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Introduction: To enhance the quality and yield of strawberries, it is essential to 
effectively supervise the entire growing process. Currently, the monitoring of 
strawberry growth primarily relies on manual identification and positioning 
methods. This approach presents several challenges, including low efficiency, 
high labor intensity, time consumption, elevated costs, and a lack of standardized 
monitoring protocols. On the basis of this, there was an urgent need in the 
market to automate the whole process of target recognition and localization in 
strawberry growing. 

Methods: Aiming at the above problems, we innovatively constructed a model 
for target recognition and localization of strawberries based on the YOLOv8s 
benchmark model, named the WCS-YOLOv8s model. In this paper, the whole 
growth process of the strawberry was divided into four stages, namely, the bud, 
flower, fruit under-ripening, and fruit ripening stages, and a total of 1,957 images 
of these four stages were captured with a binocular depth camera. Using the 
constructed WCS-YOLOv8s model to process the images, the target recognition 
and localization of the whole growth process of the strawberry were 
accomplished. This model proposes a data enhancement strategy based on 
the Warmup learning rate to stabilize the initial training process. The self
developed SE-MSDWA module is integrated into the backbone network to 
improve the model’s feature extraction capability while suppressing redundant 
information, thereby achieving efficient feature extraction. Additionally, the neck 
network is enhanced by incorporating the CGFM module, which employs a 
multi-head self-attention mechanism to fuse diverse feature information and 
improve the network’s feature fusion performance. 

Results and discussion: The model’s Precision (P), Recall (R), HYPERLINK 
"mailto:mAP@0.5" mAP@0.5, and mAP@0.5:0.95 of detection were 83.4%, 
86.7%, 87.53%, and 60.48%, respectively, and the detection speed was 45.9 
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FPS(21.8 ms/per image, which significantly improved on the detection accuracy 
and generalization ability of with the YOLOv8s benchmark model. This model 
can meet the demand for online real-time target identification and localization of 
strawberries and provide a new detection method for the automated monitoring 
and management of the whole growth process of strawberries. 
KEYWORDS 

strawberry, deep learning, target recognition and localization, WCS-YOLOv8s model, 
binocular vision 
 

1 Introduction 

Strawberry is a common fruit, with a sweet taste that is loved by 
people, and is known as the ‘Queen of Fruits’. Strawberries are rich 
in free sugars, organic acids, and other important ingredients that 
have health benefits such as protecting one’s eyesight and 
promoting digestion and have anti-inflammatory properties 
(Ikegaya, 2024; Newerli-Guz et al., 2023; Gasparrini et al., 2017; 
Afrin et al., 2016). At present, there is an increasing demand 
for strawberry fruits, however, due to the complexity of fruit 
identification and localization during strawberry growth, the level 
of intelligent and mechanized strawberry fruit picking is still very 
low, and relying on manual completion is increasingly failing to 
satisfy the market's demand for strawberries (Zhao et al., 2022; 
Ibba et al. 2021). 

Flower and fruit thinning is an important part of orchard 
management, directly affecting fruit yield and quality and 
preventing early plant failure. During the strawberry growth 
process, the best times for flower thinning and fruit thinning are 
the bud and flower stages. Research has shown that rational flower 
and fruit thinning can remove deformed, diseased, and excessive 
fruits, helping to regulate the plant’s nutrient supply to the fruits, 
improving fruit quality, and increasing the yield by 20%–30% 
(Domingos et al., 2016; Yu et al., 2023). The key to automating 
flower thinning, fruit thinning, and picking is to achieve target 
identification and localization of strawberries (Castle et al., 2019). 
Most of the current research focused on the detection of ripe 
strawberries, while less research had been conducted on the 
strawberry bud and flower stages. The research in this paper 
included the  bud stage  and blossom stage  during  strawberry
growth, which could provide technical support for the realization 
of automated flower thinning, fruit thinning, and picking 
of strawberries. 

