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Diagrammatic prevalence index:
a new algorithm to evaluate pine
wilt disease prevalence at the
sub-compartment scale
Yanjun Zhang1,2†, Siyuan Zheng1†, Jinjuan Bai1†, Jiafu Hu1

and Yongjun Wang1,3*

1College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China, 2China National
Bamboo Research Center, Hangzhou, China, 3Zhejiang Provincial Forest Disease and Pest Control
Station, Hangzhou, China
Pine wilt disease (PWD), caused by the nematode Bursaphelenchus xylophilus,

has led to significant ecological and economic losses in pine forests worldwide.

Historically, several metrics, including the number of PWD-infected trees, the

proportion of PWD-infected pine sub-compartments, and the occurrence area,

have been employed to evaluate the prevalence of PWD. However, these metrics

are individual and limited in comprehensively representing the prevalence of

PWD in extensive regions. This study introduces a new algorithm for evaluating

PWD prevalence in Hangzhou, China, where the disease has been established for

over two decades. The algorithm utilizes data on the information of PWD-

infected trees and sub-compartments to develop a diagrammatic scale (DS)

and diagrammatic prevalence index (DPI). The DS categorizes the natural

logarithm of the number of PWD-infected trees per hectare into 12 levels,

providing a scale for semi-quantifying prevalence status within a sub-

compartment. The DPI summarizes the occurrence and status of PWD-

infected sub-compartments PWD in the geographic regions. The application of

DPI in analysis of PWD prevalence in Hangzhou from 2021 to 2023 revealed

consistent dynamic patterns of and accuracy, compared to other metrics. TheDS

and DPI might contribute to the improvement of accuracy, precision,

reproducibility and repeatability of PWD prevalence assessment.
KEYWORDS

Bursaphelenchus xylophilus, epidemiology, diagrammatic scale, diagrammatic
prevalence index, algorithm
1 Introduction

Pine wilt disease (PWD) is a devastating forest disease caused by the nematode

Bursaphelenchus xylophilus, which is primarily transmitted by the pine sawyer beetle,

Monochamus spp (Mamiya, 1983; Futai, 2013). The disease, which originated in North

America, has caused significant ecological and economic losses worldwide, particularly in
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East Asia, where it has led to the rapid decline and death of pine

forests (Zhao et al., 2014; Back et al., 2024). This exotic pathogen

has also recently spread to European countries, such as Portugal and

Spain (Vicente et al., 2011). The etiology of PWD involves a

complex interplay between the nematode, pine sawyer beetle, and

the host pine tree (Zhao et al., 2014; Xu et al., 2023). The pine

sawyer beetle serves as a vector for the nematode, facilitating its

spread from infected to healthy trees (Jones et al., 2008; Akbulut

and Stamps, 2012). The transportation of infected wood-containing

pine sawyer beetles by humans can exacerbate the spread of the

disease and lead to long-distance transmission (Rands et al., 2009).

The rapid spread and high mortality rate of PWD pose serious

challenges for forest management and ecological conservation

efforts worldwide (Rodrigues, 2008; EPPO, 2012; Ye, 2019). China

has the highest incidence of pine wilt disease worldwide. Since its

introduction in 1982, PWD has spread rapidly in China and has led

to the outbreaks in 19 provinces. Approximately 60,000,000 ha of

pine forests in China are threatened by PWD (Xu et al., 2023).

Therefore, accurate monitoring and effective management of PWD

prevalence are urgently required.

Prevalence evaluation of PWD is essential for the development

of effective management strategies (Rodrigues, 2008; Ye, 2019; Back

et al., 2024). Historically, research has predominantly focused on

evaluating the risk of PWD invasion into new ecological niches and

predicting the pioneer areas for the spread of PWD on large

geographic scales, such as climate conditions (Wong et al., 2017;

Gruffudd et al., 2019; Tang et al., 2021) and stand structure (De La

Fuente and Saura, 2021; Liu et al., 2023b; Schafstall et al., 2024).

However, less attention has been directed toward the

epidemiological patterns of PWD in areas where the disease has

been established for extended periods.

For accurate prevalence evaluation of a plant disease, data

collection at a fine geographic scale are required (Barzman et al.,

2015; Firmino et al., 2017). Previous studies on PWD epidemiology

have often relied on data at the county or municipal level (Lv et al.,

2024; Schafstall et al., 2024). By contrast, data collection at finer

geographic scales, such as townships and villages, would provide

more detailed information for developing precise management

strategies (Liu et al., 2023a). In Zhejiang Province, China, the

prevalence data of PWD using unmanned aerial vehicles (UAVs)

had been collected from 2021 to 2023, and all infected pine trees

were precisely located by coordinates, making it feasible to conduct

epidemiological analysis at a finer scale, such as at the sub-

compartment scale (Zhang et al., 2024).

Quantification is essential for disease prevalence assessment

and the efficient implementation of disease management programs

(Nutter et al., 1991; Kwon et al., 2011; Bock et al., 2022). In the case

of PWD, several metrics such as the number of PWD-infected trees,

the proportion of PWD-infected pine sub-compartments, and the

occurrence area, have been commonly employed in prevalence

quantification (Hao et al., 2022). However, these metrics has

limitations in comprehensively representing the prevalence of

PWD, especially in in regions where PWD has been established

for an extended period of time. Nevertheless, no studies on a finer

geographic scale have been conducted to date. In this study, we
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introduced a new quantitative algorithm to develop new metric for

PWD prevalence evaluation. This new metric integrated the

information, such as the number of PWD-infected trees, the

proportion of PWD-infected pine sub-compartments, and the

occurrence area, which might contribute to the improvement of

accuracy, precision, reproducibility and repeatability of PWD

prevalence evaluation.
2 Materials and methods

2.1 The study area

The study area, Hangzhou, is a significant central city in the

Yangtze River Delta in southeastern China (Figure 1). It is situated

between 29°11’ and 30°34’ north latitude and 118°20’ and 120°37’

east longitude, encompassing a total area of 503,826 ha of pine

forest. Masson pine (Pinus massoniana) is the dominant species.

