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Mechanistic understanding of
metabolic cross-talk between
Aloe vera and native soil
bacteria for growth
promotion and secondary
metabolites accumulation
Neha Singh Chandel, H. B. Singh and Anukool Vaishnav*

Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
Plants release a wealth of metabolites into the rhizosphere that can influence the

composition and activity of microbial communities. These communities, in turn,

can affect the growth andmetabolism of the host plant. The connection between

medicinal plant and its associated microbes has been suggested, yet the

mechanisms underlying selection of indigenous microbes, and their biological

function in medicinal plants are largely unknown. In this study, we investigated

how the Aloe vera plants select its rhizosphere bacteria and examined their

functional roles in relation to plant benefit. We utilized two native plant growth

promoting rhizobacterial (PGPR) strains of Aloe vera: Paenibacillus sp. GLAU-BT2

and Arthrobacter sp. GLAU-BT16, as either single or consortium inoculants for

plant growth experiment. We analyzed non-targeted root metabolites in the

presence of both single and consortium bacterial inoculants and confirmed their

exudation in the rhizosphere. The GC-MS analysis of metabolites revealed that

the bacterial inoculation in Aloe vera plants amplified the abundance of

flavonoids, terpenes and glucoside metabolites in the roots, which also exuded

into the rhizosphere. Flavonoids were the most common prevalent metabolite

group in individual and consortium inoculants, highlighting their role as key

metabolites in interactions with rhizosphere microbes. In addition, the bacterial

inoculants significantly increased antioxidant activity as well as total phenolic and

flavonoid content in the leaves of Aloe vera. In conclusion, we propose a model

of circular metabolic communication in which rhizosphere bacteria induce the

production of flavonoids in plants. In turn, the plant releases some of these

flavonoids into the rhizosphere to support the indigenous microbial community

for its own benefit.
KEYWORDS

Aloe vera, flavonoids, PGPR, plant-soil-microbe interaction, metabolic communication,
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Introduction

Soil microbes have undeniably established close association with

their host plants for ages, ranging from mutualistic to parasitic. In

mutualistic interactions, there are dynamic changes in the

physiology and metabolism of the symbiotic partners (Singh et al.,

2022). This relationship provides various benefits to the host plant,

including growth promotion, improved nutrient uptake, enhanced

tolerance against biotic and abiotic stresses, and modulation of

metabolic pathway to accumulate more bioactive metabolite

contents (Kumar and Nautiyal, 2022). In return, plants provide a

nutrient-rich environment for the survival of selective microbes in

their surroundings. The association of plant roots with numerous

soil organisms is an interesting ecological niche known as the

rhizosphere, which is beneficial for most plant symbionts (Maitra

et al., 2024). Plants use a variety of mechanisms to modulate their

microbiome, including the exudation of secondary metabolites and

the coordinated action of different defense responses (Afridi et al.,

2024). The relationships that exist between plants and rhizosphere

microbes are dynamic and can be species-specific or environment-

dependent (Berihu et al., 2023). Host plants can actively modulate

the assembly of their rhizosphere microbiome in response to

stressors and other environmental factors (Luo et al., 2023). Plants

communicate with beneficial microorganisms in the rhizosphere

through root exudates, creating a regulated microbial community.

Changes in root microbiota throughout development influence soil-

microbe feedback and rhizosphere chemistry, which are vital for

survival in varying conditions (Korenblum et al., 2020). This

dynamic response further emphasizes the need to understand the

individual interactions between rhizosphere microbes and their

hosts or specific crops, and the chemical basis of such interactions,

which remains elusive in most cases and is a major reason for the

failure of microbial products under field conditions (Bakker et al.,

2018; Liu et al., 2019).