Computer vision has been widely applied in agriculture, food, 
transportation, and other fields (Zhao et al., 2019; Zou et al., 2023; 
Yang et al., 2023; Babu et al., 2023; Singh et al., 2023). The use of 
computer vision technology to identify strawberries has broad 
application potential and provides theoretical support for robot 
picking and automated orchard management in strawberry 
production. Currently, strawberry picking mainly relies on 
02 
manual labor, where workers rely on their own experience to 
identify and pick ripe strawberries. However, due to inconsistent 
evaluation standards and the diversity of strawberry varieties, the 
optimal picking period is often missed (Ge et al., 2023). Traditional 
methods for detecting flowers and fruits mainly involve machine 
vision techniques that autonomously extract features such as shape, 
texture, and size based on human experience (Rizon et al., 2015). 
For example, Lin et al. proposed a support vector machine (SVM) 
model for identifying citrus and tomatoes based on color and 
contour features (Lin et al., 2020). Guru et al. achieved flower 
classification by using threshold segmentation methods and feature 
extraction on flower images (Guru et al., 2011). Xu et al. used hue, 
saturation, value (HSV) to detect strawberries. color information to 
detect strawberry regions and combined this information with an 
SVM classifier (Xu et al., 2013). Although these methods offer some 
solutions, the manual extraction of features based on personal 
experience makes it difficult to extract deep feature information 
from images, resulting in lower robustness and recognition 
accuracy of models built using traditional machine vision 
techniques (Ma et al., 2021). In contrast, deep learning 
technology, by extracting deeper features from image data, has 
improved the accuracy and speed of object detection in complex 
environments (Wang et al., 2022). Deep learning technology has 
been widely applied in the detection research on strawberry, apple, 
and other fruit flowers for maturity and yield (Guo et al., 2022; 
Ismail and Malik, 2022; Wang et al., 2021; Wang and He, 2021). 
Font et al. developed a computer vision system based on color and 
specular reflection patterns for the rapid and accurate estimation of 
apple orchard yields. However, this system had the drawback of 
relying on artificial lighting at night to reduce the influence of 
natural light (Font et al., 2014). Lin et al. established a strawberry 
flower detection algorithm based on Faster R-CNN, achieving the 
detection of strawberry flowers in outdoor environments with 
overlapping flowers and complex backgrounds (Lin et al., 2020). 
Zhang et al. reduced the number of convolutional layers and CBL 
modules in the CSPNet backbone and established a real-time 
strawberry monitoring algorithm based on YOLOv4 Tiny, 
achieving rapid and real-time detection of strawberries (Zhang 
et al., 2022). Binocular cameras have gradually been applied in 
the research of target recognition and positioning. Qi et al. 
frontiersin.org 
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established a TCYOLO algorithm with CSPDenseNet and 
CSPResNeXt as the dominant networks, achieving accurate 
detection of chrysanthemum flowers (Qi et al., 2022). Hu et al. 
used a ZED stereo camera to perform three-dimensional 
positioning of strawberries. The strawberry detection and 
positioning method proposed in the study can effectively provide 
the precise location of mature strawberries for picking robots (Hu 
et al., 2022). Fu et al. improved the YOLOv3-tiny model and 
developed an algorithm for the automatic, rapid, and accurate 
detection of kiwifruit in orchards. The experimental results 
showed that the improved model is small and efficient, with high 
detection accuracy (Fu et al., 2021). Bai et al. built a YOLO real-time 
recognition algorithm to achieve accurate flower and fruit 
recognition of strawberry seedlings in a greenhouse (Bai et al., 
2024). However, there has been no research on the use of binocular 
positioning cameras for target recognition and positioning of the 
entire growth process of strawberries (bud, flower, unripe, and ripe 
stages) nor has there been any research addressing the practical 
needs of orchards for automated thinning of flowers and fruits and 
the detection and positioning of mature strawberries. Orchards 
urgently need to achieve automated management of the entire 
growth process of strawberries. 

In this paper, a new model of strawberry target identification 
and localization based on the YOLOv8s model, named the WCS-

YOLOv8s model, is innovatively proposed for the four stages of the 
strawberry growth process (bud, flower, fruit under-ripening, and 
fruit ripening stages) that provides supervision of the whole growth 
process of strawberries. The model provided a reliable new method 
for target identification and localization for the automated 
supervision of the whole strawberry growth process, leading to 
fruit picking and quality improvements. The improvement and 
innovation points of this paper include: 
Fron
1.	 A data enhancement strategy based on the Warmup 
learning rate is proposed in this paper, which could 
provide a stable convergence direction for the model and 
avoid oscillations at the early stage of training. 

