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Fructus Aurantii (FA) is a valuable medicinal material used in traditional China

medicine. Predicting the suitable distribution areas of FA and identifying its

potential distribution patterns driven by various environmental factors are

crucial for the selection of planting sites and maintenance of medicinal quality.

Here, the maximum entropy model was used to predict the potential distribution

of FA in Jiangxi Province, China under current and future climate conditions. A

total of 105 geographical distribution data of FA were collected through field

investigation and 32 environmental variables were obtained from public

databases. The maximum entropy model showed high prediction accuracy

when 16 environmental variables were selected (AUC = 0.932). The habitat

suitability of FA was prominently affected by climate, which surpassed

topography and soil factors. Maximum temperature of the warmest month,

annual temperature range, precipitation of the wettest month, precipitation

coefficient of variation, elevation, aspect, and soil organic carbon were the key

factors shaping the geographic distribution of FA. Among them, maximum

temperature of the warmest month (16.9%), followed by annual temperature

range (16.1%), made the greatest contribution to model predictions. In the

current climate background, the total potential suitable area for FA covered

6.30 × 104 km2 of garden land. Under future climate warming scenarios (shared

socioeconomic pathways 245, 585), the potential suitable area was predicted to

move southward and expand twice in 2040–2080, with notable increase in

moderately and poorly suitable areas. Low hilly areas at higher elevations with

moist cool conditions and gentle undulations would become more suitable for

future introduction and planting of FA. Regionalized strategies for different

suitable planting areas were proposed taking into account future climate

change. All data are available in Mendeley Data (DOI: 10.17632/s9wsnn2xcn.1).

Code is available at https://github.com/mrmaxent/Maxent.
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1 Introduction

Fructus Aurantii (FA) is the dried unripe fruit of Citrus

aurantimu L. and its cultivars. The use of FA in traditional Chinese

medicine can be dated back to the Tang Dynasty in China. As a

precious Chinese medicinal material, FA plays a role in regulating qi

flowing to smooth the middle burner and resolving food stagnation to

relieve abdominal distension (Pharmacopoeia Commission of the

People's Republic of China, 2010). Based on the place of origin, there

are six major categories of FA: Jiang FA from Jiangxi, Xiang FA from

Hunan, Chuan FA from Sichuan, Su FA from Jiangsu, Wen FA from

Wenzhou, and Qu FA from Quzhou. Among these, Jiang FA, Xiang

FA, and Chuan FA are most popular, accounting for >70% of the

total FA production in China. Jiang FA (hereinafter referred to as FA)

has been cultivated for over 1700 years, with Zhangshu City and

Xingan County as the primary genuine production areas. The FA

derived from C. aurantium ‘Xiucheng’ and C. Junos is considered to

have high quality nationwide (Xie B. et al., 2024). However, due to the

multi-source and multi-origin of Chinese medicinal materials, their

product quality (particularly the content of effective ingredients)

varies across regions. The quality stability and uniformity of

Chinese medicinal materials are easily compromised by the mixing

of plant sources. Therefore, identifying the suitable distribution range

of FA is crucial for its introduction, domestication, and conservation

on a regional scale.

As a key external factor affecting the quality of genuine

medicinal materials, the geographical environment directly

controls plant growth and development, as well as the formation

and accumulation of effective ingredients (Zhong et al., 2013). To

date, climate warming has become a global trend. In the Sixth

Assessment Report, the Intergovernmental Panel on Climate

Change (IPCC) estimated that the global average surface

temperature during 2000–2020 increased by 1.1°C compared to

the preindustrial levels during 1850–1900. Models projections

indicated that global warming would reach 1.5°C above the

preindustrial levels in 2040, and even reach 2.7–4.8°C by 2081–

2100 under moderate and high CO2 emission scenarios (IPCC,

2021). In the face of future climate warming, the production areas of

FA are likely to undergo dramatical environmental changes. Heat

stress can shorten plant growth cycle, resulting in poor fruit

development or premature ripening (Oyedoh et al., 2024).

