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Pose detection and localization
of pineapple fruit picking based
on improved litehrnet
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Zhende Cui1,2, Shuang Zheng1,2, Fengguang He1,2, Ling Li1,2,
Xilin Wang1,2, Sili Zhou1,2, Shuangmei Qin1,2, Zehua Liu1,2

and Ye Dai1,2

1Agricultural Machinery Research Institute, Chinese Academy of Tropical Agricultural Sciences,
Zhanjiang, Guangdong, China, 2Key Laboratory of Tropical Agricultural Machinery, Ministry of
Agriculture and Rural Affairs, Zhanjiang, Guangdong, China
To achieve accurate detection of the pineapple fruit picking area and pose under

complex backgrounds and varying lighting conditions, this study proposes a

pineapple keypoint detection model (LTHRNet) based on an improved

LiteHRNet. Image data of pineapple fruits under different lighting conditions

were collected, and six keypoints were defined to characterize the

morphological features of the fruit. In the model design, LTHRNet incorporates

the LKA_Stem module to enhance initial feature extraction, the D-Mixer module

to capture both global and local feature relationships, and the MS-FFNmodule to

achieve multi-scale feature fusion. In addition, the model employs parallel sub-

networks with different resolutions to maintain high-resolution feature

information and improve the precision and spatial accuracy of keypoint

detection. Experimental results show that LTHRNet performs well in pineapple

keypoint detection. It achieves 93.5% and 95.1% in KAP0.5 and KAR0.5,

respectively, outperforming other models in terms of detection accuracy and

robustness under challenging lighting and occlusion conditions, with a detection

speed of 21.1 fps. For pose estimation, the average offset angle (AOA) of LTHRNet

is 2.37°, which is significantly lower than that of other models. In summary, the

proposed LTHRNet model demonstrates high accuracy and strong robustness in

pineapple keypoint detection and pose estimation, providing reliable keypoint

localization and pose estimation data for pineapple harvesting, while also offering

an effective reference for pose recognition in other fruit-picking tasks.
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1 Introduction

Pineapple is the third-largest tropical fruit in the world, with a

global production of 29.96 million tons in 2023, according to

Statista. In China, the planting area is approximately 1 million

mu, and the production exceeds 2 million tons, accounting for

about 7% of the world’s total pineapple planting area. Pineapple

harvesting, a critical stage in its production chain, faces significant

labor challenges. The supply of human resources for harvesting

operations has become increasingly constrained as labor costs in

rural areas continue to rise, and there is an outflow of young and

middle-aged laborers (Li et al., 2010; He et al., 2024). Due to the

physiological characteristics of pineapple fruit, the optimal

harvesting period after fruit ripening typically lasts for one week,

requiring laborers to work continuously during daylight hours,

making the process highly labor-intensive. Consequently, the

demand for intelligent pineapple harvesting equipment has

become increasingly urgent. An intelligent pineapple harvesting

system must integrate fruit information sensing, localization,

robotic arm control, and path planning technologies (Chen et al.,

2024), among which efficient fruit identification and localization are

critical steps for enabling intelligent harvesting. However, the

complex planting environment of pineapple, along with factors

such as variations in light during the day, makes fruit pose detection

difficult. Therefore, the development of an adaptable and accurate

algorithm for pineapple fruit target detection and picking point

localization is essential for advancing intelligent harvesting.

In recent years, both domestic and international researchers

have conducted numerous studies on pineapple recognition.

Traditional image processing methods typically rely on RGB

image color space conversion, image segmentation, morphological

processing, and other techniques (Chaivivatrakul and Dailey, 2014;

Wu and Hua, 2016; Li, 2019). While these traditional algorithms are

easy to implement, they are highly sensitive to environmental

changes and exhibit poor robustness when handling complex

images involving multiple fruits. With the advancement of

computer technology and machine vision, deep learning has

gradually been applied to the field of agricultural fruit harvesting,

significantly improving the accuracy of fruit recognition (Chen

et al., 2023; Song et al., 2023; Deng et al., 2025). Yu et al. (2020)

proposed a strawberry pose detection algorithm using a rotating

YOLO model, which introduces the rotational angle parameter of

the target frame to determine the offset pose of the strawberry

detection result. This model achieved a recognition accuracy of

94.43%. Liu et al. (2023) aiming to improve the accuracy of

YOLOv3 for pineapple fruit recognition, integrated the Darknet-

53 backbone network into the DenseNet of YOLOv3 and

introduced the SPP-net in the feature output layer to enhance the

information representation capability of the feature map. Li et al.

(2023a) proposed an improved YOLOv7-tiny pineapple fruit

detection model by incorporating CBAM in the backbone and

neck network attention modules and replacing the CIoU loss

function with SIoU, which increased model accuracy to 96.9%.

However, in the complex pineapple planting environment, simply
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recognizing pineapple fruit and estimating the geometry of the

picking point is insufficient to accurately determine the fruit’s

picking pose.

Keypoint detection technology was initially applied to human

pose recognition. Fang et al. (2022) proposed a top-down

AlphaPose keypoint detection model, which can accurately

recognize whole-body poses. This technology is now widely

applied in agricultural production (Chen et al., 2024b; Zheng

et al., 2024). Wu et al. (2023) proposed a top-down fruit stem

localization method based on the growth characteristics of grapes.

