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Genomic Prediction (GP) considering Genotype by Environment (G×E)

interactions was, for the first time, used to assess the environment-specific

seasonal performance and genetic potential of perennial ryegrass (Lolium

perenne L.) in a regional evaluation system across southeastern Australia. The

study analysed the Dry Matter Yield (DMY) of 72 base cultivars and endophyte

symbiotic effects using multi-harvest, multi-site trial data, and genomic data in a

best linear unbiased prediction framework. Spatial analysis corrected for field

heterogeneities, while Leave-One-Out Cross Validation assessed predictive

ability. Results identified two distinct mega-environments: mainland Australia

(AUM) and Tasmania (TAS), with cultivars showing environment-specific

adaptation (Base and Bealey in AUM; Platinum and Avalon in TAS) or broad

adaptability (Shogun). The G×E-enhanced GP model demonstrated an overall

24.9% improved predictive accuracy (Lin’s Concordance Correlation Coefficient,

CCC: 0.542) over the Australian industry-standard best linear unbiased

estimation model (CCC: 0.434), with genomic information contributing a 12.7%

improvement (CCC: from 0.434 to 0.489) and G×E modelling providing an

additional 10.8% increase (CCC: from 0.489 to 0.542). Narrow-sense

heritability increased from 0.31 to 0.39 with G×E inclusion, while broad-sense

heritability remained high in both mega-environments (AUM: 0.73, TAS: 0.74).

These findings support informed cultivar selection for the Australian dairy

industry and enable genomics-based parental selection in future

breeding programs.
KEYWORDS

regional evaluation system, environmental adaptability, sustainable forage production,
multi-harvest multi-site trials, genomic selection
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Introduction

Perennial ryegrass (Lolium perenne L.) is a mainstay forage

species in temperate agriculture, underpinning the global dairy and

livestock sectors. Its widespread adoption stems from desirable

characteristics including high digestibility, good grazing tolerance,

and adaptability to diverse climatic conditions (Gilliland and

Hennessy, 2021; Hannaway et al., 1999; Leddin et al., 2020).

Regional evaluation systems have evolved to assess perennial

ryegrass performance within specific agricultural contexts. The

Australian Forage Value Index (AU-FVI) was developed to assist

farmers in selecting economically suitable cultivars by evaluating

their performance across five seasonal periods (Summer, Autumn,

Winter, Early Spring and Late Spring) (Leddin et al., 2018). Similar

systems have also been developed in New Zealand (NZ-FVI)

(Chapman et al., 2017) and Ireland (PPI) (McEvoy et al., 2011).

They all underscore the necessity of accurately evaluating relative

differences in Dry Matter Yield (DMY) among cultivars.

However, perennial ryegrass DMY exhibits complex temporal

and spatial variation patterns, challenging its evaluation.

Measurements showed substantial seasonal fluctuations from

1396 DM kg/ha/season during Winter periods to 2183 DM kg/ha/

season in Late Spring (Giri et al., 2019) and by both management

practices and environmental conditions (Colas et al., 2022). Unlike

other dairy systems (Chapman et al., 2017; McEvoy et al., 2011),

Australia has experienced an extended period without centralized

pasture cultivar evaluations, creating unique challenges when

selecting suitable cultivars for a given locality (Leddin et al.,

2018). These challenges have prompted the exploration of

Genomic Prediction (GP) as a promising solution.

Originally developed for animal breeding by Meuwissen et al.

(2001), GP has since found successful applications in plant evaluation,

by leveraging genome-wide markers to capture the overall additive

genetic variance of traits. Various GPmethodologies have been studied,

primarily Best Linear Unbiased Prediction (BLUP) and Bayesian

frameworks (Arojju et al., 2020a, 2018; Byrne et al., 2017; Cericola

et al., 2018; Endelman, 2011; Esfandyari et al., 2020; Faville et al., 2021,

2018, 2016; Fè et al., 2016, 2015; Grinberg et al., 2016; Jahufer et al.,

2021; Keep et al., 2020; Konkolewska et al., 2023; Malmberg et al., 2023;

Meuwissen et al., 2016). The use of BLUP models that integrate

genomic information (GBLUP) has been studied as one of the most

promising methodologies for quantitative trait evaluation (Arojju et al.,

2018; Cericola et al., 2018; Esfandyari et al., 2020; Faville et al., 2018;

Konkolewska et al., 2023).

The potential of GP has been demonstrated in perennial

ryegrass. For instance, predictive accuracies for traits with high

heritability and low genetic complexity, such as heading date range

from 0.75 to 0.90 (Fè et al., 2015; Malmberg et al., 2023). Simulation

studies further suggest that GP could accelerate genetic gain by two

to three times compared to conventional phenotype-only

approaches. This is achieved by reducing breeding cycle time

while maintaining accuracy with sufficient marker densities

(Arojju et al., 2020b; Barre et al., 2022; Guo et al., 2018; Lin et al.,

2016). These findings comprehendingly underscore the potential of

GP to enhance evaluation efficiency for perennial ryegrass DMY.
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However, genomic relationships and GP have not been fully

utilised to better estimate DMY in perennial ryegrass regional

evaluation systems, particularly using Multi-Harvest, Multi-Site

(MHMS) field trials. This is mainly due to a highly complex

genetic nature and limited predictive ability further confounded

with Genotype by Environment (G×E) interactions (Arojju et al.,

2020b; Bornhofen et al., 2022; Faville et al., 2016; Jahufer et al., 2021;

Pembleton et al., 2018). Notably, most phenotypic data relates to the

contemporary evaluation of populations in one environment, and

even when a historical performance database is used, this

phenotypic data typically comes from limited environments

(Arojju et al., 2020b; Bornhofen et al., 2022; Faville et al., 2016;

Grinberg et al., 2016; Jahufer et al., 2021; Pembleton et al., 2018).

This narrow focus restricts the ability to accurately evaluate DMY

performance across diverse environmental conditions and

compromises the prediction of future progeny performance under

novel environments. Moreover, environmental variability often

dominates phenotypic responses, as evidenced by shifts in cultivar

rankings of DMY performance across environments in Ireland

(Conaghan et al., 2008), New Zealand (Chapman et al., 2017),

and Australia (Zhu et al., 2023).