Additionally, global warming has increased the frequency and

intensity of climate extremes (e.g., typhoons, droughts, floods),

interfering with plant normal growth (Fan et al., 2024). The

environmental changes potentially alter the structure and

composition of biological communities and destroy the balance

and stability of the original ecosystem, affecting the quality of FA

(Wang et al., 2024). In this case, the conventional planting areas for

FA are expected to lose their advantages, with other places emerging

as the new suitable planting areas. Therefore, re-evaluating the

distribution of suitable planting areas for FA under future climate

change can provide guidance on its scientific introduction and

expansion, ensuring high product quality.

Accurate prediction of species distribution and habitat

suitability is a major task of ecological research, which paves the
Frontiers in Plant Science 02
way for biodiversity conservation, resource management, and

sustainable ecosystem development. The advent of geographic

information systems, together with digital-elevation-model-based

terrain analysis and non-parametric statistical analysis, allows

species distribution models to be extensively used in spatial

ecology (Gelfand, 2020). Such models have been applied in

predicting the spatiotemporal distribution patterns of aquatic

species (Chen et al., 2023) and the potential distribution areas of

invasive species (Mushtaq et al., 2021), rare and endangered species

(Majeed et al., 2023), and plant diseases and pests (Ikegami and

Jenkins, 2018; Xian et al., 2023). To illustrate, Safei et al. (2018) used

logistic regression (LR), non-parametric multiplicative regression

(NPMR), and ecological-niche factor analysis (ENFA) methods to

generate the potential distribution maps of Astragalus verus Olivier

in the semi-arid region of central Iran. Rawat et al. (2022) modeled

the current and future potential habitat distribution of the

endangered medicinal plant Picrorhiza kurroa (Royle ex Benth) in

the Uttarakhand Himalaya region using the maximum entropy

(MaxEnt) model. Based on comprehensive analysis and utilization,

the maximum entropy model (MaxEnt) has proven superior to

ecological niche models represented by the bioclimate analysis and

prediction system (BIOCLIM) (Serrano-Notivoli et al., 2022), the

ecological niche factor analysis model (ENFA) (Farashi et al., 2013),

and the genetic algorithm for rule-set prediction (GARP) (Hu et al.,

2020). MaxEnt is advantageous in terms of fewer species

distribution points required, simpler modeling procedures, higher

prediction accuracy, and easier data interpretation, as well as

relatively objective and reasonable evaluation results. This model

has been applied increasingly in many research fields, including

biogeography and conservation biology (He et al., 2021; Rong et al.,

2023; Wu et al., 2024; Xie M. et al., 2024; Zou et al., 2024).

The MaxEnt model is based on the principle of MaxEnt in

information theory proposed by Jaynes in 1957 (Jaynes, 1957). The

core idea of the MaxEnt principle is that the probability distribution

that maximizes the entropy is closest to the true state when partial

information is known. The ecological regionalization of Chinese

medicinal materials emphasizes the concept of “place of origin”;

that is, high-quality Chinese medicinal materials can be produced

only when source plants are grown in areas with a highly similar

ecological environment to the place of origin (Xie et al., 2016). If the

species distribution and relevant environmental variables are

known, the MaxEnt model can use this limited information to

predict the potential distribution areas of species under different

environmental conditions by constructing a reasonable probability

distribution. This model has outstanding robustness under future

changing scenarios (Shi et al., 2023; Zhao et al., 2021, 2024). While

FA production is plagued by problems such as the confusion of

plant sources and nonuniform quality, the MaxEnt Model provides

crucial technical support for planting expansion, stable production,

artificial cultivation, and resource conservation of FA.