Plant growth-promoting rhizobacteria (PGPR) are beneficial

bacteria found in the rhizosphere that form symbiotic relationships

with plant roots through metabolic communication (Vaishnav

et al., 2017; Singh H. et al., 2021; Singh J. et al., 2021). During

this interaction, plants release signaling compounds, such as

organic acids and phenolic compounds, to attract PGPR in the

rhizosphere (Strehmel et al., 2014; Miller et al., 2019). Plants

selectively exude these compounds based on their specific needs,

which influences the composition of PGPR populations (Mashabela

et al., 2022). In return, PGPR produce various traits that promote

plant growth, including siderophores, organic acids for nutrient

solubilization, and phytohormones (Vaishnav et al., 2014; Jain et al.,

2014). These contributions lead to root elongation, improved

overall growth, enhanced nutrient uptake, and increased plant

defenses (Noumavo et al., 2013; Prasad et al., 2019). Among these

beneficial bacteria, Paenibacillus spp. is the most abundant

operational taxonomic unit (OTU) in the plant microbiome

(Langendries and Goormachtig, 2021). It promotes growth

through nitrogen fixation, phosphate solubilization, and

phytohormone production, while also offering protection against

pests and pathogens through antimicrobial compounds (Grady
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et al., 2016). Inoculating soil with P. polymyxa has been shown to

improve microbial diversity and crop yields. For instance, in poplar

plantations, it increased beneficial bacteria and reduced harmful

fungi (Sui et al., 2019). Similarly, Arthrobacter spp. also hold

significant potential as PGPR and can be found in various

extreme environments, such as saline areas, drought-prone

regions, and polluted soils. They play a vital role in protecting

plants from abiotic stresses and enhancing plant nutrition, health,

and yield (Sziderics et al., 2007; Tiwari et al., 2011; Qin et al., 2014).

As key PGPR, Arthrobacter spp. improve iron acquisition by

reducing and dissolving Fe3+ in the soil and also promote the

growth of both leguminous and monocot plants by producing

beneficial volatile compounds (Velázquez-Becerra et al., 2011; del-

Carmen-Orozco-Mosqueda et al., 2013; Flores-Cortez et al., 2019).

In recent years, several studies on medicinal plants have

enhanced our understanding of how the plant symbionts impact

the quality of the host plant by influencing their medicinal

metabolite compounds (Sharma et al., 2023). The microbial

symbionts associated with medicinal plants have shown the

ability to produce new leads of secondary metabolites with

industrial and biotechnological implications, as well as stimulate

plant growth and development (Wu W. et al., 2021). Aloe vera is

highly sought after for its medicinal and cosmetic uses globally,

attributed to therapeutic properties of its several secondary

metabolites found in the leaf gel (Taher et al., 2024). Despite

India being the largest producer of Aloe vera, it still struggles to

meet the increasing demand for it (Lawal et al., 2021). Reproductive

challenges and susceptibility to diseases pose threats to the

productivity and yield of metabolite contents in Aloe vera (Kiran

et al., 2017; Berhe et al., 2023). In addition, the excessive or

unsustainable use of different cultivars of Aloe vera has placed

them at a high risk of extinction, categorized in the red list by the

International Union for Conservation of Nature (IUCN) (Bachman

et al., 2020). Although efforts have been made to increase

productivity and yield of metabolite contents in Aloe vera, they

have limitations in large-scale production due to limited knowledge

of the defined metabolic pathway in Aloe vera. The existing

approaches such as heterologous gene expression, plant cell

culture engineering, and breeding methods are insufficient to

meet industrial demand (Isah et al., 2018; Wu T. et al., 2021).

Reports indicate that the production of bioactive secondary

metabolites in medicinal plants is stimulated by their associated

microbes (WuW. et al., 2021; Tripathi et al., 2022). The isolation of

these plant associated microbes could be highly beneficial for large-

scale production of bioactive secondary metabolites with medicinal

value. However, the understanding of the relationship between the

accumulation of bioactive components of Aloe vera and the root-

associated microbiome is still limited and fragmented in the few

studies (Chandra et al., 2024).