Given these complexities, extensive MHMS trial data combined

with sophisticated statistical methods that can account for G×E

interactions have become essential for accurately assessing DMY

performance and predicting cultivar adaptation to specific

environments (Chapman et al., 2017; Giri et al., 2019; Kemp,

2011; Leddin et al., 2022, 2018; Zhu et al., 2023). Multiple

statistical approaches, such as additive main effects and

multiplicative interaction models (Annicchiarico, 1997; Li et al.,

2023; Sa’diyah and Hadi, 2016; Smith et al., 2001; Yue et al., 2022)

and reaction norm models (Bornhofen et al., 2022), have been

developed. Additionally, linear mixed models combined with a

Factor Analytic (FA) strategy have emerged as a powerful

approach for analysing large-scale MHMS trials and accounting

for heterogeneous genetic variances across environments

(Burgueño et al., 2008; Piepho, 1998; Smith et al., 2015; Zhu

et al., 2023).

Furthermore, unclear breeding histories of commercial cultivars

have hampered the usage of pedigree relationships and genomic

information in DMY prediction in regional evaluation systems.

Perennial ryegrass is a self-incompatible species and breeding

practices involving multiple cycles of synthetic population

breeding (Pembleton et al., 2016; Wang et al., 2014), creating

high heterozygosity and intricate genetic structures. This

complexity not only makes it difficult to account for genetic

relationships among populations but also leads to predictive

performances varying in different breeding programs (Alemu

et al., 2024; Arojju et al., 2018; Daetwyler et al., 2012).

To address these challenges, this study presents a

comprehensive evaluation of multiple base cultivars across diverse

breeding programs and assesses their DMY performance across

multiple Australian pasture environments. Each base cultivar,

genetically distinct from the others, represents a unique genotype.

The efforts collectively deliver reliable performance evaluations that

account for G×E interactions, while demonstrating the potential of
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GP to infer breeding values (as genomic estimated breeding values,

GEBVs) and genetic adaptability (as environment-driven

genetic responses).
Materials and methods

Field trial data

The experimental dataset encompassed 23 MHMS pasture trials

conducted between 2008 and 2023 (Table 1), managed by the

Pasture Trial Network and Australian seed companies,

comprising 2,260 plots for 143 cultivars, yielding 47,325

observations across 485 harvest events. Each cultivar is a unique

combination of one of 118 genetically distinct base cultivars and one

of 13 endophytes. The trials employed row-column designs with

block replication, where each cultivar was replicated at least four

times, with the Victorian WT (control cultivar) replicated up to

eight times in certain trials, following established protocols (Leddin

et al., 2018). The harvests spanned five forage seasons: Winter (June

and July), Early Spring (August and September), Late Spring

(October and November), Summer (December, January, and

February), and Autumn (March, April, and May); sites spanned

five major Australian dairy economic regions: South West Victoria,

Gippsland, Tasmania, Northern Victoria and Southern Riverina,

and South Australia.
Spatial analysis and phenotyping

Six frameworks of spatial models: Base, Spatial Fixed, Spatial

Fixed Linear, Spatial Random, Spatial Mixed, and Spatial Mixed

Linear were tested for their effectiveness in accounting for the

spatial variation per trial, considering their successful applications

in previous spatial analyses of agricultural field trials (Federer et al.,

1997; Gilmour et al., 1997; Hawinkel et al., 2022; Hoefler et al., 2020;

Piepho et al., 2008; Smith et al., 2005). These models were fitted

using ASReml-R (v3.00) (Butler, 2009; Butler et al., 2009) and

assessed using log-likelihood (logLik), Akaike Information

Criterion (AIC), Bayesian Information Criterion (BIC), and Mean

Absolute Error (MAE). Phenotypes were corrected as response

values (y) by subtracting the estimated spatial effects via the most

optimised Spatial Mixed framework, where the spatial effects were

fitted as both fixed and random effects. For further details about the

spatial models and their performances, please refer to

Supplementary Material S1 and Supplementary Table S2.
Pool sequencing and population
genotyping

The study evaluated 72 ryegrass genotypes, sourced from

Australian collections and commercial suppliers, with full

germplasm details documented by Zhu et al. (2025). Each

genotype represents a genetically distinct ryegrass population.
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Due to restrictions, the remaining 46 pre-commercial breeding

lines at trial sites were not sequenced or genotyped.

Deoxyribonucleic acid (DNA) sequencing utilised a target

capture approach with probes designed from SNPs (Single

Nucleotide Polymorphisms) mapped to the Kyuss reference

genome (Frei et al., 2021). All laboratory procedures and

bioinformatics analyses followed previously validated protocols

(Zhu et al., 2025), encompassing DNA extraction, library

preparation, pool sequencing, and population genotyping

derivation from allele frequencies. Key marker quality controls

included filtering loci with minor allele frequency (MAF > 5%),

ensuring sufficient read depth (RD > 5), limiting sample missing

data for (< 20%), and excluding loci with low mapping quality (MQ

< 50) or low calling quality (QUAL < 20), resulting 85,903 high-

quality SNP markers for further analysis (Zhu et al., 2024).
Genomic relationships

A Genomic Relationship Matrix (GRM) was constructed

following Yang et al. (2010) and adapted for allele frequency

format. For a pair of genotypes j and k, their genomic

relationship was calculated as:

Gjk =
1
NoiAijk =

1
Noi

2(xij−pi)(xik−pi)
1
Koj

(xij−pi)
2 ,   j ≠ k

1 + 1
Noi

2x2ij−(1+2pi)xij+p
2
i

1
Koj

(xij−pi)
2 ,   j = k

8>><>>: (1)

where N is the number of SNPs, N is the number of genotypes,

xij is the reference allele frequency for the i-th SNP of the j-th

genotype, and pi is the average reference allele frequency at the i-

th SNP.

The full rank of the initial GRM was verified via eigenvalue

decomposition. The nearest positive definite matrix was obtained

using the `nearPD` algorithm in Matrix (v1.7) (Bates et al., 2024) in

R (R Core Team, 2025) and inverted for subsequent mixed model

analyses. The inverse GRM was formatted as a sparse lower

triangular matrix to optimize computational efficiency in

ASReml-R (v3.00) (Butler, 2009; Butler et al., 2009).
Prediction and estimation modelling for
dry matter yield

Sets of GP models were fitted using ASReml-R (v3.00) (Butler,

2009; Butler et al., 2009) as Equation 2 to predict the DMY of the 72

ryegrass genotypes. Endophytes (endo) were fitted as a fixed

component to separate their symbiotic effects from DMY

responses (Zhu et al., 2025).

y = XGPbGP + Zg + e (2)

Where, y is the vector of spatially corrected phenotypes; e is the
vector of residual errors, e ∼ N (0, Var(e)).

