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and speed control system
for unmanned combine
harvesters based on
IPSO-SVM and fuzzy logic
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Lingyu Tang1, Kun Wang1, Anzhe Wang1, Wenming Chen1,
Qi Song1,2* and Xinhua Wei1,2

1School of Agricultural Engineering, Jiangsu University, Zhenjiang, China, 2Key Laboratory for Theory
and Technology of Intelligent Agricultural Machinery and Equipment, Jiangsu University,
Zhenjiang, China
This study proposes an IPSO-SVM-based fault prediction and fuzzy speed

control system for unmanned combine harvesters. The primary goal is to

prevent clogging failures and ensure long-term stable operation of unmanned

harvesting machines, maintaining efficiency while minimizing downtime. The

system integrates multi-component slip rate data, collected from critical parts of

the harvester, and uses the IPSO-SVM model for fault warning. The fuzzy control

algorithm adjusts the operating speed based on the predicted fault status and

feeding rate to mitigate clogging risks. Experimental results show that the system

can accurately identify over 98.5% of fault states and reduce the occurrence of

complete blockage by adjusting the harvester’s speed within 0.5 to 2 seconds

after minor clogging. This work demonstrates the feasibility of applying the

system in field environments, providing a reliable solution for the intelligent and

unmanned operation of combine harvesters in fields.
KEYWORDS

unmanned harvester, fault prediction, IPSO-SVM, fuzzy control, clogging prevention,
slip rate monitoring, intelligent farming, machine learning
1 Introduction

The rice-wheat rotation has a tight planting schedule and limited labor availability,

leading to widespread poor tillage and planting, as well as poor working conditions under

harsh weather conditions (An et al., 2018; Marinoudi et al., 2019). Among the various steps

in the “tillage, sowing, management, and harvesting” process, the quality of harvesting

operations is particularly critical, involving relatively complex tasks and rigid labor

requirements Lowenberg-DeBoer et al., 2020). The development of intelligent and

unmanned combine harvesters not only addresses labor shortages but also enhances
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land utilization and improves agricultural machinery efficiency

(Boursianis et al., 2022; Elijah et al., 2018). Currently, commercial

agricultural machinery auxiliary driving systems are relatively

mature, assisting operators in controlling the steering wheel and

ensuring path tracking for field operations (Li et al., 2023, 2022; Lu

et al., 2020). However, the operator still needs to handle other

fieldwork mechanisms. For example, during harvesting operations,

the operator must adjust the vehicle’s speed to avoid clogging based

on the load, modify the header height according to terrain and crop

lodging, and adjust the reel height according to the crop’s ear

position (Yanxin et al., 2022). Currently, these auxiliary systems

save labor but do not reduce labor costs effectively (Tey and Brindal,

2022), making the development of an operational control system a

key step toward achieving unmanned agricultural machinery (Chen

et al., 2023; Jin et al., 2021). This study focuses on the operational

load speed control system of rice-wheat combined harvesters.

Scholars at home and abroad have combined information and

intelligent technologies to study the state monitoring and fault

diagnosis of combine harvesters, achieving significant results (Qiu

et al., 2022; Liang et al., 2016; Xu et al., 2019). Wang et al. (2023)

pointed out that the threshing system, being one of the key

components of a harvester, is easily influenced by crop

characteristics, feeding rates, and the harvester’s forward speed.

When the feeding rate exceeds the threshing drum’s power match,

the drum speed decreases, and the drive belt may slip, potentially

causing a clogging failure that damages related components.

Craessaerts et al. (2010a) and Yang et al. (2024) categorized

common harvester faults into header faults, threshing system

faults, and re-threshing faults, analyzing the causes of these faults

and proposing preventive measures to reduce their occurrence.

Pavlyuk et al. (2022) analyzed the main system performance

parameters of combine harvesters, identifying failure-prone areas

such as the harvesting section, mechanical drive section, and

threshing section, and determined the fault distribution during

harvesting operations through experiments.

Several studies have attempted to control the harvester’s load

via feedback from key component working conditions, stabilizing

the harvesting state to avoid failure (Chen et al., 2017; Li et al., 2022;

Ma et al., 2023; Yu et al., 2024). Kruse et al. (1983) used changes in

engine load to represent the harvester’s load, monitoring the

engine’s torque as feedback to adjust the travel speed of the full-

feeding combine harvester, keeping the feeding rate stable.

McGechan and Glasbey (1982) used threshing drum torque, main

auger torque, and loss rate as reference variables to adjust speed,

maintaining a stable operating state for the harvester. Li et al. (2021)

developed an online monitoring system for the harvester’s hydraulic

components, such as the header, conveyor, and threshing drum,

based on LabVIEW, enabling real-time collection of key working

parameters and fault warnings. Abdeen et al. (2022) designed a

stress monitoring system for the threshing drum’s top cover using

resistive sensors, achieving real-time monitoring of feeding rates

and early warnings of threshing drum clogging. Qin et al. (2011)

designed a harvesting speed control system based on RBF, using
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header auger speed to assist in feeding state measurement and

maintaining a constant threshing drum speed.

With the widespread application of machine learning

algorithms in fault diagnosis, more solutions are available for

diagnosing faults (Hao et al., 2022; Chen et al., 2020). Craessaerts

et al. (2010b) suggested that using historical data from combine

harvesters and artificial neural networks to construct fault diagnosis

models can achieve approximately 80% fault recognition accuracy.

By integrating fuzzy control of the cleaning process and combining

the data model with the operator’s experience, faults can be

effectively avoided. Chen et al. (2014) designed a fault diagnosis

system for combine harvesters based on a fuzzy neural network

(FNN) algorithm, establishing a nonlinear mapping relationship

between fault symptoms and fault types, processing input

component speed values, and outputting fault diagnosis results.

Jack and Nandi (2001) and Samanta et al. (2003) successfully

applied SVM for bearing fault detection and experimentally

verified its high engineering application value in fault diagnosis.

Diez-Olivan et al. (2018) proposed a new algorithm based on SVM

to assess sensor health and demonstrated its effectiveness in

analyzing the time-dependent trends of ship diesel engine faults.

Support Vector Machine (SVM) theory has a solid mathematical

foundation and rigorous derivations. It can transform classification

and regression problems into optimization problems with

constraints, which are solved through various mathematical

methods, optimizing its algorithm and improving computational

speed and performance. SVM theory has achieved excellent results

in condition monitoring and fault warning applications (Liu et al.,

2013; Chen et al., 2019; Ding et al., 2022; Ahmad et al., 2021; Peng

et al., 2021). However, existing fault diagnosis methods, particularly

those based on traditional machine learning (such as basic SVM),

often face challenges such as poor generalization in small-sample,

high-dimensional data scenarios and difficulty in parameter tuning.

Deep learning approaches (e.g., CNN, LSTM, and reinforcement

learning) have shown promising results but typically require

extensive datasets and higher computational resources, making

them less practical for real-time onboard applications.

To address these limitations, this study aims to predict clogging

fault risks and dynamically adjust operational speed, ensuring the

stable, long-term operation of unmanned combine harvesters.

Instead of pinpointing specific fault locations, the primary focus

is on managing the overall clogging risk to improve harvesting

efficiency and reliability. Specifically, we propose a harvesting speed

control system that integrates multi-component slip rate

monitoring, an improved particle swarm optimization (IPSO)-

optimized SVM model for accurate fault state classification, and a

fuzzy logic-based algorithm for adaptive speed control. By

collecting real-time data from Hall-effect sensors installed on

critical harvesting components and utilizing 4G communication

with cloud platforms, the system quickly and effectively reduces

clogging risks. This approach significantly enhances operational

efficiency, reduces downtime, and holds great potential for practical

implementation in intelligent and unmanned agricultural
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machinery, extending its applicability to diverse farming

environments and various agricultural machinery models.

