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A method for detecting the rate
of tobacco leaf loosening in
tobacco leaf sorting scenarios
Yansong Wang1,2, Chunjie Zhang1,2, Mingjie Wu1,2, Ruilin Luo3,
Lin Lu3, Zaiqing Chen1,2 and Lijun Yun1,2*

1School of Information, Yunnan Normal University, Kunming, China, 2Engineering Research Center of
Computer Vision and Intelligent Control Technology, Department of Education of Yunnan Province,
Kunming, China, 3Equipment Information Department of Yunnan Tobacco and Leaf Company,
Kunming, China
During the tobacco leaf sorting process, manual factors can lead to non-

compliant tobacco leaf loosening, resulting in low-quality tobacco leaf sorting

such as mixed leaf parts, mixed grades, and contamination with non-tobacco

related materials. Given the absence of established methodologies for

monitoring and evaluating tobacco leaf sorting quality, this paper proposes a

YOLO-TobaccoStem-based detection model for quantifying tobacco leaf

loosening rates. Initially, a darkroom image acquisition system was constructed

to create a stable monitoring environment. Subsequently, modifications were

made to YOLOv8 to improve its multi-scale object detection capabilities. This

was achieved by adding layers for detecting smaller objects and integrating a

weighted bi-directional feature pyramid structure to reconstruct the feature

fusion network. Additionally, a loss function with a monotonic focusing

mechanism was introduced to increase the model’s learning capacity for

difficult samples, resulting in a YOLO-TobaccoStem model more suitable for

detecting tobacco stem objects. Lastly, a tobacco leaf loosening rate detection

algorithm was formulated. The results from the YOLO-TobaccoStem were input

into this algorithm to determine the compliance of the tobacco leaf loosening

rate. The detection method achieved an F1-Score of 0.836 on the test set.

Experimental results indicate that the proposed tobacco leaf loosening rate

detection method has significant practical application value, enabling effective

monitoring and evaluation of tobacco leaf sorting quality, thereby further

enhancing the quality of tobacco leaf sorting.
KEYWORDS

tobacco leaf loosening rate, image acquisition system, object detection, YOLOv8,
detection algorithm
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1 Introduction

Tobacco leaves are an important economic crop in China and

serve as the primary raw material for cigarette products. As a high-

tax and high-profit crop, tobacco leaves hold a significant position

in China’s national economy. Thus, it is essential to continuously

enhance the economic value of tobacco leaves by improving the

quality of cigarette products. The quality of tobacco leaf sorting is a

crucial factor affecting the quality of cigarette products. Currently,

countries around the world rely primarily on manual methods for

tobacco leaf sorting. However, due to differences in workers’ skill

levels and varying subjective evaluation standards, the quality of

tobacco leaf sorting is often inconsistent. Therefore, it is necessary

to strengthen the management of tobacco leaf sorting operations to

improve the quality of the sorting process. Figure 1 shows the

process of tobacco leaf sorting.

Tobacco leaf loosening is a crucial step in tobacco leaf sorting. It

involves evenly distributing flue-cured tobacco leaves on a conveyor

belt, ensuring that the leaves are as separated as possible with no

overlap. This process effectively separates foreign matter and

different grades of tobacco leaves, thereby improving the purity

and quality of the tobacco. Evenly loosened tobacco leaves facilitate

subsequent processing and production, ensuring that the final

product meets market demands and consumer expectations. If the

tobacco leaf loosening is inadequate, it can result in large areas of

leaf overlap, leading to issues such as mixed leaf parts, mixed grades,

and contamination with non-tobacco related materials. This

directly impacts the quality and stability of tobacco leaf sorting,

failing to meet the increasingly stringent quality requirements of the

cigarette industry. The tobacco leaf loosening rate is an evaluation

metric used to assess the effectiveness of the tobacco leaf loosening

process. A high loosening rate indicates good performance, meeting

the requirements of tobacco leaf sorting, while a low loosening rate

indicates poor performance, failing to meet production needs. In

summary, as a key step in tobacco leaf sorting, detecting and

improving the tobacco leaf loosening rate is vital for enhancing

production efficiency and the quality of cigarette products.

In recent years, the development trend of modern agriculture has

been shifting towards automation and precision agriculture.

Therefore, object detection algorithms that enable automated
Frontiers in Plant Science 02
monitoring and analysis of crops have started to be widely applied

in the field of agricultural production. Object detection algorithms are

mainly divided into two-stage detection algorithms and one-stage

detection algorithms. Two-stage detection algorithms usually include

generating candidate regions and performing object classification and

localization on these candidate regions. Major examples include R-

CNN (Girshick et al., 2014), Fast R-CNN (Girshick, 2015), Faster R-

CNN (Ren et al., 2016), and Mask R-CNN (He et al., 2017). While

two-stage detection algorithms offer high detection accuracy, they

also entail high computational complexity, slow processing speed,

and significant computational resource demands, making them

unsuitable for scenarios requiring real-time performance or those

with limited hardware resources. In contrast, one-stage detection

algorithms can directly generate object detection results from the

input image, simplifying the detection process and making them

more suitable for real-time object detection applications. One-stage

detection algorithms primarily include SSD (Liu W. et al., 2016),

CENTERNET (Duan et al., 2019), and the You Only Look Once

(YOLO) series (Farhadi and Redmon, 2018; Wang A. et al., 2022,

2023). Among these, YOLO algorithms are more widely utilized in

agricultural production due to their rapid detection speed and high

accuracy, and there is already a body of research in this area. For

instance, Jia et al. (2023) developed a new rice pest and disease

recognition model based on an improved YOLOv7 algorithm,

achieving a detection accuracy of 92.3% on their self-built dataset.

Li et al. (2024) proposed a lightweight YOLOv8 network for detecting

densely distributed maize leaf diseases, achieving a detection accuracy

of 87.5% with a model size of 11.2MB. Zhong et al. (2024) proposed a

lightweight mango detection model, Light-YOLO, which achieved

better detection results than other YOLO series models while using

fewer parameters and FLOPs.

With the rise of Industry 4.0, advanced technologies such as the

Internet of Things (Al-Fuqaha et al., 2015), big data (Lv et al., 2014),

machine learning (Jordan and Mitchell, 2015), and deep learning

(LeCun et al., 2015) have rapidly developed, prompting the tobacco

industry to embark on the path of informatization and automation.

