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Introduction: Agriculture is a cornerstone of human society but faces significant

challenges, including pests, diseases, and the need for increased production

efficiency. Large models, encompassing large language models, large vision

models, and multimodal large language models, have shown transformative

potential in various domains. This review aims to explore the potential

applications of these models in agriculture to address existing problems and

improve production.

Methods: We conduct a systematic review of the development trajectories and

key capabilities of large models. A bibliometric analysis of literature from Web of

Science and arXiv is performed to quantify the current research focus and identify

the gap between the potential and the application of large models in the

agricultural sector.

Results: Our analysis confirms that agriculture is an emerging but currently

underrepresented field for large model research. Nevertheless, we identify and

categorize promising applications, including tailored models for agricultural

question-answering, robotic automation, and advanced image analysis from

remote sensing and spectral data. These applications demonstrate significant

potential to solve complex, nuanced agricultural tasks.

Discussion: This review culminates in a pragmatic framework to guide the choice

between large and traditional models, balancing data availability against

deployment constraints. We also highlight critical challenges, including data

acquisition, infrastructure barriers, and the significant ethical considerations for

responsible deployment. We conclude that while tailored large models are

poised to greatly enhance agricultural efficiency and yield, realizing this future

requires a concerted effort to overcome the existing technical, infrastructural,

and ethical hurdles.
KEYWORDS

large model, agriculture, natural language processing, computer vision,
multimodal model
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1 Introduction

The significance of agriculture in the global economy is

increasing steadily, and there is growing awareness regarding its

sustainability. Ahirwar et al. (2019) believe that it is necessary to

increase global agricultural food production by a minimum of 70%

to meet the needs of the increasing world population.

Unfortunately, there are many factors in agriculture that make it

difficult to steadily increase grain production, including 1): crop

diseases caused by pathogens such as bacteria, fungi, and viruses.

These diseases can spread rapidly, often leading to devastating

effects on entire crops. For instance, bacterial blight in rice and

late blight in potatoes can wipe out significant portions of harvests.

The economic impact is staggering, as farmers face not only reduced

yields but also increased costs associated with disease management;

2): poor seed quality can lead to weak plant growth, reduced yields,

and greater susceptibility to both diseases and pests. Farmers who

use low-quality seeds often experience crop failures, which not only

jeopardizes their income but also contributes to broader food

insecurity within communities. Transitioning to certified, high-

quality seeds is essential for improving crop resilience and

productivity; 3): many agricultural tasks remain inefficient and

labor-intensive, hindering productivity. Traditional methods of

weeding, planting, watering, and harvesting are often time-

consuming and can lead to resource wastage. For example,

manual weeding not only consumes labor but may also fail to

effectively control weed populations, resulting in reduced crop

yields. The adoption of mechanization and modern farming

techniques, such as precision agriculture (PA), can significantly

improve efficiency.

PA is an agricultural management approach that utilizes

modern technology to enhance production efficiency and

sustainability. It encompasses sensor technology, unmanned

aerial/ground vehicles (UAVs/UGVs), remote sensing technology,

automation equipment, big data, machine learning (ML), and deep

learning (DL) (Tokekar et al., 2016; Khanal et al., 2020; Saleem et al.,

2021). This enables farmers to reduce production costs and improve

decision-making capabilities, providing significant economic and

social benefits. For crop diseases, traditional detection methods like

polymerase chain reactions based on unique deoxyribonucleic acid

sequences of pathogens, enzyme-linked immunosorbent assays on

the basis of pathogens proteins and hyperspectral imaging, are

constrained by their operational complexity and the requirement

for bulky instruments (Yao et al., 2024). For selecting high-quality

seeds, quality assurance programs employ various ways to attest

seed quality attributes, including germination and vigor tests

(ElMasry et al., 2019). But these methods have limitations in

terms of time overhead, subjectivity, and the destructive nature of

assessing seed quality (Medeiros et al., 2020). For a general tasks in

agriculture, the use of pesticides for weed control may have negative

impacts on the environment, and Phytotoxicity reactions can lead

to diminished crop quality and reduced yields (Visentin et al.,

2023). And the traditional solutions to these tasks are also inefficient

due to these manned implements are dreadfully slow. On the other

hand, driven by growing health consciousness, the public has long
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been worried about the safety and quality of food, which is linked to

agricultural products. Reducing food losses and improving food

safety rely significantly on the continuous monitoring of crop

quality, especially the inspection of diseases during crop growth

stage (Karthikeyan et al., 2020).

DL technologies in PA can effectively address the limitations of

traditional methods by leveraging their powerful data processing and

pattern recognition capabilities. For instance, DL can analyze vast

amounts of data from sensors, drones, and satellite imagery to

accurately identify crop health, soil characteristics, and potential

diseases and pests (Nasir et al., 2021; Bouguettaya et al., 2022). This

application enables farmers to obtain real-time insights, allowing for

more scientifically informed management decisions, optimized

resource use, and increased crop yields. However, DL technologies

also have their limitations, primarily due to the high demand for model

training (Sun et al., 2017). DLmodels typically require large amounts of

labelled data to train and often need to be retrained when faced with

new agricultural environments or crop varieties (Thenmozhi and

Reddy, 2019). This repetitive training process is not only time-

consuming but also requires significant computational resources and

expertise. The effectiveness of transfer learning lies in its ability to apply

models trained in one domain to a related domain, thus reducing the

need for new datasets (Bosilj et al., 2020; Paymode and Malode, 2022).

However, the diversity and complexity of agricultural environments

can limit the effectiveness of transfer learning (Raffel et al., 2020). For

example, differences in soil conditions, climate variations, and crop

growth characteristics across regions can result in models trained in

one area performing poorly in another. Therefore, although DL holds

tremendous potential in PA, its adaptability and generalizability must

be carefully considered to ensure that models remain effective in the

ever-evolving agricultural field.

Large models are fundamentally distinguished from

conventional DL models by their vast parameter counts (often

billions) and extensive pre-training on massive, diverse datasets. By

being exposed to a rich array of information, these models can

better understand and adapt to various contexts, making them

highly versatile tools in fields such as natural language processing

(NLP), computer vision (CV), and decision-making (Kung et al.,

2023). Crucially, unlike traditional DL models, large models

develop “emergent abilities”—such as few-shot/zero-shot learning,

complex reasoning, and strong generative abilities—that are not

simply scaled-up versions of prior performance (Bommasani et al.,

2021; Zhao et al., 2023c). As an efficient analytical means, large

model, has found extensive application in the agricultural sector

(Stella et al., 2023; Yang et al., 2023c). They have demonstrated

excellent performance in analyzing agricultural data, pest and

disease management, PA, and more. However, they still face

many problems such as difficulty in obtaining agricultural data

(Lu and Young, 2020), low model training efficiency, distribution

shift (Chawla et al., 2021), and plant blindness (Geitmann and

Bidhendi, 2023). In response to the challenges faced by traditional

agriculture, we committed to conducting a comprehensive analysis

of large models. First, we systematically summarized the history of

large models, their applications in other fields, and their significance

for agriculture. Subsequently, we introduced many applications of
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large models in agriculture. Furthermore, recognizing that large

models were a relatively new technological approach, we outlined

some solutions from ethical and responsibility perspectives. Finally,

we summarized the current challenges and future directions of large

models and drew conclusions on their effectiveness in the

agricultural domain.
2 Feasibility analysis of large models in
agriculture

Artificial intelligence (AI), whose main purpose is to establish

systems that learn and think like human (Holzinger et al., 2019),

just like human language and visual abilities. At present, research on

large models is also focused on NLP and CV. Next, large language

model (LLM), large vision model (LVM) and multimodal large

language model (MLLM) will be introduced in detail.
2.1 Evolution and key milestones of large
models

2.1.1 Development trajectories of large language
models

LLM is a model based on NLP with a vast number of parameters

(typically billions) trained on massive datasets of text and code, and

we can divide the development of it into four stages (Figure 1):
Frontiers in Plant Science 03
1. Statistical Language Models (SLM): SLMs use traditional

statistical methods (like n-grams) to learn word

probabilities. Their effectiveness relies on the amount of

data and estimation algorithms (Chelba et al., 2013). While

SLMs are widely used in NLP, they have three main

drawbacks: Scalability: Larger n requires more memory

and parameters (n represents how many preceding words

the model considers when predicting the next word);

Information sharing: N-grams can’t share semantic

information across similar words; Data sparsity:

Techniques like data smoothing can help, but neural

networks handle this better.

2. Neural Language Models (NLM): NLMs utilize various

neural networks and are more effective than SLMs

(Bengio et al., 2000; Mikolov et al., 2010; Sundermeyer

et al., 2012). They address data sparsity using feedforward

and recurrent neural networks (RNNs), which learn

features automatically. Key developments include:

Feedforward neural networks (FFNNLM): Proposed by

Bengio et al. in 2003, they learn distributed word

representations (Bengio et al., 2000); RNN Language

Model (RNNLM): Introduced by Mikolov et al., but

struggles with long-term dependencies (Mikolov et al.,

2010). Long short-term memory (LSTM) networks were

later added to overcome this (Sundermeyer et al., 2012).

3. Pre-trained Language Models (PLM): PLMs are categorized

into feature-based and fine-tuning methods: Feature-based:
FIGURE 1

Development timeline of NLP models and their pros and cons. White characters represent advantages; black characters represent disadvantages.
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Fron
Extracts features from large datasets (e.g., ElMo); Fine-

tuning: Transfers entire model parameters to specific tasks,

exemplified by BERT and GPT. Transformers, introduced

by Google, employ a self-attention mechanism, facilitating

better training and performance (Vaswani et al., 2017),

GPT is fine-tuned from the Transformer. Due to the

significant acceleration of model training by Transformer,

it has gradually become the fundamental architecture

for LLMs.