The main innovations and contributions of this research are

as follows:
Fron
1. Multi-component signal fusion: By collecting rotational speed

signals from key components such as the header auger,

conveyor, threshing drum, auger, and vibration screen, the

system integrates slip rate data to reflect potential clogging

signs across different transmission chains, overcoming the

limitations of traditional single-component load feedback.

2. Efficient fault warning: Utilizing IPSO-SVM to classify

small sample, high-dimensional clogging fault patterns

enables accurate fault warning. The optimized algorithm

enhances the SVM kernel function parameters and penalty

factors, improving warning accuracy and robustness. Field

tests validate that the fault warning model can correctly

identify more than 98% of fault states.

3. Automatic speed regulation: Using fuzzy control, the

system integrates fault warning results and feeding rate

estimates into speed adjustment rules to enable real-time

closed-loop control of operational load. This reduces

clogging risks while ensuring fieldwork efficiency. Field

tests confirm that the system can reduce speed within

0.5–2 seconds after detecting minor clogging, effectively

preventing the occurrence of complete blockage failures.
To better present the research approach and experimental results,

the structure of this paper is organized as follows: Section 2:

Introduces the harvester parameters, power transmission structure,

fault warning speed control system’s hardware and software

framework, the IPSO-SVM-based fault warning principle, and the

fuzzy-based speed control principle. Section 3: Describes the

experimental design and results of feeding rate calibration, fault

warning model performance verification, and speed control

experiments. Section 4: Summarizes the research findings and

conclusions, and discusses potential directions for future research.
2 Materials and methods

2.1 Harvester parameters and common
faults

This study is based on the World Ruilong 4LZ-5.0 combine

harvester, with key parameters listed in Table 1. The selection of this

specific harvester was based on its affordability, ease of availability

for field testing, and its widespread use as a commercial model

featuring standard components common in modern combine

harvesters. Moreover, all key mechanical parts are easily

accessible for sensor installation, facilitating the implementation

of electronic monitoring systems. The harvester’s hydraulic speed

transmission (HST) system also simplifies the integration of

automated speed control mechanisms. Importantly, the proposed

fault prediction and speed control system is not limited exclusively
tiers in Plant Science 03
to this particular model; it can be readily adapted to other combine

harvesters sharing similar mechanical and electronic architectures.

The harvester’s power consumption is primarily divided into

two parts: the drive system and the operational system. The load of

the drive system is mainly influenced by factors such as ground

friction resistance, slope resistance, the internal friction of the

transmission system, and the inertia forces during vehicle

acceleration and deceleration. The operational system’s load is

primarily affected by factors such as the crop feed rate per unit

time, the composition of the crop, and the working conditions of

the respective operational components. The real-time power

consumption of the drive system can cause fluctuations in the

maximum load of the operational system.

The crop transfer process and the power transmission process of

the harvester are not consistent, which makes it challenging to infer

crop clogging from monitoring the power system’s status. The crop

transfer flow includes: cutter bar cutting the stems→ feeding the crop

into the header auger → conveyor chain rake → threshing cylinder

→ vibrating sieve and fan cleaning→ secondary cleaning of residuals

→ grain is sent into the grain tank by the auger, while straw is sent to

the straw cutter for grinding and discharge after passing through the

threshing cylinder. The power transmission flow in the operational

system includes: engine→ fan→header conveyor→ header auger→

cutter bar and reel, fan→ threshing cylinder, fan→ straw cutter, fan

→ grain auger → vibrating sieve, as shown in Figure 1.

According to recent statistics on warranty and fault repair data

(Chen et al., 2023), most mechanical clogs occur when key

components in the transmission chain (such as the Header Auger,

Conveyor, Threshing Cylinder, Grain Auger, Vibration Sieve, Straw

Cutter, etc.) become obstructed or fail to operate smoothly due to

crop accumulation or excessive load, as shown in Figure 2. The

Blower Fan often serves as the driving axis for the transmission

system, with most components maintaining a fixed speed ratio with

the Blower Fan (such as the Header Auger and Vibration Sieve,

which maintain a fixed speed ratio with their respective upstream

components). When any component experiences clogging or
TABLE 1 The main parameters of the World Ruilong 4LZ-5.0.

Parameter Value Unit

Combine dimensions (length- width- height) 4960 - 3950 - 2830 mm

Combine weight 3000 kg

Engine power 75 kw

Gear shift method 3 speeds HST –

Travel speeds (at rated engine speeds)

Low speed: 0 to 1

m/secStandard: 0 to 1.5

High speed: 0 to 2

Cut width 2200 mm

Feeding capacity 5 kg/s

Operational efficiency 0.68 – 0.85 ha/h

Grain tank capacity 1.5 m3
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slipping, its slip rate deviates significantly. Therefore, in this study,

the slip rate of the pulley is used as the primary monitoring

parameter, supplemented by monitoring the harvester’s forward

speed and GPS positioning information to assess the feeding rate.

An intelligent algorithm is then applied to comprehensively

determine the fault risk value of the harvesting operation.
2.2 Overall design of the system

To achieve fault warning and speed control during the operation

of the combine harvester, the onboard hardware system used in this

study is configured as shown in Figure 3, which includes:
Frontiers in Plant Science 04
2.2.1 Operational component speed monitoring
system

HR-M1850 Hall effect speed sensors (Omron (China) Co., Ltd.)

are used to collect real-time data on the rotational speed of the drive

pulleys for seven key operational components: Header Auger,

Header Conveyor, Threshing Cylinder, Blower Fan, Grain Auger,

Vibration Sieve, and Straw Cutter.

2.2.2 Navigation system
The system, based on the UB482 positioning core board (Beijing

Unicore Communications Co., Ltd.), is utilized for the harvester’s

unmanned driving functionality and simultaneously collects vehicle

speed information (Sun et al., 2022).
FIGURE 2

Common faults in combine harvesters. (a) Header auger clogging; (b) Header conveyor clogging; (c) Threshing cylinder clogging; (d) Vibrating sieve
clogging; (e) Grain auger clogging; (f) Straw cutter clogging.
FIGURE 1

The power system structure of the 4LZ-5.0 combine harvester.
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2.2.3 Control system
The system, based on the EMB8600I embedded industrial control

board (Beijing EmbedArm Co., Ltd.), processes sensor data, transmits

it to the remote communication module, receives fault warning

results from the cloud, and controls the vehicle’s actions.

2.2.4 Remote communication system
The system, based on the G780 4G LTE DTU module (Jinan

Youren Network Co., Ltd.), enables remote communication with

the cloud server.
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2.2.5 Onboard actuator system
This includes the electrification of the HST speed change

actuator and the Header lift actuator using electric push rods

(YNT03, Nanjing Yongnuo Transmission Equipment Co., Ltd.),

as well as the conversion of the original manual throttle to electric

control via the embedded control board’s ADC interface.