The positions of grape bunches were identified using YOLOv5, and

keypoints of the grape bunches were further detected using HRNet

combined with the Ghost module, achieving a final model

recognition accuracy of 90.2%. Chen et al. (2024ac). introduced

an improved YOLOv8n-Pose grape bunch keypoint detection

model, which achieved a detection accuracy of 89.7%. Wang et al.

(2024) used a keypoint detection algorithm combining YOLOv8n-

Pose and LSKNet to identify and locate the picking points of

wolfberry, achieving an average model accuracy of 92.7%. Jin

et al. (2025) proposed CO-YOLO for pose detection of oil tea

fruits, incorporating a MMA module to fuse multi-scale feature

information and enhance perceptual capability, achieving a final

precision of 90.6% and a recall of 87.0%. The keypoint detection

model, which acquires the fruit picking pose, is more robust than

traditional picking point localization methods based solely on

target detection.

To address the challenge of pineapple fruit pose detection in

complex background environments and varying lighting

conditions, this study combines the YOLO target detection model

(Khanam and Hussain, 2024) with the with the LiteHRNet keypoint

detection model (Yu et al., 2021), proposing an improved

LiteHRNet-based pineapple keypoint detection model. The

keypoint data are then used to determine the 2D pose of the

pineapple fruits and to detect the picking area, thereby providing

technical support for the vision system of intelligent pineapple

harvesting equipment.
2 Materials and methods

2.1 Image acquisition

The data for this study were collected in November 2024 from

the pineapple land sea in Xuwen County(20°49′N, 110°30′E),
Zhanjiang City, Guangdong Province, China. The distance

between the camera and the pineapple fruit during image data

acquisition ranged from 0.4 to 1 meter, with the camera angle tilted

downward by approximately 45°. The camera used was a Hikvon

industrial model, MV-CS060-10UC-PRO. During the image

acquisition process, pineapple images were captured under

different weather natural light conditions, including cloudy, dusk,

sunny, and sunny with shadows, as shown in Figure 1. The planting

area of ‘Comte de Paris’ pineapple in Xuwen County accounts for

more than 90% of the total pineapple cultivation, while the
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remaining area is primarily dedicated to Tainong-series varieties

(Zheng, 2023). The pineapple varieties included in the image dataset

used in this study are Tainong 17 and ‘Comte de Paris’.
2.2 Pineapple dataset production

The manual harvesting of pineapple fruits primarily

involves grasping the fruit body and forcibly detaching it from

the stem. Due to the influence of pineapple cultivation practices and

environmental factors, the fruit body may exhibit tilting. Therefore,

intelligent pineapple harvesting requires the vision system to

accurately capture the fruit body region, and selecting appropriate

keypoints to represent the morphological characteristics of the

pineapple fruit body is a critical step in the visual localization

system. In manual picking, workers primarily observe three key

regions of the fruit body: the junction between the crown and the

fruit body, the maximum width of the fruit (usually located in the

middle), and the bottom of the fruit body. The pineapple fruit body

generally exhibits an oval shape. Based on the areas of interest

emphasized during manual picking, this study defines six keypoints

that comprehensively represent both the picking region and the

morphological structure of the pineapple fruit, as illustrated

in Figure 2.

The defined keypoints, p1–p6, are located at the top-left, top-

right, middle-left, middle-right, bottom-left, and bottom-right

positions of the pineapple fruit contour, respectively. Specifically,

p1 and p2 are situated at the parallel edges of the interface between
Frontiers in Plant Science 03
the fruit body and the crown, reflecting the top of the grasping area.

p3 and p4 are located at the middle of the fruit body, indicating the

width of the pineapple’s midsection. p5 and p6 are positioned at the

parallel edges of the interface between the fruit body and the stem,
FIGURE 2

Pineapple keypoints definition. (p1–p6 represent the six keypoints
that define the pineapple fruit shape).
FIGURE 1

Example of pineapple dataset collection. (A) Cloudy. (B) Dusk. (C) Sunny. (D) Sunny with shadows.
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representing the bottom of the grasping area. An ellipse is fitted

based on these keypoints, with the angle between the line

connecting the midpoints of p1, p2 and p5, p6 and the Y-axis

serving as the fruit’s offset. The irregular closed region formed by

these keypoints is designated as the pineapple grasping region.