4. Large Language Models (LLM): LLMs have billions of

parameters and exhibit unique capabilities, known as

“emergent abilities”. Research shows that larger models

perform better and are more sample-efficient. For instance,

GPT-3 can generate expected outputs from input sequences

without additional training, a feat beyond smaller models

like GPT-2.
The transition from SLM to LLM signifies a progressive increase

in model complexity, data handling abilities, and adaptability to

tasks. Each new generation improves upon its predecessor to

overcome limitations, fostering advancement in natural language

processing. As shown in Figure 1, compared to other models, LLMs

have a comprehensive understanding of language and excel at

complex reasoning. Their strong few-shot, zero-shot, and

generative capabilities allow them to adapt to new tasks with

minimal examples. However, high computational costs and bias

issues prevent them from being perfect. The high computational

cost remains an unresolved challenge in today’s era of large data

training. Bias issues can be mitigated through a series of review and

regulatory measures, which will be detailed in section 4.

2.1.2 Key advancements and capabilities of large
vision models

LVMs are a new generation of models associated with CV,

characterized by their immense scale and broad pre-training.

Initially, LVM might have denoted purely vision-based models
tiers in Plant Science 04
trained solely on image data. However, inspired by multimodal

learning in LLM, the concept has evolved to include large models

trained on both images and text, enabling rich cross-modal

associations. CV models began their development in the 20th

century and have continued to evolve significantly to the present

day (Figure 2). Fueled by the availability of massive image datasets,

the development of powerful DL architectures, and significant

progress in large-scale pre-training techniques, LVMs have

become one of the major development trends in CV models in

recent years.

The research on CV models initially focused on shallow image

feature extraction algorithms, including scale-invariant feature

transform, histogram of oriented gradient, and other methods,

but had significant limitations. In 2012, AlexNet (Krizhevsky et

al., 2017) achieved a breakthrough success in ImageNet large scale

visual recognition challenge, sparking a wave of convolutional

neural networks (CNN) for vision models. With the development

of DL, deep residual networks including VGGNet (Simonyan and

Zisserman, 2014), GoogLeNet (Szegedy et al., 2015), and ResNet

(He et al., 2016) were successively proposed, which improved the

performance of image classification, object detection, semantic

segmentation, etc. The boom of the Internet also enabled large-

scale image datasets to be used for training vision models. Faster R-

CNN (Ren et al., 2016), YOLO (Redmon et al., 2016), Mask R-CNN

(He et al., 2017) emerged one after another.

In recent years, Transformer has been successfully applied in

the domain of LVM, leading to the emergence of models like Vision

Transformer (ViT) (Dosovitskiy et al., 2020) and DALL-E (Ramesh

et al., 2021) which have garnered significant public attention. Unlike

the traditional DL models mentioned above, LVMs such as ViT

leverage transformer architectures and are typically pre-trained on

significantly larger and more diverse datasets (e.g., billions of

images). This foundational pre-training enables them to develop a

more generalized understanding of visual concepts and emergent

capabilities, allowing for superior performance on a wide range of

downstream tasks, often with only limited domain-specific data.
E 2FIGUR

Development timeline of computer vision models.
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Their ability to grasp complex visual patterns and adapt to new

conditions makes them highly versatile.

As detailed in Table 1, large vision models (LVMs) and

traditional vision models differ significantly in their core

architecture, data requirements, and capabilities. The fundamental

distinction lies in their approach to context: Transformer-based

LVMs leverage global self-attention to capture broad visual context

and long-range dependencies, a significant leap from the local

receptive fields of traditional convolutional models (Aymen et al.,

2024; Malla et al., 2024). While this architectural shift grants LVMs

superior generalization, it also introduces challenges like high

computational demands and data hunger. Notably, research is

actively addressing these limitations. For instance, Shi et al.

(2024) proposed “Scaling on Scales (S²),” which enhances

performance by increasing image scales rather than model size,

providing new insights for the future development of vision models.

2.1.3 The emergence of multimodal large
language models

In addition to the LLMs and LVMs introduced above, MLLMs

are also a research focus in the domain of AI. While LLMs perform

well in text-based tasks, their capabilities alone cannot effectively

reason about information presented in non-textual formats.

Although LVMs perform well in the field of CV and possess

some NLP abilities, researchers are not content with large models

solely trained on text and images. MLLMs (Wu et al., 2023a)

integrate multiple data types, such as images, text, language,

audio, and more. It not only possesses the advantages of LLMs

and LVMs, but also address the limitations of LLMs and LVMs by

integrating multiple modalities, enabling a more comprehensive

understanding of various data. It can be said that the developments

in MLLMs have set up new avenues for AI, which make binary

machines to understand and then process various data types (Wu
Frontiers in Plant Science 05
et al., 2023a). For agriculture, MLLM allows tasks to no longer be

confined to just images or text; instead, it can leverage both, and

even utilize multimodal inputs like audio and video, breaking the

limitations of images and text.
2.2 Current applications of large models in
other domains

As shown in Table 2, many LLMs are designed to develop

chatbots (BLOOM (Le Scao et al., 2023), PaLM2 (Anil et al., 2023),

ERNIE 4.0) or complete NLP tasks, including text classification,

machine translation, and sentiment analysis [OPT (Zhang et al.,

2022b)]. Similarly, LVMs are primarily engineered to interpret and

process visual information. They excel at core CV tasks such as

image classification, object detection, segmentation, and image

generation, often forming the foundation for systems needing to

understand or interact with the visual world. Models like

InternImage (Wang et al., 2023) and LLaVA (Liu et al., 2023b)

represent efforts to enhance performance on complex visual

analysis tasks, aiming to simulate and automate human

visual processes.

Although LLM and LVM satisfies some functions and takes

large models a big step towards artificial general intelligence (AGI),

it is not enough to achieve the goal that machines can emulate

human thinking and carry out a wide range of general tasks through

transfer learning and diverse other modalities without achieving the

multimodality of the model (Zhao et al., 2023b). Some large models

have implemented multimodality, enabling them to analyze

different types of information [GPT-4 (Bubeck et al., 2023),

LLaMA, Gemini (Team et al., 2023), ImageBind (Girdhar et al.,

2023)] and interact with users. It is worth mentioning that most of

the newer large models are MLLMs, and many models that were

originally LLMs or LVMs have gradually acquired multimodal

capabilities after multiple updates.

However, many current models are generic models and their

training datasets are too broad, they cannot provide a satisfactory

answer to knowledge in certain professional fields. As Goertzel

(2014) believed, for a system to be considered AGI, it is not

necessary for it to have infinite generality, adaptability, or

flexibility. Therefore, some researchers have optimized and

adjusted existing large models and have released some large

models specifically for a single field. BloombergGPT can be used

in the financial field, showcasing remarkable performance on

general LLM benchmarks and surpassing comparable models on

financial tasks (Wu et al., 2023c). The meteorological model in

panguLM developed by Huawei can provide predictions of variables

such as gravity potential, humidity, wind speed, temperature, and

pressure within 1 hour to 7 days. Embedding PaLM-E into robots

can achieve multiple specific tasks, like visual question answering,

sequential robotic manipulation planning, and captioning (Driess

et al., 2023). OceanGPT is an expert in various marine science tasks

(Bi et al., 2023). It exhibits not only a higher level of knowledge

expertise for oceans science tasks but also acquires preliminary

embodied intelligence capabilities in ocean engineering. PMC-
TABLE 1 Comparison of large vision models and traditional
vision models.

Feature/
Aspect

Large vision models Traditional
vision models

Core
architecture

Transformer-based, global
self-attention

Convolution-based, local
receptive fields

Context &
dependencies

Global context, excels at
long-range dependencies

Local focus, struggles with long-
range dependencies

Image
handling

Processes image patches;
more robust to variations

Uses sliding filters; sensitive to
some variations

Data needs Best with large-scale
pre-training

Can work with smaller datasets,
benefits from pre-training

Multimodal
ability

Stronger, more inherent
multimodal integration

Requires more specialized
designs for multimodal

Parallelism High (sequence processing) Good for convolutions, poor for
sequential tasks

Key
advantages

Global understanding, long
dependencies, scalability

Efficient local feature extraction

Key
limitations

Can be data-hungry for
pre-training

Limited global view,
adversarial vulnerability
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TABLE 2 The currently popular and representative large models.

Original
version

Latest
version

Release
date

(original)

Release
date (latest)

Types
(original
→ latest)

Information References

OPT / May 2rd, 2022 / LLM OPT promotes transparency, reproducibility,
and broader community engagement and
innovation in NLP research. (open source)

(Zhang
et al., 2022b)

BLOOM BLOOMZ July 12th, 2022 December
15th, 2022

LLM A decoder only model based on Transformer
architecture. (open source)

(Le Scao et
al., 2023)

PMC-LLaMA / Aprill 27th, 2023 / LLM Inject medical knowledge into existing LLM
using 4.8 million biomedical academic
papers. (open source)

(Wu et
al., 2024)

PaLM2 / May 11st, 2023 / LLM PaLM2 was a neural network-based language
model that was considered one of the most
advanced language models available at the
time of its release in May 2023.

(Anil
et al., 2023)

BloombergGPT / March 30th, 2023 / LLM A LLM for the financial field. (Wu
et al., 2023c)

OceanGPT-
Basic-7B

OceanGPT-
Basic-14B/7B/2B

October 3rd, 2023 July 4th, 2024 LLM OceanGPT is the first LLM in the ocean
domain. (open source)

(Bi et al., 2023)

DeepSeek LLM DeepSeek-R1 November
29th, 2023

January
20th, 2025

LLM DeepSeeke-R1 excels in complex tasks such
as mathematics, coding, and natural
language reasoning

(Guo
et al., 2025a)

Llama 2 Llama 4 July 20th, 2023 April 6th, 2025 LLM → MLLM A series of large models released by Meta. /

Qwen-7B Qwen2.5-
Omni-7B

August 3rd, 2023 March 27th, 2025 LLM → MLLM A super large model launched by Alibaba
Cloud. (open source)

(Bai
et al., 2023)

Kimi Chat Kimi k1.5 October
10th, 2023

January
20th, 2025

LLM → MLLM Kimi k1.5 surpasses GPT-4o by 550% in
mathematics, coding, and other capabilities
under short-chain thinking mode.

/

Gemma Gemma 3 February
21st, 2024

March 12th, 2025 LLM → MLLM Gemma 3 is a MLLM released by Google.
(open source)

(Team et al.,
2024, 2025)

PaLM-E / March 6th, 2023 / LVM PaLM-E can integrate vision and language
into robot control.