XGPbGP = (m,Tri,Har jTri,Endo)(1, bTri, bHar jTri, bendo)
0
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TABLE 1 The 23 multi-harvest, multi-site trials (perennial ryegrass) from 2008 to 2023, including the economic region of the trial, number of harvests, number of columns and rows (Col_Row), number of base
cultivars (Cultivar), number of endophytes (Endo), number of observed seasons (i.e., Winter, Early Spring, Late Spring, Summer, and Autumn), and number of observations (Obs) of each trial.
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Trial Region Harvest Col_Row Cultivar_Endo Win

1 Ballarat2013 South West Victoria 17 20×8 32 + 7

2 Ballarat2017 South West Victoria 22 14×8 24 + 10

3 Ballarat2019 South West Victoria 23 8×7 13 + 5

4 Casterton2012 South West Victoria 16 30×4 30 + 6

5 CressyTAS2012 Tasmania 16 30×4 30 + 6

6 CressyTAS2014 Tasmania 20 12×8 22 + 6

7 EllinbankVIC2015 Gippsland 22 32×4 28 + 9

8 ElliottTAS2015 Tasmania 26 12×10 27 + 9

9 GlenThompson2020 South West Victoria 15 19×4 19 + 9

10 Hamilton2018 South West Victoria 15 25×4 23 + 9

11 Howlong2010 Northern Victoria and Southern Riverina 24 14×6 21 + 6

12 Howlong2011 Northern Victoria and Southern Riverina 24 16×6 24 + 5

13 Howlong2012 Northern Victoria and Southern Riverina 27 10×6 14 + 5

14 Howlong2014 Northern Victoria and Southern Riverina 27 14×6 20 + 6

15 LeongathaVIC2016 Gippsland 15 9×8 18 + 6

16 Macarthur2019 South West Victoria 20 19×4 16 + 9

17 MtGambier2016 South Australia 24 42×2 21 + 7

18 Shepparton2008 Northern Victoria and Southern Riverina 18 9×8 14 + 6

19 SmithtonTAS2017 Tasmania 20 24×4 24 + 8

20 Terang2018 South West Victoria 24 14×8 26 + 10

21 TimboonVIC2015 South West Victoria 20 32×4 28 + 9

22 TongalaVIC2015 Northern Victoria and Southern Riverina 28 16×8 29 + 9

23 Warrnambool2020 South West Victoria 22 20×4 20 + 9
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Where, m is the Intercept; Tri, Har jTri, Endo are design

matrices for the fixed effects of Trial (bTri), Harvest effects within

Trial (bHar jTri), and endophyte effects (bendo), respectively.

The additive genetic effects (a) across harvests and trials were

assumed to follow a gaussian distribution ofN (0,G), where G is the

GRM calculated as described above. The overall genetic effects (g)
and its genetic variances across environments were assumed as g~N
(0,K):

K0 =
diag(s2

Tri(S
COR(lHar )
Har ⊗ Igeno)Tri) 0

0 G

" #

K1 = GTriG
0
Tri ⊗  SCOR(lHar )

Har ⊗G
� �

Tri
+YTri ⊗  SCOR(lHar)

Har ⊗G
� �

Tri
,

K = K0 for models without considering G×E, K = K1 for

models considering G×E.

Wherein, diag() denotes the diagonal matrix where all off-

diagonal values are 0; s2
Tri is the unique variance for each Trial

(Tri); ∑COR(lHar )Har is the order- lHar autoregressive or ante-

dependence variance-covariance matrices for Harvest (Har), lHar
∈ 1, 2, 3f g; Igeno denotes the independent and identical genotypic

variances; GTri denotes the FA loading matrices including order-one

(FA1), order-two (FA2), and order-three (FA3) structures, G
0
Tri

denotes the transpose of GTri, and YTri denotes the unique variance

matrix of Tri in the FA models; its covariance matrix L =

GTriG
0
Tri +YTri; ⊗ denotes the Kronecker product.

A Best Linear Unbiased Estimation (BLUE) model, which is the

current industry standard when evaluating DMY performance for

Australian dairy regions (DairyAustralia, 2024), was given as

y = XBLUEbBLUE + e (3)

Where, y is the vector of spatially corrected phenotypes; e is the
vector of residual errors, e ∼ N (0, Var(e)); and

XBLUEbBLUE = (m,Tri,Geno jTri,Har jTri,Endo)
(1, bTri, bgeno jTri, bHar jTri, bendo)

T

Where, m is the Intercept; Tri, Geno jTri,  Har jTri, Endo are

design matrices for the fixed effects of Trial (bTri), genotype (geno)

effects within Trial (bgeno jTri),Harvest effects within Trial (bHar jTri),
and endophyte effects (bendo), respectively.

All the models using Equations 2 and 3 were assessed based on

logLik, AIC, BIC, and Mean Squared Error (MSE) to identify the

most appropr ia te model to account for the genet ic

variance components.

The prediction was achieved by `predict()` in ASReml-R

(v3.00) (Butler, 2009; Butler et al., 2009) and visualized in a biplot

using an R package ggplot2 (v3.5.1) (Wickham, 2016). The

predictions using K0 (GBLUP) and K1 (G×EBLUP) for the five

ryegrass seasons: Winter, Early Spring, Late Spring, Summer, and

Autumn, were obtained following a weighting system by Zhu et al.

(2023). The mega-environments, AUM and TAS, were identified by

the clustering patterns. Specifically, within each mega-environment,

harvests were weighted such that their total weight within a given

season summed to 1=5, ensuring equal seasonal contributions.
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In G×EBLUP, the mega-environment TAS was identified to

include CressyTAS2012, CressyTAS2014, ElliottTAS2015, and

SmithtonTAS2017, while the remaining trials were classified

as AUM.

The Least Significant Difference (LSD) was calculated to

evaluate performance variation within each mega-environment.

Within-season LSDs were used to determine significant

differences among the base cultivars per season and across-season

LSDs were used to determine significant differences across seasons.

All these LSDs are calculated at a 5% significance level.

The seasonal estimation was achieved by calculating the linear

combination of dbBLUE corresponding to the design matrix XBLUE

and averaging over the harvests in the corresponding season.