In this study, the MaxEnt model was used to predict the

potential distribution of suitable planting areas for FA in Jiangxi

Province under future climate change. We aimed to clarify the

future suitable distribution range of FA, allowing for rational

planning of planting areas and scientific formulation of resource
frontiersin.org
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management strategies. The results could have important

implications for the sustainable development of regional FA

industry, ensuring ecosystem balance and stability.
2 Materials and methods

2.1 Study area

Jiangxi Province is located in the southeastern region of China,

between the geographical coordinates of 24°29’–30°04’ N and 113°

34’–118°28’ E (Figure 1). This region mainly encompasses hilly and

mountainous areas, including the Poyang Lake Plain and other

landforms. The terrain is high in the south and low in the north.

Based on its macro-geographical pattern, Jiangxi can be roughly

divided into five parts, covering a total area of 16.69×104 km2 (Jiang

et al., 2020). The Poyang Lake Plain area mainly includes

Nanchang, Jiujiang, and Jingdezhen, with elevations mostly below

50 m above sea level (asl). The northwestern mountainous area is

primarily composed of Yichun and Pingxiang, and the northeastern

mountainous area mainly includes Shangrao and Yingtan, both of
Frontiers in Plant Science 03
which have an average elevation of ~300 m asl. The central hilly

area primarily covers Ji’an, Fuzhou, and Xinyu, with an average

elevation of 200 m asl. The southern mountainous area is mainly

located in Ganzhou, with an average elevation of 400 m asl.

Jiangxi experiences various climate types, and the subtropical

monsoon climate prevailing in this region is characterized by four

distinct seasons with abundant rainfall. The average annual

temperature is between 16.3–25°C. The winter is warm and the

summer is hot, with a frost-free period of 240–307 days. The

duration of average daily temperature > 10°C is 240–270 days

and the active accumulated temperature is 5000–6000°C, favorable

for the development of subtropical economic trees. As one of the

rainiest provinces in China, Jiangxi receives an average annual

precipitation of 1341–1943 mm. The regional distribution of

precipitation trends upward toward the south from the north,

and more precipitation occurs in the east than in the west. In

2021, FA was certified for implementing the protection of

geographical indication products (Jiangxi Provincial Market

Supervision Administration, 2021), and there was a steady

increase in the planting area for FA. In 2024, the government of

Zhangshu proposed to build a high-quality science and technology
FIGURE 1

Location of Jiangxi Province in southern China and distribution of Fructus Aurantii sampling points in the study area.
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complex for Chinese medicinal materials. An excellent germplasm

resource preservation nursery and breeding base for high-quality

FA seedlings was constructed, promoting the establishment of a

planting area of >400,002 m2 (Zhangshu Bureau of Agricultural and

Rural Affairs, 2024). Thus, strong policy support is provided for the

planting area expansion of FA.
2.2 Research techniques and ideas

This study was aimed to address the following three objectives:

i) evaluating the suitable ranges and relative importance of different

environmental variables for FA distribution using the MaxEnt

model; ii) identifying the potential distribution patterns of FA

under two future shared socioeconomic pathway scenarios

(SSP245, SSP585) for 2040–2080; and iii) guiding the layout of

planting areas for FA based on its future potential distribution.

The research methodology consisted of the following steps: (i)

collect the geographical distribution data of FA and associated

environmental data in Jiangxi; (ii) preprocess and select the FA

distribution data and associated environmental variables; (iii)

construct the training and testing datasets; (iv) establish a

potent ia l d is tr ibut ion model ; (v) determine sui tab le

environmental ranges for FA; (vi) draw and compare the

potential distribution maps of FA under different climate

scenarios; and (vii) conduct spatial distribution analysis and

planting regionalization of FA on garden land across Jiangxi.

In the step vii, the cultivation zones are classified into three

distinct categories based on FA suitability assessments: core

demonstration area, stable production and promotion area,

potential improvement area. The core demonstration area

represents areas where the ecological environment exhibits

optimal alignment with FA’s physiological requirements,

consistently sustaining premium quality and high-yield

cultivation. The stable production and promotion area comprises

regions with baseline environmental compatibility for FA growth,

where yield optimization can be achieved through targeted

agricultural interventions. The potential improvement area

identifies localities demonstrating significant disparity between

natural conditions and FA cultivation prerequisites, characterized

by suboptimal productivity levels necessitating either enhanced

infrastructural investments or implementation of adaptive cultivar

variants to improve agricultural outcomes.
2.3 Collection and preprocessing of
Fructus Aurantii distribution data

The geographical distribution data of FA in Jiangxi were

collected from three sources, i.e., field investigation and sampling

(Figure 2), the provincial monitoring data of Chinese medicinal

materials, and China Virtual Herbarium (https://www.cvh.ac.cn/).