(Driess
et al., 2023)

InternImage InternImage-H November
10th, 2022

October 4th, 2023 LVM A LVM based on deformable convolution.
(open source)

(Wang
et al., 2023)

PanguCVLM 3.0 PanguCVLM 5.0 July 7th, 2023 June 21th, 2024 LVM A LVM that simulates and automates human
visual processes.

/

LLaVA LLaVA-
NeXT (Stronger)

April 17th, 2023 May 10th, 2024 LVM LLaVA has the ability to align and fuse the
visual information of images with the
semantic information of text. (open source)

(Liu
et al., 2023b)

mPLUG-Owl mPLUG-Owl3 April 27th, 2023 August
20th, 2024

LVM → MLLM mPLUG-Owl is developed by Alibaba
DAMO Academy. (open source)

(Ye et al.,
2023, 2024)

SPARK 1.0 SPARK
4.0 Turbo

May 6th, 2023 October
24th, 2024

LVM → MLLM A new generation of cognitive intelligence
model with Chinese as its core.

/

Claude 3 Claude 3.7 Max March 4th, 2024 March 18th, 2025 MLLM A MLLM that primarily focuses on
code processing.

/

ERNIE 4.0 ERNIE 4.5 October
17th, 2023

March 16th, 2025 MLLM ERNIE is a new generation of Baidu’s large
model for knowledge enhancement.

/

ImageBind / May 9th, 2023 / MLLM ImageBind is the first AI model that can bind
information from six modes.

(Girdhar
et al., 2023)

GPT-4 GPT-4.5 March 14th, 2023 February
28th, 2025

MLLM GPT-4.5 significantly enhances its knowledge
reserves and emotional intelligence by
expanding unsupervised learning and
reasoning capabilities.

(Bubeck
et al., 2023)

(Continued)
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LLaMA represents the pioneering open-source medical specific

language model that demonstrates exceptional performance on

diverse medical benchmarks, outperforming ChatGPT and

LLaMA-2 with significantly fewer parameters (Wu et al., 2024).

The success of large models across diverse fields, as highlighted in

this section, underscores their potential to generalize and tackle

complex problems, suggesting their applicability to the intricate

tasks within agriculture.
2.3 Assessing the attention to large models
within agriculture

In the past few decades, the advancement of agricultural

technology has significantly improved global agricultural

production efficiency. According to the forecast released by the

food and agriculture organization (FAO) of the United Nations, the

global grain production in 2023 was 2.84 billion tons, nearly twice

that of the early 20th century. Although global agricultural

production efficiency is high, the world population is also

constantly growing. Continuously improving agricultural

production efficiency is the lifeline of economic development and

the foundation for ensuring human food, clothing, and survival

needs. Hence, how to make agricultural practices advance is a

crucial issue. Next, we will use bibliometric methods in conjunction

with practical analysis to explain why large models are important

for agriculture.
2.3.1 Bibliometric analysis and data sources
Bibliometrics is a quantitative analysis method that integrates

mathematics, statistics, and bibliology, based on mathematical

statistics. It focuses on the external characteristics of scientific

literature to conduct statistical and visual analyses of the

literature (Wang et al., 2019). Keywords encapsulate important

information about the research topic. They can intuitively reflect

the themes and content of the study, reveal the connections between

research contents, results, and characteristics in a particular field,

and demonstrate the research dynamics and emerging trends within

that area (Li and Zhao, 2015). Our analysis used two methods:
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1. Searching for research literature related to large models

using the Science Citation Index Expanded (SCI-E) and

Social Sciences Citation Index (SSCI) from Web of Science

(WoS) with keywords such as “large models”, “large

language models”, “large vision models”, or “foundation

models”, covering the period from 2019 to 2024.

2. Collecting 3,496 papers from the arXiv in the field of

artificial intelligence from 2019 to 2024 and categorizing

them by discipline based on keyword searches.
Our analysis of WoS aimed to identify the established trends and

peer-reviewed research regarding large models, and specifically, the

frequency of agriculture-related keywords within this body of

published work. This provides a view of the validated research

landscape. Complementarily, we included arXiv to capture the more

recent and rapidly evolving trends in artificial intelligence research.

arXiv, as a leading platform for pre-prints in AI, offers valuable insights

into emerging research directions and the early exploration of applying

large models across various disciplines, including potential initial

interest in agriculture. Pre-prints often precede formal publication,

providing a timelier snapshot of the research frontier.

By analysing both published literature (WoS) and pre-prints

(arXiv), we aimed to gain insights from two different perspectives:

the established, peer-reviewed research landscape and the more

immediate, evolving research front. This allows us to observe both

the current state of validated research and the potential emerging

trends and initial explorations within the field.

2.3.2 Detailed analysis and design protocol
As described in section 2.3.1, two data sources were used for the

specific analysis method: (1) WoS; (2) arXiv. Next, we will elaborate

on the details of using these two bibliometric analysis methods.

For the Method 1, after entering the official website of WoS, search

in “Web of science Core Collection” and select Science Citation Index

Expanded (SCI-EXPANDED) and Social Sciences Citation Index

(SSCI) in edition. Both SCI-EXPANDED and SSCI primarily index

peer-reviewed journals with established reputations within their

respective fields. This ensures a certain level of quality control and

scholarly rigor in the literature being analysed. Then search for topics

with the keywords “large models”, “large language models”, “large
TABLE 2 Continued

Original
version

Latest
version

Release
date

(original)

Release
date (latest)

Types
(original
→ latest)

Information References

Skywork Skywork 4.0 April 17th, 2023 January 6th, 2025 MLLM Skywork is a series of large models developed
by the Kunlun · Skywork team.

(Wei
et al., 2023)

Gemini Gemini 2.5 December
6th, 2023

March 26th, 2025 MLLM Gemini is a MLLM launched by
Google DeepMind.

(Team
et al., 2023)

Sora / February
15th, 2024

/ MLLM Sora can create realistic and imaginative
scenes from text instructions.

(Peebles and
Xie, 2023)

Hunyuan-t1 Hunyuan-
t1 (official)

February
17th, 2025

March 21st, 2025 MLLM Hunyuan-t1 is a deep-thinking model
independently developed by Tencent.

/

The arrow '→' represents the change in the model's category, from its original type to the type of its latest version.
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vision models”, or “foundation models”, covering articles from 2019 to

2024, and export the authors, titles, sources and abstracts of these

articles in plain text file. Finally, import these plain text files into

VOSviever to draw a network of keywords in the field of large models.

For the Method 2, we use the keyword “artificial intelligence” to search

for articles on arXiv, and crawl the relevant articles from 2019 to 2024,

including title, author, abstract and other information, to build a csv

file. Then search this file according to relevant keywords. For example,

in the medical field, keywords such as medical, healthcare, hospital, etc.

are used to filter out relevant articles and count the number. Finally, a

graph of the proportion of articles in different fields under the AI

domain is constructed.

In this way, we obtained a network map of keyword through the

Method 1, and a graph of the proportion of different fields in the AI

domain through the Method 2. The specific results and analysis will

be explained in the next section.

2.3.3 Analysis results
A total of 1,789 papers were filtered usingMethod 1, and a network

diagram of keyword occurrences was generated using VOSviewer. As

shown in Figure 3, the term ‘agriculture’ appears infrequently in these

large model papers, indicating that large models have not received

widespread attention in the agricultural field.

The reasons why large models have not received attention in the

agricultural sector are diverse. First, large models are a relatively new

technology that has emerged in recent years, and many researchers and

practitioners in agriculture may not fully understand their capabilities

and potential applications in the field. Second, implementing large

models often requires substantial computational resources and

expertise, which may not be easily accessible in many agricultural
Frontiers in Plant Science 08
environments. Third, agricultural tasks can be very specific and

localized, leading people to prefer traditionalmethods over largemodels.

Moreover, Figure 4 illustrates a difference: the application and

research of large models in agriculture are currently limited

compared to other fields. This observation from our bibliometric

analysis (Figures 3, 4) suggests that despite the evident potential of

large models to address agricultural challenges discussed in the

introduction, the field is still in the early stages of exploring and

adopting this technology. Therefore, a detailed review of their

potential applications, associated challenges, and responsible

deployment is crucial to guide future research and accelerate their

integration into agriculture.
3 Large models in agricultural
applications

As mentioned in the introduction, agriculture faces multiple

challenges, including pests and diseases, seed quality, and crop

grading. Large models have demonstrated significant potential in

addressing these issues, and some researchers have already

developed models specifically tailored for the agricultural domain.
3.1 Emerging potential and existing
applications of large models in agriculture

3.1.1 Potential and applications
Many large models have emerged, and although they are not yet

truly applied in agriculture, their problem-solving capabilities
FIGURE 3

47 keywords co-occurrence network map.
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indicate potential prospects in agricultural applications. As shown

in Table 3, some large models are modifications of existing models,

while others are entirely original. For example, given 50 original

descriptions related to “wheat rust,” AugGPT can generate 200+

expanded samples covering different growth stages and climatic

conditions, thereby enhancing the robustness of disease

identification models in complex environments. Aurora is a large

model for weather forecasting (Bodnar et al., 2024), and if applied in

agriculture, it could enable farmers to schedule activities such as

planting, fertilizing, and harvesting based on accurate weather

forecasts, as well as proactively mitigate losses from extreme

weather events. In addition to ordinary large models, there are
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also some special existences. HuggingGPT is an AI agent framework

designed to orchestrate multiple specialized models, including

LLMs like ChatGPT (Shen et al., 2024). It acts as a ‘model

coordinator,’ integrating and managing diverse AI components to

enhance decision-making in complex scenarios such as agricultural

planning. This capability offers possibilities for managing a series of

complex agricultural tasks, from planting to harvesting.

Notably, there are already large models applied in agriculture

(Table 4). For instance, TimeGPT demonstrates its capability as a

smart agriculture tool (Deforce et al., 2024), being used for

predicting soil moisture, which helps farmers determine whether

the soil is suitable for certain crops. FMFruit showcases the
E 4FIGUR

The proportion of arXiv papers on agriculture in AI.
TABLE 3 Large models with agricultural potential.