2. The model introduced the Context Guide Fusion Module 
(CGFM), which used the multi-head self-attention 
mechanism to fuse different information and improve the 
recognition accuracy in complex scenes. 
tiers in Plant Science 03	 
3.	 The model proposed the Squeeze-and-Excitation-
Enhanced Multi-Scale Depthwise Attention (SE-
MSDWA)  module,  which  combined  multi-scale  
convolution and SEAttention to enhance the feature 
extraction efficiency of the samples and significantly 
improved  the  detection  effect  of  the  model  in  
complex scenes. 
2 Materials and methods 

2.1 Sample collection and dataset 
construction 

The samples were collected from March to May 2024. The 
collection site was Hongshiyi strawberry planting orchard in 
Shandong Province (121.49°E, 36.77°N). A total of 1,957 sample 
images (image size of 640 × 640 pixels) were collected. The sample 
varieties included ‘Sweet Treasure’, ‘Red Face’, ‘Fengxiang’, 
‘Miaoxiang’, and ‘Zhangji’. 

The sample collection tools were a laptop CPU: Intel(R) Xeon 
(R) E5–2673 v4; GPU: NVIDIA 3090; and an Intel® RealSense 
D435i binocular depth camera (Intel®, United States of America; 
depth resolution and frame rate are 1280×720 and 90 FPS 
(maximum), respectively; binocular detection range of 0.105–10 
m). The image dataset was acquired utilizing the above laptop, 
instrument, and the setting parameters. The sample collection 
method involved collecting sample images using a laptop 
computer connected to an Intel® D435i camera (shooting 
distance of 0.3–0.8 m) from 07:00 to 19:00 every day in 10 
sessions. Sample data were collected from different growing sheds 
to eliminate data bias due to geographical location and variety. 
Images contained bright and shady light and complex 
environments and backgrounds. The dataset was randomly 
divided into three subsets: training set, validation set, and testing 
set, with a ratio of 7:2:1. 

This paper classified the samples into four stages according to 
the fruit growers’ planting experience, namely, the bud, flower, fruit 
under-ripening, and fruit ripening stages, and collected image data 
for these four stages. The identification criteria for immature 
FIGURE 1
 

Presentation and labeling of selected datasets. (a–d) are the four growth states of strawberry bud, flower, under-ripening, ripening respectively.
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strawberries were that the color of the fruit was light red or green 
covering a large area, the fruit was not full, and the size was slightly 
small. The identification criteria for mature strawberries were that 
the color of the fruit was bright red and the fruit was large and full. 
Some samples are shown in Figure 1. In  Figures 1a–d are strawberry 
samples in the bud, flower, fruit under-ripening, and fruit ripening 
stages, respectively. 
2.2 WSC-YOLOv8s model construction 

2.2.1 Overall structure of the WSC-YOLOv8s 
model 

YOLOv8 is a powerful real-time object detection algorithm that 
uses an end-to-end architecture to achieve regression and 
prediction of a target’s category and location using feature 
extraction and fusion of input images through convolutional 
neural networks. The YOLOv8 framework is divided into four 
main components: input layer, backbone network, neck network, 
and prediction layer (Simanjuntak et al., 2024). 

In this paper, improvements were made to YOLOv8s. First, 
Warmup data augmentation was used, i.e., the original data 
Frontiers in Plant Science 04
augmentation strategy was changed to gradually increase the 
probability of data augmentation occurring as the epoch changes. 
Second, the self-developed SE-MSDWA module was applied at the 
end of the backbone network to achieve efficient feature extraction, 
ensuring the model focused on the region of interest. Finally, the 
neck network was improved by using the CGFM module to enhance 
the feature fusion performance of the network. Based on the above, 
this paper constructed the WCS-YOLOv8s model for target 
identification and localization during the whole strawberry 
growth process, and the network framework of the constructed 
model is shown in Figure 2. 
2.2.2 Data enhancement with Warmup 
Warmup was first mentioned in ResNet as a way to optimize for 

learning rate (Nakamura et al., 2021). The method of using 
Warmup to warm up the learning rate causes the model to 
gradually stabilize at a smaller learning rate during the first few 
epochs of training, and when the model is stabilized, it can then be 
trained using the pre-set learning rate, which speeds up the 
convergence of the model and improves the model effect. The 
initial use of lower probability data transformation helps the model 
FIGURE 2 

Network framework diagram for the WCS-YOLOv8s model. 
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to learn the relationship between samples, improving the 
adaptability to different data distributions, causing the model to 
enter the training process smoothly, and avoiding falling into the 
local optimal solution. Gradually increasing the probability of 
sample transformation with the training process further enhances 
the generalization ability of the model and improves the robustness. 
Through Warmup data enhancement, the model learns and 
generalizes effectively. 