A total of 105 FA samples were obtained in 2000-2024. Considering

the spatial autocorrelation of the sampling points (Halvorsen et al.,

2016), we used ENMtools (Warren et al., 2010) to eliminate
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autocorrelation. Only one distribution point was retained in each

grid (1 km × 1 km), and 93 effective distribution points were

obtained (DOI: 10.17632/s9wsnn2xcn.1).
2.4 Acquisition and preprocessing of
environmental data

The suitability evaluation of FA requires comprehensive

consideration of three key environmental factors: climatic

conditions that regulate hydrothermal availability and

phenological development, topographic features in Jiangxi’s

mountainous terrain that create microhabitat variations through

differential light and water distribution, and soil properties that

determine nutrient supply and rooting conditions, collectively

influencing its spatial distribution and physiological performance.

Nineteen bioclimatic variables (Bio1–Bio19) and three topographic

variables [elevation (ELE), slope (SLO), aspect (ASP)] were

ob t a i n e d f r om the Wor l dC l im da t a b a s e ( h t t p s : / /

www.worldclim.org/). Ten soil variables [pH, soil organic carbon

(SOC), bulk density (BD), cation exchange capacity (CEC), total

nitrogen (TN), total phosphorus (TP), total potassium (TK), coarse

fragments (CF), texture class (TEXCLS), thickness] were derived

from the Soil Sub-Center, National Earth System Science Data

Center, National Science & Technology Infrastructure of China

(https://soil.geodata.cn/). We prepared all layers of the environment

variables in TIF format (raster data) with a spatial resolution of 30”

(~1 km). The geographical coordinate system was WGS84 (Gong

et al., 2022).

The future climate data (2040–2060, 2060–2080) were acquired

from the WorldClim database (https://www.worldclim.org/). The

future climate scenario data were selected from the BCC-CSM2-MR

model, which is the latest medium-resolution climate system model

developed by the National Climate Center of the China

Meteorological Administration. This model shows significant

improvements over previous models in simulating climate

variability at different time scales, long-term trends in surface air

temperature, and average annual precipitation distribution in

China. Notably, it exhibits particularly high accuracy in

simulating extreme precipitation events in eastern China, making

it well-suited for projecting future climate change scenarios across

the country (Gong et al., 2017; Li S. et al., 2023; Xin et al., 2019).

According to the Shared Socioeconomic Pathways (SSP)

framework:SSP1-2.6 represents a sustainable development

pathway with low carbon emissions; SSP2-4.5 reflects moderate

emissions under balanced economic growth; SSP3-7.0 signifies a

fossil fuel-dependent development pattern amid intensified regional

competition; while SSP5-8.5 constitutes an extreme high-emission

scenario with maximum radiative forcing (Li et al., 2020; Liu et al.,

2024). This study strategically focuses on comparing the cultivation

suitability of FA between representative baseline (SSP2-4.5) and

extreme scenarios (SSP5-8.5). By excluding the overly optimistic

SSP1-2.6 and the socioeconomic volatility-associated SSP3-7.0, our

dual-scenario approach effectively captures both evolutionary

patterns under conventional development trajectories and early
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warning signals of potential climate extremes. Many environmental

factors are correlated to a certain degree. To avoid overfitting of the

MaxEnt model (Han et al., 2025), the 32 raster environment

variables were converted into ASCII format using ArcGIS 10.7

(ESRI, Redlands, CA, USA). Maxent 3.4.4 (Phillips et al., 2006) was

used to preprocess the data of 93 FA distribution points and 32

environmental variables, and the percentage contribution of each

environmental variable was calculated (Table 1). A total of 12

environmental variables with a cumulative contribution ≥ 80% to

FA distribution were selected. These variables were maximum

temperature of the warmest month (Bio5), annual temperature

range (Bio7), elevation, variance of temperature change (Bio4),

precipitation of the wettest month (Bio13), ASP, precipitation

coefficient of variation (Bio15), CF, SOC, mean temperature of

the warmest quarter (Bio10), TN, and isothermality (Bio3).