In this study, we aimed to assess how Aloe vera recruits

beneficial bacteria in the rhizosphere. To do this, we used two

native PGPR strains Paenibacillus sp. GLAU-BT2 (GenBank

accession number- PV083208) and Arthrobacter sp. GLAU-BT16

(GenBank accession number- PV083209), previously isolated from

Aloe vera’s rhizosphere (Unpublished data). These bacterial strains
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were used as a single and consortium inoculant to perform plant

growth experiment with Aloe vera. We then assessed the effects of

these bacterial strains on root metabolites and their secretion in the

rhizosphere soil as well. We further investigated the bacterial effects

on plant growth and secondary metabolites accumulation in the

leaves of Aloe vera.
Materials and methods

Biological materials

We utilized pure cultures of two PGPR isolates Paenibacillus sp.

GLAU-BT2 and Arthrobacter sp. GLAU-BT16, previously isolated

from Aloe vera rhizosphere and stored in slant cultures at 4°C in the

Plant biotechnology laboratory, Department of Biotechnology, GLA

University, Mathura, India. Aloe vera’s root suckers were collected

from a field crop growing in Horticulture Garden, GLA University,

Mathura, India. All root suckers were surface sterilized before using

in pot experiment. For bacterial inoculum preparation, a 24-hour-

old bacterial culture was used, and the cell pellet was resuspended in

sterile water to achieve a final concentration of 108 CFU/mL

for inoculation.
Cross-compatibility of bacterial strains and
development of the consortium inoculum

The cross-compatibility of both Paenibacillus sp. GLAU-BT2

and Arthrobacter sp. GLAU-BT16 was tested for growth by spotting

them on Luria-Bertani (LB) agar plates and for biofilm formation in

microtiter plates under broth medium. Bacterial growth occurring

together indicated that the selected strains can work together as a

consortium. The consortium was formed by growing the bacterial

strains individually in LB broth until reaching the desired

population (108 CFU). After that, both cultures were mixed in

equal ratios and used to inoculate Aloe vera rhizomes.
Plant growth experiment with
bacterial inoculation

The pot experiment aimed to assess the efficacy of both bacterial

strains individually and in a consortium on the growth and

metabolite contents of Aloe vera plants. This experiment was

conducted in 5-liter earthen pots filled with sterilized soil. The

bacterial inoculums were applied through dipping pre-sterilized

root suckers of Aloe vera in the bacterial solutions for 1 hour before

planting them in pots. This experiment was consisted of four

treatment groups: (T1)- Control (without bacterial inoculation);

(T2) GLAU-BT2 inoculation; (T3) GLAU-BT16 inoculation; (T4)

Consortium inoculation (GLAU-BT2+GLAU-BT16). Each

treatment was conducted with four replicates. The plants were

watered weekly with sterile water, and all necessary plant protection

measures were followed throughout the experiment. Plants were
Frontiers in Plant Science 03
harvested 90 days after inoculation, and leaf parameters were

measured, including number of leaves and their width and

fresh weight.
Biochemical estimation of secondary
metabolites in the leaves of Aloe vera

After harvesting, the plants were taken for testing

phytochemical estimations. The plant leaves were dried in the

oven at 50 °C for 48 hours, ground into powder, and used to

estimate the total phenol, flavonol, flavonoid contents, and DPPH,

following the protocol provided by Sharma et al. (2014). Total

phenol contents were measured using Folin-Ciocalteu reagent and

absorbance was taken at 765 nm. The total phenolic contents were

expressed in terms of gallic acid equivalent (mg/g dry weight).

Similarly, the total flavonoid contents were measured by aluminum

chloride colorimetric method, and absorbance was measured at 415

nm. The total flavonoid contents were expressed in terms of

quercetin equivalent (mg/g dry weight). Furthermore, the total

flavonol contents were measured at an absorbance of 440 nm and

expressed in terms of quercetin equivalent (mg/g dry weight).

Additionally, the DPPH was used to measure the free radical

scavenging activity of the leaf extract, and absorbance was

measured by a spectrophotometer at 517 nm, in which ascorbic

acid was used as the standard (Sharma et al., 2014). The antioxidant

activity percentage (%) was determined by the following formula,

whereas AC = absorbance of DPPH solution without extract and

AE = absorbance of the tested extract.