Traditional tobacco crop production often requires a substantial

amount of human resources. However, the introduction of

automated detection and control systems can save significant

labor costs while reducing various cumbersome issues that arise
FIGURE 1

The process of tobacco leaf sorting. (A) Tobacco leaf loading: the bundled tobacco leaves are unpacked and placed at the starting position of the
conveyor belt by workers. (B) Tobacco leaf loosening: workers loosen the overlapping tobacco leaves on the conveyor belt. (C) Tobacco leaf
grading: workers pick out tobacco leaves of different grades and remove non-tobacco related materials, retaining leaves of the same quality.
(D) Tobacco leaf packaging: workers pack the sorted tobacco leaves into containers and send them to designated locations for storage.
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during production, thereby enhancing the production efficiency of

tobacco crops and the quality of cigarette products. Currently, there

are some studies in this field. Xu et al. (2023) proposed a multi-

channel and multi-scale separable dilated convolution neural

network with attention mechanism, achieving an accuracy of

98.4% on their self-built dataset. He et al. (2023) proposed an

end-to-end cross-modal enhancement network that extracts multi-

modal information to grade tobacco leaves, achieving a final

grading accuracy of 80.15%. Huang et al. (2024) proposed a

method for single tobacco leaf identification in complex habitats

based on the U-Net model. Xiong et al. (2024) developed a deep

learning model, DiffuCNN, for detecting tobacco lesions in complex

agricultural settings, achieving a detection accuracy of 98%. Tang

et al. (2023) studied a method for locating tobacco packaging and

detecting foreign objects, proposing a cascade convolutional neural

network for detecting foreign objects on the surface of tobacco

packages and developed a data generation methodology based on

homography transformation and image fusion to generate synthetic

images with foreign objects, enhancing their model’s performance,

and achieving a final mAP of 96.3%. Wang C. et al. (2022), based on

YOLOX and ResNet-18, proposed a real-time production status and

foreign object detection method for smoke cabinets, preventing

safety and quality issues caused by foreign objects. Liu X. et al.

(2016) investigated the hardware selection, parameter setting, and

software design of the PLC control system in the tobacco blending

control system, improving the quality of cigarettes by adjusting the

mixture ratios of various components. Rehman et al. (2019)

analyzed the integration and application of machine learning

technologies in the field of tobacco production and discussed

future trends.

Based on the above content, it is evident that current research

primarily focuses on detecting tobacco plants themselves or on the

automated grading of tobacco leaves. However, there is a lack of

research on the rate of tobacco leaf loosening. Therefore, this paper

fully utilizes relevant concepts from the field of computer vision,

closely integrating them with the actual conditions of tobacco leaf

sorting work, and proposes a method for detecting the rate of

tobacco leaf loosening. By detecting the rate of tobacco leaf

loosening, real-time supervision of the loosening process can be

achieved, allowing for timely adjustments to non-compliant

tobacco leaves, thereby improving the quality of tobacco leaf

loosening and ultimately enhancing the quality of tobacco leaf

sorting. The research mainly faces the following challenges:
Fron
1. The tobacco leaf sorting site has uneven lighting and a large

amount of dust, causing the captured images to often suffer

from issues such as motion blur, making it difficult to

obtain standardized images.

2. Loosened unqualified tobacco leaves often exhibit

significant overlapping, which can lead to missed

detections and duplicate identifications during inspection.

The trained model needs to meet industrial deployment

standards, which means it must be small in size, fast, and

highly accurate.
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3. In the field of tobacco research, there is no dataset available

for tobacco leaf loosening.

4. The definition of the tobacco leaf loosening rate is unclear,

and there is no reasonable method for its calculation.
To address the aforementioned issues, this paper proposes a

method for detecting the rate of tobacco leaf loosening. The main

contributions of this paper can be summarized as follows:
1. A darkroom image acquisition system was constructed to

obtain more stable tobacco leaf images under actual

production condit ions. To simulate real-world

operational environments, a conveyor belt matching

factory production line speeds was implemented, with the

darkroom image acquisition system installed above it. The

fixed-lighting darkroom environment effectively addressed

field challenges including uneven lighting conditions and

high dust levels. An industrial camera positioned

perpendicular to the conveyor belt within the darkroom

was deployed. Through preconfigured camera parameter

optimization, this configuration enhanced image

acquisition stability and ultimately resolved the challenge

of acquiring standardized tobacco leaf images.

2. The YOLO-TobaccoStem object detection model was

developed to detect tobacco leaves on conveyor belts.

Built upon the YOLOv8 framework, the model’s

detection capability for smaller objects was enhanced

through the integration of a dedicated small-object

detection layer. The feature fusion module was

reconstructed using a weighted bi-directional feature

fusion structure to strengthen multi-scale feature

integration. Furthermore, the original loss function was

replaced to optimize detection performance for highly

overlapping targets. These targeted modifications resulted

in the YOLO-TobaccoStem model being better suited for

detecting loosened tobacco leaf images in industrial

inspection scenarios.

3. The tobacco leaf loosening dataset was established and

publicly released to address the absence of specialized data

resources in this research domain. Raw tobacco leaf images

were acquired using the darkroom image acquisition system,

and the dataset was systematically constructed through data

preprocessing and augmentation procedures. The creation

and publication of this tobacco leaf loosening dataset holds

significant implications for tobacco leaf research, as it filled a

critical data gap in tobacco leaf loosening rate analysis while

providing essential data infrastructure for subsequent studies.

4. A tobacco leaf loosening rate detection algorithm was

developed to enable real-time computation and

quantitative assessment of tobacco leaf loosening rates. The

position information of tobacco stems is obtained from the

bounding box coordinates output by the YOLO-

TobaccoStem model. Based on this position information,

the rate of tobacco leaf loosening is calculated and evaluated,
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ultimately determining whether the loosening rate of the

bunched tobacco leaves meets the required standards.
The remaining of this paper is organized as follows: The

“Materials and Methods” section introduces the construction of

the dataset and the method for detecting the tobacco leaf loosening

rate, which includes the image acquisition system, the YOLO-

TobaccoStem object detection model, and the tobacco leaf

loosening rate detection algorithm. The “Experiments and

Results” section conducts a series of experiments on the proposed

model and verifies the effectiveness of the improvements suggested

in this paper through experimental results. The “Discussion”

section analyzes potential factors that may affect the model, tests

the tobacco leaf loosening rate detection algorithm, and discusses

the feasibility of the methods. The “Conclusion” section

summarizes the study.
2 Materials and methods

This paper proposes a method for detecting the tobacco leaf

loosening rate to monitor and evaluate the quality of tobacco leaf

loosening operations. Firstly, to establish a stable image acquisition

environment, this study constructed a darkroom image acquisition

system. Then, utilizing this image acquisition system, numerous

images of loosened tobacco leaves were collected, and a tobacco leaf

loosening dataset was created through data preprocessing and data

augmentation. Subsequently, to detect loosened tobacco leaves on

the conveyor belt, a YOLO-TobaccoStem object detection model

specifically optimized for addressing tobacco leaf loosening
tiers in Plant Science 04
challenges was developed. Finally, a tobacco leaf loosening rate

detection algorithm was proposed to calculate and characterize the

loosening rate by processing the detection results from YOLO-

TobaccoStem, ultimately determining whether the loosening rate

meets quality standards. The workflow of this study is illustrated

in Figure 2.
2.1 Darkroom image acquisition system

To address various challenges encountered in factory

environments and establish a stable image acquisition environment,

we conducted an in-depth investigation of the tobacco sorting

workshop. Based on these findings, the following key factors were

prioritized in the design of the darkroom image acquisition system.