Type Based Method Problem Application prospect References

LLM

ChatGPT GPT-3.5-turbo Agricultural information extraction Rapid querying of
agricultural information

(Peng
et al., 2023)

AugGPT Text data augmentation Few-shot learning for
agricultural data

(Dai et al., 2023)

/ Aurora Atmospheric prediction Predicting weather in agriculture (Bodnar
et al., 2024)

LVM

/ MAE, DINO, DINOv2 Plant phenotyping tasks Monitoring crop health (Chen
et al., 2023a)

PaLM, ViT PaLM-E Robot control Agricultural intelligent machines
or robots

(Driess
et al., 2023)

MLLM
SAM TAM Object tracking and segmentation

in videos
Monitor animals in
agricultural farming

(Yang
et al., 2023a)
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importance of large models in agricultural detection tasks (Li et al.,

2024), providing new directions and foundations for the

development of robotic harvesting systems. ITLMLP performs

disease recognition on cucumbers with limited sample sizes,

playing a significant role in agricultural automation and

intelligence (Cao et al., 2023).

Tables 2, 3 demonstrate the feasibility and importance of large

models in agriculture, where many agricultural tasks involve

complex reasoning. For example, when presented with an image

of a soybean field, agricultural scientists or farmers rely on large

models to undertake several key steps. Firstly, the large model must

identify any abnormal symptoms evident in the soybean leaves,

such as leaf wrinkling. Subsequently, it must ascertain the name of

the specific problem that troubles plants, such as soybean mosaic.

Next, the model needs to determine the underlying cause of the

disease, such as soybean mosaic virus. Finally, it must develop an

appropriate treatment strategy. This multi-step, cross modal

diagnostic and decision-making process is precisely the unique

advantage that large models can demonstrate compared to

traditional DL models with a single task.

Many question answering (QA) and dialogue systems are

designed to address this type of reasoning problem (Rose Mary

et al., 2021; Mostaco et al., 2018; Niranjan et al., 2019). For instance,

a chatbot based on a RNN is specifically designed to handle

questions related to soil testing, plant protection, and nutrient

management (Rose Mary et al., 2021). Although, these QA and

dialogue systems and chatbots can answer most inquiries without
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the need for human interaction and with excellent accuracy, they

have limited capabilities for complex problems by reason of their

small model size as well as of inadequate training data. Therefore,

the agricultural domain requires large models to promote the

development of QA and dialogue systems and chatbots. The

traditional methods for detecting crop pests and diseases mainly

rely on special methods such as serology and molecular biology-

based technical means, in addition to artificial visual evaluation.

Although these methods can accurately determine pests and

diseases to a certain extent, they often require a lot of time and

money. And some methods of sampling crops often lead to crop

damage, which goes against the original intention of diagnosing

diseases and pests to protect crops. Therefore, image processing and

analysis is an important task for large models in the field of

agriculture, and another important task is to embed LVMs into

robots to solve some agricultural problems (Weeding, pruning

branches, harvesting, etc.) and achieve automated agriculture.

3.1.2 The advantages of agriculture-specific large
models

In the field of agriculture, agriculture-specific models can offer

notable advantages over general large models, particularly by

effectively integrating diverse, domain-relevant data modalities

such as image, text, and crucial label information. This

multimodal strategy, often employing techniques like combined

contrastive learning methods within a unified feature space, allows

these models to address the prevalent challenge of data scarcity in
TABLE 4 Agricultural large models.

Type Name Achievement Significance References

LLM

TimeGPT Predicting soil moisture Contributes to sustainable
agricultural practices

(Deforce
et al., 2024)

ChatGPT Designed a tomato-picking robot Simplify the design process of
agricultural robots

(Stella
et al., 2023)

FMFruit Identifying multiple types of fruits Research on robotic harvesting and
fruit detection

(Li et al., 2024)

AgriGPT Multimodal agricultural knowledge Q&A Promote precision
agriculture practices

(Liu
et al., 2023a)

ShenNong Development of specialized large models
for multiple agricultural domains

Driving agricultural intelligence and
comprehensive
efficiency improvement

/

ChatAgri Cross-linguistic classification of
agricultural texts

Provide decision support for
precision agriculture

(Zhao
et al., 2023a)

LVM

SpectralGPT Process spectral remote sensing data Greatly enhanced the processing
capability of agricultural spectral data

(Hong
et al., 2024)

SAM Chicken segmentation and tracking Facilitates segmentation and tracking
tasks in agriculture

(Yang
et al., 2023c)

Agricultural field boundary delineation Beneficial for PA, crop monitoring,
and yield estimation

(Tripathy
et al., 2024)

MLLM

ITLMLP Cucumber disease recognition Agricultural disease recognition (Cao
et al., 2023)

AIE-SEG High-precision segmentation of
agricultural imagery

Enables automated field monitoring
and yield estimation

(Xu et al., 2023)
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agriculture more effectively than models relying solely on single

modalities or vast, generic pre-training datasets.

By explicitly learning and leveraging the semantic correlations

between visual features (e.g., specific crop disease symptoms) and

related textual descriptions or categorical labels, agriculture-specific

models can develop more comprehensive, robust, and discriminative

representations tailored to the nuances of the field. For example,

ChatAgri excels in the specific task of agricultural visual diagnostics

(Zhao et al., 2023a). A general MLLMmight identify visual anomalies,

and lack the specialized knowledge to accurately name the specific

agricultural disease or pest, understand its lifecycle, or recommend

appropriate, targeted treatments. Especially when faced with limited

training samples, agriculture-specific large models may perform better

compared to models with poor adaptability. Unlike general large

models that often require vast datasets for pre-training and may not

adapt well to fine-tuning on limited agricultural data, ITLMLP is

designed to be effective with small sample sizes. It extracts richer and

more discriminative features from scarce data, leading to significantly

higher recognition accuracy (achieving 94.84% in their paper)

compared to general large models to the same small dataset (Cao

et al., 2023).

Furthermore, their focused training enables them to better

identify and weigh agriculturally significant features, accurately

discerning subtle but critical patterns for tasks like disease

recognition while potentially mitigating the influence of irrelevant

background elements, ultimately resulting in improved accuracy,

reliability, and greater practical applicability within the complex

agricultural environment.
3.2 Leveraging large language models for
agricultural data processing, insights, and
decision support

LLM can play many roles in the agricultural domain, such as

processing and generating agricultural data, providing insights into

agricultural production work, and supporting agricultural decision-

making for farmers.

3.2.1 Large language models for processing and
generating agricultural data
3.2.1.1 Information extraction

LLMs can extract structured information from unstructured

agricultural text data. First, the text is divided into individual

tokens and LLMs represent each token as a numerical vector called

a word embedding. Then, LLMs analyse the surrounding context of

each token to understand its meaning within the sentence or

document, and identify and categorize named entities within the

text, like names of individuals, locations, organizations, or specific

agricultural terms. Finally, LLMs employ techniques like information

extraction to identify and extract structured information from

unstructured text (Involve identifying relationships between

entities, extracting key facts, or populating knowledge graphs).

LLMs extract information from data using a process known as

NLP. Beyond mere extraction, modern LLM applications
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increasingly employ a paradigm known as retrieval-augmented

generation (RAG). In this approach, the LLM first retrieves

relevant, up-to-date information from external, domain-specific

knowledge bases—such as recent agronomic research, real-time

market prices, or local pest outbreak databases. This retrieved

context then “augments” the model’s input, enabling it to generate

responses that are not only more accurate and timelier but also

grounded in verifiable sources, thereby significantly mitigating the

risks of data lag and factual inaccuracies in the agricultural domain

(Gao et al., 2023).

3.2.1.2 Agricultural data generation

Generative AI models are a multimodal LLM, which is the

MLLM mentioned above. An obstacle encountered when applying

specialized CV algorithms to agricultural vision data is the insufficient

availability of training data and labels (Qi et al., 2017; He et al., 2017).

In addition, collecting data that encompasses the wide range of

variations caused by season and weather changes is exceedingly

challenging. Acquiring high-quality data requires a lot of time, and

labelling them is even more costly (Zhou et al., 2017). To address

these challenges, one approach is to fine-tune multimodal generative

LLMs on the target agricultural data domain. This allows the models

to generate massive training data and labels, thereby constructing an

augmented training set that closely resembles the distribution of the

original data (Dai et al., 2023). Besides, text-based generation models

can generate images (Rombach et al., 2022) and videos (Ho et al.,

2022) of specific scenes based on text descriptions, thereby

supplementing training datasets that may lack certain visual

content. This helps in expanding the training data and improving

the performance of downstream models.

3.2.2 Large language models provide insights
LLMs possess the capability to analyse textual data and uncover

trends in agricultural practices, market conditions, consumer

preferences, and policy developments. Through analysis of

agricultural text data from sources such as news articles, reports,

and social media, these models can offer valuable insights into

market dynamics and pricing trends (Yang et al., 2024). This

provides support for farmers to understand domains outside of

agriculture. Many researchers believe that the integration of LLMs

into different stages of designment and development for agricultural

applications is also experiencing a noticeable rise (Stella et al., 2023;

Lu et al., 2023). In (Stella et al., 2023) study, Stella et al. incorporated

LLM into the design phase of robotic systems. They specifically

focused on designing an optimized robotic gripper for tomato

picking and outlined the step-by-step process. In the initial

ideation phase, they leveraged LLMs like ChatGPT (Bubeck et al.,

2023) to gain insights into the possible challenges and opportunities

associated with the task. Building upon this knowledge, they

identified the most promising and captivating pathways, engaging

in ongoing discussions with the LLM to refine and narrow down the

design possibilities. Throughout this process, the human

collaborator harnesses the expansive knowledge of the LLM to tap

into insights transcend their individual expertise. In the following

stage of the design process, which emphasizes technical aspects, the
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broad directions derived from the collaboration need to be

transformed into a real, completely functional robot. Although

LLMs do not provide comprehensive technical support, they can

offer their own insights on whether the technology is feasible,

helping researchers reduce the risk of failure.

Presently, LLMs lack the ability to generate comprehensive

CAD models, evaluate code, or independently fabricate robots.