Antioxidant activity ( %) = ½(AC − AE) ∕ AC� � 100
Extraction of metabolites from root and
rhizosphere soil

To verify the exudation of root metabolites in the rhizosphere,

nontargeted metabolites were extracted from both the roots and the

adhering soil. For the root extracts, 50 mg of dried root samples were

ground, and metabolites were extracted using 1 mL of precooled

methanol. The mixture was subjected for sonication on ice bath

followed by centrifugation at 14,000 g for 20 minutes at 4°C. The

supernatant was collected and concentrated to dryness under vacuum

and finally dissolved in 400 μL of cold methanol for gas

chromatography-mass spectrometry (GC-MS) analysis (Kang et al.,

2019). For rhizosphere soil sampling, soil was collected at 1 cm from

the roots by gently scraping the surface. Additionally, soil attached

directly to the roots was shaken off and collected. The extraction of

exudates from soil samples was done according to method of Eze and

Amuji (2024) and was subsequently dissolved in methanol for final

analysis. Two different reference controls were used in this experiment

to eliminate native soil metabolites and bacterial metabolites without

presence of plant. These controls involved setups with no plants grown

in the pots: (A) only sterile soil in the pot and (B) soil inoculated with a

consortium of microorganisms.
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Characterization of metabolite compounds
through GC–MS analysis

The purified methanolic extract was subjected to GC-MS

analysis in a Perkin Elmer GC-MS Clarus® SQ 8 equipped with

DB-5MS (Agilent, USA) capillary standard non-polar column with

dimensions 0.25 mm OD x 0.25 μm ID x 30 m length. The

instrument was set to an initial temperature of 40°C, and the

injection port temperature was ensured at 220°C, interface

temperature set 250°C, source kept at 220°C, oven temperature

programmed as 75°C for 2 min, 150°C @ 10°C/min, up to 250°C at

10°C per min. The GC conditions were: 1:12 split, helium carrier at

20 psi. The MS conditions were positive ion mode, electron impact

spectra at 70 eV. The mass spectral scan range was set at 50 to 600

Da. The MS peaks were determined by their scatter pattern. The

linear regression coefficient was used to calculate the concentrations

in the samples from peak areas obtained in the chromatographs.

The bioactive molecules were identified by comparison of mass

spectra with NIST 08 Mass Spectra Library (National Institute of

Standards and Technology). The name, molecular weight, and

structure were ascertained from NIST, PubChem, and HMDB

databases (Leylaie and Zafari, 2018).
Data processing and statistical analysis

Conformity with the assumptions of analysis of variance

(ANOVA) were checked for the different data by ShapiroWilk

test for normality and Levene’s test for homogeneity of variances

using the “car” package in R 4.2.2 (R Core Team, 2022). The data

were analyzed by one-way ANOVA, followed by post hoc Tukey’s

test to separate treatment means if ANOVA results were significant

(p<0.05). For comparative analysis of metabolites in different

treatments, the GC-MS data from six distinct groups were

imported into separate data frames using RStudio. The initial step

involved processing the data to generate chord diagrams that

illustrate the connections between compounds and their

respective properties. To achieve this, we created new data frames

for each group, focusing on the “Compound” and “Properties”

columns. Properties listed in a single cell and separated by commas

were then expanded so that each cell contained only a single

property, thereby ensuring the singularity of the “Properties”

column. The information about compounds was replicated for the

new rows to maintain consistency, reducing redundancy where the

same property was previously recorded in multiple cells.

Preprocessing included the removal of leading and trailing

whitespaces from both columns. We used the circlize package

(Gu et al., 2014) to create chord diagrams for each group, which

were subsequently combined into a composite collage. For

visualization of intersections among the sets of compounds, we

utilized the UpSetR package (Conway et al., 2017), opting for this

approach over a Venn diagram due to the complexity of having

more than five sets, which can obscure intersection details in Venn

diagrams. Color schemes were adjusted discretely to clearly

differentiate between intersections and other visual representations.
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Results

Co-inoculation of bacterial strains promote
leaf growth parameters

The impact of both bacterial strains on the growth of Aloe vera

plants was examined by determining different leaf growth parameters.