Hangzhou administers 7 pine-dominated county-level regions,

including Xiaoshan distinct (XSQ), Yuhang distinct (XSQ),

Fuyang distinct (XSQ), and Lin’an (XSQ), as well as two counties,

Tonglu (TLX) and Chun’an (CAX), and one county-level city,

Jiande (JDS). Topologically, the pine forest area in Hangzhou

constitutes 24.3% of the total forest area, and the pine timber

volume accounts for 37.5% of the total timber volume. PWD in

Hangzhou was initially detected in Fuyang district in 1995, and has

resulted in the mortality of numerous pine trees (Liu et al., 2001).
2.2 The sub-compartment design

A sub-compartment constitutes the smallest unit for forest

management and organization of timber production, denoting a

section with substantially uniform internal characteristics and

distinct differences from adjacent areas (Figure 1) (Xie et al.,

2011). It is also serves as a fundamental unit for forest resource

investigation and management (Liu et al., 2023a). Within the work

area, sub-compartments with identical site conditions, stand

factors, cutting methods, management measures, and logging

systems are aggregated. The delineation of the sub-compartment

is primarily determined by the natural zoning of the logging system

(Zhang et al., 2014). Typically, the area of a sub-compartment

should be approximately 5 ha, with a maximum of 20 ha.
2.3 Data collection

This study utilized PWD occurrence data obtained in Hangzhou

city, Zhejiang Province, China from 2021 to 2023. The sub-

compartmental-level occurrence data of PWD were provided by

the Zhejiang Provincial Forest Disease and Pest Control Station of

China (ZJSF) and deposited in the Digital Forest Protection system

(szsf.lyj.zj.gov.cn, accessed on 6 July 2024) (Zhang et al., 2024).

Statistical data on the occurrence of PWD areas were collected by

the forestry bureaus of various districts and counties in Zhejiang
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Province, based on ground and UAV investigation. The data were

subsequently reported to the ZJSF and National Forestry and Grass

Administration Forest and Grassland Pest Control Station of China

(NFGA) through the autumn census each year. The data fields

encompass the numbers of diseased and dead trees in every sub-

compartment and the area of sub-compartment. Data were verified

by the Quarantine Office of the Forest and Grassland Pest Control

Station of the State Forestry and Grassland Administration.
2.4 Epidemiological parameters definition

Disease prevalence (DP) was calculated as the percentage of

fields where the disease was detected (Nutter et al., 1991). To

provide a more precise characterization of the PWD prevalence,

epidemiological parameters based on the sub-compartmental scale

were defined as follows:
Fron
1. N , Number of PWD-infected trees within each

sub-compartment.

2. NC, The average number of PWD-infected trees per ha

within one sub-compartment.

3. Ln (N), the natural logarithm value of N.

4. Ln (NC), the natural logarithm value of NC.

5. DS, Diagrammatic scale for PWD evaluation.

6. DPI, Diagrammatic prevalence index.
DPI was calculated based on DS scores in a certain geographic/

administrative scale (Equation 1) (Chiang et al., 2017).
tiers in Plant Science 03
DPI = o(DS   frequency � score of  DS)� 100

(Total number of   SC)� (maximal DS)
(1)
2.5 Diagrammatic scale for evaluation of
PWD prevalence at the sub-compartment
scale

Based on the histogram distribution of the calculated PWD Ln

(NC) values, intervals with higher Ln (NC) value were selected to

establish the levels of the diagram. The diagrammatic scale (DS) was

developed by utilizing the higher frequency class intervals of Ln

(NC) values, and in the adapted Weber-Fechner law (Nutter and

Schultz, 1995; Belan et al., 2014; Perina et al., 2019). Following the

determination of the prevalence intervals to be represented and

considered the shape and distribution of Ln (NC) values, a 12-

intervals were employed to generate the DS.
2.6 Data analysis

The obtained data were analyzed using the IBM SPSS Statistics

(version 20.0; SPSS Inc.), GraphPad Prism 9.5, and Microsoft Excel

2007. Histograms were used for investigating the distribution of

PWD occurrence from the sub-compartment and to identify the

shape of the distribution. The component statistics were compared

among different epidemiological parameters methods, including

mean (ma), median (md), standard deviation (s), variance (s2),

skewness (Sk), and Kurtosis (bk).
FIGURE 1

Study area for PWD surveillance at sub-compartment scale. All PWD-infected tree were located coordinately in the sub-compartments in the Digital
Forest Protection system (https//szsf.lyj.zj.gov.cn).
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3 Results

3.1 Baseline accuracy for PWD prevalence
at the sub-compartment scale

Utilizing PWD prevalence data from 7,818 pine forest sub-

compartments in Hangzhou, China, collected in 2021, we mapped

the distributions of four key indexes, including N, NC, Ln (N), and

Ln (NC), at the sub-compartment level (Figure 2). Our analysis

revealed substantial variations in these distributions across the

different prevalence index parameters (Table 1). Notably, the

distribution of N exhibited a pronounced leftward skew, with a

mean of 14.73 and a median of 7. The variance (s2) was high at

449.98, accompanied by a skewness (Sk) of 3.49 and kurtosis (bk) of

16.93. In contrast, the R value displayed an even more pronounced

leftward skew and kurtosis, with a variance (s2) of 96.87, skewness
(Sk) of 10.74, and kurtosis (bk) of 199.76. When comparing Ln (N)

and Ln (NC) to N and R, we observed a significant normalization of

skewness. Specifically, the variance (s2), skewness (Sk), and kurtosis
(bk) of Ln (N) decreased to 1.50, 0.15, and -0.77, respectively.