In this paper, data augmentation was performed at the 
beginning of training using smaller probabilities. When the 
training proceeded to 1/5 of the total number of rounds, all 
data enhancements were performed as default in YOLOv8. 
Equation 1 for the variation of data enhancement probability is 
shown below: 

Current _ epoch ∗ 5N = Total _ epochs ( 
1  ,   if N >= 1  (1) 

P = 
N ,  otherwise 
Frontiers in Plant Science 05 
Where current_epoch is the current round number in the 
training process and total_epochs is the total number of rounds 
in the training process. 
2.2.3 SE-MSDWA module in the model 
The SE-MSDWA module aimed to enhance the feature 

extraction capability and overall performance of convolutional 
neural networks by combining depth-separable convolution, 
multi-scale convolution, and SE blocks. The SE-MSDWA module 
first performed convolutional operations on each channel 
independently through deep convolution to extract important 
spatial information and then interacted with the information 
between channels through point-by-point convolution. Second, 
the module used three sets of convolution kernels with different 
scales to perform multi-scale convolution processing: the ranges of 
convolution kernels captured by [(1, 5) and (5, 1)], [(1, 9) and (9, 
1)], and [(1, 17) and (17, 1)] were smaller, medium, and larger 
features, respectively. After these convolutional processes, the 
FIGURE 3 

Structure of the SE-MSDWA module. 
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feature maps were fused with multi-scale information through an 
additional convolutional layer and finally entered into the SE 
module. The SE module first performed adaptive average pooling 
to reduce the feature map of each channel to 1x1, computed the 
weights of each channel through two fully connected layers and 
activation functions, and reapplied these weights to the original 
feature map, as shown in Figure 3. 

The SE-MSDWA module effectively solved the deficiencies of 
traditional convolutional layers in capturing multi-scale features 
and handling feature redundancy. The module significantly 
enhanced the feature representation capability of the network by 
dynamically adjusting the channel weights, thus improving the 
performance of the model in various computer vision tasks. The 
module enhanced the network’s adaptability in different scenes and 
tasks through multi-scale feature extraction and attention 
mechanisms. 

2.2.4 CGFM modules in the model 
Concat has its limitations and drawbacks in deep learning and 

cannot give full play to the complementary effects of different 
features. On the basis of this, this paper proposed the CGFM, a 
feature fusion structure based on a self-attention mechanism to 
improve the performance and efficiency of the model. The CGFM is 
an innovative feature fusion module designed to improve the 
Feature Pyramid Network (FPN) in YOLOv8s. Through the 
multi-head self-attention mechanism, the CGFM module adjusts 
the number of channels by splicing two different feature maps, 
input1 and input2, in the channel dimension, which are processed 
by the multi-head self-attention mechanism of convolution after 
splitting, and then the number of channels is adjusted by 
convolution. Second, the split data are multiplied by elements 
with the two inputs respectively and added to the other input to 
get the blended features. Finally, the two are spliced to achieve 
Frontiers in Plant Science 06
feature fusion and cross-interaction, which improves the feature 
fusion capability of the neck network. The CGFM enhances the 
important features using the multi-head self-attention mechanism, 
which effectively suppresses the unimportant features and improves 
the discriminative power and visual performance of the fused 
features through detail enhancement. A detailed structure of the 
CGFM is shown in Figure 4. 
3 Results and discussion 

3.1 Experimental platform 

Model training and evaluation were performed using the following 
computers and operating systems. The experimental platform 
configuration parameters were as follows: CPU: Intel(R) Xeon(R) 
E5–2673 v4, GPU: NVIDIA 3090, OS: Ubuntu. The programming 
language used for the experiment was Python 3.8.19. To enhance the 
efficiency of the model training, a CUDA 11.6 accelerator was 
introduced. In the experiment, the resolution of the input image was 
640 × 640 pixels and 32 samples were processed in batches for each 
training module. The Adam optimizer was employed with an initial 
learning rate of 0.01. The learning rate was automatically optimized by 
the cosine annealing learning rate decay algorithm, and after 100 
training cycles, the best model weight parameter file was saved and 
used for model evaluation (Yang et al., 2022). 
3.2 Evaluation indicators 

To comprehensively evaluate the performance of the 
constructed model, this paper introduced multiple evaluation 
metrics to quantify both the model’s effectiveness and its resource 
FIGURE 4 

CGFM of the model. 
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consumption in practical applications. The evaluation metrics 
employed in this paper encompass precision (P), recall (R), 
average precision (AP), mean average precision (mAP), model 
parameters, floating point operations per second (FLOPs), and 
detection frame rate (FPS). With Intersection over Union (IoU), 
it is possible to visualize the degree of match between the target 
detection results and the real situation. 