Based on the aforementioned definitions of keypoints, the

Labelme annotation software was used to annotate the keypoints

on the pineapples. The main body of the pineapple fruit and the

entire crown(rectangle) were labeled as “pineapple.” The keypoints

on the pineapple fruit, labeled as p1–p6, were named up_left,

up_right, middle_left, middle_right, down_left, and down_right,

respectively. For occluded keypoints, the suffix “-1” was appended

to the label during annotation. When annotating multiple targets

within the same image, the “group_id” was used for differentiation,

as shown in Figure 3. Following this naming convention, a total of

3,964 images were annotated. Subsequently, the images were

uniformly resized with a locked aspect ratio, adjusting the longer

side to 640 pixels. Among them, 644 images were of the variety

Tainong 17 and 3,320 images were of ‘Comte de Paris’. For model

generalization performance testing, 150 images from each variety

were selected, while the remaining 3,664 images were used as the

main dataset. The JSON files obtained from the image annotations

were then converted into the COCO dataset format. To ensure the

stability of the model training process and enhance its

generalization capability, the dataset was divided into training,

validation, and test sets in an 8:1:1 ratio.
2.3 Pineapple keypoint detection methods

In fruit picking tasks, the vision system primarily employs three

methods for fruit detection: object detection, semantic

segmentation, and keypoint detection. Object detection provides

only a bounding box, which often contains redundant regions and
Frontiers in Plant Science 04
cannot precisely localize the picking area. Although semantic

segmentation can classify pixels by category, it requires post-

processing to extract the target point, which may introduce

significant errors and becomes less reliable under fruit occlusion.

In contrast, keypoint detection directly outputs the coordinates of

keypoints within the picking area and can simultaneously

determine the fruit pose. Therefore, for pineapple harvesting,

keypoint detection provides a more robust solution for acquiring

picking information.

Pose keypoint detection algorithms can generally be classified

into two categories: top-down and bottom-up, with the top-down

algorithm typically yielding higher detection accuracy. AlphaPose is

a top-down keypoint detection model, and its detection accuracy

exceeds that of models such as OpenPose (Qiao et al., 2017), YOLO

(Khanam and Hussain, 2024), and others. To ensure the accuracy

and reliability of the keypoint data extracted from the image, this

study selects AlphaPose as the pineapple keypoint detection model

for detecting the 2D keypoints of pineapple.

The detection accuracy of target detection plays a significant

role in the overall accuracy of top-down algorithms, as pose

estimation is performed within the target region. Consequently,

mislocalization of the detection frame can lead to incorrect

estimation of the target keypoints. At the core of AlphaPose, a

Part-Guided Proposal Generator(PGPG) is introduced during the

training process. This mechanism generates atomic poses by

considering both the true frame and pose offset, thereby

increasing the diversity of training samples for the Single Target

Pose Estimator(STPE) in the backbone network. This allows the

model to better detect incomplete target areas or keypoints, even in

the case of occlusion, thus optimizing keypoint prediction accuracy.

Furthermore, the feature heatmap generated by the target pose

estimator contains redundant keypoints. To address this,

AlphaPose introduces the parameterized Pose Non-maximum

Suppression(PNMS), which enables the model to accurately
FIGURE 3

Pineapple image annotation. (A) Annotation. (B) Labels.
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eliminate redundant keypoints, even when the confidence threshold

is low (Fang et al., 2022).

In comparison to the high-low-high resolution method used by

traditional networks for feature extraction, LiteHRNet maintains

high resolution throughout the process by connecting multiple

subnetworks with different resolutions in parallel. This approach

enhances both the accuracy and spatial precision of keypoint

detection. Therefore, this study employs LiteHRNet as the STPE

for AlphaPose. The Conditional Channel Weighting Block(CCWB)

in LiteHRNet reduces the model’s parameters through the use of a

shuffle block, but it also reduces the model’s characterization

capability. To address this, the study replaces the CCWB with the

TransX block (Lou et al., 2023) module, which consists of a

Dynamic Position Encoding (DPE) (Li et al., 2023b), a Dual

Dynamic Token Mixer(D-Mixer), and a Multi-scale Feed-forward

Network (MS-FFN). Additionally, the LKA_Stem module is used to

build the LiteHRNet input module, utilizing Large Kernel Attention

(LKA) to further enhance the feature extraction performance.

Furthermore, LiteHRNet is modified to reduce the CCWB

module in stages 2–4 to prevent the loss of target feature

information caused by excessive convolution. This reduction also

decreases the number of network parameters, thereby improving

model detection speed. The improved pineapple fruit keypoint

detection network, Large Kernel TransX HRNet(LTHRNet), is

shown in Figure 4. In this network structure, the 1, 2, and 1

TransX block modules are used for each branch of the network in

stages 2-4. The resolution of each branch is 32×24 and 16×12, and

the number of channels is set to 192 and 384, respectively.

2.3.1 LKA_stem
Attention mechanisms can selectively focus on or emphasize

features that are more critical to the task, based on the dynamics of
Frontiers in Plant Science 05
the input features, while suppressing or ignoring other parts. Large

kernel convolution attention has a greater feature extraction

capability, but it requires a significant amount of computation and

parameters. To overcome this limitation, the large kernel

convolution of a single-channel feature map can be decomposed

into smaller kernel convolutions and expanded convolutions. As

shown in Figure 5, for a 5×5 standard convolution of a single-

channel feature map, it can be decomposed into a 3×3 convolution, a

3×3 inflated convolution with an expansion rate of 2, and further, a

large kernel convolution of K×K can be decomposed into a small

kernel convolution of (2d-1)×(2d-1), and an inflated convolution of

½Kd �× ½Kd � with an expansion rate of d, where [] represents the

upward rounding function. This decomposition facilitates the

connection of remote features and the estimation of the

importance of points, all while maintaining low computational

cost and parameter requirements.