Nevertheless, advancements in LLM research suggest that these

algorithms can offer significant assistance in executing software

(Chen et al., 2021), mathematical reasoning (Das et al., 2024), and

even in the generation of shapes (Ramesh et al., 2022). Lu et al.

specifically focused on the utilization of LLMs for organizing

unstructured metadata, facilitating the conversion of metadata

between different formats, and discovering potential errors in the

data collection process (Lu et al., 2023). They also envisioned the

next generation of LLMs as remarkably potent tools for data

visualization (Bubeck et al., 2023), and anticipated that these

advanced models will provide invaluable support to researchers,

enabling them to extract meaningful insights from extensive

volumes of phenotypic data.

Although LLMs provide insights can indirectly help farmers

solve a small number of agricultural tasks, it’s important to note that

their insights should be used in conjunction with human judgment

and domain expertise. That is to say, the insights provided by LLMs

cannot be separated from human experience.

3.2.3 Large language models empower decision-
making for farmers

According to a recent study, ChatGPT demonstrates the ability

to comprehend natural language requests, extract valuable textual

and visual information, select appropriate language and vision

tasks, and effectively communicate the results to humans (Shen

et al., 2024). Shen et al. proposed a system named HuggingGPT to

solve AI tasks. HuggingGPT is a collaborative AI task resolution

framework built on LLMs. This system connects LLM with AI

models through language interface, and these AI models are derived

from HuggingFace. This coordinating capability positions LLMs as

the core of modern AI Agents. As the core of decision-making, LLM

can be applied to agriculture to help solve the tasks proposed by

farmers (Shen et al., 2024).

An AI Agent is an autonomous system that perceives its

environment, reasons, plans, and acts to achieve specific goals. As

shown in Figure 5, the LLM acts as the agent’s “brain”, performing

crucial functions. When receiving a task request, LLM first divides

the total task into subtasks and selects the appropriate AI model

based on the needs of each subtask. For example, converting

farmers’ audio into text requires the use of an audio to text model

[Amazon transcribe, Whisper (Radford et al., 2023)]; It is also

necessary to recognize the sent image and integrate the text

obtained from the audio conversion in the previous step to obtain

a text-response (vit-gpt2); Considering that some farmers may have

had limited access to formal education, it is necessary to further

convert text-response into audio and ultimately obtain the audio-

response [Fastspeech (Ren et al., 2019, 2020)]. Although LLM does

not play a role in solving problems throughout the entire system, as
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a “conductor”, it can coordinate various AI models to complete

subtasks, thereby gradually solving complex tasks and playing a

core role in decision-making support.
3.3 The role of large vision model in image
processing, analysis, and agricultural
automation

While LLMs excel in processing textual and knowledge-based

information, many agricultural tasks fundamentally rely on visual

data. Using a LVM to judge crop related information can not only

greatly improve the time required for judgment, but also indirectly

reduce the damage caused to crops. Moreover, after crops are

invaded by pests and diseases, their color, texture, spectral

characteristics will undergo certain changes, all of which are

related to CV.

3.3.1 Image processing and analysis
At present, there are four types of methods for obtaining crop

image information: 1) ordinary channels, taking photos to obtain

images; 2) obtaining remote sensing images through agricultural

machinery near the ground; 3) obtaining remote sensing images

through aircraft monitoring platforms (Yuan et al., 2022); 4)

obtaining remote sensing images through satellites (Zhang et al.,

2019). Remote sensing can provide large-scale land use and land

cover information. By analysing satellite images or high-altitude

images, various surface information can be identified, such as

surface conditions, soil moisture, vegetation coverage, and crop

growth status (Khanal et al., 2020). Classifying and segmenting

from limited examples obtained from remote sensing is a significant

challenge. Regarding this, Wu et al. (2023b) put forward GenCo (a

generator-based two-stage approach) for few-shot classification and

segmentation on remote sensing and earth observation data. Their

approach presents an alternative solution for addressing the

labelling challenges encountered in the domains of remote

sensing and agriculture. Spectral data can provide rich insights

into the composition of observed objects and materials, especially in

remote sensing applications. The challenges faced in processing

spectral data in agriculture include: 1) effectively processing and

utilizing vast amounts of remote sensing spectral big data derived

from various sources; 2) deriving significant knowledge

representations from intricate spatial-spectral mixed information;

3) addressing the spectral degradation in the modelling of

neighbouring spectral relevance. Hong et al.’s SpectralGPT

empowers intelligent processing of spectral remote sensing big

data, and this LVM has also demonstrated its excellent spectral

reconstruction capabilities in agriculture (Hong et al., 2024). Due to

multispectral imaging (MSI) and hyperspectral imaging (HSI) make

it possible to monitor crop health in the field. The integration of

remotely sensed multisource data, such as HSI and LiDAR (Light

detection and ranging), enables the monitoring of changes

occurring in different parts of a plant (Omia et al., 2023). By

using a large visual model to analyse these spectral data, the

obtained crop health information can help farmers quickly and
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accurately identify diseases and treat them, reducing the loss of

crop yield.

Studies suggest that the use of LVMs for image recognition and

predictive analysis of crop information is often more effective than

traditional ML algorithms. When farmers need to obtain crop

information, four types of image acquisition methods can be used

to obtain crop image information (Figure 6). Then, the image

information is processed through image recognition (Divided into

four tasks: image classification, object detection, semantic

segmentation, instance segmentation), and the identified results

need to be further predictive analytics to obtain crop information

that farmers can understand.

In addition to obtaining information by analysing the

phenotypic characteristics of crops, Feng et al. (2022) developed a

traditional DL model called organelle segmentation network

(OrgSegNet). OrgSegNet is capable of accurately capturing the

actual sizes of chloroplasts, mitochondria, nuclei, and vacuoles

within plant cell, further inspecting plant phenotypic at the

subcellular level. They have tested two applications: 1) A thermo-

sensitive rice albino leaf mutant was cultivated at cold temperature

conditions. In the transmission electron microscope images

(TEMs), the albinotic leaves lacked typical chloroplasts, and

OrgSegNet failed to identify any chloroplast structures; 2) Young

leaf chlorosis 1 (Ylc1). Young leaves of the ylc1 mutant showed

lower levels of chlorophyll and lutein compared to corresponding

wild type, and its TEM analysis further revealed a noticeable loose

arrangement of the thylakoid lamellar structures. It can be imagined

that if a large model is used to replace DL algorithms, the

recognition of subcellular cells may perform better, and the

recognition results can be further predictive analytics to obtain

information that non plant experts can also understand.

3.3.2 Automation and robotics
Enhancing the intelligence of agricultural robots is a crucial

application area for large models. Conventional agricultural robot

systems, typically composed of perception, decision-making, and

actuation modules, often struggle with complex visual perception

and intelligent, real-time decision-making, especially in

unstructured and dynamic farm environments (Yang et al.,

2023b; Hamuda et al., 2016). Integrating large models is a

promising approach to overcome these limitations and

significantly enhance the intellectual features of agricultural robots.

Current LVMs can be used in drones to monitor crops and

obtain information on their growth, disease, yield, and other factors

(Ganeshkumar et al., 2023; Chin et al., 2023; Pazhanivelan et al.,

2023). In addition to the above functions, ground machines that

used LVMs can also be used for harvesting and classifying crops, as

well as detecting pests up close. In (Yang et al., 2023c), a LVM,

segment anything model (SAM) (Kirillov et al., 2023), uses infrared

thermal images for chicken segmentation tasks in a zero-shot

means. SAM can be used in agriculture to segment immature

fruits on a fruit tree and quickly achieve yield prediction. Yang

et al. (2023a) subsequently proposed the Track Anything Model

(TAM) by combining SAM and video. Unfortunately, TAM places

more emphasis on maintaining short-term memory rather than
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long-term memory. Nevertheless, based on its capabilities, TAM

still has great potential in the agricultural field. If its long-term

memory ability can be improved, it can monitor early changes in

crop diseases and provide early warning to farmers. Embedding

LVMs such as SAM and TAM into robots can not only achieve

automation in agriculture, but these LVMs themselves can help

achieve automation in agricultural robot design.

Beyond perception, large models are also revolutionizing the

design process of agricultural robots. As mentioned previously, Stella

et al. (2023) demonstrated using LLMs like ChatGPT to assist in

designing an optimized robotic gripper for tomato picking. With the

latest multimodal versions like GPT-4.5, designers can now input not

only text descriptions but also sketches to partially automate the

robot design process. This integration of LVMs for perception and

LLMs for both control logic and design automation marks a

significant step towards fully autonomous agricultural systems.
3.4 Integration of multimodal models

LVMs provide powerful capabilities for visual analysis and

robotic perception. However, the most complex agricultural

challenges often require integrating information from multiple

sources. MLLM recently has emerged as a prominent research

hotspot (Figure 7), which uses powerful LLMs as a core to tackle

multimodal tasks (Yin et al., 2023). In recent years, many

researchers have utilized and merged diverse types of data inputs,

such as text, images, audio, video (Zhang et al., 2023a), sensor data

(Driess et al., 2023), depth information, point cloud (Chen et al.,

2024), and more.

The agricultural community has started exploring the realm of

multimodal learning in agricultural applications. By incorporating

multimodal learning techniques, the agricultural community seeks

to unlock new opportunities for optimizing various agricultural

processes and achieving improved outcomes. As an example,

Bender et al. have released an open-source multimodal dataset

specifically curated for agricultural robotics (Bender et al., 2020).

This dataset was collected from cauliflower and broccoli fields and

aims to foster research endeavors in robotics and ML within the

agricultural domain. It encompasses a diverse range of data types,

including stereo color, thermal, hyperspectral imagery, as well as

essential environmental information such as weather conditions

and soil conditions. The availability of this comprehensive dataset

uses as a precious resource for advancing the development of

innovative solutions in agricultural robotics and ML. Cao et al.

(2023) proposed a novel approach for cucumber disease recognition

using a MLLM that incorporates image-text-label information.