Then, ENMtools was used to conduct correlation analysis of

environmental variables, and R 4.3.2 (R Core Team, R Foundation

for Statistical Computing, Vienna, Austria) was used to create a
Frontiers in Plant Science 05
correlation heatmap (Figure 2). For the variables with a high

correlation coefficient (|r| ≥ 0.8), only one representative variable

with a great contribution was retained. High permutation

importance indicates that the model is highly dependent on the

variable (Phillips et al., 2006) For example, the permutation

importance of Bio13 and Bio15 reached 8.1 and 10.4, respectively.

Therefore, variables with both high correlation and high

permutation importance were also retained. The source plants of

FA prefer warm and humid environments, with weak cold

tolerance. The preferred pH is slightly acidic to neutral, and the

favorable soil type is loose and fertile sandy loam with good

drainage (Jiangxi Provincial Market Supervision Administration,

2020). Accordingly, TEXCLS, pH, SLO, minimum temperature of

the coldest month (Bio6), and precipitation of the warmest quarter

(Bio18) could have prominent influence on the geographical

distribution of FA.

Based on variable correlation, contribution to FA distribution,

and plant growth habits, 16 environmental variables were selected
FIGURE 2

Correlation heatmap of 32 environmental variables affecting the distribution of Fructus Aurantii. The definition of all variables is provided in Table 2.
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for model construction. There were three topographic variables

(ELE, SLO, ASP), eight bioclimatic variables (Bio5, Bio7, Bio4,

Bio13, Bio15, Bio3, Bio6, Bio18), and five soil variables (CF, SOC,

TN, TEXCLS, pH).
2.5 Construction of maximum entropy
model

The geographical distribution data of FA and the data of

selected environmental variables were imported into Maxent 3.4.4

(https://github.com/mrmaxent/Maxent) for modeling. The habitat

suitability ranges from 0 to 1, where values closer to 1 indicate

greater probability of species existence (Chen et al., 2024). The

potential distribution areas of FA in Jiangxi were revealed using

logistic equation. Based on the method of Moreno et al. (2011), 25%

of the distributed data were randomly selected as the testing set and

the remaining 75% as the training set. Response curves were derived

to analyze the suitable ranges of environmental variables for FA,

with the variable value as the horizontal coordinate and the

distribution probability of FA as the vertical coordinate.

Generally, the variable value corresponding to a distribution

probability >0.5 is considered suitable for plant growth (Huan

et al., 2023). Variable weights were determined by jackknife test

(Li X. et al., 2023). Feature selection and parameter estimation were

conducted using the bootstrap method (Lei and Chen, 2023), with

10 iterations. The maximum number of background points was

10,000 and the regulation multiple was 1, with other parameters set

by default. The results of 10 runs were averaged and saved as an

ASCII file (Soilhi et al., 2022).
2.6 Model accuracy evaluation

The accuracy of model predictions was assessed in terms of the

area under the ROC curve (AUC), which is currently regarded as

the optimal evaluation indicator. As the AUC value is not affected

by diagnostic thresholds and not sensitive to species incidence, it
TABLE 1 Percentage contribution and permutation importance of all 32
environmental variables to the distribution of Fructus Aurantii in
Jiangxi Province.