According to depth-separable convolution, a standard

convolution of a feature map with multiple channels can be

decomposed into depth convolution and point convolution. LKA

combines the single-channel large kernel convolution

decomposition with depth-separable convolution to decompose

the large kernel standard convolution of a multi-channel feature

map into three components: spatially localized convolution(depth

convolution, DW-Conv), spatially remote convolution(depth

inflated convolution, DW-D-Conv), and channel convolution

(point convolution, 1×1 Conv) (Guo et al., 2023). Thus, the LKA

module can be represented as (Equation 1):

Output = Conv1�1(DW −D − Conv(DW − Conv(F)))⊗ F (1)

Where F is the input feature map. When the convolution kernel

is K, the expansion rate is d, and the number of channels is C, the

number of module parameters P (Equation 2) is:
FIGURE 4

LTHRNet network structure. (The output map is the final output feature map of each section).
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P(K , d) = (2d − 1)2 � C +
K
d

� �2
�C2 + C2 (2)

In this study, the LKA module with K=21 and d=3 is used,

which corresponds to the decomposition into a 5×5 depth

convolution and a 7×7 expansion with a 3-depth expansion

convolution. Thus, the number of covariates is 25C + 50C²,

which is much smaller than the number of covariates for the

standard convolution with K=21, 441C². The LKA_Stem

(Figure 6) is passed through a conv layer with a step size of 8 for

the 15×15 Conv, followed by batch normalization, 1×1 Conv, GELU

activation function, LKA, another 1×1 Conv, and batch

normalization for feature extraction.

2.3.2 D-mixer
He keypoints defined are all located at the edge region of the

pineapple fruit, where the similarity between the edge and the inner

region is high. Therefore, the model needs to pay more attention to

the global features of the input during the feature extraction

process. The TransX block, designed based on Convolutional

Neural Networks(CNN), is combined with Transformer to

enhance the network’s expressive capability. The convolutional

layer focuses on extracting local features, and its perceptual field

is limited. By relying on multi-layer stacking, the global perceptual

range is gradually expanded, but this may result in low efficiency
Frontiers in Plant Science 06
when modeling long-range dependencies. On the other hand,

Transformer models can directly capture relationships between

pixels in an image through the self-attention mechanism, thus

efficiently modeling long-range dependencies and global features.

Both CNN and Transformer have distinct advantages in feature

modeling, and their combination can complement each other to

improve the overall performance of the model.

The D-Mixer module, through OSRA and IDConv, increases

the effective sensory field of the network without reducing the long-

range dependency of the input features. It dynamically utilizes both

global and local information of the features and finally uses the

Squeezed Token Enhancer(STE) for efficient feature fusion. The

DMixer module is shown in Figure 7 and is denoted as Equations 3,

4.

F1, F2 = Split(F) (3)

Output = STE(Concat(OSRA(F1), IDConv(F2))) (4)

OSRA introduces depthwise separable convolution (Chollet,

2017) instantiated according to Overlapping Spatial Reduction

(OSR) in Spatial Reduction Attention(SRA) (Wang et al., 2021).

This approach effectively solves the problem of SRA’s global

feature extraction in sparsely labeled regions, which otherwise

results in non-overlapping space shrinkage. Such shrinkage
FIGURE 5

Single channel large kernel convolutional decomposition. (A) Standard conv. (B) Small kernel conv plus expansion conv. (Orange indicates
convolution kernel size, yellow indicates the convolution kernel center, gray indicates the use of 0-fill, pink indicates features after convolution, and
blue indicates features).
FIGURE 6

LKA_Stem module.
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destroys the spatial structure near the patch boundary, degrading

the token quality. The method then uses multi-head self-attention

(MHSA) to model remote dependencies. The weights of IDConv

are dynamically generated based on the input features, enabling the

convolution kernel to adjust adaptively according to the input data.

This feature helps the model better adapt to complex, non-uniform

feature distributions and is suitable for tasks that require the

capture of both local and global information. Finally, STE

employs deep convolution as well as channel compression and

expansion to achieve cross-channel feature fusion at a low

computational cost.

2.3.3 MS-FFN
Standard Feed-Forward Networks(FFN) typically employ

single-scale linear transformations and activation functions to

achieve feature transformation, which provides limited processing

capability and struggles to capture cross-scale feature associations.

Inverted Residual FFN reduces the number of parameters by using a

bottleneck design and improves efficiency by combining with

depth-separable convolution. However, its feature extraction

capability depends on specific channel expansion and

compression operations, which limits its ability to fuse cross-scale

information. The Multi-Scale Feed-Forward Network (MS-FFN)

places greater emphasis on extracting and fusing information at

different scales. It is not limited to inter-channel transformation

operations and is enhanced by multi-scale operations, which boost

the model’s ability to adapt to complex features. MS-FFN is more

effective at capturing the balance between global and local

features.In this study, MS-FFN adopts a fourfold channel

expansion along with deep convolution, utilizing convolution

kernel sizes of 1, 3, 5, and 7. The 3×3, 5×5, and 7×7 deep

convolutions effectively extract multi-scale features, while the 1×1
Frontiers in Plant Science 07
deep convolution optimizes and adapts the input features by

adjusting channel information, as shown in Figure 8.
2.4 System processes

This study detects pineapple fruit pose information based on

keypoint features, and the main system flow is shown in Figure 9.