The goodness-of-fit of the full prediction model (GBLUP and

G×EBLUP) and estimation model (BLUE) were assessed by

Coefficient of Determination (CoD) and root mean square

error (RMSE).
Genomic estimated breeding values and
heritability

Genomic Estimated Breeding Values (GEBVs) were predicted

as ~a through the genomic relationship matrix G for both GP models

(Equation 2). For the model assuming independent genetic variance

structures across environments (using K0), the narrow-sense

heritability (h2) was calculated as: h20 = s2
a=(s2

a + s2
e ), where s2

a is

the additive genetic variances captured by G, and s2
e is the residual

variances. For the model considering G×E interaction (using K1),

the narrow-sense heritability was given as h21 = s2
a=(s2

a + s2
l + s2

e)

where s2
l is the non-additive G×E genetic variances captured by L

(in K1 of Equation 2).

For models considering G×E interaction, the environment-

driven genetic responses (EnvY) for each mega-environment was

calculated as: EnvYme  =  ~gw
0
me, where ~g represents the overall

genetic effects and wme is the weighting vector for Trial×Harvest

combinations in each mega-environment. The broad-sense

heritability (H2) incorporating the genetic variances of the

environments was given as H2 = (s2
a + s2

lE)=(s
2
a + s2

l + s2
e ),

where s2
lE denotes the non-additive genetic variances for specific

mega-environment, which is a subset of the total non-additive

genetic variances s2
l .
Cross validation and model performance
assessment

Leave-One-Out Cross Validation (LOOCV) was performed to

assess prediction accuracy and precision for GEBV and

environment-driven genetic responses for GP models (Eq. 2). In

each validation round, one genotype was excluded from the training

population, the EnvYs were predicted using the reduced dataset,

and the prediction accuracy was assessed by comparing the EnvYs

against the phenotypes corrected for spatial, endophyte and field

effects in the five seasons. For BLUE models (Equation 3), which
frontiersin.org
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lack genomic relationships, the phenotypic estimates were

compared directly with the spatially corrected phenotypes to

assess estimation accuracy and precision. The prediction or

estimation precision within each mega-environment or dairy

region was assessed using Pearson’s Correlation Coefficient (PCC)

and overall prediction accuracy and precision was assessed by Lin’s

Concordance Correlation Coefficient (CCC).
Results

Genomic relationships

Genomic relationship analysis characterized the genomic

composition of 72 ryegrass accessions (Figure 1). The diagonal

elements of the GRM ranged from 0.112 (Halo) to 1.372

(Barberia), representing genetic variances for each germplasm.

Among these, 71 accessions showed diagonal values less than 1,

with only Barberia exceeding 1. The off-diagonal elements ranged
Frontiers in Plant Science 06
from -0.284 to 0.981, representing genetic covariances between pairs

of accessions. Hierarchical clustering identified three main clusters

corresponding to Italian ryegrass (Barberia to BL017), Boucheanum

ryegrass (Perun to Ohau), and perennial ryegrass (BL012 to

Meridian), consistent with previous findings (Zhu et al., 2025).
Model performance

Three sets of evaluation models were fitted and assessed,

including G×EBLUP, GBLUP, and BLUE (Table 2). Comparing

the best model identified in each set, the G×EBLUP framework

achieved the highest CoD (0.925), marginally outperforming the

GBLUP framework (CoD: 0.924) and BLUE framework (CoD:

0.888). The G×EBLUP model also had the lowest average RMSE

of prediction (Figure 2), and its RMSEs were less variable across

genotypes compared to the GBLUP model. Both the G×EBLUP and

GBLUP models show lower mean and median RMSEs than the

BLUE model.
FIGURE 1

The genomic relationship matrix (GRM) of the 72 ryegrass germplasms with distinct genetic backgrounds. The diagonal values are genomic variances
for each germplasm; off-diagonal elements are the genetic covariances between pairs of germplasms. Dendrograms show hierarchical clustering of
germplasms based on their genetic relationships.
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The G×EBLUP framework presents the best-fitting model with

the highest logLik (-212,617) and lowest AIC (425,382), BIC

(426,016), and MSE (5784.21). Its optimal variance component

combined an FA2 structure for G×E interactions and an order-three

autoregressive structure for temporal correlations.

The best model identified in the GBLUP framework showed the

second-best fit (logLik: -225,254, AIC: 450,713, BIC: 451,595, MSE:

6048.22), with order-three autoregressive structure as optimal

temporal structure.

The best model from the BLUE framework showed the poorest fit

(logLik: -230,523, AIC: 462,439, BIC: 467,756, MSE: 8850.75). The

goodness-of-fit, as measured by CoD, was similar across frameworks.

The G×EBLUP framework showed superior prediction

accuracy and precision with PCC ranging from 0.582-0.610 for

AUM and 0.600-0.628 for TAS, and CCC ranging from 0.500-0.584.

The GBLUP framework showed lower prediction accuracy and

precision with PCC ranging from 0.506-0.536 and CCC from 0.444-

0.534. The BLUE framework showed considerable precision

variation across regions, with Gippsland achieving the highest

precision (PCC: 0.664) and South Australia the lowest (PCC: 0.314).
Dry matter yield prediction and estimation

The G×EBLUP model with the variance structures defined by

K1 in Table 2 predicted seasonal DMY (DM kg/ha/season) for the

72 base ryegrass cultivars across 23 environments in Tasmania and

the Australia mainland. The full prediction information is provided

in Supplementary Table S3.
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The biplot (Figure 3) visualized the prediction, where the first

two principal components explained 77.46% of the total variation in

genotype responses across environments. The environments

(arrows) formed two distinct clusters in the biplot. One group

located in the upper quadrant consisted of TAS mega-environment

(CressyTAS2012, CressyTAS2014, ElliottTAS2015, and

SmithtonTAS2017). The other group AUM positioned in the mid

and lower quadrants including Howlong, Ballarat, and Shepparton

across years 2008-2020, with Shepparton2008 showing the greatest

deviation from other environments.

The DMY performance differed across the two mega-

environments (Table 3). In the AUM mega-environment, the

highest annual DMY was achieved by BL011 (8263.5 ± 77.1 DM

kg/ha/year), followed by Shogun (8226.6 ± 65.3) and Base (8187.2 ±

48.4). The lowest DMY were recorded for Victorian (6957.6 ± 47.8),

Helix (6970.4 ± 73.6), and Endure (7072.3 ± 74.0). The range of

annual DMY in AUM was 1305.9 DM kg/ha/year. In the TAS

environment, Platinum achieved the highest annual DMY (7086.8 ±

138.7 DM kg/ha/year), followed by Shogun (7074.1 ± 139.1) and

Avalon (7051.7 ± 91.3). The lowest performing cultivars were

Endure (5330.5 ± 128.8), Meridian (5332.7 ± 144.0), and Helix

(5623.1 ± 141.1). The TAS environment showed a larger range in

annual DMY of 1756.3 DM kg/ha/year. Notably, Shogun

maintained high performance in both mega-environments, while

Helix and Endure consistently performed poorly.