The cloud server used in this study consists of a Socket server,

database module, and web interface, as shown in Figure 4. The

Socket server primarily handles communication with the onboard

terminal, providing services such as data reception, information
FIGURE 3

Hardware structure of fault warning and speed control system. (a) Combine harvester; (b) Header auger; (c) Header conveyor; (d) Threshing cylinder;
(e) Blower fan; (f) Vibration sieve; (g) Grain auger; (h) Straw cutter; (i) Positioning antenna; (j) RTK radio; (k) GNSS receiver; (l) Navigation software;
(m) Embedded Controller; (n) LTE-QTU Module; (o) HST Rod; (p) Accelerator; (q) Header lift rod.
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feedback, data protocol parsing, and fault warnings. The MySQL

database module is responsible for the persistent storage of data

received from the Socket server, fault codes generated by fault

warnings, and other relevant information from the web service. The

web interface handles remote monitoring of the harvester and

human-machine interaction features (Zang et al., 2022).

The server is hosted on Alibaba Cloud ECS (Elastic Compute

Service) and runsWindows Server 2008, ensuring stability and security.

Communication between the system components is based on a TCP

transparent transmission Socket protocol, with custommessage formats

for uploading sensor data and sending back fault warning states.

The development of the machine learning-based fault warning

model for the combine harvester is primarily carried out using

Python 3.6. The Scikit-learn library is used to build an IPSO-SVM

classification model, which is trained using historical clogging fault

data from the combine harvester. The trained model is serialized

and saved using the pickle module. The Socket server loads the

model file into memory and uses real-time rotational speed data to

generate fault warning results.
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2.3 IPSO-SVM-based fault risk warning
model

The clogging fault in combine harvesters can be treated as a

pattern recognition problem, with mainstream machine learning

methods such as neural networks and Support Vector Machines

(SVM) commonly applied. However, traditional SVM methods are

sensitive to hyperparameter tuning, which significantly affects their

generalization performance, especially under conditions with

limited training samples. Similarly, particle swarm optimization

(PSO)-based approaches can suffer from premature convergence,

limiting their ability to find optimal solutions efficiently.

To overcome these limitations, this study adopts an improved

particle swarm optimization (IPSO) strategy to enhance the

generalization capability and accuracy of the SVM model.

Specifically, the IPSO algorithm effectively optimizes the kernel

parameters and penalty factors (C and s) of the SVM, enabling

better fault state classification performance. By introducing

nonlinear transformations, the IPSO-SVM framework maps low-
FIGURE 4

Cloud server architecture diagram.
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dimensional, non-separable data into high-dimensional space,

enhancing fault prediction accuracy and robustness.

SVM is a supervised learning method based on the maximum

margin strategy. It classifies data in high-dimensional space by

constructing an optimal hyperplane. As shown in Figure 5, in a two-

dimensional space, suppose there are two types of samples, and

linear classification can be achieved through multiple boundary

functions (M). The optimal boundary is defined by support vectors.

Support vectors (M1, M2) are the samples closest to the boundary,

and the distance between them is the margin. Maximizing the

margin helps enhance the model’s generalization ability, thus

improving classification accuracy.

When this theory is extended to high-dimensional data, the

linear decision boundary becomes a hyperplane. The goal is to

determine the optimal hyperplane that accurately separates samples

into their respective categories. To achieve this, the radial basis

function (RBF) kernel is employed to transform nonlinear, non-

separable input data into a higher-dimensional feature space,

enabling linear separability. This transformation allows the SVM

model to effectively classify fault states. Fault state classification

follows a similar principle to the two-dimensional case illustrated in

Figure 5, where the optimal hyperplane is defined by support

vectors, clearly distinguishing normal and faulty states. The

decision boundary generated by these support vectors divides the

feature space into distinct classification regions. Samples that fall

within each region are classified accordingly, based on their

proximity to historical support vectors representing different fault

states (e.g., normal, mild clogging, severe clogging, and complete

blockage). This visual representation provides an intuitive

understanding of the model’s classification performance and

highlights how the SVM differentiates between normal and faulty

conditions using the optimized hyperplane.

Let the dataset be T = (x1, y1), (x2, y2),⋯, (xn, yn)f g, where xi ∈
Rn and yi ∈ 1,−1f g, xi represents the input sample vector, and yi
represents the sample label. The hyperplane can be represented by

the following mathematical model (Equation 1):
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wTx + b = 0 (1)

where w = (w1;w2;⋯;wn) is the normal vector of the

hyperplane, and b is the offset, which determines the distance

from the hyperplane to the origin. The distance d from a sample

point to the hyperplane can be expressed as (Equation 2):

d =
wTx + b
�� ��
∥w ∥

(2)

When the hyperplane correctly classifies the samples, it should

satisfy the following constraints (Equation 3):

wTxi + b − 1 ≥ 0, yi = +1

wTxi + b + 1 ≤ 0, yi = −1

(
(3)

Support vectors are the samples closest to the hyperplane, and

the distance between the support vectors of the two classes is called

the margin. This margin D can be expressed as (Equation 4):

D =
2

∥w ∥
(4)

The optimal hyperplane maximizes the margin, which is

equivalent to minimizing (Equation 5):

min
w ,b

∥w ∥2

2
 s : t :   (wTxi + b)yi ≥ 1 (5)

By introducing Lagrange multipliers ai (Rockafellar, 1993), the

optimization problem can be transformed into the following form

(Equation 6):

L(w , b,a) =
∥w ∥2

2
−on

i=1ai((w
Txi + b)yi − 1) (6)

Taking partial derivatives of this Lagrange function and setting

them to zero, we obtain (Equations 7, 8):

w =on
i=1aixiyi (7)

on
i=1aiyi = 0 (8)

Substituting the above into the Lagrange function transforms

the problem into its dual form (Shawe-Taylor and Sun, 2011)

(Equation 9):

max
 
L(a) =on

i=1ai

−
1
2o

n
i=1on

j=1aiajyiyj(xi, xj)  s : t :
on

i=1aiyi = 0

ai ≥ 0

(
(9)

This is solved using the Sequential Minimal Optimization

(SMO) algorithm (Platt, 1998).

For non-linear separable problems, such as the relationship

between rotational speed and slip rate data for fault risk in combine

harvester failures, we introduce a nonlinear transformation. This

maps low-dimensional, non-separable data into a high-dimensional

space, making it separable. Using a kernel function, we can compute

the inner product in the original space, avoiding direct computation
FIGURE 5

Schematic diagram of 2D linear separation.
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in the high-dimensional space. Common kernel functions include

the Radial Basis Function (RBF), polynomial kernel, and Sigmoid

kernel (Hofmann et al., 2008). The RBF kernel is expressed as

(Equation 10):

k(xi, xj) = e−
∥ xi−xj ∥

2

s2 (10)

where s is a parameter that significantly affects the SVM

model’s performance, and it must be tuned to optimize the model.

To address the impact of measurement errors and noise on

hyperplane optimization, we employ a soft margin method (Chen

et al., 2004), optimizing by introducing slack variables x and a

penalty factor C. The penalty factor determines the model’s

tolerance for misclassification and affects the generalization and

fitting capacity of the model.

The optimization problem for the optimal hyperplane can now

be expressed as (Equation 11):

min
w ,b,C

∥w ∥2

2
+ Con

i=1xi   s : t :   (w
Tj(xi) + b)yi ≥ 1 − xi (11)

The dual form of the optimization problem is (Equation 12):

max L(a) =on
i=1ai

−
1
2o

n
i=1on

j=1aiajyiyjk(xi, xj)   s : t :  
on

i=1aiyi = 0

0 ≤ ai ≤ C

(12)

Finally, by solving the dual problem of the Lagrange function,

we obtain the decision function for the nonlinear SVM model

(Equation 13):

f (x) = sign(on
i=1k(xi, x)aiyi + b) (13)

To improve the classification performance of the SVM model,

we adopted an improved particle swarm optimization (IPSO)

algorithm to optimize SVM parameters C and s. Traditional
SVM models are sensitive to hyperparameter tuning, significantly

affecting their generalization performance, especially with limited

data. Conventional PSO often suffers from premature convergence,

limiting the quality of parameter optimization. Therefore, the IPSO

approach, featuring enhanced inertia weight adaptation, was used to

accelerate convergence and improve optimization efficiency.