However, Ln (NC) demonstrated the most optimal normal

distribution, with an average of 0.96, a median of 1.04, a variance

(s2) of 1.53, a skewness (Sk) of -0.18, and a kurtosis (bk) of -0.05.

Consequently, Ln (NC) was chosen as the baseline accuracy metric
Frontiers in Plant Science 04
for further research into PWD prevalence dynamics at the

sub-compartment scale.
3.2 Development of a diagrammatic scale
to semi-quantifying PWD prevalence at the
sub-compartment scale

Utilizing the normal distribution of Ln (NC) values from PWD

prevalence parameters at the sub-compartment scale in Hangzhou

for 2021, we categorized these values into 12 levels (Table 2). For each

Ln (NC) level, we established a corresponding diagrammatic scale

(DS), withDS values ranging from 0 to 12 and linearly correlated with

Ln (NC). A DS value of 0 indicates the absence of PWD-infected pine

trees within the sub-compartments. Furthermore, we conducted a

parallel aggregation analysis on the prevalence indices N, R, Ln(N),

Ln (NC), and DS across all PWD-infected sub-compartments

(Figure 3). The analysis revealed a normal distribution along the

DS value axis, with concentrations predominantly at levels 5, 6, 7, and

8, comprising 90.32% of the total. This distribution pattern was also

consistent in the Ln (NC) axis. Notably, significant crossover

phenomena were observed along the Ln (N) axis, where lower E

values appeared at higher positions on the Ln (N) axis. Similar

crossover effects were observed for the NC and N- value axes.
FIGURE 2

Histogram of occurrence of PWD based on N (A), NC (B), Ln (N) (C), and Ln (NC) (D) in the sub-compartment level in Hangzhou in 2021.
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3.3 Validation of the diagrammatic scale

The diagrammatic scales were validated using the PWD

prevalence data from 16 randomly selected villages. Linear

regression analysis of these 16 randomly selected datasets revealed

a positive linear relationship between various parameters,

employing N, NC, or Ln (NC) and the DS value (Figure 4).

However, the coefficient of determination (CoD. R2) exhibited a

substantial variation. The regression R2 value for the relationship

between N value and DS value was the lowest at 0.39. The R2 value

for NC and DS was 0.52, whereas that for Ln (NC) and DS was the

highest at 0.92.
3.4 Application of diagrammatic prevalence
index for PWD prevalence in Hangzhou

In conjunction with sub-compartment data from unaffected

pine forests, we introduced the diagrammatic prevalence index DPI

to summarize the PWD prevalence of PWD across the region. In

2021, Hangzhou had a total of 118,546 infected pine trees with P
Frontiers in Plant Science 05
value of 13.32%, calculated with an E value of 7.18 (Table 3). In

2022, the total number of infected pine trees was 68,293 with P

value of 11.17% and a DPI value of 5.67, representing decreases of

42.39%, 16.16%, and 20.94% compared to 2021, respectively. In

2023, the total number of infected pine trees was 39,061 with P

value of 7.23%, and DPI value of 3.60, demonstrating decreases of

42.80%, 35.32%, and 36.55% respectively, compared to 2022. DPI

index provides a novel metric for evaluating the prevalence in

Hangzhou. Combined with DS value for each sub-compartment

and the occurrence and status of PWD-infected sub-compartments,

we calculated the diagrammatic prevalence indexes (DPI) of each

town in Hangzhou from 2021 to 2023 (Figure 5). The analysis of

DPI values from a total of towns revealed consistent dynamic

patterns in PWD decline, aligning closely with the outcomes

derived from other metrics. The near-identical annual reduction

rates (~42%) suggest consistent efficacy of PWD-infected tree

removal and sanitation. However, the sharper decline in DPI

highlights its sensitivity to spatial clustering. As management

prioritized high-DS sub-compartments (mainly levels 5–8),

localized hotspots were neutralized, reducing regional aggregation.
3.5 County-level variability of
diagrammatic prevalence index

The study analyzed the prevalence of PWD at the county

level from 2021 to 2023 using various metrics, including DPI

(Figure 6). This variability was consistent with patterns

observed using other metrics such as N, Area, and P. The

results revealed significant variability in DPI across different

counties. For example, faster declines of DPI in CAX correlate

with the application of precise PWN management in 2023, while

slower progress in FYQ reflects challenges in managing

historically dense infestations.
TABLE 2 Diagrammatic scale (DS) set for pine wilt disease prevalence at the sub-compartment scale.