2.1.1 Consistent lighting and dust control
The primary objective of the darkroom image acquisition

system is to address the challenges posed by uneven lighting and

pervasive dust, which hinder the capture of standardized images.

Therefore, it is imperative that the design ensures a relatively

enclosed environment, equipped with stable and uniform light

sources, to facilitate the acquisition of standardized images.

2.1.2 Durability and longevity
An excellent hardware system should have a long lifespan.

Considering the temperature, humidity, and other conditions

prevalent in the tobacco leaf sorting workshop, the hardware

system must resist performance degradation due to environmental

changes or prolonged use. Consequently, aluminum alloy, renowned
FIGURE 2

Workflow diagram.
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for its low density, high strength, and corrosion resistance, was

selected for the external framework of the darkroom image

acquisition system.

2.1.3 Ease of operation
Since the system is intended for use in tobacco leaf sorting site,

it should be designed for easy operation. This reduces training time

for employees, increases production efficiency, minimizes the

possibility of operational errors, and ensures the stability of image

capture quality.

Based on these requirements, a darkroom image acquisition

system, as shown in Figure 3, was constructed in a laboratory

environment simulating the on-site conditions. The system is

mounted on a conveyor belt system that mimics the tobacco leaf

sorting site, and it operates normally.

The overall frame of the darkroom is constructed using

aluminum alloy supports, which provide structural stability while

remaining lightweight for ease of transport and installation. The

sides and top of the darkroom are built from light-blocking acrylic

panels. Acrylic was selected for its high impact resistance and

excellent aging resistance, ensuring long-term durability. Except

for the darkroom door, all other acrylic panels completely block

external light. The darkroom door is made of tinted acrylic,

allowing staff to observe the internal conditions while minimizing

the impact of external light on the internal lighting environment.

Inside the darkroom, the primary components are an industrial

camera and a lighting system. The lighting system consists of four

light strips installed on the sides of the darkroom. These strips are

arranged in a rectangular configuration on the supports to ensure

even light distribution and maintain internal lighting stability. By

adjusting the height of the supports, the light can be kept bright

without causing glare on the conveyor belt. The industrial camera is

mounted on the top of the darkroom to capture images of the

tobacco leaves on the conveyor belt. The MER-503-20GM area scan

camera from Daheng Image was chosen for its compact size (29mm

× 29mm × 29mm), offering flexibility and convenience for

installation and removal. It is robust and can operate in

environments ranging from 0°C to 45°C, suitable for the
Frontiers in Plant Science 05
conditions at the tobacco leaf sorting site. The camera’s sensor

features a global shutter function, eliminating motion blur during

image capture, and it is known for low noise and high stability.

The darkroom image acquisition system designed in this study

uses aluminum alloy and acrylic panels as the primary materials.

This ensures a long service life for the system while keeping it

lightweight and easy to assemble. Once the entire system is set up, it

requires minimal adjustments and is ready for immediate use with

simple operation. The main function of this system is to effectively

mitigate the issues of uneven lighting and pervasive dust in the

tobacco leaf sorting site, thereby enabling the capture of

standardized tobacco leaf images.
2.2 Dataset

2.2.1 Data acquisition
The tobacco leaves used in this study were provided by the

Yunnan Tobacco Leaf Company of the China National Tobacco

Corporation (Kunming, Yunnan, China). The tobacco leaves were

sourced from Dali City, Yunnan Province, and were of grade C3F.

The images were collected on 2023. The equipment used for image

collection was the darkroom image acquisition system described in

Section 2.1.

To simulate a real production environment, a conveyor belt

system similar to the production line was set up, and the tobacco

leaf loosening process was carried out on the conveyor belt. To

ensure the stability of the collected image quality, the conveyor belt

speed was set to 0.07 m/s, allowing it to pass through the darkroom

at a constant speed. Images of the tobacco leaves were captured

using the darkroom image acquisition system, with an output

resolution of 2448x2048, saved in JPEG format. Figure 4 shows

different states of tobacco leaf loosening in the dataset.

2.2.2 Data preprocessing
To enhance the detection accuracy and training efficiency of the

YOLO-TobaccoStem model, the collected images were first

preprocessed to ensure obtaining a high-quality dataset. The
FIGURE 3

Darkroom image acquisition system.
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collected images of tobacco leaf loosening were manually screened

to exclude blurred images and those with too few tobacco leaves,

resulting in an initial dataset of 1055 images, encompassing all the

states of tobacco leaf loosening mentioned in the previous section.

LabelImg (Ke et al., 2024) was used to annotate the tobacco leaf

loosening images. Two types of labels were designed: single tobacco

stem (stem) and overlapping tobacco stems (bunch), and the labels

were saved in txt file format for subsequent training.

To improve the model’s robustness, reduce its sensitivity to

images, and enhance its generalization ability, the original dataset

underwent data augmentation. The original dataset was first divided

into training, validation, and test sets in a 7:2:1 ratio. Then, various

data augmentation methods, including rotation, cropping,

brightness adjustment, image translation, horizontal flipping,

cutout, and adding Gaussian noise, were applied to the training

and validation sets. To ensure the accuracy of subsequent

experimental results, the test set was not augmented. The final

tobacco leaf loosening dataset comprised 2955 images. Detailed
Frontiers in Plant Science 06
information about the tobacco leaf loosening dataset established in

this study is illustrated in Table 1.

The test set includes 37 bunches of tobacco leaves, with the

distribution of the number of leaves contained in each bunch

illustrated in Figure 5.
TABLE 1 Detailed information of the tobacco leaf loosening dataset.

Dataset
Number
of images

Label
name

Number
of instances

Train 2217
stem 35934

bunch 699

Val 633
stem 10449

bunch 171

Test 105
stem 1726

bunch 37
FIGURE 4

States of loosened tobacco leaves. (A) Sparse distribution of tobacco leaves. (B) Dense distribution of tobacco leaves. (C) Stacked bunches of
tobacco leaves.
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2.3 YOLO-TobaccoStem object detect
model

An important part of this study is the design of a lightweight

object detection model to provide data support for the subsequent

tobacco leaf loosening rate detection algorithm. Based on the

YOLOv8 (Jiang et al., 2023) model, we propose the YOLO-

TobaccoStem model, which is more suitable for detecting tobacco

stems. Compared to other mainstream object detection models, our

model achieves the highest detection accuracy while maintaining

fewer parameters and a smaller model size. Therefore, this model can

effectively provide technical support for the tobacco leaf loosening

rate detection method.

