicable. Additionally, the identification of microbial-regulating

metabolites such as XTP and saikosaponin L opens opportunities

for metabolic priming—either through foliar sprays or soil

amendments—to enhance host immunity. Future studies should

focus on elucidating the molecular mechanisms underlying these

interactions, particularly how pathogen-induced metabolic shifts

shape microbial networks at a functional level. By integrating multi-

omic approaches, it may be possible to develop predictive models

for microbiome resilience and pathogen suppression. Meanwhile,

large-scale validation in field trials is essential to assess persistence,

colonization efficiency, and crop yield impact under natural

pathogen pressures.
Conclusion and recommendation

This study provides a comprehensive overview of the spatial

dynamics of microbial and metabolic responses in potato root-

associated niches under bacterial wilt stress. The results
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demonstrate that R. solanacearum infection induces niche-specific

disruptions in microbial diversity, taxonomic composition, and

metabolic profiles, with the most severe microbial collapse

observed in the endosphere. Functional prediction and network

analysis revealed a transition from beneficial microbial processes

toward saprotrophic and pathogenic activity, alongside the

accumulation of antimicrobial metabolites. The integration of

microbiome and metabolome datasets highlighted key microbe–

metabolite associations and identified XTP and Gentamicin X2 as

core metabolites mediating host–microbiome interactions. Our

findings suggest that microbiome engineering strategies—such as

the application of taxa (e.g., Sphingomonas, Paenibacillus) and

metabolite-based priming (e.g., saikosaponin L, XTP)—hold

promise for enhancing plant resistance against bacterial wilt.

Future field-based research should focus on validating these

candidate microbes and metabolites under diverse environmental

conditions to assess their potential in sustainable disease

management programs.
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SUPPLEMENTARY FIGURE 1

Functional predictions of microbial communities in healthy and diseased plants
across different root-associated niches using FAPROTAX. The left panel shows

the relative abundance of functional groups in each condition, the middle panel
illustrates the difference in proportions within a 95% confidence interval, and

the right panel provides the corrected p-values for statistical significance.

(A) Comparison of microbial functional composition between healthy (CK-S)
anddiseased (RS-S) plants in the root-surrounding soil. (B)Comparisonbetween

healthy (CK-R) and diseased (RS-R) plants in the rhizosphere. (C) Comparison
between healthy (CK-E) and diseased (RS-E) plants in the endosphere.

SUPPLEMENTARY FIGURE 2

Taxonomic composition analysis of fungal communities at the phylum level,

comparing healthy and diseased plant samples across root-surrounding soil
(A), rhizosphere (B), and endosphere (C) niches.

SUPPLEMENTARY FIGURE 3

Alpha diversity analysis (Shannon and Chao1 indices) showing microbial
richness and evenness differences between healthy and diseased plants

across root-surrounding soil (A), rhizosphere (B), and endosphere (C) niches.

SUPPLEMENTARY FIGURE 4

Beta diversity analysis using Bray-Curtis distance-based Principal Coordinate
Analysis (PCoA) across root-surrounding soil and rhizosphere (A), and

endosphere (B) niches.

SUPPLEMENTARY FIGURE 5

Top 10 differential fungal functional guilds between healthy (CK) and diseased
(RS) plants across root-associated compartments. Boxplots show the relative

abundance of the top 10 fungal functional guilds with statistically significant
differences (FDR-adjusted p < 0.05) as predicted by FUNGuild. (A) Root-

surrounding soil, (B) Rhizosphere and (C) Endosphere niches.
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SUPPLEMENTARY FIGURE 6

Metabolite Profiling: PCA, Sample Correlation, and Clustering Analysis.

(A) Principal Component Analysis (PCA) of metabolite profiles. (B) Sample

correlation analysis based on Spearman Rank Correlation coefficients, used to
evaluate biological replicate consistency. The x-axis and y-axis represent sample

names,and thecolor intensity indicates thecorrelationcoefficient (r). (C)Heatmap
of metabolite clustering analysis, where the x-axis represents samples and the

y-axis represents metabolites.

SUPPLEMENTARY FIGURE 7

KEGG pathway annotation of identifiedmetabolites. KEGG database annotation
was performed for all identified metabolites, selecting the top 20 KO pathway

level 3 categories with the highest number of annotated metabolites. The
grouped entries within the same box represent hierarchical classifications of

KEGG pathways, corresponding to KO pathway level 2 and level 3. The bar
length indicates the number of metabolites assigned to each pathway.

SUPPLEMENTARY FIGURE 8

Differential metabolites between healthy and diseased plants across root-

associated niches. The figure presented the top 10 upregulated (red) and
downregulated (green) metabolites in each comparison, based on log-

transformed fold change (logFC). The bar labels indicate metabolite names,
with bar length representing logFC values. (A) Comparison between the

rhizosphere of healthy and diseased plants. (B) Comparison between the
Frontiers in Plant Science 16
endosphere of healthy and diseased plants. (C) Comparison between the

endosphere of diseased plants and the rhizosphere of diseased plants.

SUPPLEMENTARY TABLE 1

Summary of sequencing data quality and processing metrics, which presents
sequencing data quality assessment across different root-associated niches

(surrounding soil, rhizosphere, and endosphere) in healthy (CK) and diseased
(RS) potato plants.

SUPPLEMENTARY TABLE 2

Species count at different taxonomic levels in root-associated niches. The

species count is provided at multiple taxonomic levels, including kingdom,
phylum, class, order, family, genus, and species.