There was a significant effect of different treatments in the leaf number

(F3,12= 14.56, p<0.001), leaf width (F3,12= 5.5, p<0.05) and leaf fresh

weight (F3,12= 1322, p<0.001). The highest value of leaf growth

parameters were observed in consortium inoculation, while individual

inoculation showed similar trend to control plants (Figure 1).
Bacterial inoculation induces production of
secondary metabolites in leaves

Different treatments had a significant impact on the total

flavonoid content (F3,12= 187.7, p<0.001), total flavonol content

(F3,12= 93.6, p<0.001) and total phenolic content (F3,12= 241.5,

p<0.001) in the leaves of Aloe vera plant. The highest

concentrations of all secondary metabolites were observed in

consortium inoculated plants. In terms of total phenolic and

flavonol content, both individual bacterial inoculations also resulted

in significantly higher levels compared to control plants. However, for

total flavonoids, the GLAU-BT16 individual inoculum showed a

similar content to the control (Figures 2A–C). Additionally, the

antioxidant activity measured by the DPPH assay in the leaf extract

was significantly influenced by treatment groups (F3,12= 660.6,

p<0.001). The highest DPPH activity was observed in the

consortium treatment compared to the other treated

plants (Figure 2D).
Bacterial inoculated roots release
distinctive metabolites into the rhizosphere

GC-MS profiling of metabolites from both roots and

rhizosphere soil was conducted across all treatment groups,

resulting in a final list of compounds after excluding their

respective control groups. The number of compounds varied

among the treatments. The highest number, 39 compounds, was

observed in the rhizosphere soil of GLAU-BT16, while the lowest

number, 35 compounds, was observed in the rhizosphere soil of

GLAU-BT2 and in the roots of consortium inoculated plants. The

final list of compounds, along with their properties, is summarized

in Supplementary Tables S1-S6. Most compounds were detected

within a retention time (RT) range of 3.1 to 31.3 minutes.

A total of 10 compounds were consistently identified in both the

roots and rhizosphere soils across all treatment groups, indicating

their stable presence. These compounds are “2,5-di-tert-

Butylaniline”, “7-Tetradecyne”, “3-Octadecyne”, “trans-2-Decen-1-

ol, methyl ether”, “1-Methylbicycloctane”, “Octadecadienoic acid,

methyl ester”, “2H-Benzocyclohepten-2-one”, “Octadecatrienoic

acid”, “3,4-Dimethyl-1-dimethyl(trimethylsilylmethyl)” and
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“Cyclooctene, 5,6-diethenyl”. Each treatment group also exhibited

unique compounds that were not found in other groups. The highest

number of unique compounds, 9, was identified in the rhizosphere

soil of GLAU-BT16 inoculated treatment, which were absent in all

other treatments.

In terms of root metabolite exudation into the rhizosphere, two

unique compounds “2-Butenoic acid, 2-methyl” and “Pentanedioic

acid, bis-dodecylamide” were exuded from the consortium treated

roots into their rhizosphere soil. Additionally, two unique

compounds, “1,3-dioxane-5,5-dimethanol, 2-hexyl” and

“Cyclohexane, [6-cyclopentyl-3-(3-cyclopentylpropyl)hexyl]”,

were exuded from the roots inoculated with GLAU-BT16, while

one unique compound “Myricitrin” was exuded from the roots of

GLAU-BT2 inoculated plants.

All identified compounds were researched in the available

literature, and their reported activities are listed in the compiled

Supplementary Tables S1-S6. The property “Antimicrobial”
Frontiers in Plant Science 05
emerged as the most prevalent across all treatment groups,