Their methodology effectively integrated label information from

many domains by employing image-text multimodal contrastive

learning and image self-supervised contrastive learning. The

approach facilitated the measurement of sample distances within

the common image-text-label space. The results of the experiment

demonstrated the effectiveness of this innovative approach,

achieving a recognition accuracy rate of 94.84% on a moderately

sized multimodal cucumber disease dataset.
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Nevertheless, it is important to highlight that existing models

primarily rely on text-image data and are mostly limited to QA

tasks. There is a noticeable lack of applications in the realm of

agricultural robotics that incorporate inputs like images, text, voice

(Human instructions), and depth information (From LiDAR or

laser sensors). These agricultural robots, commonly deployed for

tasks such as fruit picking or crop monitoring (Tao and Zhou,

2017), present a significant opportunity for the integration of

multimodal data sources to enhance their capabilities. In short,
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large models lacking a high degree of multimodality perform fewer

tasks and lack good applicability.
3.5 The choice between large models and
traditional models

The decision to implement either a large model or a traditional

model in agriculture is not straightforward. It involves considering a
FIGURE 5

An LLM-based AI Agent architecture for agricultural decision-making support.
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multitude of factors, such as the volume and quality of available

data, the required model generalizability, and the practical limits on

computational power and inference speed. However, by analyzing

the studies of Deforce et al. (2024); Zhao et al. (2023a), and Cao

et al. (2023), we found that these considerations can be effectively

categorized under two primary factors: Data and deployment

conditions. Similar to how large models are divided into LLM,

LVM, and MLLM, traditional models can be classified according to

the specific agricultural task, falling into the categories of NLP, CV,

and multimodal. For instance, models like AGRONER and PSO-

LSTM are designed to handle NLP tasks (Veena et al., 2023; Zheng

and Li, 2023), AG-YOLO and CMTNet address CV tasks (Lin et al.,

2024; Guo et al., 2025b), while ITK-Net and Multi-ResNet34 are

tailored for multimodal applications (Zhou et al., 2021; Zhang et al.,

2022a). Before selecting a model, it is best to first determine which

category the agricultural task belongs to.

When approaching an agricultural task, a critical step is to assess

the sufficiency of available data. If a substantial volume of high-quality,

task-specific data is available, a traditional model becomes a good

option. Conversely, in scenarios marked by data insufficiency,

leveraging a large model is often the more suitable choice. Figure 8

presents a comparative analysis of traditional models versus large

models based on data conditions and deployment constraints. PSO-

LSTM can be retrained on abundant data, and it can deliver superior

performance for a particular agricultural task, thus positioning this

model as a “specialist”. TimeGPT, on the other hand, functions as a

“generalist”, capable of handling diverse, non-specific agricultural

tasks using only minimal fine-tuning or a zero-shot approach in

data-scarce situations, thereby avoiding the need for complete model

retraining for each new task (Deforce et al., 2024). The pre-embedded
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knowledge within large models can effectively compensate for the lack

of domain-specific data.

On the other hand, deployment conditions are also a crucial

factor in model selection. While devices with high computational

capacity can deploy both large models and traditional models, the

significant computational and time costs associated with large

models make them unsuitable for edge devices and systems

requiring real-time response. For an agricultural task that requires

the model to be deployed on an edge device with real-time detection

needs, ITK-Net is the pragmatic and superior choice due to its

efficiency and low resource requirements (Zhou et al., 2021). While

the ITLMLP model proposed by Cao et al. (2023) also targets crop

disease recognition, it is suited for deployment only on devices that

can handle high computational costs. As a large model, ITLMLP’s

deployment conditions are considerably more stringent than those

of ITK-Net, the traditional model. However, this does not imply

that ITLMLP is without its merits. Its value lies not in real-time field

deployment, but in its powerful offline analysis capabilities. By

batch-processing vast agricultural data stored on cloud servers, it

can perform in-depth retrospective diagnostics and trend analysis.

Leveraging its powerful feature extraction and generalization

capabilities, acquired from pre-training on large-scale data,

ITLMLP can conduct reclassification of historical disease data,

compile statistics on disease occurrence frequencies across

different periods, and uncover potential correlations between

image features and specific environmental descriptions. By the

way, by optimizing the model architecture, using efficient

inference algorithms, and utilizing hardware acceleration

techniques, the real-time performance of LVMs can be improved

to a certain extent (Chen et al., 2023b). In addition, we have also
FIGURE 6

Farmers can obtain crop information through the process of image acquisition, image recognition, predictive analytics.
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FIGURE 7

Multimodal information fusion analysis driven by MLLM.
FIGURE 8

Comparison of large models and traditional models for agricultural tasks.
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discovered that ITLMLP could process a large dataset to generate

highly accurate annotated labels, which can then be used to train

smaller, more efficient models like ITK-Net. This creates a

synergistic ecosystem where the power of large models enables

the effectiveness of traditional models on the edge.

The choice between a large model and a traditional model for

agricultural tasks is not a matter of one being definitively superior to

the other, but rather a strategic decision based on a careful

evaluation of trade-offs. Large models, with their powerful

generalization capabilities, offer a robust solution for data-scarce

environments, while traditional models excel in data-rich scenarios

where their specialized nature can be fully leveraged. Similarly, the

high computational cost of large models makes them suitable for

offline, server-based analysis, whereas the efficiency of traditional

models is indispensable for real-time, on-device deployment.
4 Ethical issues and responsible use of
large vision and language models in
agriculture

As large models demonstrate their powerful potential and are

increasingly applied to agricultural tasks (referencing section 3), it is

crucial to critically examine the ethical and societal implications of

their deployment. However, there are often ethical and

responsibility issues in the development and deployment process

of AI today. The digital gap between those who have the resources

to develop and utilize large models and those who cannot afford to

do so creates an inequality in accessing large models, resulting in an

unfair distribution of risks and benefits (Harfouche et al., 2024). Not

only that, this divide can be exacerbated by the presence of AI biases

(Dara et al., 2022; Ryan, 2023). Accordingly, to ensure ethical issues

and responsible use of large models, this chapter starts from the
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ethical and responsibility issues in the agricultural large models and

explore corresponding measures.
4.1 Ethical considerations in the
deployment of large models in agriculture

Predicting and solving ethics problems of large models in

agriculture is a critical scientific and societal challenge. Although

large models point the way for the future of smart agriculture, due

to their characteristic of being influenced by close association, large

models often learn some bad knowledge in addition to useful

knowledge. Ethical issues have always been an indispensable topic

of discussion in the process of technological progress (Such as the

ethical issues discussed by Holmes et al. in the field of education

regarding educational AI (Holmes et al., 2022)), and we also need to

pay attention to ethics issues when using large models in the

agricultural direction. As mentioned below, many relevant

institutions and personnel have put forward their own ideas on

ethical issues related to large models.

Weidinger et al. (2021) put forward six types of ethical risks

(Figure 9): 1) Malicious uses, 2) Human-computer interaction

harms, 3) Automation, access, and environmental harms, 4)

Information hazards, 5) Misinformation harms, and 6)

Discrimination, exclusion, and toxicity. Understanding these issues

can help us responsibly use large models in the agricultural field.
1. Malicious uses. Prior to the release of GPT-4, OpenAI hired

a team of 50 experts and scholars to conduct a six-month

adversarial test on GPT-4. Andrew White, a professor of

chemical engineering at the University of Rochester who

was invited to participate in the test, stated that early

versions of GPT-4 could assist in the manufacture of
FIGURE 9

The ethical issues faced by large models.
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Fron
chemical weapons and even provide a convenient

manufacturing location. From the perspective of the

agricultural sector, if this issue is not properly addressed,

some may use large models to learn ways to destroy other

people’s farmland for the sake of profit, thereby allowing

themselves to have a larger market. Over time, this will lead

to vicious competition in the market.

2. Human-computer interaction harms. The potential harms

of human-computer interaction arise when users

excessively trust a large model or mistakenly treat it

as human.

3. Automation, access, and environmental harms. The large

model can give rise to automation, access, and

environmental harms due to its potential environmental

or downstream economic impacts.

4. Information hazards. Due to the involvement of

information from different countries, religions, and

ethnicities, model outputs leaking or inferring sensitive

information often led to political violence.

5. Misinformation harms. A study discussed the potential

risks of using poorly performing large models. The

original intention of this study was to provide a natural

language generation model in MOOC to respond to

students and improve their participation rate (Li and

Xing, 2021). Even so, due to the poor performance of the

model, the corresponding negative results further reduced

the enthusiasm of students. If a poorly performing large

model is used in the agricultural field, it may mislead

farmers in their judgment (Such as analysing incorrect

disease types), not only causing further damage to crops

in the farmland, but also making farmers increasingly

distrust the large model. For this phenomenon, Angelone

et al. proposed that warning labels can be applied to the

content generated by the large model (Angelone et al.,

2022), but this also involves the trust issue of the large

model in its own generated results.

6. Discrimination, exclusion, and toxicity. Two researches

have indicated that potential discrimination, exclusion,

and toxicity issues may occur if adopting a model that is

accurate but unfair (Sha et al., 2021; Merine and

Purkayastha, 2022).
Despite Weidinger et al.’s viewpoint can provide us with a

fundamental understanding of the risks associated with large

models, manners of systematic ethical supervision of large

models’ research and innovation (R&I) are especially restricted.

Coincidentally, the European Commission has officially approved

comprehensive “ethics guidelines for trustworthy AI” specifically

designed for R&I. These guidelines require that principal

investigators recognize and tackle the ethical matters raised by

their proposed research. Principal investigators are also required to

adhere to ethical principles and relevant legislation in their work. In

a similar vein, Stanford University’s Ethics and Society Review

necessitates researchers to distinguish potential societal hazards
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associated with their research and incorporate mitigation measures

into their research design (Bernstein et al., 2021).