Variable
Percentage
contribution
(%)

Permutation
importance
(%)

Bio5
Maximum
temperature of the
warmest month

19.4 23.3

Bio7
Annual temperature
range

11.2 4

ELE Elevation 10.2 7.6

Bio4
Variance of
temperature change

8.2 0

Bio13
Precipitation of the
wettest month

6.9 8.1

ASP Aspect 6.7 2.8

Bio15
Precipitation
coefficient
of variation

5 10.4

CF Coarse fragments 3.3 3.3

SOC Soil organic carbon 3 4.8

Bio10
Mean temperature of
the warmest quarter

2.7 0.7

TN Total nitrogen 2.7 0.4

Bio3 Isothermality 2.3 3

Bio19
Precipitation of the
coldest quarter

2.2 6.1

SLO Slope 2.1 1.4

pH pH 1.6 2.2

Bio18
Precipitation of the
warmest quarter

1.5 1.8

Bio14
Precipitation of the
driest month

1.4 2.9

CEC
Cation exchange
capacity

1.4 1.3

Bio8
Mean temperature of
the wettest quarter

1.4 1.5

TEXCLS Soil texture class 1.4 0.7

Thickness Soil thickness 1.3 1.3

Bio17
Precipitation of the
driest quarter

1.2 5.3

TP Total phosphorus 0.8 0.8

TK Total potassium 0.7 2.6

Bio2 Diurnal range mean 0.4 1.4

Bio9
Mean temperature of
the driest quarter

0.3 0.5

BD Bulk density 0.3 0.9

(Continued)
TABLE 1 Continued

Variable
Percentage
contribution
(%)

Permutation
importance
(%)

Bio16
Precipitation of the
wettest quarter

0.1 0.6

Bio6
Minimum
temperature of the
coldest month

0.1 0.3

Bio11
Mean temperature of
the coldest quarter

0 0

Bio12
Mean annual
precipitation

0 0

Bio1
Mean annual
temperature

0 0
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can be used to compare the prediction accuracy of different models.

An AUC value closer to 1 indicates better prediction performance of

the model and greater influence of the environmental variables on

the probability of crop suitability (Fielding and Bell, 1997).
3 Results

3.1 Environmental background of the study
area

The environmental characteristics of FA sampling sites exhibit

typical subtropical cultivation conditions, demonstrating that
Frontiers in Plant Science 07
optimal growth requires: (i) sufficient hydrothermal conditions,

(ii) well-drained terrain, and (iii) balanced soil fertility (Table 2).
3.2 Prediction accuracy of the MaxEnt
model

The MaxEnt model demonstrated high predictive accuracy with

an AUC of 0.932 (Figure 3), a kappa statistic of 0.82, and a test

omission rate of only 7.83% under the minimum training presence

threshold, confirming its reliability for predicting the distribution

of FA.
FIGURE 3

Prediction accuracy of the MaxEnt model for the distribution of Fructus Aurantii verified by the receiver operating characteristic curve.
TABLE 2 Basic information of climate, topography, and soil conditions across the sampling points of Fructus Aurantii in Jiangxi Province.

Variable Mean Minimum Maximum Skewness Kurtosis
Most frequent
value

Least frequent
value

Bio1 (°C) 17.81 14.44 20.21 0.11 3.85

Bio12 (mm) 1562.24 1434.00 1748.00 0.63 0.54

ELE (m) 111.52 18.00 1163.00 5.74 42.77

SLO (°) 1.06 0.02 6.52 2.45 6.64

TEXCLS Silt loam Clay

SOC (g/kg) 4.93 3.01 7.13 0.46 0.33

TN (g/kg) 0.58 0.49 0.74 0.75 0.1

TP (g/kg) 27.69 20.00 39.00 0.63 0.21

TK (g/kg) 14.22 10.02 18.68 0.01 0.77
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3.3 Factors affecting the distribution of
Fructus Aurantii and their suitable ranges

In the MaxEnt model, three methods or metrics—Jackknife test,

percentage contribution, and permutation importance—are

commonly used to evaluate the importance of environmental

variables on species distribution. The Jackknife test of regularized

training gain for FA revealed the importance of 16 environment

variables on the predictive ability of the model (Figure 4). When

used in isolation, the single variables with the highest gain were Bio5

and SOC, followed by Bio7 and ELE; the lowest gain was observed

with TEXCLS. When removing a specific variable (e.g., ASP), a

notable reduction in the gain indicated strong influence of this

variable in the model. The major variables that contributed to

model predictions in descending order were Bio5, Bio7, ELE, Bio13,

ASP, and Bio15, with a cumulative contribution of 70.5% (Figure 5).