Seasonal variations were also observed in both mega-

environments. In AUM, the seasonal means followed the order of

Late Spring (2082.8 DM kg/ha/season) > Early Spring (1751.0) >

Summer (1558.8) > Winter (1208.4) > Autumn (1124.6). The
TABLE 2 Comparison of statistical models for ryegrass dry matter yield across south-eastern Australian pasture environments.

Model Best Model
Components

logLik AIC BIC MSE CoD PCC Regions/Mega-
environments

CCC

BLUE
y = Yield
Xb = XBLUEbBLUE

Zg is NA
-230523.69 462439.37 467756.93 8850.75 0.888

0.476 Tasmania

0.434

0.498 South West Victoria

0.664 Gippsland

0.314 South Australia

0.443
Northern Victoria

and
Southern Riverina

GBLUP

y = Yield
Xb = XGPbGP

g eN (0,K0)and in K0:

COR(lHar) is order-three
autoregressive variance structure

-225254.83 450713.66 451595.90 6048.22 0.924 0.521 ± 0.015 NA 0.489 ± 0.045

G×EBLUP

y = Yield
Xb = XGPbGP

g eN (0,K1) and in K1:

COR(lHar) is order-three
autoregressive variance structure,
G Tri is order-two factor
analytic loadings

-212617.24 425382.47 426016.04 5784.21 0.925

0.596 ± 0.014 AUM

0.542 ± 0.042

0.614 ± 0.014 TAS
Model comparisons include: (i) BLUE (Best Linear Unbiased Estimation) without incorporating genomic relationships and G×E (Genotype by Environment) interactions; (ii) GBLUP (Genomic
Best Linear Unbiased Prediction) only incorporating additive genetic effects via genomic relationships; and (iii) GBLUP considering G×E interactions (G×EBLUP).
For a genomic prediction model using Equations 2 and 3, model performance is assessed using logLik, AIC, BIC, MSE, CoD, PCC, and CCC.
NA, Not Applicable.
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differences between all seasons were significant based on the LSD

(84.5 DM kg/ha across seasons). In Late Spring, BL011 achieved the

highest DMY (2189.5) while Helix had the lowest (1919.5). In the

lowest-yielding season (Autumn), Base performed best (1258.6)

while Victorian yielded lowest (926.3). In TAS, the seasonal means

also showed significant differences (LSD = 175.4 DM kg/ha across

seasons) with the order being Late Spring (1896.9) > Summer

(1437.4) > Early Spring (1352.2) > Autumn (1022.3) > Winter

(901.5). WintasII achieved the highest Late Spring DMY (2114.3)

while Endure had the lowest (1700.6). In Winter, the lowest-

yielding season in TAS, Base performed best (1137.2) while

Endure again showed the lowest yield (567.7) (Supplementary

Table S3).
Genomic estimated breeding values and
heritability

Genomic prediction models revealed moderate narrow-sense

heritability, with h² = 0.31 for the model without G×E and h² = 0.39

for the model including G×E interactions. Broad-sense heritability

was high in both environments (H² = 0.73 in AUM andH² = 0.74 in

TAS), with genetic variances of the environments accounting for

34% and 35% of total variance, respectively. The GEBVs of base

cultivars ranged from -813.59 to 524.44 DM kg/ha/season

(Supplementary Table S4). The top five cultivars based on GEBVs
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were BL011 (524.44), Shogun (506.07), Base (441.11), BL008

(406.99), and Maxsyn (359.69).

Environment-driven genetic responses varied between mega-

environments. In AUM, DMY responses ranged from -1088.48

(Victorian) to 794.75 (BL011) DM kg/ha/season. In TAS, the range

was from -711.66 (Meridian) to 281.70 (Shogun) DM kg/ha/season.

Most base cultivars maintained stable responses across environments.

However, several base cultivars showed substantial re-ranking

between mega-environments (Figure 4 and Supplementary Table

S4). For example, Avalon ranked 62nd for AUM response but 3rd for

TAS response, while Bealey ranked 11th in AUM but 62nd in TAS.
Discussion

Spatial analysis and phenotyping

Accurate phenotyping is crucial for developing reliable GP

models. This study utilized MHMS trials of perennial ryegrass

across diverse environmental conditions to phenotype the DMY

of the 72 ryegrass genotypes. However, within each trial, measuring

DMY is challenging due to local spatial variation, highlighting the

necessity of spatial analysis within trials in our study.

Local spatial variation within trials involves soil heterogeneity, local

moisture gradients, fertility differences, or management practices

(Gilmour et al., 1997; Piepho et al., 2008) and can introduce biases

in genetic responses in GP models, reducing model precision.

Traditional experimental designs, like randomized complete block

designs, often fail to fully address the biases, especially in large-scale

multiple trials (Gilmour et al., 1997; Hoefler et al., 2020; Piepho et al.,

2008; Smith et al., 2005). Advanced spatial analysis methods using

mixed two-dimensional covariance structures in this study mitigated

these spatial confounding effects and improve GP precision.

The models, where the spatial effects were fitted as both fixed

and random effects, were used to address field heterogeneities without

assuming linear trends along rows and columns. Cultivar effects

were treated as fixed to retain raw field responses at the individual

data point level (e.g., each replicate per harvest). This approach

ensures results comparable to single-stage analysis (Holland and

Piepho, 2024) without misusing BLUP multiple times and

corrects phenotypes for spatial biases, making them suitable for

genomic modelling. Besides, comparisons of spatial modelling

approaches indicated that autoregressive structures outperformed

antedependence structures in computational efficiency.

To better account for field heterogeneities, the implementation of

unmanned aerial vehicles with multispectral sensors presents an

opportunity for the quantification of additional agronomical traits

beyond DMY (Gebremedhin et al., 2020; Pranga et al., 2021; Tanaka

et al., 2024; Wang et al., 2019). Plus, the development of non-

destructive phenotyping methodologies would facilitate high-

throughput data acquisition without impacting the integrity of the

cultivars under evaluation (Ludovisi et al., 2017; Rahaman et al., 2015).