The position and velocity update rules for a particle in PSO are

defined as follows (Equations 14, 15) (Cheng and Jin, 2015):

Vt+1
i = wVt

i + c1rand½0,1�(pbesti − Xt
i ) + c2rand½0,1�(gbest

− Xt
i ) (14)

Xt+1
i = Xt

i + Vt+1
i (15)

where Vt
i is the particle’s velocity vector, w is the inertia weight,

which controls the balance between global and local search, c1 and

c2 are the cognitive and social learning factors, and rand[0,1] is a

random value between 0 and 1, adding randomness to the search

process. pbesti is the best solution found by the particle, and gbest is

the best solution found by the entire swarm. Xt
i is the particle’s
Frontiers in Plant Science 08
position at time t, representing the current state in the

solution space.

During PSO, dynamic adjustments to the inertia weight w and

the learning factors c1 and c2 help accelerate convergence and avoid

local optima. By adjusting these parameters, PSO effectively

optimizes the SVM model parameters, improving classification

accuracy. To address issues like premature convergence in

traditional PSO (Nakisa et al., 2014), we propose a dual-

improvement strategy:
1. A linear differential decrement strategy to adjust the inertia

weight (Equation 16):

w = (ws − we)� (
k

kmax
)2 + (we − ws)� (

2� k
kmax

) + ws (16)
where k is the current iteration, kmax is the maximum number of

iterations, ws is the initial inertia weight, and we is the final

inertia weight.
2. An asynchronous adjustment strategy to improve the size

of the learning factors (Equations 17, 18):

c1 = (
C1s + C1e

2
) + (

C1s + C1e

2
)� cos(

kp
kmax

) (17)

c2 = (
C2e + C2s

2
) + (

C2e − C2s

2
)� cos(

kp
kmax

) (18)
where C1s and C2s are the initial individual and social learning

factors, and C1e and C2e are the final individual and social

learning factors.

In this study, the number of particles was set to 50, based on

previous optimization studies that demonstrated this size

effectively balances convergence speed and optimization quality.

The maximum iterations (100) were empirically determined to

ensure sufficient exploration without excessive computational cost

(Liu et al., 2013; Chen et al., 2019; Ding et al., 2022; Ahmad

et al., 2021).

Compared with conventional SVM and PSO-SVM models, the

IPSO-SVM approach provides better classification results due to its

efficient parameter optimization and improved convergence

properties. The proposed approach thus effectively addresses

clogging fault prediction challenges, ensuring long-term stable

operation of unmanned harvesters.

The process of establishing the harvester clogging fault

diagnosis model can be summarized as follows:
1. Collect data under normal, mild clogging, severe clogging,

and complete blockage conditions through the experimental

platform, extract slip rate features, normalize the data, and

split the samples into a training set and a test set with a

4:1 ratio.
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2. Use the IPSO algorithm in MATLAB 2022a to efficiently

search for optimal SVM parameters, specifically kernel

parameters and penalty factors.

3. Construct the IPSO-optimized SVMmodel in Python using

the Scikit-learn library, perform offline training, and

generate the fault warning model.

4. Deploy the trained IPSO-SVM model via the Socket server,

uploading rotational speed data from the onboard DTU

device to obtain fault prediction states in real time.
2.4 Fuzzy-based operation speed control
system

Under the premise of properly adjusting the mechanical

structure, clogging failures often occur during field operations of

combine harvesters due to excessive feeding rates, which may result

from factors such as high harvesting speeds, low cutting heights,

high crop density, and excessive moisture content. During the initial

stage of clogging, the issue can be effectively mitigated by

appropriately reducing the vehicle’s speed. Skilled operators can

often maximize harvesting speed while preventing clogging failures

(Schwegman et al., 2021). Similarly, to ensure that unmanned

combine harvesters can operate efficiently while avoiding clogging,

they must be capable of automatically adjusting the harvesting speed

based on variations in feeding rates and fault conditions. This process

involves complex control challenges that are difficult to model

precisely using traditional mathematical models.

Fuzzy control algorithms, which do not rely on exact mathematical

models, are suitable for handling such imprecise control systems. By

fuzzifying the fault states and feeding rates per unit time, and

referencing manual operating experience, fuzzy control rules can be

established. In this study, the fuzzy control rules were established based

on extensive field trials and validated through operator feedback. By

analyzing historical clogging events and operator interventions,

optimal speed adjustments were determined for various clogging

levels. This method ensures strong adaptability to real-world

operational conditions. Subsequently, the harvester’s speed can be

calculated and defuzzified. This strategy enables dynamic speed

adjustment based on changes in fault status and feeding rates,

thereby enhancing the adaptability of unmanned combine harvesters,

reducing clogging, and improving operational efficiency.

Fuzzification of Input and Output Variables:
1. Fault status: The fault status level is output from the

preliminary fault prediction model and corresponds

directly to fuzzy quantization levels {Normal (N), Mild

Clogging (LC), Severe Clogging (HC), Complete

Blockage (CB)}.

2. Feeding intake (kg/s): The domain range is set to [0, 9]

based on harvester parameters, with quantization levels

{Small (S), Medium (M), Large (L)}, and a quantization

factor of 3.

3. Harvesting speed (m/s): The domain range is set to [0, 1.2]

based on harvester parameters, with quantization levels
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{Stop (ST), Slow (S), Medium (M), Fast (F)} and a

quantization factor of 0.3. All are represented by

Gaussian membership functions.

Fuzzy Control Rule Design Principles:

1. Priority of fault state: In cases of severe clogging, the speed

should be immediately reduced, or even stopped.

2. Feeding rate influence on speed: In the absence of faults, a

higher feeding rate leads to a lower forward speed to

prevent future clogging.

3. Adaptive adjustment: For mild clogging, speed can be

slightly reduced to allow the system to recover; for severe

clogging or complete blockage, speed should be

significantly reduced or stopped. The fuzzy rules are

shown in Table 2.
Defuzzification Using the Centroid Method:

The centroid method is used for defuzzification, providing

smooth output and is widely applied in industrial settings (Hung

and Wu, 2002; Wu et al., 2019; Qi et al., 2022; Song et al., 2022;

Zhang et al., 2024; Longaray et al., 2019; Pinochet et al., 2023). The

calculation formula is as follows (Equation 19):

V = o
n
i=1Vif (Vi)

on
i=1f (Vi)

(19)

where V is the controller output, n is the number of rules, f (Vi)

is the membership function, and Vi is the corresponding

speed value.
3 Experiments and discussion

3.1 Feed rate calibration experiment

The experimental field area is 6500 m², and the rice variety

used is Nanjing 9108, with a crop-straw ratio of 1.65 and an

overall moisture content of 40.4%. The air temperature ranged
TABLE 2 Fuzzy control rule.