Diagrammatic scale, (DS) Ln (NC) value NC (N per ha)

1 Ln (NC) ≤ -5.00 NC ≤ 0.0067

2 -5.00 < Ln (NC) ≤ -4.00 0.0067 < NC ≤ 0.0183

3 -4.00 < Ln (NC) ≤ -3.00 0.0183 < NC ≤ 0.0183

4 -3.00 < Ln (NC) ≤ -2.00 0.0067 < NC ≤ 0.0498

5 -2.00 < Ln (NC) ≤ -1.00 0.0498 < NC ≤ 0.1353

6 -1.00 < Ln (NC) ≤ 0.00 0.1353 < NC ≤ 0.3679

7 0.00< Ln (NC) ≤ 1.00 0.3679 < NC ≤ 1.0000

8 1.00< Ln (NC) ≤ 2.00 1.0000 < NC ≤ 2.7183

9 2.00< Ln (NC) ≤ 3.00 2.7183 < NC ≤ 7.3891

10 3.00< Ln (NC) ≤ 4.00 7.3891 < NC ≤ 20.0855

11 4.00< Ln (NC) ≤ 5.00 20.0855 < NC ≤ 54.5982

12 5 < Ln (NC) 54.5982 < NC
TABLE 1 The statistical analysis of different epidemiological parameters.

Statistical
analysis

N R Ln (N) Ln
(NC)

Mean (m) 14.73 5.35 1.96 0.96

Median 7 2.82 1.95 1.04

Standard Deviation (s) 21.21 9.84 1.22 1.24

Variance (s2) 449.98 96.87 1.50 1.53

Skewness (Sk) 3.49 10.74 0.15 -0.18

Kurtosis (bk) 16.93 199.76 -0.77 -0.05
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4 Discussion

This study conducted a comprehensive analysis of the PWD

prevalence in Hangzhou, China, in 2021, encompassing seven

prevalence areas and 7,818 pine forest sub-compartments. A

novel algorithm for semi-quantifying the PWD prevalence at the

forest sub-compartment level was developed based on the number

of infected pine trees and sub-compartment area. This innovative
Frontiers in Plant Science 06
algorithm enables the quantitative evaluation of PWD prevalence

across various geographic or administrative levels. In contrast to

previous methods that relied on non-epidemic area risk models, this

study’s algorithm is grounded in actual dataset from a PWD

epidemic area with over 20 years of historical records (De La

Fuente and Beck, 2018). The outcomes of this study provide

multiple insights into the epidemiological patterns of PWD

(Ikeda, 2007).
FIGURE 4

Relationship of N value (A), R value (B), and Ln (NC) value (C) to DS value based on 16 randomly selected pine wilt disease (PWD) prevalence at the
village-level. The solid line represents the best fitting line. Box plot of coefficient of determination (R2) statistics for severity estimations by raters
based on the linear regression relationship between different parameters and DS.
FIGURE 3

Parallel set plot for different prevalence indexes of 7,818 forest sub-compartments in 2021 Hangzhou, colours to differentiate diagrammatic scale (DS).
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In recent decades, limitations in data acquisition and

quantification have severely impeded the progress of PWD

epidemiological studies in a fine geographic scale (Ecke et al.,

2022). Since 2021, forestry authorities have determined the PWD

prevalence data at the forest sub-compartment level to obtain a

more precise understanding of PWD outbreaks in China. Forest

sub-compartments are fundamental units for resource surveys and

monitoring, and are essential for formulating forest management

strategies, as well as for evaluation (Wu et al., 2012). Beginning in

2021, a digital forest protection platform was implemented in in
Frontiers in Plant Science 07
Zhejiang Province, China. UAVs were used to conduct the PWD

survey at the individual tree level, and the data within each forest

sub-compartment were aggregated. This study represents the initial

quantification of PWD incidence on a fine geographic scale,

specifically in a sub-compartment scale. This approach offers the

advantage of providing more accurate PWD occurrence data,

thereby enabling forestry administrations to develop precise

preventive and control plans.

Typically, quantification of plant disease severity relies on

estimation methods based on visual assessments or image analysis

of infected plant parts (Nutter and Schultz, 1995; Bock et al., 2020,

2022). However, in our study, we quantified PWD based on the

determined data at the sub-compartment scale. Notably, different

diseases may have distinct indices or assessment methods, and

specific details can be found in relevant research papers or

agricultural guidelines (Chiang et al., 2017; Madden et al., 2017).

Furthermore, the accuracy and reliability of the plant disease index

depend on the quality and consistency of data collection and analysis

(Bock et al., 2010; Huang et al., 2024). The plant disease index is a

crucial indicator used to evaluate the severity of plant diseases, usually

calculated based on the degree of damage or infection observed in

plants (Chiang et al., 2017). However, in PWD, infected pine trees

invariably succumb to the disease. Therefore, when analyzing disease
TABLE 3 Different prevalence indexes of pine wilt disease in Hangzhou
City based on N, P, Area, and DPI values.

Metric *
Year

2021 2022 2023

N 118546 68293 39061

Area (ha) 465883.8 370924.7 287229.7

Percentage (P, %) 13.32 11.17 7.23

DPI 7.18 5.67 3.60
*N represents the total number of infected trees, P represents the percentage occurrence of the
PWD prevalence in sub-compartments, and DPI indicates diagrammatic prevalence index.
FIGURE 5

Analysis of the prevalence of pine wilt disease (PWD) in Hangzhou city from 2021 to 2023 based on the numbers of PWD-infected trees (N) (A),
PWD-infected sub-compartment area (B), percentage of PWD-infected sub-compartment (P) (C), and diagrammatic prevalence index (DPI) (D). The
solid circles represent individual metric values for each town. The central lines mark the mean value. The error bars across the boxes indicates the
standard errors. MD indicates the difference of mean. Asterisks (*) in the figure indicate significant differences derived from two-sample comparisons
(P = 0.05).
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severity, we generally do not utilize the degree of damage to

individual pine trees as the standard for disease severity; instead,

we employ metrics such as the affected area and number of infected

trees as indicators of disease severity or PWD spread. This suggests

that relying solely on the number of infected pine trees to evaluate
Frontiers in Plant Science 08
prevalence severity within a sub-compartment is insufficient and does

not fully capture the complexity of the PWD prevalence status.