P measures the proportion of correctly detected targets to all 
detected targets by the model and reflects the accuracy of the model 
in identifying positive class objects. Equation 2 is calculated as 
follows: 

TP 
P = (2)

TP + FP 

Where true positive (TP) denotes the number of positive samples 
recognized, false positive (FP) denotes the number of negative 
samples misreported, and FN denotes the number of positive 
samples missed. N denotes the number of sample categories. 

R represents the proportion of targets correctly detected by the 
model to all actual positive class targets, revealing the model’s 
ability to cover positive class samples. Equation 3 is calculated as 
follows: 

TP 
R = (3)

TP + FN 

AP is the average of precision rates at different levels of recall 
and provides an assessment of performance for a single category. 
The calculation of Equation 4 is as follows: 

Z 1 

AP = P(R)dR (4) 
0 

mAP assesses the performance of multi-category object 
detection by calculating the average of the AP values across all 
Frontiers in Plant Science 07 
categories. This metric effectively evaluates the accuracy of the 
model in detection tasks. mAP@0.5 and mAP@0.5:0.95 are two 
commonly used metrics for evaluating the mAP and, thus, they 
were selected for the evaluation in this paper. mAP@0.5 was 
compared with mAP@0.5:0.95. mAP@0.5:0.95 indicates the 
average mAP calculated under multiple IoU thresholds (from 0.5 
to 0.95 in steps of 0.05). This means that the model’s performance 
under multiple different IoU thresholds was taken into account, 
providing a more comprehensive evaluation. In this paper, the 
whole growth process of the strawberry was divided into four stages, 
and the four stages correspond to four categories. Target detection 
and localization of the four categories were performed. In this 
paper, mAP was employed as a crucial evaluation metric, with 
mAP@0.5:0.95 serving as the primary assessment criterion to 
comprehensively evaluate the performance of the enhanced 
detection model. The calculation of Equation 5 is as follows: 

N 
APio 

mAP = i=1 (5)
N 

In Equation 5, mAP denotes the value of AP calculated for all 
images in each category at a set IoU value, averaged over 
all categories. 

The number of parameters was measured in megabytes (M), 
which quantifies the size of the model and the consumption of 
memory resources and is an important metric for evaluating the 
complexity of the model. 

Giga FLOPs (GFLOPs) is a quantity that measures the 
computational power of a computer. 

FPS refers to how many frames of image the model can process 
per second, which directly reflects the detection speed of the model 
in frames per second (frames/s). The larger the value of this 
indicator, the better. 
TABLE 1 Comparative experimental results of the different models. 

Model mAP@0.5 /% mAP@0.5:095 /% Parameter /M FPS Detection speed 
in ms per image 

YOLOv8n 84.53 58.01 3.15 104.5 9.6 

YOLOv8s 85.59 58.87 11.16 102.3 9.8 

YOLOv8m 85.45 59.78 25.90 80.6 12.4 

YOLOv8l 85.63 58.62 43.69 69.6 14.4 

YOLOv8x 84.73 59.34 68.22 53.4 18.7 

CenterNet 31.00 17.70 14.21 4.6 217.4 

Rtmdet-tiny 79.40 46.90 4.87 9.8 102.0 

Faster- rcnn 85.50 55.50 28.29 9.6 104.2 

dino 85.10 58.10 47.54 9.3 107.5 

YOLOv3s 82.81 54.52 103.66 59.6 16.8 

YOLOv5s 83.50 55.42 9.11 91.9 10.9 

YOLOv6s 82.88 54.22 16.29 101.7 9.8 
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3.3 Comparative experiments 

To validate the enhanced performance of the proposed model, a 
comparative analysis was conducted between the constructed model 
and the prevailing mainstream model. The results of this 
comparison experiment are presented in Table 1. The  mAP@

0.5:095 of the improved YOLOv8s model in this paper was 58.87. 
This was the highest value and was significantly higher than the 
Centernet model and the Rtmdet-tiny model. The results showed 
that the improved WCS-YOLOv8s model was the most effective for 
target identification and localization during the whole strawberry 
growth process. The FPS of the WCS-YOLOv8s, YOLOv8s, and 
YOLOv6s models were all higher than 100, significantly higher than 
those of the other models. This indicates that the prediction speeds 
were faster, which met the needs of automated online detection. The 
model parameter numbers of the YOLOv8n and YOLOv8s models 
were 3.15M and 11.16M, respectively. The difference between the 
parameter numbers of the two models was small. The FPS values of 
the models were close to each other. The mAP@0.5 and mAP@ 
0.5:0.95 values of YOLOv8s were 85.59 and 58.87, respectively. The 
highest mAP@0.5:0.95 value for YOLOv8s was 58.87. Considering 
all the factors, YOLOv8s was the best baseline model for further 
improvement research. 
3.4 Ablation experiments 

In this paper, using YOLOv8s as the baseline model to enhance 
the model accuracy using Warmup data enhancement method, and 
fusing the use of the SE-MSDWA module and CGFM, four sets of 
experiments were set up to ensure the feasibility of the optimization 
scheme. The findings are presented in Table 2. 