followed by “Antioxidant”. A collage of chord diagrams was

created to visually represent the connections between individual

compounds and their properties (Figure 3). An UpSet plot was also

generated to understand the intersections of compounds among

different treatment groups (Figure 4).
Discussion

Plant-microbe interactions are complex and play a significant

role in the metabolism of both plants and microbes. Using a

metabolomics approach, researchers can identify low molecular

weight metabolites involved in these interactions. Changes in these

metabolites can provide insights into how plants and microbes

respond to each other during specific physiological periods (Fiehn,

2002; Yang et al., 2017). Research on soil metabolomics has focused
FIGURE 1

Effect of bacterial inoculation on (A) Leaf number, (B) Leaf width, and (C) Leaf fresh weight. T1- uninoculated plant (control); T2- GLAU-BT2
inoculation; T3- GLAU-BT16 inoculation; and T4- Consortium inoculation (GLAU-BT2 + GLAU-BT16). The results are presented as mean values± SE,
(n=4). The presence of different letters on each bar indicates a statistically significant difference between the treatment means. The means were
separated by Tukey’s post-hoc test (p<0.05), following a significant one-way ANOVA analysis.
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on understanding the relationships among plants, soil, and

microbes by exploring “community metabolomics”, which

considers both plant root exudates and microbial products (Jones

et al., 2014; Huang et al., 2014). In this study, we examined the root

metabolites of Aloe vera and their exudation into the rhizosphere

while inoculating with two PGPR strains. Although collecting

exudates from Aloe vera is challenging due to the large size of its

roots, we aimed to identify common compounds present in both the

roots and rhizosphere soil, even considering potential changes

caused by microbial activity.

Our findings indicate that the consortium inoculum of

Paenibacillus sp. GLAU-BT2 and Arthrobacter sp. GLAU-BT16 has

a greater positive effect on the growth ofAloe vera plant than individual

inoculants. Previous studies have demonstrated that using a mixed
Frontiers in Plant Science 06
inoculant, rather than individual, promotes plant growth by increasing

the number of surviving cells in their natural environments (Tittabutr

et al., 2007; Sharma et al., 2017; Thanni et al., 2024). Our results align

with previous studies on Paenibacillus sp. and Arthrobacter sp., which

showed that plants inoculated with these bacterial strains exhibited

enhanced growth parameters (Mohd Din et al., 2020; Chhetri et al.,

2022; Jia et al., 2022; Özdoğan et al., 2022). Notably, co-inoculating A.

ureafaciens DnL1-1 and Trichoderma harzianum significantly boosts

biomass in wheat (Yang et al., 2021). In our results, the higher leaf

biomass observed in bacterial-inoculated plants suggest that PGPR

strains may increase nutrient uptake in Aloe vera plants through their

nutrient solubilizing activities, as seen in GLAU-BT2 and GLAU-BT16

strains (Unpublished data). Earlier research also highlights nutrient

solubilizing and other plant growth promoting properties in various
FIGURE 2

Effect of bacterial inoculation on (A) total phenolic content, (B) total flavonol content, (C) total flavonoid content and (D) antioxidant activity (DPPH).
T1- uninoculated plant (control); T2- GLAU-BT2 inoculation; T3- GLAU-BT16 inoculation; and T4- Consortium inoculation (GLAU-BT2 + GLAU-
BT16). The results are presented as mean values± SE, (n=4). The presence of different letters on each bar indicates a statistically significant difference
between the treatment means. The means were separated by Tukey’s post-hoc test (p<0.05), following a significant one-way ANOVA analysis.
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strains of Paenibacillus and Arthrobacter (Banerjee et al., 2010; Grady

et al., 2016; Chhetri et al., 2022).

The co-inoculation of GLAU-BT2 and GLAU-BT16 in the host

plant Aloe vera significantly increased the leaf metabolite contents,

including total flavonoids, flavonol, phenolic compounds, and total

antioxidant activity. The therapeutic benefits of Aloe vera are

attributed to the antioxidant properties of its phytochemical

components, which can scavenge free radicals and reduce

oxidative damage associated with various plant diseases

(Mahapatra, 2021; Singh and Vaishnav, 2022; Nwozo et al., 2023).