Furthermore, projects with large models have a vast amount of

data and often raise ethics issues. For instance, while raw plant

science data itself may not inherently fall within the scope of the

European Union General Data Protection Regulation (GDPR) as

personal data, it can become subject to GDPR regulations when

linked to identifiable individuals or specific farm locations tied to

individuals, creating complex challenges concerning data

ownership and privacy protection (Harfouche et al., 2024). Thus,

relevant guidelines must consider code of conduct for data sharing,

privacy protection, and the overall governance of datasets.
4.2 Responsible use in agriculture

With the expanding development and utilization of large

models, there is a growing recognition of the need for agile and

effective regulatory oversight. To address this issue, it may be

necessary to use AI technology to assist in overseeing the

development and deployment of large models. Regarding this

aspect, the AI Act, which has been jointly agreed upon by the

European Parliament and the Council of Europe, represents the first

comprehensive set of harmonized rules on a global scale. It

promotes responsible large model designment and development

by regulating large model across various applications and contexts

based on a risk-based framework. Within the framework, careful

consideration must be given to the level of risk involved and how to

evaluate different large models as risk-free or low-risk.

To evaluate the risk level of a large model, we focus on four

aspects: transparency, privacy, equality, and beneficence. On the

other hand, in addition to developing and adhere to a strong

regulatory framework that guides the development, deployment,

and use of large models, regulatory methods also need to be

considered. Consider the potential societal impact, potential

harms, and long-term implications of the technology. Firstly, due

to the wide applicability of large models, we cannot make a one size

fits all approach. Regulation must adapt to specific issues in different

domains. The United States’ food and drug administration (FDA)

has tailored potential regulatory methods for AI and ML

technologies used in medical devices, categorizing them into three

major categories based on risk levels: Class I (Low risk), Class II

(Moderate risk), and Class III (High risk). Large models in

agriculture can also be regulated according to the FDA’s

approach, dividing them into several types of models ranging

from low risk to high risk. For example, genetically modified

crops may have environmental impacts, food safety issues, and

ecosystem damage, so large models targeting genetically modified

crops should be included in high-risk types. For large models of

ordinary crops, they can be classified as low-risk types. And the

regulatory methods proposed by relevant departments should be

made public to ensure transparency of information. Regulators can

promote fairness in the deployment of agricultural large models by

enforcing the use of diverse and representative data sources, which
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helps mitigate potential biases present in the training data (Meskó

and Topol, 2023).

From the perspective of beneficence and privacy, privacy issues

related to large models have received little attention or investigation

in reviewed research (Yan et al., 2024). Specifically, if the training

set used to train a large model contains some personal privacy

information that has not been authorized by the information owner.

The disregard for privacy concerns is especially worrisome

considering that LLM-based innovations involve stakeholders’

natural languages, which may contain personal and sensitive

information pertaining to their private lives and identities (Brown

et al., 2022). If users unintentionally learn about this information

while using a large model, it may cause harm to the beneficence of

the information owner. Developers of large models should ensure

they gain explicit consent from individuals before collecting and

utilizing these personal data. Clearly communicate the purpose and

scope of data usage, and offer individuals with the choice to choose

out or request data deletion. Besides, limit the amount of personal

and sensitive data collected and stored. Follow the principle of data

minimization, ensuring that only necessary data is collected and

retained. Anonymize or aggregate data whenever possible to protect

individual privacy.

In general, governance approaches that promote responsible

utilization of large models and focus on the outcomes rather than

the technology itself will enhance research efforts and drive more

innovation. By combining governance and ethics, we can harness

the powerful synergy to expedite the implementation of large

models in agriculture and other domains, fostering innovation at

a larger scale.
5 Challenges and future directions

Although large models can play a powerful role in the field of

agriculture, they still face challenges in many aspects.
5.1 Technical and practical challenges

5.1.1 Difficulty in obtaining agricultural data
A primary and recurring obstacle highlighted throughout this

review is the acquisition of suitable agricultural data. While large

models’ data generation capabilities can partially alleviate this, as

discussed in section 3.2.1, several fundamental difficulties persist:
Fron
1. Cost and quality: Acquiring comprehensive, high-quality,

and accurately labeled real-world data is a time-consuming,

labor-intensive, and costly process, especially for

supervised learning approaches (Li et al., 2023a; Lu and

Young, 2020).

2. Privacy and trust: As mentioned in section 4.2, the private

nature of farmland data raises significant privacy and trust

concerns among farmers, often leading to a reluctance to

share information crucial for model training.
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3. Temporal complexity: Agricultural data is inherently

temporal. The need to capture entire crop growth cycles,

which are influenced by daily, seasonal, and annual

variations, adds another layer of complexity to data

collection efforts (Li et al., 2023b).
5.1.2 Low training efficiency
Directly related to the need for massive datasets is the challenge

of low training efficiency and high computational cost. As

systematically compared against traditional models in section 3.5

(Figure 8), training large agricultural models is a resource-intensive

endeavor. Their massive parameter counts demand significant

computational power and lengthy training times, often measured

in thousands of GPU hours (Li et al., 2023b). This stands in stark

contrast to the efficiency of traditional models like YOLO and Faster

R-CNN, whose lower computational requirements make them a

more practical and cost-effective solution for many specific, real-

time agricultural tasks (Badgujar et al., 2024). This efficiency gap

explains the continued prevalence of traditional models despite the

emergence of more powerful large-scale architectures.

5.1.3 Distribution shift
The problem of distribution shift is a major challenge when using

large models in agriculture. When the data encountered by the model

during deployment is obviously different from the data used in its

training phase, a distribution shift will occur. The environmental

conditions for collecting data may vary greatly in different regions

and climates. These changes may include differences in crop types,

soil conditions, weather patterns, and agricultural practices, all of

which can lead to significant changes in data distribution (Wiles et al.,

2021). The distribution shift will result in the trained large model not

having strong applicability and may not achieve good results in some

agricultural tasks. For example, it has been proven that applying large

models directly to leaf segmentation tasks in a zero-shot means led to

unsatisfactory performance, which can be attributed to possible

distribution shifts (Chawla et al., 2021).

5.1.4 The lag of data
After the trained large model is put into use, the data used for

training has a certain timeliness for a long period of time. But after a

long time, some data lags in time, and the results obtained by using

a large model may deviate from the current facts (Figure 10).

5.1.5 Query formulation impacts model output
The results obtained from large models can vary significantly

depending on how the query is formulated. Like Figure 11, when

multiple images are spliced together for questioning, GPT-4

provides ambiguous answers; When only asking for one image,

GPT-4 provides a clearer answer.

To clear these obstacles, future research and development work

needs to pay attention to model optimization techniques such as

model compression and efficient network structure design, reducing

model size without affecting performance (Zhong et al., 2023). It is also
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necessary to provide update and maintenance functions for the model

to ensure its timeliness. Developers need to write relevant usage

instructions to help users get started quickly. Notably, emerging

frameworks like RAG offer a direct solution to the data lag and

accuracy challenges by connecting LLMs to real-time, external

knowledge bases. Similarly, developing more sophisticated AI

Agents capable of autonomous planning and tool use will be crucial

for creating robust and adaptable agricultural systems.
5.2 Infrastructure and cost barriers

Applying large models to rural areas faces significant barriers

related to poor connectivity and high implementation costs. These

limitations disproportionately affect small-scale farmers and regions

with underdeveloped infrastructure, exacerbating existing

inequalities in agricultural productivity and technological access

(Da Silveira et al., 2023).

Dibbern et al. (2024) found that farmers often abandon digital

tools due to unreliable broadband or mobile connectivity, even

when initial investments are made. Technologies like IoT, cloud-

based analytics, and real-time monitoring systems remain

underutilized in areas lacking stable network access. This has

brought some warnings for the application of large models in

rural areas. In addition, the high cost of agricultural machinery

using large models—render them inaccessible to resource-limited

farmers. For example, autonomous machinery and AI platforms

often require upfront investments exceeding $10,000 USD, a

prohibitive sum for smallholders (Bolfe et al., 2020).
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To overcome poor connectivity, investing in and expanding rural

broadband and mobile infrastructure is crucial, potentially through

government subsidies, public-private partnerships, and the

exploration of alternative network solutions like satellite internet or

mesh networks tailored to agricultural regions. To mitigate high

implementation costs, promoting the development of affordable,

modular agricultural machinery and large model platforms designed

specifically for smallholder farmers is essential. In short, bridging the

digital divide and promoting inclusive technological progress requires

joint efforts among technology developers, agricultural researchers,

policy makers, and local farmer organizations.
5.3 Future trends in the integration of
agricultural and food sectors and large
models

In the future, there will undoubtedly be agricultural large

models with better performance and higher applicability. And the

large models in agriculture should not be limited to text and image

inputs. We believe that future multimodal agricultural models can

support multimodal information such as videos (Analyzing crops in

videos) and audio (Tapping watermelons, and judging maturity

through the sound emitted). On the other hand, agriculture is

closely related to food, and the development of large models in

agriculture is likely to promote the development of large models in

the food domain. Trust is indispensable for agriculture and food

system technologies given food’s universality and importance to

people (Tzachor et al., 2022). Researchers need to navigate
FIGURE 10

The lag of data.
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complicated social, political, economic, and environmental

landscapes to develop appropriate large models in the food

industry. In the future food industry, researchers will strive to

establish trust with governmental agencies and funders, as well as

with food system partners, to provide food and products that the

public trusts (Alexander et al., 2024).

Overall, although the agricultural large model still faces many

challenges at present, we believe that through the joint efforts of

relevant researchers in the future, these challenges can be properly

addressed. And due to the close relationship between the food and

agricultural domains, with the gradual development of agricultural

large models, food large models will also receive further research,

thereby achieving mutual positive feedback between the

development of large models in these two fields.
6 Conclusion

In summary, this study investigated the application status of large

models in the agricultural field. Our analysis establishes that these

models offer unprecedented advantages through their capacity for

complex reasoning, multimodal information processing, and the
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execution of nuanced tasks ranging from pest identification to

robotic automation. We further determined that the efficacy of these

powerful tools is significantly amplified when they are tailored to the

agricultural domain, a crucial strategy for overcoming the pervasive

challenge of limited labeled data. Furthermore, this review provided a

pragmatic framework for choosing between large and traditional

models, emphasizing that the decision hinges on a careful trade-off

between data availability and deployment constraints. While large

models excel as “generalists” in data-scarce or offline analytical

scenarios, efficient traditional models remain indispensable as

“specialists” for real-time, on-device tasks.