Such technological advancements would be particularly effective for the

temporal characterisation of DMY fluctuations throughout the

growing season (Nguyen et al., 2022; Wang et al., 2019).
FIGURE 2

Box plots of Root Mean Square Error (RMSE) of the best identified
BLUE, GBLUP, and G×EBLUP models by 72 leave-one-out cross-
validation folds. Mean values are marked with ‘×’; median values are
the middle lines.
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Genomic relationship analysis

Sufficient marker density of genotyping is often necessary to

cover the short linkage disequilibrium (LD) present in ryegrass

chromosomes and maintain high predictive abilities (Arojju et al.,

2020b; Barre et al., 2022; Guo et al., 2018; Lin et al., 2016). This

study utilised a dataset from a previous investigation (Zhu et al.,

2025), which employed a target sequencing approach and identified

~86k high-density SNPs to explore the genomic relationships

among the 72 ryegrass genotypes. Notably, pool sequencing

methodology was employed (Zhu et al., 2025), wherein each

cultivar was represented by at least 50 individual plants, with

several genotypes comprising multiple cultivars (sharing genetic

backgrounds but differing in endophyte combinations). This

approach quantified genetic variance within each genotype using

allele frequencies rather than discrete encoding (such as 0/1/2),

thereby effectively representing population-level variation across

more than 40k plants. This representation was particularly valuable

for depicting heterozygosity within populations and the underlying

genetic complexity of outcrossing, polyploid species like perennial

ryegrass (Guo et al., 2018; Zhu et al., 2025).

The construction of the GRM followed the methods by Yang et al.

(2010) and was adapted for allele frequency encoding (Equation 1).

This method enables the modelling of additive genetic relationships

from genome-wide SNP data without assuming Hardy-Weinberg
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equilibrium, making it well-suited to outbred species like perennial

ryegrass, which exhibit high heterozygosity and complex breeding

histories (Arojju et al., 2018; Barre et al., 2022; Fè et al., 2015; Hayes

et al., 2013; Yang et al., 2010). The GRM captured both historical

recombination and recent breeding divergence among cultivars,

implicitly accounting for population structure without requiring

explicit stratification correction. This is especially relevant given the

genetic diversity of the ryegrass base cultivars in this study, which

originated from different breeding programs. The suitability of the

GRM was demonstrated by the negative inbreeding coefficients (F <

0) observed in the majority of germplasms, reflecting historical

crosses between genetically distinct populations. In contrast, the

cultivar Barberia showed a positive inbreeding coefficient (F > 0),

indicating reduced genetic diversity likely due to strong selection.

These patterns support the effective integration of genomic

relationships into the DMY prediction framework implemented in

this study.

However, it is important to recognize that high marker densities

are not always a cost-effective option for perennial ryegrass evaluation

and selection programs. Studies have demonstrated that prediction

accuracies plateau through LD-pruning or targeted SNP selection

(Arojju et al., 2020b; Song and Hu, 2022). Furthermore, optimized

low-density SNP arrays coupled with well-designed imputation

algorithms (e.g. Wu et al., 2016) could halve genotyping costs with

minor losses in predictive ability. Therefore, a balanced approach of
FIGURE 3

Biplot illustrating the Genotype × Environment interaction patterns across trial sites in Tasmania (TAS) and Australian mainland (AUM) mega-
environments. Trials are represented as arrows, with green arrows indicating TAS environments and red arrows showing AUM environments. The
relative angles between vectors indicate correlation strength between trials. Black dots represent individual genotype responses
across environments.
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TABLE 3 The seasonal and annual GBLUP (Genomic Best Linear Unbiased Prediction in DM kg/ha) of the top and bottom five base cultivars (corrected for endophyte effects) in the mega-environments (megaE)
of AUM and TAS, with standard errors (SE); the number of the trials and harvests (Trial;Harvest) for each base cultivar in the mega-environment; and the least significant differences (LSD) within and across
seasons at a 5% significance level.

Autumn Annual

t
GBLUP
(± SE)

Trial;
Harvest

GBLUP
(± SE)

Trial;
Harvest

1239.0 (± 36.9) 1;5 8263.5 (± 77.1) 1;24

1160.1 (± 31.8) 9;46 8226.6 (± 65.3) 9;218

1258.6 (± 23.2) 19;83 8187.2 (± 48.4) 19;435

1226.3 (± 36.0) 2;11 8125.8 (± 74.8) 2;48

1222.7 (± 31.7) 4;14 8097.1 (± 67.7) 4;99

1037.5 (± 35.5) 2;9 7298.3 (± 73.1) 2;40

1034.1 (± 36.4) 1;1 7282.1 (± 76.5) 1;16

994.7 (± 35.4) 3;14 7072.3 (± 74.0) 3;71

954.0 (± 35.2) 3;12 6970.4 (± 73.6) 3;64

926.3 (± 23.1) 20;101 6957.6 (± 47.8) 20;530

1124.6 7725.6

332.3 1305.9

92.1 (within Seasons)

(across Seasons)

1141.8 (± 58.0) 1;5 7086.8 (± 138.7) 1;20

1093.2 (± 58.2) 1;5 7074.1 (± 139.1) 1;20

1113.9 (± 36.2) 3;12 7051.7 (± 91.3) 3;56

1167.2 (± 36.1) 3;12 7029.2 (± 91.0) 3;56

1111.3 (± 45.9) 2;7 7001.9 (± 123.7) 2;36
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megaE Winter Early Spring Late Spring Summer

Base
Cultivar

GBLUP
(± SE)

Trial;
Harvest

GBLUP
(± SE)

Trial;
Harvest

GBLUP
(± SE)

Trial;
Harvest

GBLUP
(± SE)

Trial;
Harves

AUM Top Five

BL011 1328.8 (± 41.9) 1;4 1844.9 (± 33.4) 1;6 2189.5 (± 28.5) 1;5 1661.2 (± 29.9) 1;4

Shogun 1282.8 (± 35.3) 9;28 1969.8 (± 27.8) 9;40 2118.2 (± 24.0) 9;52 1695.7 (± 25.6) 9;52

Base 1340.4 (± 26.0) 19;56 1793.9 (± 20.4) 19;80 2129.8 (± 18.4) 19;110 1664.6 (± 19.3) 19;106