The system uses three threads running in parallel to accelerate

processing, with data transferred and read between threads via

queuing. First, thread 1 acquires the image input and applies the

YOLO target detection algorithm to each frame, identifying all

pineapple fruit target recognition boxes (bounding boxes) within

the image. Thread 1 then sends the image with the detected target

location boxes to the AlphaPose network model in thread 2, which

processes the fruit keypoints data. Thread 3 verifies the

completeness of keypoint detection in the corresponding regions

based on the target location and keypoint data from threads 1 and 2.

It then outputs the keypoint locations, constructs the fruit picking

region, and calculates the fruit pose vector.
2.5 Model training configuration

The hardware configuration used for model training in this

study consisted of an Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz

processor and a Quadro RTX 5000 graphics card with 16GB of

video memory. The operating system was Ubuntu 18.04, configured

with CUDA 10.2 and CUDNN 8.6.0. Model training was performed

within the Anaconda virtual environment installed on the system,

with dependencies such as PyTorch 1.8.1 and mmcv-full 1.7.0

installed within the environment. The programming language
FIGURE 7

D-Mixer Module. (A) D-Mixer. (B) IDConv. (C) OSRA. (D) STE.
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used was Python 3.7. For training, the number of epochs was set to

300, the batch size to 32, the learning rate to 0.005, the optimizer to

AdamW, and the number of workers to 4.
2.6 Indicators for model evaluation

Model testing was performed under the operating system

Windows 11 and an RTX 4060 graphics card. To verify the
Frontiers in Plant Science 08
performance of the keypoint detection model, the COCO keypoints

dataset was used to evaluate the keypoint average precision (KAP) and

average recall (KAR) metrics, as shown in (Equations 5, 6).

KAP@a = opd (OKSp > a)

op1
(5)

KAR@a = opd (OKSp > a)

ogtp1
(6)
FIGURE 8

MS-FFN module.
FIGURE 9

Flowchart of the pineapple fruit pose prediction system.
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Where OKS(Object Keypoint Similarity) represents the

keypoint recognition degree, a is the detection threshold for

pineapple keypoints OKS. When the condition d(OKSp>a) is

satisfied, the value is set to 1; otherwise, it is set to 0. This means

that the detected pineapple keypoints are considered positive if their

score exceeds the threshold, and negative otherwise. Here, p

represents the number of detected keypoints, and gtp is the

number of the ground truth labeled keypoints. The OKS is shown

as (Equation 7).

OKS =
oiexp( −

di
2d2K2

i
)d (vi > a)

oid (vi > a)
(7)

Where i corresponds to the current number of the pineapple

target keypoints group, di is the Euclidean distance between the

predicted pineapple keypoints and the ground truth labeled

keypoints, s is the square root of the predicted pineapple target

area, Ki is the standard deviation constant for each type of pineapple

keypoint, and vi indicates the visibility of the pineapple keypoints.

Here, 0 means that the keypoints are not present in the real box, 1

means the keypoints are present but not visible, and 2 means the

keypoints are visible.
3 Results and analysis

3.1 Comparison of different target
detection models

In this study, the same dataset was used to train five YOLO

series target detection models. The models were trained for 200

epochs, and the weight file with the best performance was selected

as the final weight for the model. The performance comparison of

each model is shown in Table 1, with Precision (P), Recall (R), and

Average Precision (AP) of the YOLO series models used as the

evaluation metrics (Khanam and Hussain, 2024).

From the comparison results of different models, it can be

observed that in terms of detection accuracy, the AP0.5 for

YOLOv6n, 8n, 10n, and 11n models is all 0.994, with minimal

difference between the five models. The AP0.5:0.95 for YOLOv6n is

improved by 0.012 and 0.022 compared to YOLOv11n and

YOLOv5n, respectively, and outperforms both YOLOv8n and

YOLOv10n. Additionally, the recall of the YOLOv6n model is

slightly better than the other four models, although its accuracy is

0.009 lower than that of YOLOv8n and YOLOv11n. In terms of
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detection speed, the YOLOv6n model demonstrates the best average

detection speed of 116.3 fps, which is 14.3 fps, 7.3 fps, 32.3 fps, and

30.1 fps faster than the YOLOv5n, 8n, 10n, and 11n

models, respectively.

Considering the comprehensive performance of the models,

YOLOv6n demonstrates the best overall performance, with robust

detection accuracy and speed. Therefore, this study uses the

YOLOv6n model as the pineapple fruit target detection model.
3.2 Ablation test results

In order to evaluate the effectiveness of the improved model

LTHRNet for pineapple fruit keypoint detection in this study,

various enhancements were made to LiteHRNet using the

LKA_stem(L) module, the D-Mixer(D) module, and the MS-FFN

(M) module to construct five different STPEs, respectively. These

models were evaluated using KAP and KAR values from the test set.

The results of the performance comparison are shown in Table 2.