Fault status Feeding Intake Speed

N S F

N M M

N L S

LC S M

LC M S

LC L ST

HC S S

HC M ST

HC L ST

CB Any ST
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from 17-19°C. The experimental data were collected during the

autumn harvest season in 2023. The harvesting operation was

conducted at specific cutting widths and cutting heights to ensure

consistency and comparability of the data. During the harvesting

process at various locations in the experimental field, it was

assumed that the crop’s growth density and moisture content

were uniform. Therefore, the actual feeding rate could be

calibrated by controlling the cutting width and cutting height.

The formula for calculating the feeding rate is (Equation 20):

Q = mS = mdv (20)

where ? is the actual feeding rate of the harvester (kg/s),m is the

crop mass per unit area (kg/m²), S is the crop area harvested per

unit time (m²/s), d is the harvester’s cutting width (m), ? is the

harvester’s operating speed (m/s).

A crop block of approximately 4 square meters was selected to

calibrate the crop mass per unit area, with cutting heights

maintained at 0.15 m, 0.25 m, and 0.35 m. Manual harvesting

was performed, and the harvested crop was weighed. The field

conditions are shown in Figure 6a, the stubble conditions in

Figure 6b, and the harvested area in Figure 6c. The weighing

results for each crop block are presented in Table 3.

A quadratic function was used to fit the experimental data,

yielding the cutting height-feeding rate relationship for the current

field was calculated as Equation 21:

Q = ( − 25h2 + 4:9h + 5:39)dv (21)

where h is the cutting height (m).

It can be inferred from the above equation that, with constant

cutting height and cutting width, the harvester’s speed is linearly

related to the feeding rate.

By fixing the crop variety, crop-straw ratio, and overall moisture

content, the feeding rate calibration experiment in the field was

completed. This provides data on the feeding rate conditions for

harvesting fields under similar conditions, supporting the subsequent

development of speed control strategies to prevent clogging. However,

the actual harvesting feeding rate is influenced by multiple factors,

such as crop variety, crop-straw ratio, overall moisture content,

growth density, lodging condition, and the harvester’s technical state
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(maintenance condition, wear degree, power configuration). Real-time

calculation of the harvesting feeding rate is beyond the scope of this

study. Based on the weighing results, it was observed that the growth

density of the rice in the experimental field was relatively uniform,

with minimal variation in crop mass per unit area. Therefore, this

study only establishes the cutting height-feeding rate relationship

through the equation above.
3.2 Performance verification of fault
prediction model

To validate the practical application of the IPSO-SVM-based

clogging fault warning model in field environments, this study

involved speed state data collection from the pulleys of seven key

components: Blower Fan, Header Auger, Header Conveyor,

Threshing Cylinder, Vibration Sieve, Grain Auger, and Straw

Cutter. The study included offline model training and testing, as

well as online fault warning experiments. The model inputs

consisted of the slip rate features from seven channels, while the

output was the fault warning state labels, with a corresponding

relationship between state labels and fault types as shown in Table 4.

The normalization formula for the pulley slip rate features is

(Equation 22):

x, = 1 −
x − xmin

xmax − xmin
(22)

The experimental field was planted with the rice variety Nanjing

9108, with an average plant height of approximately 0.95 meters

and a moisture content of about 40.3%. The engine’s rated speed

was set to 2500 r/min, and the cutting width was 2 meters. Based on

typical clogging fault scenarios in real-world conditions, human

interventions such as lowering the cutting height, increasing

harvesting speed, and increasing crop density were used to induce

faults. The field experiment setup is shown in Figure 7. The

harvesting machine’s rotational speed data under various fault

states is presented in Figure 8. After excluding outliers and

missing values, a total of 1071 valid data points were obtained.

The fault warning classification labels were manually annotated,

with 267 instances of normal state, 267 instances of mild clogging,
FIGURE 6

Feed rate calibration experiment. (a) General view of the experiment field; (b) Cutting height measurement; (c) Reaping area survey.
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267 instances of severe clogging, and 270 instances of complete

blockage. The training and testing datasets were randomly divided

in a 4:1 ratio from each category.

The IPSO-SVM model was built using MATLAB 2022a, where

the IPSO population size was set to 50, the maximum number of

iterations kmax was set to 100, the initial inertia weight ws was set to

2, the final inertia weight we was set to 0.4, and the learning factors

were set as C1s=1.5, C1e=0.5, C2s=0.7 and C2e=2.0. The SVM kernel

function used was the radial basis function (RBF). The feature data

for both the training and testing datasets were normalized and input

into the model for parameter optimization. The resulting fitness

curve is shown in Figure 9a, where the optimal SVM parameters C
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and s were found to be 3.6190 and 13.9032, respectively. The best

fitness value of 96.50% was achieved at the 32nd generation. The

testing dataset was then input into the trained model, and the

confusion matrix is shown in Figure 9b. The overall classification

accuracy of the model was 98.59%. The classification errors

occurred because, during the initial stage of clogging, the

difference in severity was not clearly reflected in the rotational

speed data. When severe clogging occurred, the rotational speed

data rapidly decreased. However, the sampling speed of the

measurement system was limited and could not clearly

distinguish between severe clogging and complete blockage.

Despite achieving high classification accuracy, the proposed

system is subject to certain experimental errors and uncertainties.

Three primary sources of error were identified: firstly, sensor

inaccuracies in slip rate measurements, as sensor sensitivity and

installation conditions might cause minor deviations in collected

data; secondly, variability in environmental conditions, such as

fluctuations in crop density, moisture content, and soil properties,

which may impact model performance; and thirdly, potential delays

in data transmission via the 4G communication module, resulting

in slight discrepancies in fault detection timing and subsequent

speed adjustments. To account for these uncertainties, confidence
TABLE 4 Harvester status categories and classification labels.

Status category Classification label

Normal
Lightly clogging

1
2

Heavily clogging 3

Completely blocked 4
TABLE 3 Weighing results of crop blocks.

Crop
number

Cutting
height (m)

First weighing
(kg)

Second
weighing (kg)

Third weighing
(kg)

Mass-area ratio
(kg/m²)

Average mass-area
ratio (kg/m²)

1

0.15

21.01 21.00 21.02 5.56

5.56

2 22.16 22.12 22.21 5.71

3 21.22 21.20 21.22 5.60

4 21.40 21.41 21.40 5.61

5 21.07 21.10 21.09 5.57

6 19.84 19.89 19.88 5.49

7 21.43 21.42 21.41 5.62

8

0.25

19.84 19.82 19.84 4.96

5.05

9 21.02 20.99 21.06 5.26

10 20.28 20.25 20.27 5.07

11 20.56 20.57 20.56 5.14

12 20.13 20.16 20.15 5.04

13 18.94 18.97 18.97 4.74

14 20.68 20.68 20.66 5.17

15

0.35

16.91 16.88 16.89 4.04

4.04

16 18.07 18.02 18.11 4.06

17 17.28 17.25 17.27 4.05

18 17.66 17.68 17.67 4.06

19 17.02 17.04 17.03 4.04

20 15.94 15.97 15.96 4.00

21 17.22 17.21 17.20 4.05
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intervals have been incorporated into Table 5, providing a statistical

measure of reliability when comparing the performance of different

classification models. Confidence intervals for classification

accuracy were computed based on the binomial normal

approximation at a 95% confidence level (Brown et al., 2002),

using the formula below (Equation 23):

p̂ ± za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ (1 − p̂ )=N

q
(23)
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where p̂ is the sample accuracy, za=2 is the z-value at the selected

confidence level (for example, at 95% confidence, z0:025 ≈ 1:96), and

N is the test set size.