The Warmup data enhancement strategy was incorporated into 
the baseline model. By maintaining the original structure of the 
model, this strategy resulted in increases of 0.96%, 1.02%, and 2.3% 
in mAP@0.5, mAP@0.5:0.95, and recall, respectively. Notably, the 
computational effort required by the WCS-YOLOv8s model 
remained unchanged compared to that of the baseline model. 
These findings suggested that integrating the Warmup data 
Frontiers in Plant Science 08
enhancement method effectively enhances the accuracy of 
the model. 

After incorporating the SE-MSDWA module into the backbone 
network of the benchmark model, there was a notable enhancement 
in performance metrics. Specifically, the mAP@0.5 and mAP@ 
0.5:0.95 values of the model were improved by 0.86% and 0.59%, 
respectively. Additionally, the precision of the model exhibited an 
increase of 1.1%, indicating a significant improvement overall in its 
precision metrics. 

After incorporating the CGFM module into the neck structure 
of the benchmark model, we observed an improvement in recall by 
0.1%. Additionally, the precision of the new model showed a 
significant enhancement of 0.88% for mAP@0.5 and 0.9% for 
mAP@0.5:0.95 compared to the improved model; however, it is 
important to note that this represents a decrease of 0.4% in 
precision when compared to the benchmark model itself. This 
study focused on multi-target detection and placed greater 
emphasis on the mAP@0.5:0.95 metric, indicating that the 
integration of the CGFM module further enhanced the 
effectiveness of our proposed model. 

As shown in Table 1, the YOLOv8s benchmark model comprised 
11.16 M parameters and achieved a frame rate of 102.3 FPS. In 
contrast, the WCS-YOLOv8s improved model proposed in this paper 
had an increased parameter count of 18.69 M, representing an 
augmentation of 7.53 million parameters. The detection speed of 
this enhanced model was recorded at 45.9 FPS (21.8 ms per image), 
which sufficiently meets the requirements for automated real-time 
detection applications. Moreover, the precision rate, recall, mAP@0.5, 
and mAP@0.5:0.95 of the detection of the WCS-YOLOv8s model 
were 83.4%, 86.7%, 87.53%, and 60.48%, respectively. Thus, the 
WCS-YOLOv8s model improved on mAP@0.5, mAP@0.5:0.95, 
and recall by 1.94%, 1.61%, and 2.4%, respectively, and the 
detection accuracy rate was significantly improved. The fact that 
the model had the best results for each index indicated the 
effectiveness of the improvement. The WCS-YOLOv8s model 
effectively reduced the omission and misdetection of the baseline 
model in complex situations and improved the detection accuracy of 
target identification and localization during the whole process of 
strawberry growth. 
TABLE 2 Results of the ablation experiments. 

Model Warmup SE-
MSDWA CGFM P in % R in % mAP@0.5 mAP@0.5:0.95 Parameter 

in M FPS 

Detection 
speed in 

ms/ 
per image 

1 × × × 81.6 84.3 85.59 58.87 11.16 102.3 9.8 

2 ✓ × × 80.3 (-1.3) 86.6 (+2.3) 86.55 (+0.96) 59.98 (+1.02) 11.16 102.3 9.8 

3 × ✓ × 82.7 (+1.1) 84.5 (+0.2) 86.45 (+0.86) 59.46 (+0.59) 11.72 92.3 10.8 

4 × × ✓ 81.2 (-0.4) 84.4 (+0.1) 86.47 (+0.88) 59.77 (+0.9) 18.10 48.8 20.5 

5 × ✓ ✓ 82.5 (+0.9) 84.5 (+0.3) 86.63 (+1.04) 59.68 (+0.81) 18.69 45.9 21.8 

6 ✓ ✓ ✓ 83.4 (+1.8) 86.7 (+2.4) 87.53 (+1.94) 60.48 (+1.61) 18.69 45.9 21.8 
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3.5 Detection effect of the WCS-YOLOv8s 
model 

To enhance the evaluation of the effectiveness of the WCS-

YOLOv8s model developed in this study, a comparative analysis 
was conducted with several current mainstream object detection 
models, including the YOLOv8s, CenterNet, Rtmdet-tiny, and 
YOLOv5s models. The results were visualized for clarity. Three 
images depicting strawberries in various scenes from the dataset 
constructed in this paper (Figures 5a–c) were analyzed to assess 
their recognition outcomes. 