SUPPLEMENTARY TABLE 3

Alpha diversity metrics of root-associated bacterial and fungal communities,

including ASV/OUT count, ACE, Chao1, Simpson, Shannon, PD_whole_tree,
and coverage, for bacterial and fungal communities across different root-

associated niches (surrounding soil, rhizosphere, and endosphere) in healthy
(CK) and diseased (RS) potato plants.

SUPPLEMENTARY TABLE 4

Topological characteristics of bacterial co-occurrence networks across root-

associated niches.
References
Attia, S., Russel, J., Mortensen, M. S., Madsen, J. S., and Sørensen, S. J. (2022).
Unexpected diversity among small-scale sample replicates of defined plant root
compartments. ISME J. 16, 997–1003. doi: 10.1038/s41396-021-01094-7

Bai, B., Liu, W., Qiu, X., Zhang, J., Zhang, J., and Bai, Y. (2022). The root
microbiome: Community assembly and its contributions to plant fitness. J. Integr.
Plant Biol. 64, 230–243. doi: 10.1111/jipb.13226

Beckers, B., Op De Beeck, M., Weyens, N., Boerjan, W., and Vangronsveld, J. (2017).
Structural variability and niche differentiation in the rhizosphere and endosphere
bacterial microbiome of field-grown poplar trees. Microbiome 5, 1–17. doi: 10.1186/
s40168-017-0241-2

Berendsen, R. L., Pieterse, C. M., and Bakker, P. A. (2012). The rhizosphere microbiome
and plant health. Trends Plant Sci. 17, 478–486. doi: 10.1016/j.tplants.2012.04.001

Berendsen, R. L., Vismans, G., Yu, K., Song, Y., de Jonge, R., Burgman, W. P., et al.
(2018). Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J.
12, 1496–1507. doi: 10.1038/s41396-018-0093-1

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith,
G. A., et al. (2019). Reproducible, interactive, scalable and extensible microbiome
data science using QIIME 2. Nat. Biotechnol. 37, 852–857. doi: 10.1038/s41587-019-
0209-9

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and
Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina
amplicon data. Nat. Methods 13, 581–583. doi: 10.1038/nmeth.3869

Carrión, V. J., Perez-Jaramillo, J., Cordovez, V., Tracanna, V., De Hollander, M., Ruiz-
Buck, D., et al. (2019). Pathogen-induced activation of disease-suppressive functions in the
endophytic root microbiome. Science 366, 606–612. doi: 10.1126/science.aaw9285

Chaparro, J. M., Badri, D. V., and Vivanco, J. M. (2014). Rhizosphere microbiome
assemblage is affected by plant development. ISME J. 8, 790–803. doi: 10.1038/
ismej.2013.196

Chiaramonte, J. B., Mendes, L. W., and Mendes, R. (2021). Rhizosphere microbiome
and soil-borne diseases. In: V. V. S. R. Gupta and A. K. Sharma (eds) Rhizosphere
Biology: Interact. Between Microbes Plants. Rhizosphere Biology. Springer, Singapore,
155–168. doi: 10.1007/978-981-15-6125-2

Compant, S., Samad, A., Faist, H., and Sessitsch, A. (2019). A review on the plant
microbiome: ecology, functions, and emerging trends in microbial application. J.
advanced Res. 19, 29–37. doi: 10.1016/j.jare.2019.03.004

Dang, K., Hou, J., Liu, H., Peng, J., Sun, Y., Li, J., et al. (2023). Root exudates of ginger
induced by Ralstonia solanacearum infection could inhibit bacterial wilt. J. Agric. Food
Chem. 71, 1957–1969. doi: 10.1021/acs.jafc.2c06708

Dedyukhina, E. G., Kamzolova, S. V., and Vainshtein, M. B. (2014). Arachidonic acid
as an elicitor of the plant defense response to phytopathogens. Chem. Biol. Technol.
Agric. 1, 1–6. doi: 10.1186/s40538-014-0018-9

Dlamini, S. P., Akanmu, A. O., and Babalola, O. O. (2023). Variations in the
functional diversity of rhizosphere microbiome of healthy and northern corn leaf blight
infected maize (Zea mays L.). Spanish J. Soil Sci. 13, 10964. doi: 10.3389/sjss.2023.10964
Donn, S., Kirkegaard, J. A., Perera, G., Richardson, A. E., and Watt, M. (2015).
Evolution of bacterial communities in the wheat crop rhizosphere. Environ. Microbiol.
17, 610–621. doi: 10.1111/emi.2015.17.issue-3

Du, Y., Han, X., and Tsuda, K. (2024). Microbiome-mediated plant disease
resistance: recent advances and future directions. J. Gen. Plant Pathol. 91, 1–17.
doi: 10.1007/s10327-024-01204-1

European and Mediterranean Plant Protection Organization (EPPO). (2021).
Ralstonia solanacearum, R. pseudosolanacearum and R. syzygii (Ralstonia
solanacearum species complex). EPPO Bulletin 52 (2), 255–261. doi: 10.1111/epp.12837

Fitzsimmons, L. F., Liu, L., Kim, J.-S., Jones-Carson, J., and Vázquez-Torres, A.
(2018). Salmonella reprograms nucleotide metabolism in its adaptation to nitrosative
stress. MBio 9. doi: 10.1128/mbio.00211-00218

Gao, M., Xiong, C., Gao, C., Tsui, C. K., Wang, M.-M., Zhou, X., et al. (2021).
Disease-induced changes in plant microbiome assembly and functional adaptation.
Microbiome 9, 1–18. doi: 10.1186/s40168-021-01138-2
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