Consequently, a standard diagrammatic scale based on the E value

has been employed to evaluate the PWD prevalence at the sub-

compartment scale.
FIGURE 6

Analysis of the prevalence of pine wilt disease (PWD) in Chunan County (CAX), Fuyang County (FYQ), Jiande County (JDS), Linan County (LAQ), and
Tonglu County (TLX) of Hangzhou city from 2021 to 2023 based on the numbers of PWD-infected trees (N), PWD-infected sub-compartment area,
percentage of PWD-infected sub-compartment (P), and diagrammatic prevalence index (DPI). The solid circles represent individual metric values for
each town. The central lines mark the mean value. The error bars across the boxes indicates the standard errors.
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This study, of the first time, combined the number of infected

trees and the area of forest sub-compartments to compare baseline

accuracy for pine wilt disease (PWD) prevalence. The analysis

revealed significant variations in the distributions of data across

different prevalence parameters: N, NC, Ln (N), and Ln (NC). The

pronounced leftward skew and high kurtosis observed in the

distributions of N and NC highlight the complexity and variability

of PWD prevalence at the sub-compartment scale (Belan et al., 2014;

Perina et al., 2019). The logarithmic transformations Ln (N) and Ln

(NC) normalized the skewness, suggesting these transformations can

mitigate the impact of extreme values and provide a more balanced

representation of the prevalence data. Among these, Ln (NC) was

selected as the baseline accuracy metric due to its optimal normal

distribution characteristics, which are crucial for reliable statistical

analysis and modeling of PWD prevalence. This approach offers a

more nuanced understanding of PWD distribution, potentially

leading to more effective management strategies (Chiang et al., 2017).

Semi-quantifying incomprehensible or intuitive data on an

ordinal scale can provide a more accurate representation of the

disease occurrence (Barbedo, 2016; Chiang and Bock, 2022). The

results of Chiang et al. (2014) indicated that an amended 10%

category scale with additional grades at low severity (also known as

‘Nearest percent estimates’) can be considered a superior choice for

evaluating disease severity when the use of a scale is preferred over the

Horsfall–Barratt scale (Bock et al., 2010). Our findings demonstrate

that by categorizing Ln (NC) values into 12 levels and establishing DS

scales, the DS provides a standardized framework for evaluating the

severity of PWD prevalences within sub-compartments. Moreover,

the 12-level scale was chosen to strike a balance between providing

sufficient detail and maintaining practical usability for forest

managers. It offers more granularity than many existing scales

while remaining manageable for field application.

Different regions may experience variations in pine sawyer

beetle population density, life cycle timing, dispersal patterns, and

host preferences (Zhou et al., 2024; Futai and Ishiguro, 2025). These

factors could significantly influence the spatial and temporal

patterns of PWD spread, potentially impacting the accuracy and

interpretation of the DPI method. For instance, areas with higher

beetle populations or more favorable conditions for beetle activity

might experience more rapid or extensive PWD spread, which

could be reflected in higher DPI values or more rapid changes in

DPI over time. Moreover, the application of DPI at different

geographic scales, including town and county levels, demonstrates

the versatility and applicability of the assessment framework. The

dynamic prevalence of PWD at the county level and changes in DPI

across different years highlight the spatial and temporal variability

of the prevalence. The case studies of Lin’an District and THY

Town illustrated the effectiveness of DPI in capturing the

complexity of the PWD prevalence at various geographic scales.

The observed decreases in DPI values over time suggest a potential

trend of epidemic mitigation, which warrants further investigation.

Furthermore, the DPI index was developed to evaluate PWD

prevalence in this study, analogous to the plant disease index

(Barbedo, 2016). Analysis of the PWD prevalence from 2021 to

2023 utilizing the novel index DPI revealed a consistent pattern of
Frontiers in Plant Science 09
normal distribution characteristics in the DS values across different

years. The introduction of DPI enhances the comprehensiveness of

the assessment framework by summarizing the occurrence of PWD

across the region. The observed changes in DPI over the three-year

period indicate a potential trend of epidemic mitigation. These

observed changes suggest a potential trend of epidemic mitigation,

indicating that the current control measures may be having a positive

impact on PWD prevalence in the region. Our analysis demonstrated

the effectiveness of DPI in capturing the complexity of PWD

prevalence at various geographic scales, including the county level.

This county-level variability in DPI values over time suggests spatial

and temporal differences in PWD prevalence, which could be

influenced by factors such as local environmental conditions and

management practices. The dynamic trends in N, P, and DPI are not

merely statistical artifacts but evidence of a functioning PWD

integrated management framework (Chen and Li, 2024).
5 Conclusion

In conclusion, this study introduced a novel algorithm that

provides a standardized framework for evaluating PWD prevalence

at the sub-compartment scale and across various geographic levels. The

development of DS and DPI underscores the temporal and spatial

heterogeneity of PWD prevalence patterns across sub-compartments.