To evaluate the performance of the IPSO-SVM fault diagnosis

model, a comparison was made with the PSO-SVM and traditional

SVM models using the same training and testing datasets. The

results, along with their corresponding 95% confidence intervals

calculated using the normal approximation, are summarized in

Table 5. The total accuracy of the IPSO-SVM model was 8.44% and
FIGURE 7

Fault Setting experiment. (a) Lower cutting table and increase speed; (b) Increase crop.
FIGURE 8

Speed data of each part. (a) Rotate speed in normal condition; (b) Rotate speed in lightly clogging condition; (c) Rotate speed in heavily clogging
condition; (d) Rotate speed in completely blocked condition.
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21.13% higher than that of the PSO-SVM and traditional SVM

models, respectively. The inclusion of confidence intervals confirms

the statistical reliability of these improvements. These results clearly

demonstrate that the IPSO algorithm is more effective in optimizing

the SVM parameters compared to the standard PSO algorithm, thus

enhancing the generalization capability and classification accuracy

of the SVM model.

Additionally, although the IPSO-SVM model demonstrated high

accuracy, misclassification errors such as false positives and false

negatives can still occur. False positives—incorrectly identifying

normal states as fault conditions—might trigger unnecessary speed

adjustments, potentially reducing operational efficiency. However,

preventing fault escalation remains the primary goal; thus, the trade-

off of occasionally reduced efficiency is considered acceptable.

Conversely, false negatives—failing to detect actual faults—may

lead to delayed corrective actions, but since faults typically worsen

over time, subsequent detections are more likely to trigger accurate

fault identification. Therefore, neither false positives nor false

negatives significantly compromise the eventual execution of the

fault-adjusted speed control system. Future research will explore

strategies such as threshold optimization and ensemble learning

techniques to minimize the impact of these misclassifications and

further improve system reliability.
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3.3 Operation speed control experiment

To validate the effectiveness of the cloud server and onboard

control system’s fault warning-speed control system, this study

conducted field tests for unmanned variable-speed rice harvesting.

The experimental field was planted with the rice variety Nanjing

9108, with an average plant height of approximately 1.1 meters and

an overall moisture content of 36.8%. The unmanned harvester’s

automatic driving system is detailed in previous research (Zhang

et al., 2023, 2025), and the onboard fault warning-speed control

system continuously uploads pulley speed data from each

component to the cloud server in real-time, while also receiving

fault warning statuses from the cloud server. The embedded

controller calculates the feeding rate per unit time based on the

harvester’s real-time speed, assuming constant cutting height and

cutting width. It then performs fuzzy logic operations to adjust the

target speed based on the fault warning status and controls the HST

speed adjustment actuator to regulate the vehicle’s speed.

After multiple field trials, the harvester equipped with the fault

warning-speed control system did not experience complete blockage. It

was able to reduce speed within 0.5–2 seconds during minor clogging

events, effectively preventing fault escalation. Once the operational

conditions were restored and the fault warning was cleared, the system

promptly increased the speed to ensure operational efficiency. These

results demonstrate that the system has good real-time responsiveness

and robustness, and can effectively enhance the application value of

unmanned combine harvesters. The communication process between

the cloud server and the onboard terminal is shown in Figure 10a; the

cloud server information window is shown in Figure 10b. The

experimental simulation of heavily clogging accompanied by black

smoke due to belt slippage is shown in Figure 11a; the unmanned

harvester reducing speed and waiting for fault recovery is shown in

Figure 11b; and the fault risk state and speed variation trend during the

speed adjustment process is shown in Figure 11c.

Field tests confirm that this system can effectively prevent complete

blockage in the harvester, ensuring long-term stable operation of the

unmanned harvester. Moreover, this approach demonstrates

promising potential for integration into smart farming platforms,
FIGURE 9

Fault Setting experiment. (a) Fitness change curve; (b) IPSO-SVM test set confusion matrix.
TABLE 5 Comparison Table of Classification Accuracy of
Different Models.

Status
category

SVM (%)
PSO-SVM

(%)
IPSO-SVM

(%)

Normal 73.58 ± 5.30 86.79 ± 4.05
100.00 ± 1.12¹

100.00 ± 1.12¹
100.00 ± 1.12¹

Lightly clogging
100.00
± 1.12¹

Heavily clogging 60.38 ± 5.86 88.68 ± 3.80 96.23 ± 2.27

Completely blocked 75.93 ± 5.10 85.19 ± 4.23 98.15 ± 1.61

Total 77.46 ± 2.51 90.15 ± 1.78 98.59 ± 0.71
1. For accuracies that are exactly 100.00%, the Rule of Three was applied, i.e., ±(3/n)×100%, to
avoid a zero-width confidence interval under the normal approximation.
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enabling real-time monitoring and predictive maintenance to

enhance overall agricultural management efficiency. The proposed

system can be scaled effectively to multiple harvesting machines,

supporting coordinated operation and grain discharge in cooperative
Frontiers in Plant Science 14
fleets. Additionally, compatibility with emerging IoT and edge

computing solutions can further improve real-time decision-making

capabilities, expanding the broader impact of this technology

in agriculture.
FIGURE 10

Cloud server communication experiment. (a) Onboard terminal tests; (b) Server communication window
FIGURE 11

Fault prediction and speed regulation experiment. (a) Heavily clogging with black smoke caused by belt slippage; (b) Unmanned harvesting with
speed regulation; (c) Plot of harvest speed variation with fault state.
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However, there are still some limitations:
Fron
1. The real-time calculation of feeding rate in this study relies

on prior field calibration data, which is influenced by

multiple factors such as overall moisture content, growth

density, lodging condition, and the harvester’s technical

state. Therefore, the application of this fault warning-speed

control system requires reliable and user-friendly feeding

rate prediction methods. Future research will focus on

further exploration in this area.

2. The dataset used in this study comprises only 1,071 data

points, which may not be sufficient to robustly validate the

performance of a machine learning model. Moreover, these

data were collected primarily from a single experimental

field, potentially limiting the generalizability of the

model to different environmental and operational

conditions. Future research will aim to collect more

extensive data from multiple fields and varied operational

conditions to enhance the robustness and generalization of

the model.

3. The IPSO-SVM-based fault warning model classifies fault

states by analyzing the slip rates of multiple component

pulleys, with manual labeling used for fault classification in

the training set. While IPSO-SVM models offer better

interpretability and are well-suited for small datasets, they

rely on feature engineering and may struggle to capture

complex, high-dimensional relationships as effectively as

deep learning models (Chen et al., 2019; Ding et al., 2022; Li

et al., 2025). Conversely, deep learning approaches, such as

CNNs and LSTMs, excel in feature extraction but require

large-scale training datasets and substantial computational

power. Given the limited dataset size in this study, directly

implementing deep learning models would pose challenges

in both model training and generalization (He et al., 2023;

Kakhi et al., 2024; Xiong et al., 2023). Moreover, deploying

the IPSO-SVM model across different harvester types and

enhancing fault classification accuracy would significantly

increase the manual labeling workload. Future research will

focus on developing automated and intelligent fault data

labeling methods, as well as exploring hybrid approaches

that integrate deep learning for feature extraction with

SVM for classification, aiming to further improve model

performance and adaptability.