2.3.1 YOLOv8
The YOLOv8 object detection algorithm has advantages of

higher detection accuracy and better real-time performance

compared to other algorithms in the YOLO series. YOLOv8

consists of four main parts: the input end, backbone network,

neck network, and detection head. Images enter the network

through the input end in a 640×640 base format. The backbone

network is responsible for extracting multi-scale feature

information from the input images. The neck network then fully

integrates the multi-scale feature information extracted by the

backbone network using FPN (Lin et al., 2017) - PAN (Liu et al.,

2018) methods. Finally, the detection head completes the detection

task. YOLOv8 has five model sizes: YOLOv8n, YOLOv8s,

YOLOv8m, YOLOv8l, and YOLOv8x, with increasing parameters

and model sizes. Considering detection accuracy and real-time

performance, we chose the smallest model, YOLOv8n, for our

study and made optimizations based on it.

2.3.2 YOLO-TobaccoStem
To facilitate industrial deployment while ensuring the

accuracy of tobacco stem detection, we developed the YOLO-

TobaccoStem lightweight model to complete the task of detecting
Frontiers in Plant Science 07
tobacco stems in the tobacco leaf sorting environment. First, a

small object detection layer was added to capture more details of

small objects and improve the detection accuracy for small objects.

Second, given the varying sizes of tobacco stem objects, we

enhanced the feature fusion network of the YOLOv8 model to

improve its ability to detect multi-scale objects. Lastly, a

monotonic focusing mechanism was introduced to the loss

function to enhance the model’s accuracy in detecting highly

overlapping objects. The overall structure of the YOLO-

TobaccoStem model is illustrated in Figure 6.

Like the YOLOv8 model, the YOLO-TobaccoStem model also

consists of the input end, backbone network, neck network, and

detection head. First, tobacco leaf images are resized to a resolution

of 640×640 and fed into the input end. The backbone network then

extracts and fuses multi-scale features through stacked

convolutional (3×3 Conv, Stride 1) and C2f modules, generating

hierarchical feature maps. These features are further processed by a

Spatial Pyramid Pooling-Fast (SPPF) module to concatenate multi-

scale representations, thereby enhancing the model’s multi-scale

detection capability. Subsequently, the neck network refines these

features using upsampling and fusion operations, while integrating

a bidirectional feature pyramid structure to strengthen semantic

information integration across scales. The feature map dimensions

for P2, P3, P4, and P5 are 160×160, 80×80, 40×40, and 20×20

respectively, with the model utilizing the SiLU activation function.

Finally, the detection head predicts bounding box coordinates and

class probabilities based on the refined features, outputting detailed

target information for detected objects.
2.3.3 Small object detection layer
Due to the presence of overlapping tobacco leaves on the

conveyor belt, many tobacco stem objects appear as small objects.

Through a detailed analysis of the training set in the tobacco leaf

loosening dataset, we plotted the distribution of label sizes, which is

illustrated in Figure 7. It can be observed that small objects, with sizes

ranging between 0.05 and 0.15, constitute a significant proportion.
FIGURE 5

Distribution of the number of tobacco leaves.
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Since small objects contain fewer pixels in the input image, the

information on the feature map is further reduced after

downsampling and convolution operations, leading to a loss of

details. In YOLOv8, when the input image size is 640×640, the

feature map sizes corresponding to the P5, P4, and P3 detection

layers are 20×20, 40×40, and 80×80, respectively. This resolution

may not be sufficient to retain the details of small tobacco stem

objects, resulting in suboptimal detection performance. To address
Frontiers in Plant Science 08
this issue, this study proposes adding a P2 detection layer during the

feature extraction and detection stages, with a corresponding

feature map size of 160×160. This addition helps to preserve

more details of small objects, enabling the model to capture the

characteristics of small objects more clearly, thereby improving

detection accuracy.
2.3.4 Multi- scale feature fusion
During the tobacco leaf sorting process, varying degrees of leaf

occlusion result in tobacco stem objects of different sizes within

images. Additionally, small objects with limited pixel counts in

input images experience further information loss on feature maps

after downsampling and convolutional operations, leading to

diminished detail retention. These challenges demand enhanced

small objects feature extraction and multi-scale information

transfer capabilities in detection models. While YOLOv8

primarily utilizes the FPN-PAN structure in its neck network, the

differing resolutions of input features often prevent effective

integration of multi-scale characteristics. To resolve this, we

introduced the BiFPN structure (Tan et al., 2020), where

bidirectional connections enable cross-resolution feature

propagation. This approach better combines low-level and high-

level features, producing feature maps with richer semantic

information and thereby improving detection accuracy. The

network structures of FPN-PAN and BiFPN are illustrated

in Figure 8.

BiFPN also adopts an adaptive feature fusion mechanism to

better match the needs of different tasks by integrating various input

features, thereby improving the effectiveness of feature fusion. The

expressions of BiFPN are formulated as Equations 1, 2:
FIGURE 7

Distribution chart of label sizes.
FIGURE 6

Structure of the YOLO-TobaccoStem model.
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where Ptd
x is the intermediate feature at level x on the top-down

pathway, and Pout
x is the output feature at level x on the bottom-up

pathway. All other features are constructed in a similar manner.

By introducing BiFPN to improve the model’s feature pyramid

structure, it can not only effectively enhance the model’s ability to

integrate multi-scale features but also improve the detection

accuracy of tobacco stem objects of different sizes.

2.3.5 Boundary box loss based on monotonic
focusing mechanism

The tobacco leaves on the conveyor belt may have overlapping

object heights due to multiple tobacco stems being too close, and the

features of a single tobacco stem object will be obstructed by other

tobacco stem objects. The obstructed tobacco stem objects belong to

difficult samples, while the unobstructed tobacco stem objects

belong to simple samples. Therefore, during object detection,

there may be difficulties in locating bounding boxes, making it

difficult to accurately identify difficult samples and resulting in

missed detections. The loss function used in YOLOv8 is CIoU Loss

(Zheng et al., 2020), and its formula is formulated as Equations 3-7:

IoU = B ∩ Bgtj j
B ∪ Bgtj j (3)

v = 4
p2 arctan wgt

hgt − arctan w
h

� �2 (4)

a = v
(1−IoU)+v (5)

RCIoU = r2(b,bgt )
c2 + av (6)
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LCIoU = 1 − IoU + r2(b,bgt )
c2 + av (7)

where Bgt = (xgt , ygt ,wgt , hgt)   is the true bounding box, and B =

(x, y,w, h) is the predicted bounding box; IoU is the intersection

union ratio between predicted bounding box and real bounding

box; v is used to measure the consistency between the predicted

bounding box and the true bounding box aspect ratio; a is the

weight coefficient; r(b, bgt)   is the Euclidean distance between the

center point of the predicted bounding box and the true bounding

box; c is the diagonal length of the smallest enclosing box covering

the predicted bounding box and the true bounding box; RCIoU is a

penalty term.