Future work will focus on enhancing the application ofDPI to improve

PWD prevalence monitoring and management.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Author contributions

YZ: Investigation, Methodology, Software, Writing – original

draft. SZ: Data curation, Formal Analysis, Investigation,

Methodology, Writing – original draft. JB: Investigation, Software,

Writing – original draft. JH: Resources, Software, Writing – original

draft. YW: Conceptualization, Funding acquisition, Resources,

Supervision, Visualization, Writing – original draft, Writing –

review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. The research described

here was supported by a grant from Zhejiang Provincial Forestry

Bureau Key Technologies R & D Program (2024LYYJ01) and a

grant from Central Financial Forestry Science and Technology

Promotion Demonstration Fund Project of China (2023TS02).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1578700
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1578700
Acknowledgments

The authors give very special thanks to Mrs. Weishi Chen and

Mr. Li Xie (Zhejiang Provincial Forest Disease and Pest Control

Station, Hangzhou, 310019, China) for their assistance in the

data collection.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Plant Science 10
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Akbulut, S., and Stamps, W. T. (2012). Insect vectors of the pinewood nematode: A
review of the biology and ecology of Monochamus species. For. Pathol. 42, 89–99.
doi: 10.1111/j.1439-0329.2011.00733.x

Back, M. A., Bonifácio, L., Inacio, M. L., Mota, M., and Boa, E. (2024). Pine wilt
disease: A global threat to forestry. Plant Pathol. 73, 1026–1041. doi: 10.1111/ppa.13875

Barbedo, J. G. A. (2016). A novel algorithm for semi-automatic segmentation of plant
leaf disease symptoms using digital image processing. Trop. Plant Pathol. 41, 210–224.
doi: 10.1007/s40858-016-0090-8

Barzman, M., Bàrberi, P., Birch, A. N. E., Boonekamp, P., Dachbrodt-Saaydeh, S.,
Graf, B., et al. (2015). Eight principles of integrated pest management. Agron. Sustain.
Dev. 35, 1199–1215. doi: 10.1007/s13593-015-0327-9

Belan, L. L., Pozza, E. A., Freitas, M. L. D., De Souza, R. M., De Jesus, W. C., and
Oliveira, U. M. (2014). Diagrammatic scale for assessment of bacterial blight in coffee
leaves. J. Phytopathol. 162, 801–810. doi: 10.1111/jph.12272

Bock, C. H., Barbedo, J. G. A., Del Ponte, E. M., Bohnenkamp, D., and Mahlein, A. K.
(2020). From visual estimates to fully automated sensor-based measurements of plant
disease severity: status and challenges for improving accuracy. Phytopathol. Res. 2, 9.
doi: 10.1186/s42483-020-00049-8

Bock, C. H., Chiang, K. S., and Del Ponte, E. M. (2022). Plant disease severity
estimated visually: a century of research, best practices, and opportunities for
improving methods and practices to maximize accuracy. Trop. Plant Pathol. 47, 25–
42. doi: 10.1007/s40858-021-00439-z

Bock, C. H., Poole, G. H., Parker, P. E., and Gottwald, T. R. (2010). Plant disease
severity estimated visually, by digital photography and image analysis, and by
hyperspectral imaging. Crit. Rev. Plant Sci. 29, 59–107. doi: 10.1080/
07352681003617285

Chen, F. M., and Li, M. (2024). Comprehensive strategies for the prevention and
control of pine wilt disease in China: a review and future directions. J. For. Res. 36, 9.
doi: 10.1007/s11676-024-01803-w

Chiang, K. S., and Bock, C. H. (2022). Understanding the ramifications of
quantitative ordinal scales on accuracy of estimates of disease severity and data
analysis in plant pathology. Trop. Plant Pathol. 47, 58–73. doi: 10.1007/s40858-021-
00446-0

Chiang, K. S., Liu, H. I., and Bock, C. H. (2017). A discussion on disease severity
index values. Part I: warning on inherent errors and suggestions to maximise accuracy.
Ann. Appl. Biol. 171, 139–154. doi: 10.1111/aab.12362

Chiang, K.-S., Liu, S.-C., Bock, C. H., and Gottwald, T. R. (2014). What interval
characteristics make a good categorical disease assessment scale? Phytopathology 104,
575–585. doi: 10.1094/PHYTO-10-13-0279-R

De La Fuente, B., and Beck, P. S. A. (2018). Invasive species may disrupt protected area
networks: Insights from the pine wood nematode spread in Portugal. Forests 9, 282.

De La Fuente, B., and Saura, S. (2021). Long-term projections of the natural
expansion of the pine wood nematode in the Iberian Peninsula. Forests 12, 849.
doi: 10.3390/f9050282

Ecke, S., Dempewolf, J., Frey, J., Schwaller, A., Endres, E., Klemmt, H. J., et al. (2022).
UAV-based forest health monitoring: A systematic review. Remote Sens. 14, 3205.
doi: 10.3390/rs14133205

EPPO (2012). Bursaphelenchus xylophilus and its vectors: procedures for official
control. EPPO Bull. 42, 477–485. doi: 10.1111/epp.2621
Firmino, P. N., Calvao, T., Ayres, M. P., and Pimentel, C. S. (2017). Monochamus
galloprovincialis and Bursaphelenchus xylophilus life history in an area severely affected
by pine wilt disease: Implications for forest management. For. Ecol. Manage. 389, 105–
115. doi: 10.1016/j.foreco.2016.12.027

Futai, K. (2013). Pine wood nematode, Bursaphelenchus xylophilus. Annu. Rev.
Phytopathol. 51, 61–83. doi: 10.1146/annurev-phyto-081211-172910

Futai, K., and Ishiguro, H. (2025). Hidden threats: the unnoticed epidemic system of
pine wilt disease driven by sexually mature monochamus beetles and asymptomatic
trees. Biology 14, 485. doi: 10.3390/biology14050485

Gruffudd, H. R., Schröder, T., Jenkins, T., and Evans, H. F. (2019). Modelling pine
wilt disease (PWD) for current and future climate scenarios as part of a pest risk
analysis for pine wood nematode Bursaphelenchus xylophilus (Steiner and Buhrer)
Nickle in Germany. J. Plant Dis. Prot. 126, 129–144. doi: 10.1007/s41348-018-0197-x