4. The communication between the onboard system and the

cloud server relies on the 4G DTU module, and its

timeliness is significantly affected by on-site signal

coverage. In areas without 4G signal availability, the

transmission of remote monitoring commands and fault

warning information will be delayed or lost, thereby

compromising the real-time performance and reliability

of the system. To address this limitation, future research

will focus on deploying a simplified fault warning model

directly on the onboard embedded system to ensure basic

fault detection and speed control functions even under

poor communication conditions.
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5. Energy consumption considerations remain to be further

evaluated. While the proposed system introduces minimal

additional power demands due to the use of low-power

embedded sensors, its adaptive speed control mechanism

may contribute to improved fuel efficiency by reducing

unnecessary high-speed operations. However, a more

comprehensive real-time analysis of the harvester’s power

consumption under different operating conditions is

needed. Future research will focus on optimizing energy

efficiency by integrating real-time power monitoring and

adaptive energy management strategies.
4 Conclusion

To improve the stability of unmanned combine harvesters

during long-term field operations and maintain harvesting speed

and efficiency while avoiding clogging failures, this study developed

a fault warning and speed control system based on the IPSO-SVM

predictive model and Fuzzy control algorithm. The system was

evaluated through extensive field trials, demonstrating its ability to

effectively prevent complete clogging failures and ensure

continuous operation. The main conclusions are as follows:
1. Clogging state prediction based on multi-component slip

rate fusion: By monitoring the rotational speeds of key

components such as the Blower Fan, Header Auger, Header

Conveyor, Threshing Cylinder, Vibration Sieve, Grain

Auger, and Straw Cutter, and extracting slip rate features,

an IPSO-SVM model was developed that accurately

identifies over 98.5% of fault states.

2. Feeding rate calibration and fuzzy speed control strategy:

Field experiments demonstrated that the cutting height and

crop mass per unit area have a quadratic relationship. This

relationship, combined with real-time speed, can

approximate the feeding rate. Based on the Fuzzy control

strategy, the system intelligently adjusts the speed by

considering both feeding rate and fault prediction states.

The system successfully reacts within 0.5–2 seconds

following minor clogging, preventing fault escalation and

significantly reducing the occurrence of complete

clogging failures.

3. Engineering application feasibility and future adaptability:

The system’s reliability and scalability were validated in

field environments by integrating the harvester’s electronic

control modifications, onboard embedded controllers, 4G

communication, and cloud servers. While the current study

focused on a specific harvester model, future research will

explore its adaptability across different harvester types to

verify its broader applicability.

4. Future research directions: To further enhance the system’s

performance, future work will focus on (1) testing on

different harvester models to verify adaptability, (2)

improving real-time processing capabilities for cloud-
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Fron
integrated control, and (3) integrating deep learning

techniques to refine fault prediction accuracy. These

advancements will contribute to optimizing fault

prediction efficiency and ensuring more effective real-

time operational adjustments.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Author contributions

SZ: Conceptualization, Data curation, Formal Analysis,

Investigation, Methodology, Software, Writing – original draft,

Writing – review & editing. CZ: Conceptualization, Software,

Validation, Writing – review & editing. ZY: Investigation,

Validation, Visualization, Writing – review & editing. LT: Data

curation, Investigation, Writing – review & editing. KW:

Investigation, Validation, Writing – review & editing. AW: Data

curation, Writing – review & editing. WC: Data curation, Writing –

review & editing. QS: Writing – review & editing. XW: Funding

acquisition, Project administration, Resources, Supervision,

Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This project is supported in

part by the National Key Research andDevelopment Program of China

under Grant (2022ZD0115804), and Project of Faculty of Agricultural

Engineering of Jiangsu University under Grant (NGXB20240105). We
tiers in Plant Science 16
just would like to thank Jiangsu Runguo Agricultural Development Co.,

Ltd. for providing the experimental field.
Acknowledgments

We would like to thank Jiangsu Runguo Agricultural

Development Co., Ltd. for providing the experimental field.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2025.1577175/

full#supplementary-material
References
Abdeen, M. A., Xie, G., Salem, A. E., Fu, J., and Zhang, G. (2022). Longitudinal axial
flow rice thresher feeding rate monitoring based on force sensing resistors. Sci. Rep. 12,
1369. doi: 10.1038/s41598-021-04675-w

Ahmad, H., Sun, J., Nirere, A., Shaheen, N., Zhou, X., and Yao, K. (2021). Classification
of tea varieties based on fluorescence hyperspectral image technology and ABC-SVM
algorithm. J. Food Process. Preservation 45, e15241. doi: 10.1111/jfpp.15241

An, N., Wei, W., Qiao, L., Zhang, F., Christie, P., Jiang, R., et al. (2018). Agronomic
and environmental causes of yield and nitrogen use efficiency gaps in Chinese rice
farming systems. Eur. J. Agron. 93, 40–49. doi: 10.1016/j.eja.2017.11.001

Boursianis, A. D., Papadopoulou, M. S., Diamantoulakis, P., Liopa-Tsakalidi, A.,
Barouchas, P., Salahas, G., et al. (2022). Internet of things (IoT) and agricultural
unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review. Internet
Things 18, 100187. doi: 10.1016/j.iot.2020.100187

Brown, L. D., Cai, T. T., and DasGupta, A. (2002). Confidence intervals for a
binomial proportion and asymptotic expansions. Ann. Stat 30, 160–201. doi: 10.1214/
aos/1015362189
Chen, Y., Chen, L., Huang, C., Lu, Y., and Wang, C. (2019). A dynamic tire model
based on HPSO-SVM. Int. J. Agric. Biol. Eng. 12, 36–41. doi: 10.25165/
j.ijabe.20191202.3227

Chen, J., Gong, L., and Li, Y. (2014). Research of fault diagnosis system on combine-
harvester based on FNN algorithm. China Measurement Test 40 (5), 77–79.

Chen, J., Ning, X., Li, Y., Yang, G., Wu, P., and Chen, S. (2017). A fuzzy control
strategy for the forward speed of a combine harvester based on KDD. Appl. Eng. Agric.
33, 15–22. doi: 10.13031/issn.0883-8542

Chen, D. R., Wu, Q., Ying, Y., and Zhou, D. X. (2004). Support vector machine soft
margin classifiers: error analysis. J. Mach. Learn. Res. 5, 1143–1175.

Chen, L., Zhang, Z., Li, H., and Zhang, X. (2023). Maintenance skill training gives
agricultural socialized service providers more advantages. Agriculture 13, 135.
doi: 10.3390/agriculture13010135

Chen, J., Zhang, M., Xu, B., Sun, J., andMujumdar, A. S. (2020). Artificial intelligence
assisted technologies for controlling the drying of fruits and vegetables using physical
fields: A review. Trends Food Sci. Technol. 105, 251–260. doi: 10.1016/j.tifs.2020.08.015
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2025.1577175/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2025.1577175/full#supplementary-material
https://doi.org/10.1038/s41598-021-04675-w
https://doi.org/10.1111/jfpp.15241
https://doi.org/10.1016/j.eja.2017.11.001
https://doi.org/10.1016/j.iot.2020.100187
https://doi.org/10.1214/aos/1015362189
https://doi.org/10.1214/aos/1015362189
https://doi.org/10.25165/j.ijabe.20191202.3227
https://doi.org/10.25165/j.ijabe.20191202.3227
https://doi.org/10.13031/issn.0883-8542
https://doi.org/10.3390/agriculture13010135
https://doi.org/10.1016/j.tifs.2020.08.015
https://doi.org/10.3389/fpls.2025.1577175
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1577175
Cheng, R., and Jin, Y. (2015). A social learning particle swarm optimization
algorithm for scalable optimization. Inf. Sci. 291, 43–60. doi: 10.1016/j.ins.2014.08.039