However, when faced with highly overlapping tobacco stems in

the dataset of scattered tobacco leaves, multiple tobacco stems

closely overlap, and their center point distance r(b, bgt) is very

small, which greatly weakens the contribution to the loss function,

resulting in limited effectiveness in distinguishing highly

overlapping tobacco stems.

To solve the above problem, this study chooses to replace CIoU

with WIoU (Tong et al., 2023) as the loss function of the model.

WIoU is a loss function based on IoU (Yu et al., 2016), which can

reduce the influence of high-quality anchor boxes through a

gradient gain allocation strategy, making WIoU more focused on

low-quality anchor boxes, thereby improving the detection

performance of the model. This study uses the version 2 of

WIoU, and its formula is formulated as Equations 8-11:

LIoU = 1 − IoU (8)

RWIoU = exp
(x−xgt )

2+(y−ygt )
2

(W2
g +H2

g )*

� �
(9)

LWIoUv1 = RWIoULIoU (10)
FIGURE 8

Network structures of FPN-PAN and BiFPN. (A) FPN-PAN network structure. (B) BiFPN network structure.
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LWIoUv2 =
L∗IoU
LIoU

� �g
LWIoUv1 (11)

where RWIoU is a penalty term;Wɡ,Hɡ are the size of the smallest

enclosing box; L∗IoU
LIoU

� �g
is the monotonic focusing coefficient.

WIoU v2 has designed a monotonic focusing mechanism for

cross entropy, which effectively reduces the contribution of simple

samples to the loss value. This allows the model to focus on difficult

samples, thereby achieving better detection results for occluded

tobacco stem objects.
2.4 Tobacco leaf loosening rate detection
algorithm

By utilizing the trained YOLO-TobaccoStem model, the loosened

tobacco leaves in the sorting scenario are detected and identified, and

the model will output an array as shown in Equation 12:

N � ½x1, y1, x2, y2, conf , class� (12)

where N is the number of predicted bounding boxes in the

image; x1, y1 is the coordinates of the top-left corner of the predicted

bounding box; x2, y2 is the coordinates of the bottom-right corner of

the predicted bounding box; conf is the confidence score of the

predicted object in that classification; and class is the class

information of the predicted object.

Accordingly, this study designs a tobacco leaf loosening rate

detection algorithm. Firstly, the coordinates x1, y1, x2, y2 are used to

determine the positions of all predicted bounding boxes in the

image, and the class is used to determine whether the object is a

single tobacco stem or overlapping tobacco stems. Then, the relative

positions of the bounding boxes for the two types of objects are

analyzed. All single tobacco stem objects overlapping with the same

overlapping tobacco stems object are considered to be part of the

same bunch of tobacco leaves, and their quantity is counted. This

count is then used to determine the number of stems in a bunch,

denoted as x. Finally, the tobacco leaf loosening rate is calculated

using a predefined parameter l, as shown in Equation 13:
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Rsanba =
l
x � 100% (13)

The predefined parameter l represents the maximum number

of stems that a normal bunch of tobacco leaves can contain. This

parameter can be set in advance by field staff at the tobacco leaf

sorting site. If x is lower than l, it is considered a normal situation; if

x is higher than l, it is considered an abnormal situation. When the

tobacco leaf loosening rate Rsanba > 100%, it indicates a good

loosening effect, meaning a fully loosened state that meets the

actual production needs. Conversely, if Rsanba≦100%, it indicates a
poor loosening effect, and the workers’ operations need timely

guidance. Figure 9 shows the flow chart of the tobacco leaf

loosening rate detection algorithm.
3 Experiments and results

3.1 Training environment

The model training was conducted on a Windows 11 operating

system. The experimental computational resources included an

NVIDIA GeForce RTX 4090 GPU with 24 GB of memory, an

Intel(R) Core(TM) i7-13700K CPU at 3.40 GHz, and 32 GB of

RAM. Model construction, training, and evaluation were all carried

out in the Python programming environment using the PyCharm

integrated development environment, with PyTorch 2.0.0 as the

deep learning framework and CUDA 11.7 for parallel computing.

Based on the study by Srinivasu et al. (2025) and empirical

testing results on our dataset, the hyperparameter settings utilized

during model training are systematically presented in Table 2. To

ensure fairness in training, no pre-trained weights were loaded

during the model training process.
3.2 Evaluation metrics

Since the tobacco leaf loosening rate detection algorithm

proposed in Section 2.4 heavily relies on the accuracy of the
FIGURE 9

Tobacco leaf loosening rate detection algorithm flowchart.
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object detection model, it is essential to evaluate the performance of

the YOLO-TobaccoStem model. This study employs Precision (P),

Recall (R), and mean Average Precision (mAP) as the evaluation

metrics for the model’s detection performance. The following

definitions are used:

TP (True Positives): the number of correctly predicted positive

samples; FP (False Positives): the number of incorrectly predicted

positive samples; FN (False Negatives): the number of actual

positive samples incorrectly predicted as negative.

Precision is the proportion of correctly predicted positive

samples among all samples predicted as positive by the model.

The calculation formula is shown in Equation 14:

Precision = TP
TP+FP (14)

Recall is the proportion of correctly predicted positive samples

among all actual positive samples. The calculation formula is shown

in Equation 15:

Recall = TP
TP+FN (15)

F1-Score is the harmonic mean of precision and recall, and it’s

an indicator used to measure the accuracy of binary classification.

Its maximum value is 1, and its minimum value is 0. The larger the

value, the better the classification effect. The calculation formula is

shown in Equation 16:

F1 = 2� Precision�Recall
Precision+Recall (16)

AP (Average Precision) is the area under the curve calculated by

plotting the P-R curve (Precision-Recall curve), while mAP is the

average value of AP for all categories. The calculation formula is

shown in Equation 17:

mAP = 1
NoN

i=1APi (17)

whereN is the number of categories. In this paper,N=2, and APi
is the AP of the i-th category.

In addition to the above metrics for evaluating model detection

performance, the model can also be assessed using FPS (Frames Per

Second), the parameters, and the size of the weight file. FPS

indicates the number of image frames the model can process per

second, which reflects the model’s processing speed. A higher FPS
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indicates better real-time performance. This makes the model more

suitable for tasks requiring real-time detection. The parameters and

weight file size reflect the model’s complexity and hardware

resource requirements. More parameters and weight file size

indicate a more complex model and higher hardware

requirements for deployment.

Using these evaluation metrics, we can comprehensively assess

the model’s performance and select the object detection model that

best contributes to this study.
3.3 Ablation experiment

This study conducted ablation experiments on the test set of the

tobacco leaf loosening dataset to verify the contribution of each

module to the overall performance of the YOLO-TobaccoStem

model. The results of the ablation experiments are illustrated in

Table 3. We used YOLOv8n as the baseline model, which has a

mAP0.5 of 93.4%, a mAP0.5-0.95 of 66.1%, parameters of 3.01 M,

and a weight file size of 6.3 MB. Various module combination

experiments were conducted without using pretrained weights to

determine their individual effects on the model.