Hao, Z. Q., Huang, J. X., Li, X. D., Sun, H., and Fang, G. F. (2022). A multi-point
aggregation trend of the outbreak of pine wilt disease in China over the past 20 years.
For. Ecol. Manage. 505, 119890. doi: 10.1016/j.foreco.2021.119890

Huang, J. X., Zhao, X. T., Mo, X. M., Wu, J., Zhou, Y. T., and Fang, G. F. (2024). Host
vegetation connectivity is decisive for the natural spread of pine wilt disease. Pest
Manage. Sci. 80, 5141–5156. doi: 10.1002/ps.8240

Ikeda, T. (2007). Integrated pest management of Japanese pine wilt disease. Eur. J.
For. Pathol. 14, 398–414. doi: 10.1111/j.1439-0329.1984.tb01253.x

Jones, J. T., Moens, M., Mota, M., Li, H., and Kikuchi, T. (2008). Bursaphelenchus
xylophilus: Opportunities in comparative genomics and molecular host–parasite
interactions. Mol. Plant Pathol. 9, 357–368. doi: 10.1111/j.1364-3703.2007.00461.x

Kwon, T. S., Shin, J. H., Lim, J. H., Kim, Y. K., and Lee, E. J. (2011). Management of
pine wilt disease in Korea through preventative silvicultural control. For. Ecol. Manage.
261, 562–569. doi: 10.1016/j.foreco.2010.11.008

Liu, Y. Q., Huang, J. X., and Yang, T. (2023b). Natural factors play a dominant role in the
short-distance transmission of pine wilt disease. Forests 14, 1059. doi: 10.3390/f14051059

Liu, F., Su, H. J., Ding, T. T., Huang, J. X., Liu, T., Ding, N., et al. (2023a). Refined
assessment of economic loss from pine wilt disease at the subcompartment scale.
Forests 14, 139. doi: 10.3390/f14010139

Liu, J., Xu, Y., Sun, P., Li, R., and Huang, H. (2001). Occurrence of pine wilt disease in
Hangzhou city and its management strategy. For. Pest Dis. 3, 26–30.

Lv, Y. M., Huang, J. X., Fang, G. F., Wu, J., Yin, Y. Y., Zhou, Y. T., et al. (2024). Study
on the influence of landscape pattern on the spread of pine wilt disease from a multi-
scale perspective. For. Ecol. Manage. 568, 122128. doi: 10.1016/j.foreco.2024.122128

Madden, L. V., Hughes, G., and Van Den Bosch, F. (2017). The Study of Plant Disease
Epidemics (St. Paul, MN: APS).

Mamiya, Y. (1983). Pathology of the pine wilt disease caused by Bursaphelenchus
xylophilus. Annu. Rev. Phytopathol. 21, 201–220. doi: 10.1146/annurev.py.21.090183.001221

Nutter, F. W., and Schultz, P. M. (1995). Improving the accuracy and precision of
disease assessments: Selection of methods and use of computer-aided training-
programs. Can. J. Plant Pathol. 17, 174–184. doi: 10.1080/07060669509500709

Nutter, F. W., Teng, P. S., Philippines, M., and Shokes, F. M. (1991). Disease
assessment terms and concepts. Plant Dis. 75, 1187–1188. doi: 10.1094/PD-75-1187

Perina, F. J., Belan, L. L., Moreira, S. I., Nery, E. M., Alves, E., and Pozza, E. A. (2019).
Diagrammatic scale for assessment of alternaria brown spot severity on tangerine
leaves. J. Plant Pathol. 101, 981–990. doi: 10.1007/s42161-019-00306-6
frontiersin.org

https://doi.org/10.1111/j.1439-0329.2011.00733.x
https://doi.org/10.1111/ppa.13875
https://doi.org/10.1007/s40858-016-0090-8
https://doi.org/10.1007/s13593-015-0327-9
https://doi.org/10.1111/jph.12272
https://doi.org/10.1186/s42483-020-00049-8
https://doi.org/10.1007/s40858-021-00439-z
https://doi.org/10.1080/07352681003617285
https://doi.org/10.1080/07352681003617285
https://doi.org/10.1007/s11676-024-01803-w
https://doi.org/10.1007/s40858-021-00446-0
https://doi.org/10.1007/s40858-021-00446-0
https://doi.org/10.1111/aab.12362
https://doi.org/10.1094/PHYTO-10-13-0279-R
https://doi.org/10.3390/f9050282
https://doi.org/10.3390/rs14133205
https://doi.org/10.1111/epp.2621
https://doi.org/10.1016/j.foreco.2016.12.027
https://doi.org/10.1146/annurev-phyto-081211-172910
https://doi.org/10.3390/biology14050485
https://doi.org/10.1007/s41348-018-0197-x
https://doi.org/10.1016/j.foreco.2021.119890
https://doi.org/10.1002/ps.8240
https://doi.org/10.1111/j.1439-0329.1984.tb01253.x
https://doi.org/10.1111/j.1364-3703.2007.00461.x
https://doi.org/10.1016/j.foreco.2010.11.008
https://doi.org/10.3390/f14051059
https://doi.org/10.3390/f14010139
https://doi.org/10.1016/j.foreco.2024.122128
https://doi.org/10.1146/annurev.py.21.090183.001221
https://doi.org/10.1080/07060669509500709
https://doi.org/10.1094/PD-75-1187
https://doi.org/10.1007/s42161-019-00306-6
https://doi.org/10.3389/fpls.2025.1578700
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1578700
Rands, S., Robinet, C., Roques, A., Pan, H., Fang, G., Ye, J., et al. (2009). Role of human-
mediated dispersal in the spread of the pinewood nematode in China. PloS One 4, e4646.
doi: 10.1371/journal.pone.0004646

Rodrigues, J. M. (2008). “National eradication programme for the pinewood
nematode,” in Pine Wilt Disease: A Worldwide Threat to Forest Ecosystems. Eds. M.
M. Mota and P. Vieira (Dordrecht, Netherlands: Springer), 5–14.