The permutation importance corresponding to these major

variables was also prominent, with a cumulative value of 65.2%.

Other variables contributed less to the geographical distribution of

FA. Among the environmental variables, bioclimate had the

greatest influence on the geographical distribution of FA in

Jiangxi (61% contribution to the model), followed by topography

(24%) and soil (15%). Specifically, the principal bioclimatic

variables were Bio5, Bio7, Bio13, and Bio15; the dominant

topographic variables were ELE and ASP; the primary soil

variable was SOC.
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The suitable ranges of major environmental variables affecting

the geographical distribution of FA were determined based on the

response curves. A peak value was observed for the distribution

probability of FA when the environmental variables reached a

certain level (Figure 6). For example, the distribution probability

of FA trended upward rapidly with increasing ELE, Bio13, Bio15,

and SOC in a narrow range, and then decreased after reaching a

maximum (Figures 6c–e, g). Additionally, the distribution

probability of FA increased slowly with elevating Bio5 and Bio7

until it reached a stable plateau (Figures 6a, b). FA showed certain

adaptability to the seven major environmental variables, with the

thresholds of 32–35°C for Bio5, 30–34°C for Bio7, 25–150 m for

ELE, 235–258 mm for Bio13, (southeast, southwest, and northwest)

for ASP, 52–56% for Bio15, and 4–8 g/kg for SOC.
3.4 Potential distribution of Fructus
Aurantii under current climate conditions

The predicted habitat suitability of FA in Jiangxi ranged from 0

to 0.91 under the current climate scenario, with the sampling points

mainly distributed in highly suitable areas. This indicates that the

MaxEnt-based prediction results of habitat suitability are basically

consistent with the actual FA distribution. Based on the suitability

values derived from actual FA distribution points and the

predefined ecological factor thresholds, FA habitat suitability was
FIGURE 4

The results of Jackknife test for 16 environmental variables affecting the distribution of Fructus Aurantii.
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classified into four suitability levels: unsuitable (0–0.17], poorly

suitable (0.17–0.35], moderately suitable (0.35–0.5], and highly

suitable (0.5–1]. Validation confirmed that most FA occurrences

fall within suitable zones, and the resulting spatial distribution

pattern aligns with the results obtained by Gao (2021). The total

suitable area for FA was 6.30×104 km2, accounting for 37.74% of the

total area of Jiangxi (Figure 7; Table 3). Highly suitable areas

(1.07×104 km2) were primarily concentrated in eastern Jiujiang,

southeastern Yichun, northeastern Ji’an, Xinyu, and Xingguo (a

county in Ganzhou). Moderately suitable areas (1.44×104 km2) were

principally distributed in eastern Jiujiang, southeastern Yichun,

northeastern Ji’an, northwestern Shangrao, southeastern Xinyu,

and Xingguo. Poorly suitable areas (3.80×104 km2) were less

distributed in Pingxiang, with broader distributions in Jiujiang

and Nanchang.
3.5 Potential distribution of Fructus
Aurantii under future climate conditions

Climate-induced change of suitable distribution areas for

genuine medicinal materials is likely to promote the transfer of

genuine production areas or even the loss of genuineness. The

existing genuine producing areas of FA in Jiangxi are particularly

affected by climate change, as indicated by the results of the MaxEnt

model that Bio5, Bio7, Bio13, and Bio15 had overarching effects on

FA distribution. These bioclimatic variables directly relate to plant

growth cycle and survival boundary, while indirectly affecting plant

water acquisition and drought tolerance. In the wake of global

warming, changes in these key bioclimatic variables may reshape
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the distribution of suitable planting areas for FA, altering habitat

suitability in existing genuine producing areas.