First, Group B experimented with the addition of the P2 small

object detection layer, showing a 0.9% improvement in mAP0.5 and

a 1.4% improvement in mAP0.5-0.95, with no significant change in

the parameters and weight file size. Groups E and F added the P2

small object detection layer on top of other module improvements,

demonstrating that the P2 detection layer effectively retains more

details of small objects and thus improves detection accuracy.

However, combining it with BiFPN increased the parameters by

0.2 M and the weight file size by 0.5 MB. This indicates that adding

the P2 small object detection layer can enhance detection accuracy

without significantly increasing model complexity.

Next, we tested BiFPN in Group C, which improved the model

by 0.6% in mAP0.5 and 0.9% in mAP0.5-0.95, while reducing the

parameters by 1.02 M and the weight file size by 2 MB. Combining

BiFPN with other modules also reduced the parameters and weight
TABLE 3 Ablation experiment results.

Group A B C D E F G H

P2 ✓ ✓ ✓ ✓

BiFPN ✓ ✓ ✓ ✓

WIoU v2 ✓ ✓ ✓ ✓

P(%) 93.7 92.5 93.9 93.4 91.8 93.6 93.8 92.6

R(%) 88.6 89.1 90.4 90.5 89.5 90.0 90.2 91.6

mAP0.5(%) 93.4 94.3 94.0 94.4 94.9 94.5 94.5 95.2

mAP0.5-0.95(%) 66.1 67.5 67.0 68.4 68.4 67.2 66.9 68.3

FPS 213 145 179 213 167 145 179 167

Parameters(M) 3.01 2.92 1.99 3.01 2.19 2.92 1.99 2.19

Weight File
Size(MB)

6.3 6.3 4.3 6.3 4.8 6.3 4.3 4.8
fr
ontiers
TABLE 2 Hyperparameter settings.

Hyperparameter Value

Optimizer SGD

Momentum 0.937

Weight decay 0.0005

Initial learning rate 0.01

Final learning rate 0.01

Epochs 500

Batch size 16

Workers 8
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file size without significantly compromising detection accuracy.

This result indicates that BiFPN can effectively achieve a

lightweight improvement while enhancing detection accuracy.

Then, experiments with WIoU v2 in Groups D, F, and G

showed that it improved mAP0.5 by 1%, 0.2%, and 0.5%,

respectively. Since WIoU v2 is a loss function replacement, the

parameters and weight file size remained unchanged. Therefore,

WIoU v2 is a crucial improvement that enhances detection

accuracy without increasing model complexity.

Finally, the complete YOLO-TobaccoStem model in Group H

showed a 1.8% improvement in mAP0.5 and a 2.2% improvement

in mAP0.5-0.95, compared to the baseline YOLOv8n model, with a

27.2% reduction in parameters and a 23.8% reduction in weight file

size. Although the improved model showed a 1.1% decline in

precision compared to the baseline, it achieved a 3.0%

improvement in recall rate. This trade-off demonstrates that the

marginal precision loss is operationally acceptable. While the

model’s FPS experienced a measurable reduction, its maintained
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FPS of 167 frames/s remains fully capable of meeting real-time

detection requirements. This demonstrates that the proposed model

improvements are both effective and efficient.

The detection performance comparison between YOLO-

TobaccoStem and YOLOv8n is illustrated in Figure 10. The green

boxes represent tobacco stem objects detected by YOLO-

TobaccoStem but not by YOLOv8n. It is evident that YOLO-

TobaccoStem outperforms the baseline model YOLOv8n.

Figure 11 illustrates the confusion matrices of YOLOv8n and

YOLO-TobaccoStem trained on the tobacco leaf loosening dataset.

In the confusion matrices, the x-axis denotes the ground truth

classes (the actual annotated categories in the dataset), while the y-

axis represents the predicted classes (the model’s classification

outputs). The results indicate that YOLO-TobaccoStem also

demonstrates better performance in terms of detection accuracy.

Figure 12 illustrates the loss curves of YOLOv8n and YOLO-

TobaccoStem. The curves demonstrate comparable cls loss between

both models. Regarding dfl loss, YOLOv8n shows a marginally higher
FIGURE 10

Detection performance comparison between YOLO-TobaccoStem and YOLOv8n. (A) Original image. (B) YOLOv8n detection result. (C) YOLO-
TobaccoStem detection result.
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value than YOLO-TobaccoStem, though the difference remains

minor. Notably, YOLO-TobaccoStem achieves a significantly lower

box loss after convergence, thereby attaining a higher detection

accuracy. Thus, YOLO-TobaccoStem demonstrates superior

detection performance compared to the baseline YOLOv8n model.

In summary, the ablation experiments demonstrate the

significant improvements brought by the P2 small object

detection layer, BiFPN, and WIoU v2 in the proposed model.

These enhancements not only improve detection accuracy but

also make the model more lightweight. Furthermore, the YOLO-

TobaccoStem model achieves a detection accuracy of 95.2% while

using minimal hardware resources, making it suitable for real

deployment in tobacco leaf sorting scenarios.
3.4 Comparative experiment

In order to test the performance of the YOLO-TobaccoStem

model proposed in this paper, comparative experiments were

conducted with all mainstream YOLO models and RT-DETR

models currently available. Table 4 illustrates a comparison of the

experimental results between different models.

Table 4 clearly shows that the YOLO TobaccoStem model

proposed in this paper exhibits excellent performance in mAP0.5,

parameters, weight file size, and FPS.

In terms of mAP0.5, our model achieved the best result of 95.2%

among all models, with the highest detection accuracy among all

mainstream YOLO models. YOLOv9 (Wang et al., 2024), which has

the same detection accuracy as our model but has 27.4 times more

parameters and a weight file size that is also 25.5 times larger than our

model’s. Therefore, the comprehensive performance of our model is

much better than YOLOv9. Although our model did not achieve the
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best results in terms of parameters and weight file size, it is only

second to YOLOv5n and the difference is not significant. Moreover,

the detection accuracy of our model is 2.6% higher than YOLOv5n,

and the overall performance is better. In terms of FPS, our model is

second only to the baseline model YOLOv8n, with an FPS as high as

167 frames/s, which is fast enough to cope with most tasks that

require real-time detection. Although YOLO-TobaccoStem does not

achieve leading performance in precision, recall, or F1-Score, it still

outperforms the majority of comparative models. Moreover, when

compared to models with superior performance in these three

metrics, our model demonstrates greater advantages in both mAP

and model size, while exhibiting stronger suitability for

accomplishing the target task defined in this study.

Figure 13 visually displays the detection results among different

models. It can be clearly seen that when detecting bunches of

tobacco leaves, all models can detect overlapping tobacco stem

objects. However, for the detection of a single tobacco stem,

YOLOv3 tiny, YOLOv5n, and YOLOv6n all have a large number

of missed detections, while YOLOv7 tiny, YOLOv8n, YOLOv9-c,

YOLOv10n, YOLOv11n, YOLOv12n and RT-DETR(ResNet-18)

perform relatively well. Nonetheless, compared with the detection

performance of the YOLO-TobaccoStem model proposed in this

study, there is still a certain degree of missed detections.