The results revealed that the improved model LTHRNet detects

pineapple fruit keypoints with KAP0.5 and KAR0.5 of 93.5% and

95.1% for the test set, which is 6.6%, 5.8%, 1.4%, and 6.6% higher

than the other models using L, D, D-M, and L-D, with KAP0.5 and

KAR0.5 boosted by 4.5%, 4.0%, 0.6%, and 3.8%, respectively.The

results demonstrate that the introduction of the M module after the

D module leads to a significant improvement in KAP0.5:0.95 and

KAR0.5:0.95 for detecting pineapple fruit keypoints. This suggests

that the model gains a richer feature representation capability after

the M module integrates feature information from different scales.

Furthermore, the model shows some improvement in each

detection index after incorporating the L module. The final

detection accuracy using the L-D-M model is optimal.

The image feature extraction process for each model in the

ablation experiment was visualized, with the final output feature

maps of each stage and branch shown in Figure 10. The large kernel

expansion convolution enlarges the receptive field, and a

comparison of the LKA_Stem features across models reveals that

using the LKA_Stem module enhances focus on the feature region

and improves localization accuracy. This module increases the

model’s sensitivity to internal features of the pineapple fruit,

allowing it to capture subtle variations in fruit contour and

texture more effectively while suppressing background

noise.When comparing the Stage components of each model, it is

evident that the use of the D-Mixer module concentrates attention
TABLE 1 Performance comparison of different YOLO detection models.

Model P R AP0.5 AP0.5:0.95 Speed/fps

YOLOv5n 97.1 98.6 99.3 89.1 102.0

YOLOv6n 98.0 99.2 99.4 91.3 116.3

YOLOv8n 98.9 98.7 99.4 90.7 108.7

YOLOv10n 97.0 98.7 99.4 90.6 84.0

YOLOv11n 98.9 97.8 99.4 90.1 86.2
Bold text indicates optimal values.
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on the fruit region. In the D-Mixer module, IDConv dynamically

adjusts the convolution kernel based on input features, enabling it

to effectively handle the variability in fruit morphology and reduce

feature bias introduced by fixed convolution kernels. OSRA helps

preserve boundary information of the fruit region and ensures

accurate extraction of fruit features.From models using D and L-D

configurations, some feature sticking is observed in the output

features. However, in models using D-M and L-D-M, this feature

stickiness is eliminated after introducing the M module. This

module enhances attention to both local keypoint details and

overall morphology via multi-scale convolution kernels, avoiding

feature omissions that may occur with a single scale. It reinforces

the contour information of the fruit, balances global and local

features, and mitigates feature sticking.
3.3 Comparison of model test results

In order to evaluate the detection performance of the LTHRNet

model for pineapple fruit keypoints in this study, a comparative test

was established under different backbone network STPE to assess

the prediction performance of LTHRNet against four other network

models for pineapple fruit keypoint detection. The STPE of five

different models were tested, and the performance indicators of

each model are shown in Table 3. The results revealed that the

LTHRNet model in this study improved KAP0.5 by 5.0%, 4.2%,

5.3%, and 11.9%, respectively, compared to four models: Fastpose,

Simplepose, LiteHRNet, and TransXNet-T. KAR0.5 improved by

3.1%, 2.6%, 2.6%, and 7.0%, respectively. The detection speed was

21.1 fps, which is 5.2 fps and 7.7 fps faster than LiteHRNet and

TransXNet-T, respectively. Although it was 10.2 fps and 14.0 fps
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slower than Fastpose and Simplepose, KAP0.5:0.95 improved by 4.6%

and 4.9%, and KAR0.5:0.95 improved by 3.3% and 3.3%.

Additionally, the number of model parameters was 22.4% that of

Fastpose and 26.8% that of Simplepose. These results demonstrate

that LTHRNet has an advantage in detection accuracy over other

models. Therefore, the LTHRNet model proposed in this study is

superior to other detection models in terms of comprehensive

performance, with high real-time performance, and can provide

accurate data for pineapple fruit pose localization.

Different pineapple varieties exhibit significant differences in

characteristics such as individual fruit mass, core diameter, eye

depth, and both longitudinal and transverse diameters (Zhang et al.,

2022). Despite these variations, the model primarily relies on

external visual features to localize keypoints. Notably, different

pineapple varieties share strong visual commonalities, including

their overall cylindrical shape and the surface texture characterized

by a scale-like eye arrangement. As a result, the spatial distribution

and relative positions of keypoints remain highly consistent across

varieties. To verify the generalization ability of the LTHRNet model,

external validation was conducted using 150 images each of

Tainong 17 and ‘Comte de Paris’ pineapples. As shown in

Figure 11, the KAP0.5 and KAR0.5 of Tainong 17 reached 92.4%

and 93.0%, respectively, while those of ‘Comte de Paris’ reached

93.3% and 94.8%. Although the detection metrics for the ‘Comte de

Paris’ variety were slightly higher, the overall differences in

detection indices between the two pineapple varieties remained

minimal. These results indicate that even with differences in

longitudinal and transverse diameters, the projection relationships

of keypoints in 2D images remain stable, enabling the model to

maintain high detection accuracy across pineapple varieties.

Therefore, the model demonstrates strong generalization capability.
TABLE 3 Performance comparison of different STPE models.