Figure 5 shows the recognition results in the original benchmark 
YOLOv8s, CenterNet, Rtmdet-tiny, YOLOv5s, and WCS-YOLOv8s 
models for three scenarios. Each row of the figure shows the detection 
results for the same strawberry images in the YOLOv8s model, 
CenterNet, Rtmdet-tiny, YOLOv5s, and WCS-YOLOv8s models, 
respectively. From the comparison of image a-5 with a-1, a-2, a-3, 
and a-4, it can be seen that the YOLOv8s and YOLOv5S models 
misidentified a leaf in the upper right corner of the image as an 
immature strawberry, and the analytical reason may be that the above 
models were worse at detecting smaller strawberry targets. As shown in 
the a-2 and b-2 of Figure 5, the strawberry flower and bloom targets 
were not effectively recognized by the CenterNet model, and the 
detection effect was poor; from a-5 and b-5 of Figure 5 compared 
with other images, the samples of four different growth periods. In the 
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images could be detected better, and the effect was the best. As could be 
seen from image c-1, the YOLOv8s model detected a single ripe 
strawberry multiple times and incorrectly identified a single 
strawberry as multiple strawberries. As can be seen in c-1, c-2, c-3, 
and c-4, the YOLOv8s, CenterNet, Rtmdet-tiny, and YOLOv5s models 
failed to detect the ripe strawberries with stalks facing upwards, whereas 
the WCS-YOLOv8s model accurately identified them. Overall, the 
original YOLOv8s, CenterNet, Rtmdet-tiny, and YOLOv5s models 
had low accuracy when detecting small-sized strawberries and dealing 
with occluded targets, and were prone to omissions and false detections. 
Among them, the CenterNet model had the worst detection effect, with 
more errors and missed detections.WCS-YOLOv8s performed 
superiorly in small target detection, edge detection, dense detection, 
and branch and leaf occlusion, had significantly lower missed detections 
and false detections, and at the same time improved the detection 
confidence level. 

Grad-CAM (Gradient-weighted Class Activation Mapping) is a 
deep learning visualization technique for explaining the decision
making process of convolutional neural networks (CNNs). It made 
the model’s decision-making process more transparent by highlighting 
the image regions that the model considers most important in the 
image classification task, enhancing the model’s interpretability. This 
visualization not only helped researchers identify erroneous or 
irrelevant features that the model may rely on but also provided 
guidance for model improvement. In order to explain the WCS-
FIGURE 5
 

Detection results of different models under three image samples where (a-1), (b-1), and  (c-1) are strawberry flower and bloom stage; strawberry bloom stage;
 
and strawberry fruit original image samples, respectively. The image sets (a-2, a-3, a-4, a-5); (b-2, b-3, b-4, b-5); (c-2, c-3, c-4, c-5) denote the results of the
 
recognition of the respective original image samples utilizing the YOLOv8s, Centernet, Rtmdet-tiny, YOLOv5s, and WCS-YOLOv8s models, respectively.
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YOLOv8s model’s target identification and localization of regions of 
interest during the whole strawberry growth process, this paper 
performed the Grad-CAM heat map visualization of the baseline 
YOLOv8s model and the improved WCS-YOLOv8s model, in which 
the location of the regions of interest identified by the model was 
visualized on the target by the blue and red zones. The Grad-CAM heat 
map visualization is shown in Figure 6. 

As shown in Figure 6, three original images (Figures 6a-1, b-1, 
c-1) were selected for heat map visualization in this paper. The first 
row (a-1, b-1, and c-1) comprised the three original images; the 
second row (a-2, b-2, and c-2) was the heat map output from 
YOLOv8s; the third row (a-3, b-3, and c-3) was the heat map output 
from WCS-YOLOv8s. From the comparative analysis of a-3 and c-3 
with a-2 and c-2 in Figure 6, respectively, it can be seen that the red 
areas cover more of the images, are more accurate, and more 
accurately cover small targets such as strawberry flower buds, 
which indicated that the area of interest focused on was more 
accurate when using the improved WCS-YOLOv8s for target 
recognition. From the comparative analysis of b-3 and c-3 with b
Frontiers in Plant Science 10 
2 and c-2 in Figure 6, respectively, it can be seen that the red areas 
cover more area in the images and accurately cover the strawberry 
targets to be detected, indicating the higher accuracy of detection 
and the higher confidence of the category when using WCS-

YOLOv8s for target recognition. It was proven by Grad-CAM 
heat map visualization that recognition using the WCS-YOLOv8s 
was better. 