Craessaerts, G., de Baerdemaeker, J., Missotten, B., and Saeys, W. (2010a). Fuzzy
control of the cleaning process on a combine harvester. Biosyst. Eng. 106, 103–111.
doi: 10.1016/j.biosystemseng.2009.12.012

Craessaerts, G., De Baerdemaeker, J., and Saeys, W. (2010b). Fault diagnostic systems
for agricultural machinery. Biosyst. Eng. 106, 26–36. doi: 10.1016/j.biosystemseng.
2009.12.004

Diez-Olivan, A., Pagan, J. A., Khoa, N. L. D., Sanz, R., and Sierra, B. (2018). Kernel-based
support vector machines for automated health status assessment in monitoring sensor data.
Int. J. Advanced Manufacturing Technol. 95, 327–340. doi: 10.1007/s00170-017-1204-2

Ding, Y., Yan, Y., Li, J., Chen, X., and Jiang, H. (2022). Classification of tea quality
levels using near-infrared spectroscopy based on CLPSO-SVM. Foods 11, 1658.
doi: 10.3390/foods11111658

Elijah, O., Rahman, T. A., Orikumhi, I., Leow, C. Y., and HIndia, M. N. (2018). An
overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and
challenges. IEEE Internet things J. 5, 3758–3773. doi: 10.1109/JIoT.6488907

Hao, S., Tang, Z., Guo, S., Ding, Z., and Su, Z. (2022). Model and method of fault
signal diagnosis for blockage and slippage of rice threshing drum. Agriculture 12, 1968.
doi: 10.3390/agriculture12111968

He, Y., Li, W., Dong, Z., Zhang, T., Shi, Q., Wang, L., et al. (2023). Lithologic
identification of complex reservoir based on PSO-LSTM-FCN algorithm. Energies 16, 5.
doi: 10.3390/en16052135

Hofmann, T., Schölkopf, B., and Smola, A. J. (2008). Kernel methods in machine
learning. 1171–1220. doi: 10.1214/009053607000000677

Hung, W. L., and Wu, J. W. (2002). Correlation of intuitionistic fuzzy sets by
centroid method. Inf. Sci. 144, 219–225. doi: 10.1016/S0020-0255(02)00181-0

Jack, L. B., and Nandi, A. K. (2001). Support vector machines for detection and
characterization of rolling element bearing faults. Proc. Institution Mechanical
Engineers Part C: J. Mechanical Eng. Sci. 215, 1065–1074. doi: 10.1177/
095440620121500907

Jin, Y., Liu, J., Xu, Z., Yuan, S., Li, P., and Wang, J. (2021). Development status and
trend of agricultural robot technology. Int. J. Agric. Biol. Eng. 14, 1–19. doi: 10.25165/
j.ijabe.20211404.6821

Kakhi, K., Jagatheesaperumal, S. K., Khosravi, A., Alizadehsani, R., and Acharya, U.
R. (2024). Fatigue monitoring using wearables and AI: Trends, challenges, and future
opportunities. arXiv preprint arXiv:2412.16847

Kruse, J., Krutz, G. W., and Huggins, L. F. (1983). Computer controls for the
combine. p. 7–9.

Li, R., Cheng, Y., Xu, J., Li, Y., Ding, X., and Zhao, S. (2021). Research on on-line
monitoring system of hydraulic actuator of combine harvester. Processes 10, 35.
doi: 10.3390/pr10010035

Li, Y., Liu, Y., Ji, K., and Zhu, R. (2022). A fault diagnosis method for a differential
inverse gearbox of a crawler combine harvester based on order analysis. Agriculture 12,
1300. doi: 10.3390/agriculture12091300

Li, D., Nanseki, T., Chomei, Y., and Kuang, J. (2023). A review of smart agriculture
and production practices in Japanese large-scale rice farming. J. Sci. Food Agric. 103,
1609–1620. doi: 10.1002/jsfa.v103.4

Li, J., Shang, Z., Li, R., and Cui, B. (2022). Adaptive sliding mode path tracking control of
unmanned rice transplanter. Agriculture 12, 1225. doi: 10.3390/agriculture12081225

Li, L., You, W., and Ding, Y. (2025). Fault prediction modeling for high-impact
recorders based on IPSO-SVM. Appl. Sci. 15, 3. doi: 10.3390/app15031343

Liang, Z., Li, Y., Xu, L., and Zhao, Z. (2016). Sensor formonitoring rice grain sieve losses
in combine harvesters. Biosyst. Eng. 147, 51–66. doi: 10.1016/j.biosystemseng.2016.03.008

Liu, Z., Cao, H., Chen, X., He, Z., and Shen, Z. (2013). Multi-fault classification based
on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element
bearings. Neurocomputing 99, 399–410. doi: 10.1016/j.neucom.2012.07.019

Longaray, A. A., Gomes, C. F. S., Elacoste, T., MaChado, C. M., and dos, S. (2019).
Efficiency indicators to evaluate services in port services: A proposal using fuzzy-ahp
approach. Pesquisa Operacional 39, 437–456. doi: 10.1590/0101-7438.2019.039.03.0437

Lowenberg-DeBoer, J., Huang, I. Y., Grigoriadis, V., and Blackmore, S. (2020).
Economics of robots and automation in field crop production. Precis. Agric. 21, 278–
299. doi: 10.1007/s11119-019-09667-5

Lu, E., Xu, L., Li, Y., Tang, Z., and Ma, Z. (2020). Modeling of working environment
and coverage path planning method of combine harvesters. Int. J. Agric. Biol. Eng. 13,
132–137. doi: 10.25165/j.ijabe.20201302.5210

Ma, Z., Zhang, Z., Zhang, Z., Song, Z., Liu, Y., Li, Y., et al. (2023). Durable testing and
analysis of a cleaning sieve based on vibration and strain signals. Agriculture 13, 2232.
doi: 10.3390/agriculture13122232

Marinoudi, V., Sørensen, C. G., Pearson, S., and Bochtis, D. (2019). Robotics and
labour in agriculture. A context consideration. Biosyst. Eng. 184, 111–121. doi: 10.1016/
j.biosystemseng.2019.06.013

McGechan, M. B., and Glasbey, C. A. (1982). The benefits of different speed control
systems for combine harvesters. J. Agric. Eng. Res. 27, 537–552. doi: 10.1016/0021-8634
(82)90093-2
Frontiers in Plant Science 17
Nakisa, B., Ahmad Nazri, M. Z., Rastgoo, M. N., and Abdullah, S. (2014). A survey:
Particle swarm optimization based algorithms to solve premature convergence
problem. J. Comput. Sci. 10, 1758–1765. doi: 10.3844/jcssp.2014.1758.1765

Pavlyuk, R. V., Zaharin, A. V., Gevora, Y. I., and Iskenderov, R. R. (2022).
"Researching operational reliability of key combine systems in Stavropol Territory,"
in IOP Conference Series: Earth and Environmental Science (Vol. 996, No. 1, p. 012011).
IOP Publishing. Russian Conference on Technological Solutions and Instrumentation
for Agribusiness (TSIA 2021), Stavropol, Russia.

Peng, Y., Zhao, S., and Liu, J. (2021). Fused-deep-features based grape leaf disease
diagnosis. Agronomy 11, 2234. doi: 10.3390/agronomy11112234

Pinochet, L. H. C., Onusic, L. M., Costa, J. C. Z., dos Santos, M., Gomes, C. F. S., and
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