Overall, through comparative experiments with mainstream

YOLO models and RT-DETR models, significant improvements in

performance based on YOLOv8n have been achieved in this study. The

proposed YOLO-TobaccoStem model demonstrates higher detection

accuracy and a smaller model size compared to other models, making

it more suitable for real-time detection tasks without encountering

resource constraints during deployment. These findings highlight the

substantial advantages and potential of the proposed model in the field

of tobacco stem loosening rate detection.
FIGURE 11

Confusion matrices of YOLOv8n and YOLO-TobaccoStem.
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4 Discussion

4.1 The impact of different loss functions
on the model

In the proposed YOLO-TobaccoStem model, WIoU v2 is used

to address the issue of poor detection performance on overlapping

tobacco stem objects. To demonstrate that WIoU v2 is the most

suitable loss function, comparative experiments were conducted

with CIoU, DIoU, GIoU (Rezatofighi et al., 2019), EIoU (Zhang

et al., 2022), and FocalEIoU. The experimental results are illustrated

in Figure 14.

GIoU aims to solve the problem of zero gradient when there is

no overlap between two objects. It considers not only the

overlapping region of the object boxes but also the non-

overlapping regions, providing a better measure of overlap. DIoU

addresses the issue of undetectable relative positions when object

boxes have an inclusion relationship. By directly minimizing the
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distance between two object boxes, it achieves faster convergence.

CIoU is the loss function currently used in mainstream YOLO

models. It incorporates the aspect ratio of the object boxes to solve

the problem of loss calculation when the center points of the object

boxes are the same in DIoU. EIoU and FocalEIoU decompose the

aspect ratio loss terms into differences between the predicted width

and height and the minimum enclosing box width and height,

respectively. This accelerates convergence and improves regression

accuracy. FocalEIoU also introduces Focal Loss to address the issue

of sample imbalance in the bounding box regression task, focusing

more on high-quality anchor boxes. However, for the tobacco leaf

loosening dataset used in this study, the focus of the above loss

functions is not as suitable as WIoU v2.

From Figure 14, it is evident that compared to other loss

functions, WIoU v2 used in the YOLO-TobaccoStem model

achieves the best results in Precision, Recall, and mAP0.5, with

values of 92.6%, 91.6%, and 95.2%, respectively. Although its

performance in mAP0.5-0.95 is not the highest, it is second only
FIGURE 12

Loss curves of YOLOv8n and YOLO-TobaccoStem.
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TABLE 4 Comparative experiments results of different models.

Model P (%) R (%) mAP0.5 (%) F1-Score FPS Parameters (M) Weighted file size (MB)

YOLOv3 94.2 91.6 94.2 92.9 34 61.53 123.5

YOLOv3-tiny 90.9 85.6 90.0 88.2 84 8.67 17.4

YOLOv3-spp 94.4 91.2 94.4 92.8 39 62.58 156.1

YOLOv5n 91.5 87.5 92.6 89.5 90 1.76 4.1

YOLOv5s 92.3 89.0 93.4 90.6 47 7.02 14.4

YOLOv5m 94.2 89.8 93.4 91.9 35 20.86 42.2

YOLOv5l 94.8 91.1 94.2 92.9 36 46.11 92.8

YOLOv5x 94.6 90.7 94.1 92.6 35 86.18 173.1

YOLOv6n 93.3 89.0 93.1 91.1 182 4.23 8.7

YOLOv6s 94.3 90.9 94.3 92.6 96 16.30 32.9

YOLOv6m 94.3 91.7 94.5 93.0 62 51.98 104.4

YOLOv6l 94.9 91.2 94.2 93.0 38 110.86 222.2

YOLOv6x 94.5 94.6 94.3 94.5 24 172.98 346.5

YOLOv7 94.6 91.0 94.0 92.8 33 36.49 74.8

YOLOv7-tiny 92.3 90.2 93.5 91.2 68 6.01 12.3

YOLOv8n 93.7 88.6 93.4 91.1 213 3.01 6.3

YOLOv8s 93.7 91.9 94.5 92.8 137 11.13 22.5

YOLOv8m 94.2 92.2 94.8 93.2 91 25.84 52.0

YOLOv8l 94.2 92.9 94.7 93.5 66 43.61 87.7

YOLOv8x 94.4 93.0 94.7 93.7 38 68.13 136.7

YOLOv9 93.9 92.5 95.2 93.2 41 60.76 122.3

YOLOv9-c 94.8 91.6 94.6 93.2 44 50.96 102.8

Yolov10n 88.8 88.2 92.1 88.5 167 2.27 5.8

Yolov10s 90.0 88.6 92.5 89.3 159 7.22 16.5

Yolov10m 90.3 89.7 93.3 90.0 104 15.31 33.5

Yolov10b 89.3 90.3 93.1 89.8 87 19.01 41.5

Yolov10l 90.1 89.9 93.3 90.0 69 24.31 52.2

Yolov10x 91.4 88.3 93.1 89.8 57 29.40 64.1

Yolov11n 89.3 87.5 91.4 88.4 185 2.58 5.5

Yolov11s 90.2 90.3 92.6 90.2 152 9.41 19.2

Yolov11m 91.8 88.8 92.5 90.3 128 20.03 40.5

Yolov11l 89.7 89.2 92.6 89.4 89 25.28 51.2

Yolov11x 91.7 89.6 92.7 90.6 65 56.83 114.4

Yolov12n 90.4 87.3 91.4 88.8 145 2.51 5.5

Yolov12s 89.6 88.9 92.6 89.2 115 9.07 18.7

Yolov12m 90.2 89.0 92.6 89.6 110 19.58 39.8

Yolov12l 91.0 89.3 92.3 90.1 72 25.76 52.5

RT-DETR
(ResNet-18)

87.3 89.5 93.3 88.4 123 19.87 40.5

(Continued)
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to CIoU. Based on these results, it can be concluded that WIoU v2

has an advantage over other loss functions in detecting highly

overlapping tobacco stem objects.
4.2 Analysis of the effectiveness of the
tobacco leaf loosening rate detection
algorithm

In this study, the trained YOLO-TobaccoStem model was used

to detect tobacco leaf loosening images in the test set. The output

results of the YOLO-TobaccoStem model were then fed into the
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tobacco leaf loosening rate detection algorithm (detailed in

Equation 13; Figure 9) to obtain the tobacco leaf loosening rate

detection results. The parameter l of the algorithm was set to 8,

meaning that a bunch of tobacco leaves containing fewer than 8

leaves was considered as qualified, while a bunch containing 8 or

more leaves was considered unqualified. Using this method, 37

bunches of tobacco leaves were classified into 25 positive samples

and 12 negative samples, where positive samples were unqualified

bunches of tobacco leaves, and negative samples were qualified

bunches of tobacco leaves.