In this paper, the YOLO model detected the strawberry target 
position in the 2D image, obtained the 2D coordinate information (x, y) 
of the strawberry target, and then calculated the depth information of 
the strawberry through the depth map, so as to obtain the x, y, and z 
coordinates of the strawberry target with respect to the binocular depth 
camera, thus realizing the accurate recognition and localization of the 
strawberry’s position. The results of the improved model’s target

recognition and localization are shown in Figure 7. In  Figure 7, the
detected strawberry target is represented by a red rectangular box, and 
the rectangular box is labeled as follows: strawberry target category, 
target confidence level, and target detection distance from the camera. 
Four strawberries are identified in Figure 7d. The image contains two 
FIGURE 6
 

Grad-CAM heat map visualization. (a-1), (b-1), (c-1) denote the original image samples of strawberries; image sets (a-2, a-3); (b-2, b-3); (c-2, c-3)
 
denote the respective original image samples under the YOLOv8s and wCS-YOLOv8s models, respectively, as a result of heat map visualization.
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unripe strawberries and two ripe strawberries. Taking the unripe 
strawberry identified at the top of the image as an example, the 
probability of the improved WCS-YOLOv8s model identifying this 
target as an unripe strawberry was 0.82, and this unripe strawberry was 
21.93 cm away from the  camera.  Figures 7a, c, f demonstrate the target 
detection effect of the improved algorithm in complex scenes containing 
multiple targets and small targets. Figures 7b, d, e show the detection 
effect of the improved algorithm in simple scenes, demonstrating that 
the model accurately detected targets. In summary, WCS-YOLOv8s 
performed well in various scenarios, proving the effectiveness of the 
model.  The model  was able to provide  comprehensive intelligent  target  
recognition and could form the basis for the realization of robotic 
automation to collect models that require high recognition accuracy and 
fast recognition speed. The model constructed in this paper can provide 
reliable technical support for orchard strawberry yield prediction for 
automated intelligent picking. 
4 Conclusion 

In order to address the issues of low efficiency, high labor 
intensity, time consumption, and elevated costs associated with the 
manual identification, localization, and supervision of strawberries, 
this paper presents an innovative approach by proposing an enhanced 
model based on the YOLOv8s framework—the WCS-YOLOv8s 
model. This model was employed to effectively carry out strawberry 
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target identification and localization while facilitating comprehensive 
supervision throughout the entire growth process of strawberries. In 
this paper, the Warmup data enhancement strategy was adopted to 
provide a stable convergence direction at the early stage of training, 
which effectively avoided model oscillation and improved the 
robustness of the model in complex scenes. The CGFM module was 
introduced to fuse different information through the multi-head self
attention mechanism, which significantly improved the recognition 
accuracy of the model in dealing with complex scenarios, including 
multiple targets, small targets, and occlusion problems, and could 
provide a reliable method for fruit target recognition and detection in 
complex scenarios. The developed SE-MSDWA module effectively 
integrates deep separable convolution, multi-scale convolution, and 
the SE module. This integration enhances the capability of sample 
feature extraction, thereby improving both the feature extraction 
efficiency and overall performance of the convolutional neural 
network. The accuracy, recall, mAP@0.5, and mAP@0.5:0.95 of the 
WCS-YOLOv8s model were 83.4%, 86.7%, 87.53%, and 60.48%, 
respectively, with a detection speed of 45.9 FPS. When compared to 
the baseline YOLOv8s model, 1.94% and 1.61% improvements in 
mAP@0.5 and mAP@0.5:0.95 metrics were observed, respectively, 
thus indicating a significant enhancement in the detection accuracy of 
the proposed model. The WCS-YOLOv8s model established in this 
paper provides a reliable new method of target identification and 
localization for automated management and picking and quality 
enhancement throughout the strawberry growth process. 
FIGURE 7 

Target recognition and localization results of the improved model. The strawberry targets detected in the figure are represented by red rectangular 
boxes, and the markings above the rectangular boxes represent, in order, the strawberry target category, target confidence, and target detection 
distance from the camera. Images (a–f) represent the recognition results of different original images under WCSYOLOv8s Model, respectively. 
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