STPE KAP0.5:0.95 KAP0.5 KAR0.5:0.95 KAR0.5 Params (M) Speed/fps

Fastpose 77.3 88.5 84.2 92.0 40.6 31.3

Simplepose 77.0 89.3 84.2 92.5 34.0 35.1

LiteHRNet 75.6 88.2 84.1 92.5 1.1 15.9

TransXNet-T 62.4 81.6 73.4 88.1 12.4 13.4

LTHRNet 81.9 93.5 87.5 95.1 9.1 21.1
TABLE 2 Ablation test.

Module
KAP0.5:0.95 KAP0.5 KAR0.5:0.95 KAR0.5

L D M

✓ 73.8 86.9 82.2 90.6

✓ 75.8 87.7 83.1 91.1

✓ ✓ 81.7 92.1 87.0 94.5

✓ ✓ 74.9 86.9 81.9 91.3

✓ ✓ ✓ 81.9 93.5 87.5 95.1
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3.4 Comparison of model detection effects

To verify the effectiveness of LTHRNet and the other four

models in detecting the keypoints of pineapple fruits, the models

were tested on pineapple fruit images under different lighting

conditions. Some of the detection results, with the OKS threshold

set to 0.5, are shown in Figure 12. The results reveal that Fastpose

exhibits keypoint detection errors, while Simplepose, LiteHRNet,

and TransXNet-T show large deviations and inaccurate keypoint

locations, as illustrated in Image 1 on the lower left of the figure.

Since the pineapple leaf may obscure the main part of the fruit, the

other models experience issues with incorrect keypoint detection

and significant location deviations, as seen in Image 2 and Image 3

in the figure. The proposed LTHRNet model performs well in
Frontiers in Plant Science 11
addressing the issue of poor keypoint detection under occlusion. In

conditions of low light intensity, detection difficulty increases, while

in strong light intensity, the model more easily learns the features of

the detected object, leading to accurate recognition of most

pineapple fruit keypoints. Specifically, the LTHRNet model

proposed in this study shows better detection results compared to

the others. Simplepose produces similar detection results as

LiteHRNet, while TransXNet-T has the poorest detection

performance. These results demonstrate that LTHRNet can

accurately recognize pineapple fruit keypoints under both

complex backgrounds and varying lighting conditions.

Therefore, as shown in the keypoint detection results in

Figure 12, the model in this study can accurately detect the

keypoints at each location of the pineapple fruit. Even in
FIGURE 10

Visualization of the feature extraction process for each model of the ablation test.
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FIGURE 11

LTHRNet test results for different varieties.
FIGURE 12

Detection results of different STPE models. (The blue rectangles represent the target detection results; the joint points of each differently colored
line segment indicate the model-detected keypoints).
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occlusion scenarios, the corresponding keypoints are well detected,

with more accurate localization compared to the other models,

demonstrating better robustness in its localization.
3.5 Visualization of feature extraction

In order to evaluate the feature extraction capability of the models

in this study, LTHRNet was used to visualize the feature extraction

process alongside the other four models. The visualized feature maps

represent the final output feature maps of the models, and the results

are shown in Figure 13. The results reveal that in the Fastpose,

Simplepose, LiteHRNet, and TransXNet-T models, keypoints in
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Detect1 show redundant features that stick together. This feature

sticking can easily cause the detected keypoint positions to be offset.

In contrast, the output features of LTHRNet exhibit a lower degree of

feature sticking, and the differentiation between each keypoint is

more distinct compared to the other models.

In Detect1, the true positions of the keypoints in the image are

close to each other, which leads to feature sticking in themodel output.

This issue is mainly caused by the small angle between the image and

the pineapple crown bud. From the feature map of Detect1, it can be

observed that LTHRNet performs better in extracting image features

when the angle between the image and the pineapple crown bud is

small. LTHRNet effectively filters redundant features and reduces

feature sticking in adjacent keypoints.
FIGURE 13

Different STPE model output feature visualization results.
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In Detect2 and Detect3, some keypoints are blocked, and the

final output features of TransXNet-T show the poorest feature

localization accuracy. In contrast, the output features of the

remaining four models exhibit some differences in feature

attention location, with more noticeable variation in some feature

areas. For the unobscured keypoints, each model demonstrates a

strong ability to capture the corresponding features. In contrast, for

the occluded keypoints, Fastpose and LTHRNet exhibit the

strongest capability to capture keypoint features and the highest

level of attention to feature areas. However, the feature area of

Fastpose deviates more significantly from the actual location,

whereas LTHRNet demonstrates greater accuracy in feature

area localization.

In summary, the visualization results in Figure 13 further

confirm the high accuracy and stability of LTHRNet in feature

extraction, indicating that LTHRNet has strong adaptability in

handling challenging scenes.
3.6 Pose detection results

In this study, the real pineapple fruit pose orientation obtained

from manual annotation data is compared with the orientation

results estimated using the keypoints detection algorithm to

evaluate the algorithm’s effectiveness in pineapple fruit pose

detection. The orientation angle between the real fruit target and

the detected target serves as the validation index, and its calculation

is detailed in Equation 8, Equation 9.