Since the confidence score of the YOLO-TobaccoStem model

affects the results of the tobacco leaf loosening rate detection
TABLE 4 Continued

Model P (%) R (%) mAP0.5 (%) F1-Score FPS Parameters (M) Weighted file size (MB)

RT-DETR
(ResNet-34)

87.7 80.5 92.3 83.9 98 31.11 63.0

RT-DETR
(ResNet-50)

87.2 91.6 93.4 64.4 80 41.96 86.1

Ours 92.6 91.6 95.2 92.1 167 2.19 4.8
FIGURE 13

Comparison of detection performance of different models. (A) For the original image. (B) For YOLOv3-tiny detection result. (C) For YOLOv5n
detection result. (D) For YOLOv6n detection result. (E) For YOLOv7-tiny detection result. (F) For YOLOv8n detection result. (G) For YOLOv9-c
detection result. (H) For YOLOv10n detection result. (I) For YOLOv11n detection result. (J) For YOLOv12n detection result. (K) For RT-DETR(ResNet-
34) detection result. (L) For YOLO-TobaccoStem detection result.
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algorithm, the confidence score of the YOLO-TobaccoStem model

was continuously adjusted and tested. The experimental data

obtained are illustrated in Table 5.

Based on the experimental data in Table 5, the F1-Score of the

tobacco leaf loosening rate detection algorithm at different confidence

scores can be derived, as illustrated in Figure 15. When the

confidence score is 0.30, the tobacco leaf loosening rate detection

algorithm achieves the highest F1-Score of 0.836. Therefore, 0.30 is

determined to be the most suitable confidence score.
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Thus, with the model confidence score set at 0.30, the actual

detection results of the tobacco leaf loosening rate detection

algorithm are shown in Figure 16. In the figures, (A)(B)(C) show

tobacco leaves with qualified loosening, indicated as “Qualified,”
TABLE 5 Results of tobacco leaf loosening rate detection algorithm
under different confidence scores.

Confidence TP TN FP FN

0.25 24 6 9 2

0.30 23 8 6 3

0.35 17 10 3 9

0.40 9 12 1 17

0.45 5 12 0 21
FIGURE 14

Detection performance of different loss functions.
FIGURE 15

F1-Score of tobacco leaf loosening rate detection algorithm under
different confidence scores.
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while (D)(E)(F) show tobacco leaves with unqualified loosening,

indicated as “Unqualified”.

The detection results of the tobacco leaf loosening rate detection

algorithm and the actual conditions of the test set are compared, as

illustrated in Table 6. In this table, “Actual” indicates the true loosening

condition of the bunched tobacco leaves in the test set, where “True”

represents qualified loosening and “False” represents unqualified

loosening. “Detection result” shows the results from the tobacco leaf

loosening rate detection algorithm, and “Correct or not” indicates

whether the detection result is correct, with “Correct” indicating

correct detection and “Incorrect” indicating incorrect detection.

From Table 6, the tobacco leaf loosening rate detection algorithm

performs well. A total of 40 bunches of tobacco leaves were detected,

with 31 bunches correctly detected and 9 bunches incorrectly

detected, achieving an overall detection accuracy of 77.5%. The

detection accuracy for unqualified and qualified bunches of tobacco

leaves was 79.3% and 72.7%, respectively, indicating a high level of

performance. Through the experiments and manual verification, it is

proven that the tobacco leaf loosening rate detection algorithm

proposed in this study has practical application value and holds

significant potential for research in related fields.
5 Conclusion

In the tobacco leaf sorting process, the tobacco leaf loosening

stage is crucial. The quality of the tobacco leaf loosening directly
Frontiers in Plant Science 18
affects the ability to successfully sort different grades of tobacco

leaves and non-tobacco related materials. Since this stage heavily

relies on the subjective judgment of workers, it is important to

propose a method for detecting the rate of tobacco leaf loosening.

Real-time monitoring of the rate of tobacco leaf loosening can

significantly reduce the occurrence of substandard loosening. With

the rapid advancement of object detection technology, this paper

proposes a method for detecting the rate of tobacco leaf loosening

by combining it with advanced object detection algorithms. The

research confronted four challenges: first, the inability to obtain

standardized image data under industrial tobacco leaf sorting

scenarios; second, the absence of dedicated object detection

models for identifying dispersed tobacco leaf bundles; third, the

absence of a dataset for tobacco leaf loosening; fourth, the lack of

algorithms for quantitatively evaluating tobacco leaf loosening rates.

To tackle these challenges, this study involved extensive efforts

and innovations. First, we constructed a darkroom image acquisition

system, which enabled us to collect standardized images in the

tobacco leaf sorting environment. Second, we built a tobacco leaf

loosening dataset, which consists of 2955 images, including 48109

single tobacco stem objects and 907 overlapping tobacco stem objects.

This effort filled the gap in the insufficient availability of datasets in

the field of tobacco leaf loosening research. Next, we made targeted

improvements to the YOLOv8 object detection model. By optimizing

the small object detection layer, feature fusion network, and loss

function, we developed the YOLO-TobaccoStem model specifically

for tobacco stem detection. On our dataset, YOLO-TobaccoStem
FIGURE 16

Detection result images of tobacco leaf loosening rate detection algorithm. (A–C) Tobacco leaves with qualified loosening. (D–F) Tobacco
leaveswith unqualified loosening.
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achieved a mAP of 95.2%, outperforming all other mainstream

YOLO models and RT-DETR models while maintaining minimal

parameters and model size, ensuring that the model can be deployed

in real-world scenarios without hardware resource issues. Finally,

using the detection results from the YOLO-TobaccoStem model, we

constructed a tobacco leaf loosening rate detection algorithm. This

algorithm analyzes the relative positions of objects to determine if the

tobacco leaf loosening rate is satisfactory. In experiments conducted

on the test set, the algorithm achieved an F1-Score of 0.836,

demonstrating its potential for practical deployment.

In summary, the YOLO-TobaccoStem model achieves the

highest detection accuracy among mainstream YOLO variants

and RT-DETR models while maintaining a compact model size,

thereby meeting practical deployment requirements. Experimental

validation of the tobacco leaf loosening rate detection algorithm

further confirms the practical applicability of our methodology.

Additionally, the curated and publicly released dataset serves as a

foundational data resource to support related research in tobacco-

related research fields. However, there are still some issues and areas

for improvement in this method. For example, further optimization

of the tobacco leaf loosening rate detection algorithm could enhance

its precision and recall. Future research will focus on upgrading and

improving the tobacco leaf loosening rate detection algorithm, as

well as enhancing the accuracy of the object detection model
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through additional image preprocessing techniques, thus

providing a better data foundation for the tobacco leaf loosening

rate detection algorithm.
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