BL008 1281.7 (± 40.8) 2;8 1832.6 (± 32.4) 2;11 2151.7 (± 27.5) 2;11 1633.5 (± 28.8) 2;7

Maxsyn 1296.7 (± 37.0) 4;13 1797.3 (± 29.2) 4;17 2133.5 (± 25.2) 4;26 1646.9 (± 26.9) 4;29

Bottom Five

Kingsgate 1133.9 (± 39.7) 2;5 1642.4 (± 31.0) 2;5 2031.8 (± 27.0) 2;10 1452.8 (± 28.6) 2;11

Meridian 1116.8 (± 41.8) 1;4 1674.0 (± 33.2) 1;5 1993.0 (± 28.4) 1;5 1464.1 (± 29.5) 1;1

Endure 1066.7 (± 40.2) 3;9 1627.9 (± 32.2) 3;16 1942.6 (± 27.5) 3;18 1440.5 (± 28.5) 3;14

Helix 1066.3 (± 40.4) 3;12 1613.5 (± 32.1) 3;16 1919.5 (± 27.2) 3;16 1417.2 (± 28.1) 3;8

Victorian 958.1 (± 26.0) 20;68 1748.0 (± 20.7) 20;97 2107.9 (± 17.1) 20;131 1217.3 (± 18.9) 20;133

Summary

Mean 1208.4 1751 2082.8 1558.8

Range 382.3 356.3 270 478.4

LSD 103.4 82.5 70.4 74.5

84.5

TAS Top Five

Platinum 1039.8 (± 69.5) 1;1 1432.0 (± 74.9) 1;3 2007.2 (± 47.6) 1;6 1466.0 (± 56.3) 1;5

Shogun 976.2 (± 69.7) 1;1 1402.6 (± 75.1) 1;3 2096.3 (± 47.7) 1;6 1505.8 (± 56.4) 1;5

Avalon 948.6 (± 51.8) 3;8 1398.0 (± 47.0) 3;7 2055.0 (± 30.0) 3;16 1536.1 (± 35.2) 3;13

Base 1137.2 (± 51.6) 3;8 1238.1 (± 46.9) 3;7 1839.9 (± 29.9) 3;16 1646.8 (± 35.0) 3;13

Kidman 976.4 (± 78.1) 2;7 1398.6 (± 59.5) 2;4 1988.9 (± 39.3) 2;10 1526.8 (± 44.9) 2;8

Bottom Five
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tailoring marker density to genetic architectures and genotyping cost

could ensure efficient GP without unnecessary expenditure.
Integrating genomic relationships into DMY
estimation

This study first explored and integrated genomic relationships

along with large-scale MHMS field trials to improve the DMY

estimation in a perennial ryegrass regional evaluation system. By

leveraging genomic relationships, GP enabled estimations of

additive genetic variances and the prediction of DMY for

untested cultivars, even when they were not present in any trials

or environments. Such feasibility was validated by LOOCV in

independently simulating scenarios where DMY of a certain

cultivar is predicted via a genomic relationship without actual

measurements. This demonstrates the potential to predict DMY

using genotyping data alone, potentially reducing the need for

costly and time-consuming field trials.

The GBLUP model in this study incorporated genomic

information through the GRM, which reveals pseudo-pedigree

relationships among the genotypes. Usage of GRM kernel was also a

consideration of both computational efficiency and proven predictive

accuracies in the GP applications by other studies (Arojju et al., 2020b;

Cericola et al., 2018; Faville et al., 2021, 2018; Fè et al., 2016, 2015;

Jahufer et al., 2021; Konkolewska et al., 2023; Lin et al., 2016).

Incorporating genomic data improved predictive accuracy and

precision, as demonstrated by increased CCCs from the baseline

BLUE (0.434) to the GBLUP (0.489), resulting in a 12.7%

improvement. This was further evidenced by a 56.9% reduction in

the average standard error of 46.88 DM kg/ha/season in the current

study from the average standard error of 108.75 DM kg/ha/season

reported by Zhu et al. (2023), where BLUP modelled G×E

interactions but did not incorporate genomic data.

This study also highlighted the need to separate endophyte

symbiotic impacts on host plant genetic responses when evaluating

perennial ryegrass performance. This separation is critical because

endophytes significantly impact the genetic responses of the

ryegrasses. Additionally, endophytes are typically confined to

specific cultivars due to commercial agreements between

endophyte owners and ryegrass breeding companies, creating an

imbalanced dataset where not all endophyte-ryegrass combinations

can be tested (Zhu et al., 2025).
Environmental enhanced ryegrass
evaluation system for DMY performance

In Australia, farmers face significant challenges in selecting

from over 60 commercially available perennial ryegrass cultivars

(Leddin et al., 2018). Wherein, current industry standard, which

presents an aggregate BLUE across trials, incorporates seasonal

performance weighted by the relative economic value across

regions. This approach assumes consistent genotype differences

within and between regions. However, our analysis reveals

substantial variation in estimation precision across regions (PCC
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ranging from 0.314 in South Australia to 0.664 in Gippsland) when

using BLUE. This inconsistency in precision strongly indicates the

presence of underlying biological G×E interactions that the current

economic-based evaluation system inadequately captured.

By explicitly modelling biological G×E interactions through the

G×EBLUP, we achieved more stable predictive ability across the

identified mega-environments (PCC: 0.596 ± 0.014 for AUM and

0.614 ± 0.014 for TAS). Besides, predicting DMY based on specific

mega-environments improved the evaluation reliability, as evidenced

by an overall 24.9% increase in CCC from the BLUE (0.434) to the

G×EBLUP (0.542), demonstrating marked improvement over current

industry approaches. In addition, the BLUP framework maintains

practical utility in effectively accounting for complex genetic variance

components with unbalanced datasets (Robinson, 1991), also

facilitating accurate predictions.

The shift from GBLUP to G×EBLUP resulted in an additional

10.8% increase in predictive abilities (CCC from 0.489 to 0.542) and

an improved narrow-sense heritability from 0.31 to 0.39. This is

because perennial ryegrass DMY is a complex quantitative trait

influenced by multiple genetic and environmental factors; the

G×EBLUP model, which extended GBLUP by modelling G×E

interactions through the K1 structure better modelled such

complexity. The improvement was also comparable to other

studies which reported low to moderate prediction accuracies

(Bornhofen et al., 2022; Faville et al., 2018; Grinberg et al., 2016;
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Jahufer et al., 2021; Konkolewska et al., 2023; Pembleton et al.,

2018), where even though G×E interactions were not fully explored

due to their limited multi-environmental phenotyping datasets.