FP
�!

= MP
�!

(p5,p6) −MP
�!

(p1,p2) (8)

AOA = oi ∠ ( FP
�!

gi, FP
�!

di)

N
(9)

Here, MP represents the vector of the midpoints of the two

keypoints, FP denotes the pineapple fruit facing vector, N is the
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total number of fruits detected in the test set, FPgi and FPdi are the

facing vectors of the i true and detected targets, respectively, and

AOA stands for the Average Offset Angle.

The tested AOA values for pineapple fruit pose prediction

across all models are presented in Figure 14. The results reveal

that the LTHRNet model achieves the lowest AOA of 2.37°, while

the TransXNet-T model exhibits the highest AOA of 4.66°. These

results demonstrate that LTHRNet achieves the highest accuracy in

pineapple fruit pose prediction, with the smallest offset between

predicted and real attitudes, thereby providing reliable pose data.

Figure 15 illustrates the results of LTHRNet pineapple fruit

pose detection, demonstrating its ability to accurately recognize

keypoints and predict fruit orientation under complex backgrounds,

varying lighting conditions, and partial keypoint occlusion.

Furthermore, the elliptical region fitted to the keypoints data more

comprehensively captures the main part of the fruit, fulfilling the

requirements for pineapple fruit picking region localization and

pose prediction.
4 Discussion

In this study, a novel pineapple fruit keypoint detection

model, LTHRNet, is proposed based on the improved

LiteHRNet network structure. The model improvements

include the introduction of the L module, the D module, and

the M module, among others. The effect of each improved

module on the model’s performance is evaluated through an

ablation experimental system, which further demonstrates the

effectiveness of the proposed method. The L module enhances

the model’s feature extraction capability by combining large

kernel convolutional decomposition with depthwise separable

convolution. The D module boosts the model’s ability to capture

both global and local features by integrating the advantages of

CNN and Transformers. The M module further improves the
FIGURE 14

Model pineapple fruit pose prediction AOA.
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model’s adaptability to complex features through multi-scale

feature fusion. These improvements collectively lead to a

significant increase in detection accuracy under various lighting

and occlusion conditions.

The results of the ablation experiments show that LTHRNet

outperforms other improved models in both KAP and KARmetrics,

indicating that the multi-scale feature fusion mechanism of the M

module plays a critical role in enhancing model performance.

According to the experimental results, LTHRNet performs

exceptionally well in pineapple keypoint detection under diverse

lighting conditions and complex backgrounds. Furthermore, the

feature extraction visualization results further validate that

LTHRNet’s feature extraction ability is superior to that of other

models, especially when the angle between the pineapple crown bud

and the fruit body is small. This suggests that LTHRNet exhibits

strong adaptability and stability when handling complex scenes. In

terms of pose estimation, the AOA of LTHRNet is only 2.37°, which

is significantly lower than that of other models.

LTHRNet, as a high-precision keypoint detection model, can

provide core information on fruit pose, grasping regions, and target

location, offering crucial data support for precise robotic arm

operations. In the complete harvesting process, it is essential not

only to locate the fruit but also to assess its ripeness. Moreover, due

to the dense growth of pineapple leaves and significant leaf

occlusion, the system must meet higher requirements for path

planning. Based on the picking and grasping method, the

required gripping force varies accordingly, imposing additional

constraints on the harvesting strategy.
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5 Conclusion

In this study, the proposed pineapple keypoint detection model,

LTHRNet, based on the improved LiteHRNet network, aims to

address the challenge of fruit pose detection in pineapple fruits with

complex backgrounds and lighting conditions. By enhancing

LiteHRNet and introducing the L, D, and M modules, the

keypoint detection accuracy of the model and the accuracy of

pose prediction are significantly improved. The main conclusions

of the study are as follows:
1. LTHRNet performs exceptionally well in the pineapple

fruit keypoint detection task, with the model’s detection

accuracy and robustness significantly surpassing that of the

other compared models under complex backgrounds,

varying lighting conditions, and occlusion. The

experimental results show that LTHRNet achieves a

substantial improvement in both KAP0.5 and KAR0.5,

reaching 93.5% and 95.1%, respectively.

2. LTHRNet demonstrates superior feature extraction

capability and higher feature differentiation in feature

extraction visualization experiments. It is able to

effectively filter redundant features and reduce feature

sticking when dealing with adjacent keypoints’ feature

sticking and occlusion situations.

3. LTHRNet excels in pineapple fruit pose estimation, accurately

estimating the pineapple fruit’s pose orientation with a

minimal offset of just 2.37°from the true pose. By accurately
FIGURE 15

LTHRNet pineapple fruit pose detection results. (A) Cloudy. (B) Dusk. (C) Sunny. (D) Sunny with shadows.
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Fron
detecting the keypoints of pineapple fruits and estimating

their poses, the model provides reliable data support for

automated picking systems.
In future work, we will focus on fruit ripeness detection,

incorporate reinforcement learning to optimize path planning,

and dynamically adjust the gripping strategy based on keypoint

fitting and fruit morphological parameters. These improvements

will be integrated into mobile picking robots to achieve intelligent

pineapple harvesting.
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