However, this vast potential is tempered by critical,

interconnected challenges that must be addressed. A primary

hurdle is the acquisition and utilization of suitable agricultural data;

issues of data scarcity, high collection costs, inherent data diversity

(across crops, regions, conditions), privacy concerns associated with

farmland data, and the need for time-series information create

significant obstacles. Furthermore, the high computational

resources required for training and deploying large models, coupled

with the often-limited internet connectivity and financial resources in

rural areas, creates a significant digital divide, potentially excluding

smallholder farmers. Technical issues such as model susceptibility to
FIGURE 11

Different questioning methods can lead to different results.
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distribution shifts between training and deployment environments,

the problem of data lag impacting real-time relevance, and sensitivity

to query formulation also impact the reliability and practical

applicability of current models. Finally, overarching ethical

considerations, including potential biases in data or algorithms,

ensuring data privacy, promoting equitable access to technology,

and preventing misuse, are paramount and demand careful

consideration and robust governance frameworks.

Although our study is comprehensive, there are inherent

limitations to studying a rapidly developing field. To move

forward, future research must directly confront the limitations and

challenges identified. Developing novel techniques to mitigate data

scarcity—such as advanced data augmentation and self-supervised

learning tailored for agriculture—is a critical priority. Expanding

multimodal capabilities to robustly incorporate inputs like video,

audio, and diverse sensor data will unlock new frontiers in precision

farming. Crucially, research must move beyond theoretical ethics to

the practical implementation of governance structures for AI in

agriculture. Furthermore, a significant opportunity lies in exploring

the synergistic relationship between agricultural large models and the

broader food system, addressing challenges from farm to fork.

Large models stand poised to be transformative technologies for

agriculture.While significant challenges remain, the potential benefits

for productivity, sustainability, and food security are immense.

Addressing the technical hurdles, bridging the digital divide, and

navigating the ethical landscape through collaborative, responsible

innovation will be key to realizing this potential. We hope this article

serves as a valuable resource and a cornerstone, stimulating further

research and guiding the development of future agricultural large

models that are not only powerful but also practical, efficient, and

beneficial for all stakeholders in the global food system.
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Recurrent neural network based language model. Interspeech 2, 1045–1048.
doi: 10.21437/Interspeech.2010-343

Mostaco, G. M., De Souza, I. R. C., Campos, L. B., Cugnasca, C. E., et al. (2018).
“AgronomoBot: a smart answering Chatbot applied to agricultural sensor networks,” in
14th international conference on precision agriculture, Vol. 24. 1–13.

Nasir, I. M., Bibi, A., Shah, J. H., Khan, M. A., Sharif, M., Iqbal, K., et al. (2021). Deep
learning-based classification of fruit diseases: An application for precision agriculture.
Comput. Mater. Contin 66, 1949–1962. doi: 10.32604/cmc.2020.012945

Niranjan, P. Y., Rajpurohit, V. S., and Malgi, R. (2019). “A survey on chat-bot system
for agriculture domain,” in 2019 1st International Conference on Advances in
Information Technology (ICAIT). 99–103. doi: 10.1109/ICAIT47043.2019.8987429

Omia, E., Bae, H., Park, E., Kim, M. S., Baek, I., Kabenge, I., et al. (2023). Remote
sensing in field crop monitoring: A comprehensive review of sensor systems, data
analyses and recent advances. Remote Sens. 15, 354. doi: 10.3390/rs15020354

Paymode, A. S., and Malode, V. B. (2022). Transfer learning for multi-crop leaf
disease image classification using convolutional neural network VGG. Artif. Intell.
Agric. 6, 23–33. doi: 10.1016/j.aiia.2021.12.002

Pazhanivelan, S., Kumaraperumal, R., Shanmugapriya, P., Sudarmanian, N. S.,
Sivamurugan, A. P., Satheesh, S., et al. (2023). Quantification of biophysical
parameters and economic yield in cotton and rice using drone technology.
Agriculture 13, 1668. doi: 10.3390/agriculture13091668

Peebles, W., and Xie, S. (2023). “Scalable diffusion models with transformers,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision. 4195–4205.
doi: 10.48550/arXiv.2212.09748

Peng, R., Liu, K., Yang, P., Yuan, Z., and Li, S. (2023). Embedding-based retrieval
with llm for effective agriculture information extracting from unstructured data.
doi: 10.48550/arXiv.2308.03107

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). “Pointnet: Deep learning on point
sets for 3d classification and segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition. 652–660. doi: 10.1109/CVPR.2017.16

Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., and Sutskever, I. (2023).
“Robust speech recognition via large-scale weak supervision,” in International
Conference on Machine Learning. 28492–28518.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., et al. (2020).
Exploring the limits of transfer learning with a unified text-to-text transformer. J.
Mach. Learn. Res. 21, 1–67.
Frontiers in Plant Science 24
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M. (2022). Hierarchical
text-conditional image generation with clip latents 1, 3. doi: 10.48550/arXiv.2204.06125

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., et al. (2021). “Zero-
shot text-to-image generation,” in International conference on machine learning. 8821–
8831. doi: 10.48550/arXiv.2102.12092

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). “You only look once:
Unified, real-time object detection,” in Proceedings of the IEEE conference on computer
vision and pattern recognition. 779–788. doi: 10.1109/CVPR.2016.91

Ren, S., He, K., Girshick, R., and Sun, J. (2016). Faster R-CNN: Towards real-time
object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.
39, 1137–1149. doi: 10.1109/TPAMI.2016.2577031

Ren, Y., Hu, C., Tan, X., Qin, T., Zhao, S., Zhao, Z., et al. (2020). Fastspeech 2: Fast
and high-quality end-to-end text to speech. doi: 10.48550/arXiv.2006.04558

Ren, Y., Ruan, Y., Tan, X., Qin, T., Zhao, S., Zhao, Z., et al. (2019). Fastspeech: Fast,
robust and controllable text to speech. Adv. Neural Inf. Process. Syst. 32. doi: 10.48550/
arXiv.1905.09263

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2022). “High-
resolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/
CVF conference on computer vision and pattern recognition. 10684–10695.
doi: 10.48550/arXiv.2112.10752

Rose Mary, C. A., Raji Sukumar, A., and Hemalatha, N. (2021). Text based smart
answering system in agriculture using RNN. agriRxiv 2021), 20210310498.
doi: 10.31220/agriRxiv.2021.00071

Ryan, M. (2023). The social and ethical impacts of artificial intelligence in
agriculture: mapping the agricultural AI literature. AI Soc. 38, 2473–2485.
doi: 10.1007/s00146-021-01377-9

Saleem, M. H., Potgieter, J., and Arif, K. M. (2021). Automation in agriculture by
machine and deep learning techniques: A review of recent developments. Precis. Agric.
22, 2053–2091. doi: 10.1007/s11119-021-09806-x

Sha, L., Rakovic, M., Whitelock-Wainwright, A., Carroll, D., Yew, V. M., Gasevic, D.,
et al. (2021). “Assessing algorithmic fairness in automatic classifiers of educational
forum posts,” in Artificial Intelligence in Education: 22nd International Conference,
AIED 2021, Utrecht, The Netherlands, June 14–18, 2021, Proceedings, Part I 22. 381–
394. doi: 10.1007/978-3-030-78292-4_31

Shen, Y., Song, K., Tan, X., Li, D., Lu, W., and Zhuang, Y. (2024). Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face. Adv. Neural Inf. Process.
Syst. 36. doi: 10.48550/arXiv.2303.17580

Shi, B., Wu, Z., Mao, M., Wang, X., and Darrell, T. (2024). “When do we not need
larger vision models?,” in European Conference on Computer Vision. 444–462 (Cham:
Springer Nature Switzerland). doi: 10.1007/978-3-031-73242-3_25

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. doi: 10.48550/arXiv.1409.1556

Stella, F., Della Santina, C., and Hughes, J. (2023). How can LLMs transform the
robotic design process? Nat. Mach. Intell. 5, 561–564. doi: 10.1038/s42256-023-00669-7

Sun, C., Shrivastava, A., Singh, S., and Gupta, A. (2017). “Revisiting unreasonable
effectiveness of data in deep learning era,” in Proceedings of the IEEE international
conference on computer vision. 843–852.

Sundermeyer, M., Schlüter, R., and Ney, H. (2012). Lstm neural networks for
language modeling. Interspeech 2012, 194–197. doi: 10.21437/Interspeech.2012-65

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). “Going
deeper with convolutions,” in Proceedings of the IEEE conference on computer vision
and pattern recognition. 1–9. doi: 10.1109/CVPR.2015.7298594

Tao, Y., and Zhou, J. (2017). Automatic apple recognition based on the fusion of
color and 3D feature for robotic fruit picking. Comput. Electron. Agric. 142, 388–396.
doi: 10.1016/j.compag.2017.09.019

Team, G., Anil, R., Borgeaud, S., Alayrac, J. B., Yu, J., Soricut, R., et al. (2023).
Gemini: a family of highly capable multimodal models. doi: 10.48550/arXiv.2312.11805

Team, G., Kamath, A., Ferret, J., Pathak, S., Vieillard, N., Merhej, R., et al. (2025).
Gemma 3 technical report. doi: 10.48550/arXiv.2503.19786

Team, G., Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju, S., Pathak, S., et al.
(2024). Gemma: Open models based on gemini research and technology. doi: 10.48550/
arXiv.2403.08295

Thenmozhi, K., and Reddy, U. S. (2019). Crop pest classification based on deep
convolutional neural network and transfer learning. Comput. Electron. Agric. 164,
104906. doi: 10.1016/j.compag.2019.104906

Tokekar, P., Vander Hook, J., Mulla, D., and Isler, V. (2016). Sensor planning for a
symbiotic UAV and UGV system for precision agriculture. IEEE Trans. Robotics 32,
1498–1511. doi: 10.1109/TRO.2016.2603528

Tripathy, P., Baylis, K., Wu, K., Watson, J., and Jiang, R. (2024). Investigating the
segment anything foundation model for mapping smallholder agriculture field
boundaries without training labels. doi: 10.48550/arXiv.2407.01846

Tzachor, A., Devare, M., King, B., Avin, S., and Ó hÉigeartaigh, S. (2022).
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