These findings align with previous studies that demonstrated that

plants inoculated with different species of Arthrobacter induced the

accumulation of secondary metabolites, particularly influencing

carbohydrate metabolism in the plant leaves (Ramıŕez-Ordorica

et al., 2020; Chhetri et al., 2022). Similarly, a co-inoculation

experiment with Paenibacillus and Bacillus subtilis in wheat

cultivars revealed a differential accumulation of compounds

across several classes of metabolites, including phenylpropanoids,

organic acids, lipids, organoheterocyclic compounds, and

benzenoids in leaf tissue (Mashabela et al., 2022). The higher

accumulation of flavonoids and phenolic compounds is primarily

exuded from the roots to attract beneficial microbes in the

rhizosphere (Gu et al., 2020; Sharma et al., 2021; Korenblum

et al., 2022). In our findings, we also observed flavonoid
Frontiers in Plant Science 07
compound ‘Myricitrin’ especially in Paenibacillus sp. GLAU-BT2

treated plant roots as well as in rhizosphere soil. It can be suggested

that the presence of Paenibacillus sp. GLAU-BT2 and Arthrobacter

sp. GLAU-BT16 in the Aloe vera rhizosphere may result from the

exudation of flavonoid and phenolic compounds (Reynolds, 1985).

Once these microbes colonize the rhizosphere, they stimulate

nutrient uptake in the host plant, leading to increased production

of flavonoids and phenolic compounds. These compounds are then

exuded and recirculated in the rhizosphere, allowing beneficial

microbes to enhance their population and colonization within the

host plant (Figure 5). This hypothesis is based on the concept of a

circular metabolic economy in plant-microbe interactions, where

flavonoids, the most studied class of chemical exudates, have diverse

effects on soil microorganisms (Korenblum et al., 2022).

The GC-MS analysis identified various categories of

compounds in both root and rhizosphere soil. Plant root exudates

play a significant role in transforming and modifying the conditions

of the rhizosphere. These exudates are often considered the first line

of communication between plants and the microorganisms residing

in the rhizosphere (Oburger et al., 2009; Sharma et al., 2021). The

presence of antimicrobial metabolites in both the root and

rhizosphere suggests that these compounds inhibit the growth of

pathogenic microbes in the soil and reduce competition for

Paenibacillus sp. GLAU-BT2 and Arthrobacter sp. GLAU-BT16,
FIGURE 3

Chord diagrams illustrating the associations between compounds and properties across root metabolites and rhizosphere soil metabolites present in
all bacterial treatments. The figure is presented as a collage, with each chord diagram representing a separate group. The diagrams are organized
into with each plot titled according to its respective group.
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thus facilitating their growth in the rhizosphere. Moreover,

Arthrobacter spp. have been reported to produce antimicrobial

metabolites that exhibit biocontrol activity; for instance,

Arthrobacter agilis produces dimethylhexadecylamine, which

inhibits the growth of phytopathogenic fungi in vitro (Velázquez-

Becerra et al., 2013). Additionally, interactions between wheat and

A. ureafaciens DnL1-1, as well as Trichoderma harzianum, led to

the modulation of soil metabolites, particularly amino acids, organic

acids, triterpenoids, coumarins, and flavonoid contents in the

rhizosphere soil (Yang et al., 2021).

Benzenoids and their derivatives were the most detected

compounds in the metabolites of both root and rhizosphere soil,

followed by lipids and organoheterocyclic compounds. These

specialized aromatic metabolites, often classified as volatile

organic compounds (VOCs), are produced by microorganisms

and play crucial roles in plant defense, stress response, and

interactions at the plant–microbe interface (Misztal et al., 2015;

Vaishnav et al., 2017; Lackus et al., 2021). Their significance in

belowground plant-plant and plant-microbe communications has

gained increased attention (Schenkel et al., 2018; Singh J. et al.,

2021). Furthermore, phenolic compounds serve as substrates or

signaling molecules for various soil microbes (Badri et al., 2013).