Schafstall, N., Dobor, L., Baldo, M., Liebhold, A. M., Rammer, W., Honkaniemi, J.,
et al. (2024). Assessing the effect of invasive organisms on forests under information
uncertainty: The case of pine wood nematode in continental Europe. For. Ecosyst. 11,
100226. doi: 10.1016/j.fecs.2024.100226

Tang, X. G., Yuan, Y. D., Li, X. M., and Zhang, J. C. (2021). Maximum entropy
modeling to predict the impact of climate change on pine wilt disease in China. Front.
Plant Sci. 12, 652500. doi: 10.3389/fpls.2021.652500

Vicente, C., Espada, M., Vieira, P., and Mota, M. (2011). Pine wilt disease: A threat to
European forestry. Eur. J. Plant Pathol. 133, 89–99. doi: 10.1007/s10658-011-9924-x

Wong, W. O., Hirata, A., Nakamura, K., Nakao, K., Kominami, Y., Tanaka, N., et al.
(2017). Potential distribution of pine wilt disease under future climate change
scenarios. PloS One 12, e0182837. doi: 10.1371/journal.pone.0182837

Wu, B. G., Qi, Y., Zhu, S., Gao, F., and Guo, E. Y. (2012). The updating system of sub-
compartment data for effective forest resource management. Intell. Autom. Soft
Comput. 18, 477–489. doi: 10.1080/10798587.2012.10643258
Frontiers in Plant Science 11
Xie, X., Wang, Q., Dai, L., Su, D., Wang, X., Qi, G., et al. (2011). Application of
China’s national forest continuous inventory database. Environ. Manage. 48, 1095–
1106. doi: 10.1007/s00267-011-9716-2

Xu, Q. W., Zhang, X. J., Li, J. X., Ren, J. R., Ren, L. L., and Luo, Y. Q. (2023). Pine wilt
disease in Northeast and Northwest China: A comprehensive risk review. Forests 14,
174. doi: 10.3390/f14020174

Ye, J. R. (2019). Epidemic status of pine wilt disease in China and its prevention and
control techniques and counter measures. Scientia Silvae Sinicae 55, 1. doi: 10.11707/
j.1001-7488.20190901

Zhang, Y. J., Chen, W. S., Hu, J. F., and Wang, Y. J. (2024). A digital management
system for monitoring epidemics and the management of pine wilt disease in East
China. Forests 15, 2174. doi: 10.3390/f15122174

Zhang, C. H., Ju, W. M., Chen, J. M., Li, D. Q., Wang, X. Q., Fan, W. Y., et al. (2014).
Mapping forest stand age in China using remotely sensed forest height and observation
data. J. Geophys. Res. Biogeosci. 119, 1163–1179. doi: 10.1002/2013JG002515

Zhao, L. L., Mota, M., Vieira, P., Butcher, R. A., and Sun, J. H. (2014). Interspecific
communication between pinewood nematode, its insect vector, and associated
microbes. Trends Parasitol. 30, 299–308. doi: 10.1016/j.pt.2014.04.007

Zhou, H., Xie, M., Koski, T.-M., Li, Y., Zhou, H., Song, J., et al. (2024). Epidemiological
model including spatial connection features improves prediction of the spread of pine wilt
disease. Ecol. Indic. 163, 112103. doi: 10.1016/j.ecolind.2024.112103
frontiersin.org

https://doi.org/10.1371/journal.pone.0004646
https://doi.org/10.1016/j.fecs.2024.100226
https://doi.org/10.3389/fpls.2021.652500
https://doi.org/10.1007/s10658-011-9924-x
https://doi.org/10.1371/journal.pone.0182837
https://doi.org/10.1080/10798587.2012.10643258
https://doi.org/10.1007/s00267-011-9716-2
https://doi.org/10.3390/f14020174
https://doi.org/10.11707/j.1001-7488.20190901
https://doi.org/10.11707/j.1001-7488.20190901
https://doi.org/10.3390/f15122174
https://doi.org/10.1002/2013JG002515
https://doi.org/10.1016/j.pt.2014.04.007
https://doi.org/10.1016/j.ecolind.2024.112103
https://doi.org/10.3389/fpls.2025.1578700
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Diagrammatic prevalence index: a new algorithm to evaluate pine wilt disease prevalence at the sub-compartment scale
	1 Introduction
	2 Materials and methods
	2.1 The study area
	2.2 The sub-compartment design
	2.3 Data collection
	2.4 Epidemiological parameters definition
	2.5 Diagrammatic scale for evaluation of PWD prevalence at the sub-compartment scale
	2.6 Data analysis

	3 Results
	3.1 Baseline accuracy for PWD prevalence at the sub-compartment scale
	3.2 Development of a diagrammatic scale to semi-quantifying PWD prevalence at the sub-compartment scale
	3.3 Validation of the diagrammatic scale
	3.4 Application of diagrammatic prevalence index for PWD prevalence in Hangzhou
	3.5 County-level variability of diagrammatic prevalence index

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