Furthermore, environmental evaluation revealed significant

variations in DMY across the two identified mega-environments,

AUM and TAS, which align geographically with mainland Australia

and Tasmania, respectively. Seasonal fluctuations were evident, with

Late Spring producing the highest DMY in both mega-

environments, while Winter and Autumn displayed lowest DMY

in both mega-environments. The mega-environment TAS exhibited

greater uncertainty in DMY prediction, as indicated by larger LSDs,

emphasizing the need for a larger dataset than the current

compared to AUM. These findings highlight the necessity of

representative field trials encompassing both geographical and

temporal dimensions in improving the accuracy of perennial

ryegrass DMY prediction.
Regional adaptation patterns of perennial
ryegrass

Breeding value estimation, based on GEBVs, provides insights

into the genetic potential that passes from breeding lines to their

progeny. This approach offers great advantages over traditional

breeding methods, which primarily rely on phenotypic recurrent
FIGURE 4

The Genomic Estimated Breeding Values (GEBV: grey curve) and environment-driven genetic responses of base cultivars in two mega-environments
(AUM: red, TAS: blue). The Error bars represent standard errors. Base cultivars are ordered by their GEBVs in descending order.
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selection, usually require more than a decade per cycle, and struggle

to accurately evaluate potentials across diverse environments (Barre

et al., 2022; Hayes et al., 2013; Lin et al., 2016).

Environment-driven genetic responses explored in this study

revealed the variability in genetic potentials under different

environmental conditions, largely attributed to non-additive genetic

effects related to G×E interactions, such as dominance and epistasis

effects (Duenk et al., 2020; Su et al., 2012; Varona et al., 2018). Our

analysis identified distinct patterns across regions, with AUM

showing wider variations in environmental responses while TAS

displayed more stable genetic responses. These regional differences

were further exemplified by genotype-specific adaptation patterns

where Avalon demonstrated strong adaptation in TAS, Bealey

excelled in AUM, and Shogun exhibited broad adaptability across

both mega-environments.

The variability in the environment responses can stem from

multiple sources of environmental variation, including differences in

climate characteristics, soil physical and chemical properties, and root

development patterns (Chapman et al., 2017; Faville et al., 2018;

Konkolewska et al., 2023; Wedderburn et al., 2010; Zhu et al., 2023).

Temporal variation, encompassing both seasonal and inter-annual

fluctuations, further complicates predictions (Colas et al., 2022;

Gilliland and Hennessy, 2021; Giri et al., 2019; Robins and Alan

Lovatt, 2016). Recent environmental profiling analysis by Zhu et al.

(2023) identified key environmental drivers of G×E interactions in

perennial ryegrass, revealing that soil properties, temperature, and

evaporation rate were primary factors differentiating environmental

clusters. These analyses demonstrated that both soil-related

characteristics and weather-related factors contributed to mega-

environment differentiation that could be leveraged to enhance

future modelling approaches and prediction accuracy.

These findings comprehensively demonstrated both the

importance of integrating genomic relationships and accounting

for G×E interactions when better estimating perennial ryegrass

DMY in regional evaluation systems. They also emphasized the

need for environment-specific implementation strategies that

operate independently of economic interests to meet regional

demands for reliable evaluation of ryegrass productivity and

genetic gains.
Implementation strategies

The influence of G×E interactions necessitate environment-

specific strategies. In Tasmania, water-responsive or cold-climate

varieties such as Platinum, Shogun, and Avalon are recommended

for their superior performance. On the mainland, stable high-

yielding cultivars like Shogun and Base are prioritized to

accommodate diverse environmental conditions. These targeted

recommendations align cultivar traits with regional needs to

maximize productivity.

Seasonal variation is another critical dimension to consider.

Late Spring usually offers peak DMY, while Winter and Autumn
Frontiers in Plant Science 13
conditions limit performance. Management strategies may include

maximizing annual harvests and implementing adaptive practices

for production systems, such as altering calving dates to better

match pasture supply and animal demand. These tailored

approaches could optimize sustained productivity year-round.

When breeding new elite cultivars, a dual strategy is suggested

to balance genetic gain and diversity. Initial selection should

leverage GEBVs to capitalise on those additive genetic potential

with moderate heritability. Crossbreeding designs could then

include close-family crosses to maximize genetic gain through

hybrid vigour or far-family crosses to maintain genetic diversity,

to ensure short-term performance improvements and long-

term sustainability.

While GP offers a powerful approach to evaluate genetic gain, it

should be viewed as an integrative component within established

perennial ryegrass evaluation and breeding frameworks, including

F2 Family (Bornhofen et al., 2022; Cericola et al., 2018; Fè et al.,

2016, 2015), Half-Sib Family (Arojju et al., 2020a; Faville et al., 2018;

Jahufer et al., 2021), and Synthetic Population approaches (Faville

et al., 2016; Hayes et al., 2013; Malmberg et al., 2023; Pembleton

et al., 2018). Effective implementation of GP relies on well-designed

breeding programs with regionally representative trials, advanced

phenotypic technologies, and strategic integration of genomic

information across these frameworks. The absence of a

centralized and coordinated pasture evaluation system in

Australia presents structural challenges that GP alone cannot

resolve. Therefore, realising the full potential of GP may require

alignment with a more structured and collaborative evaluation

framework that considers other agronomically important traits

beyond DMY, such as nutritive traits (Leddin et al., 2022) and

metabolizable energy (Lewis et al., 2024).

In future research, GP models could be further enhanced by

incorporating additional data sources to address non-additive

genetic variances or those unexplained variances stemming from

environmental and management factors. These may include climate

variables, soil-genotype interactions, and practices such as

irrigation, fertilization, and grazing management (Fiorelli et al.,

2001; Peters et al., 2022). By integrating these aspects, models may

achieve greater accuracy to better reflect real-world complexities.

For instance, incorporating plant growth models, such as APSIM

(Agricultural Production Systems Simulator), could enhance

predictions by simulating genotype responses to environmental

factors dynamically (Hammer et al., 2023).

In conclusion, productivity estimation and genomic prediction

require continuous refinement as new data becomes available, and

their reliability must be validated through large-scale trials before

implementation. This validation will not only assess predictive

accuracy under real-world conditions but also evaluate the

economic feasibility of future breeding. Through the systematic

evaluation and validation process discussed in this study, breeding

programs can adapt to changing agricultural conditions and effectively

meet regional demands, ultimately supporting sustainable agricultural

practices across diverse pasture environments.
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