They enhance plant defenses against pathogens and contribute to

abiotic stress responses (Irfan et al., 2019).
Frontiers in Plant Science 08
Other common compounds included organic acids and fatty

acids (Butenoic acid, Hexenoic acid, 3-Tetradecynoic acid,

Eicosatrienoic acid, Octadecynoic acid, and Piperidineacetic acid)

were present in the metabolites of both root and rhizosphere soil

from bacterial treatments. Organic acids are common exudates that

have gained interest for their diverse roles as metabolites in the

rhizosphere, as they can be produced by both plant roots and

microorganisms (Tuason and Arocena, 2009). These acids facilitate

nutrient solubilization, promote microbial growth, detoxify harmful

and influence bacterial chemotaxis (Menezes-Blackburn et al., 2016;

Jiang et al., 2017; Macias-Benitez et al., 2020). Additionally, fatty

acids serve as energy reserves and are crucial for membrane lipids,

acting as markers for microorganisms while also playing a role in

plant defense (Kang et al., 2019).

Moreover, terpenes, fatty aldehydes, glucosides, and flavonoids

were also detected in the metabolites of both root and rhizosphere

soil. Terpenes, the largest group of plant secondary metabolites with

vast diversity, have been found to have dual effects on soil microbes.

Terpenes are reported to promote the proliferation of bacterial

strains belonging to Proteobacteria while inhibiting the growth of

Actinobacteria strains (Bai et al., 2021). Similarly, the biosynthesis

of glucoside metabolites in plants is crucial for interaction with soil

microbes and in shaping the rhizosphere community for their host

plants (Hu et al., 2018; Koprivova et al., 2019). These findings
FIGURE 4

UpSet plot depicting the intersection statistics of compounds across root metabolites and rhizosphere soil metabolites present in all bacterial
treatments. The bars are arranged in descending order of the number of intersections across the groups. The last six bars represent distinct values
specific to each group. The colors of these bars are matched to the colors of the horizontal bars in the lower left corner, which indicate the total
number of compounds in each group.
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emphasize the importance of understanding the role of root

metabolites in the rhizosphere for attracting PGPR strains and

enhancing the accumulation of secondary metabolites within

plant tissue.
Conclusion

Our observations provided insights into a proposed model of

circular metabolic communication within the Aloe vera rhizosphere.

In this model, Aloe vera plants may release flavonoids and phenolic
Frontiers in Plant Science 09
metabolites that shape the rhizosphere bacteria. In turn, these

rhizosphere bacteria produce phytohormones and nutrient-

solubilizing enzymes in the soil, which enhance nutrient uptake by

the plant roots. This process leads to improved plant growth and the

accumulation of flavonoids, phenolic compounds, and other

secondary metabolites, which then recirculate in the rhizosphere

(Figure 5). Thus, this study enriches our understanding of the

metabolic interactions between plants and microbes. This

knowledge could facilitate the development of metabolome-

engineering strategies aimed at enhancing plant growth, priming

plants for defense, and promoting sustainable agriculture.
FIGURE 5

A model framework illustrating circular metabolic communication within the Aloe vera rhizosphere. Our findings suggest the following steps in
metabolic communication: (a) Roots exude ‘Cyclohexane’ in response to Arthrobacter sp. GLAU-BT16. (aa) In response to ‘Cyclohexane’, Arthrobacter
sp. migrate towards the rhizosphere, increasing their abundance. (b) Roots exude ‘Myricitrin’ in response to Paenibacillus sp. GLAU-BT2. (bb) In response
to ‘Myricitrin’, Paenibacillus sp. move towards the rhizosphere and increase their abundance. (c) In response to consortium inoculation of GLAU-BT2 and
GLAU-BT16, roots exude ‘Butanoic acid’ and ‘Glutaric acid’. (cc) Both Paenibacillus sp. GLAU-BT2 and Arthrobacter sp. GLAU-BT16 move towards the
rhizosphere, increasing their populations in response to ‘Butanoic acid’ and ‘Glutaric acid’. (d) In the rhizosphere, these bacteria (GLAU-BT2 and GLAU-
BT16) solubilize nutrients, aiding in their uptake by plants. (e) The enhanced nutrient uptake leads to an increase in the accumulation of total phenols,
flavonoids, and flavonol in the plants. (f) Some of the accumulated metabolites are recirculated in the rhizosphere.
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