Under the SSP245 scenario, the distribution range of FA was

projected to shift southward from 2040 to 2080 (Figure 8). The total

suitable area for FA would increase to 13.63×104 km2 by 2060 and

14.01×104 km2 by 2080 (Table 3). In terms of land quantity, the

expansion of suitable area for FA is more evident over a longer time,

despite at a lower growth rate. Under the SSP585 scenario, the

distribution range of FA would also shift southward from 2040 to

2080. The total suitable area of FA would reach 14.73×104 km2 by

2060 and 13.42×104 km2 by 2080, indicating its considerable

expansion followed by slight shrinkage. This expansion of suitable

area for FA is primarily attributed to the increase in moderately and

poorly suitable areas. Under both climate scenarios, the future

suitable area for FA is more than double the current suitable area

predicted by the MaxEnt model (Figure 7).

The results indicate that the suitable area for FA will expand in

the future. Especially under the SSP245 scenario, the highly suitable

area will prominently expand, almost double the current suitable

area. With regard to the direction of spatial expansion, the suitable

area will move southward mainly due to topographic regulation of

local microclimate through the redistribution of water and heat. For

example, the terrain of Ji’an is generally inclined from the south to

the north, with relief rises in the south, low flat areas in the central

part, and flat areas in the north. The highly suitable area in Ji’an will

transfer from the northeastern part to the southwestern part in the

future, corresponding to the topographic features. Shangrao has a

terrain that is high in the southeast and low in the northwest, where

the southeastern region will transform from moderately to highly

suitable area in the future.
FIGURE 5

Percentage contribution and permutation importance of 16 selected environmental variables to the MaxEnt model for the distribution of Fructus Aurantii.
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3.6 Planting regionalization for Fructus
Aurantii considering future climate change

The regionalization of genuine medicinal materials is based on

systematic investigation into the natural distribution patterns of

genuine medicinal materials and the regional geographical features

of their production areas. Effective regionalization of genuine
Frontiers in Plant Science 10
medicinal materials can be achieved taking into account within-

region similarity and between-region difference. Disentangling the

relationship between the quality of genuine medicinal materials and

the ecological environment of their production areas is essential for

clarifying the specific ecological requirements of source plants and

the mechanisms of environmental impacts. Such research also

provides fundamental data for the regionalization and production
FIGURE 6

Response curves of the distribution probability of Fructus Aurantii to major environmental variables (a–g).
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layout of genuine medicinal materials. The core goal of

regionalization is to reveal regional differentiation in the resources

and production activities of genuine medicinal materials.

Given the limitation of land use, this study selected garden land

polygons in Jiangxi as the basic evaluation unit to build a

comprehensive regionalization system for FA that takes into

account the influence of multiple environmental variables. A total

of 996 qualified garden land polygons (1913.21 km2 in total) were

selected after removing highly fragmented polygons (<4000 m2

each). Urban development boundaries, ecological protection red

lines, and permanent prime farmland protection lines were also

excluded. A weighted overlay analysis was conducted on the

predicted current and future distribution areas for FA and the

garden land polygons in Jiangxi. Based on the prediction results

under current climate conditions and future climate change in the

medium (2040–2060) and long (2060–2080) terms, different

weights (0.5, 0.3, and 0.2, respectively) were assigned for
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comprehensive weighted assessment. Under the SSP245 scenario,

the total suitable planting area for FA was estimated to be 1438.54

km2, accounting for 75.19% of the total garden area in Jiangxi.

Under the SSP585 scenario, a slight increase was observed in the

total suitable planting area for FA (1531.55 km2, 80.05%; Figure 9).

The results indicate that the vast majority of garden land in Jiangxi

can be actually planted for FA in the future.

Based on the habitat suitability of FA (from high to low level),

the potential planting areas in Jiangxi can be divided into three

parts: core demonstration area, stable production and promotion

area, potential improvement area, and unsuitable planting areas

(Table 4). Under the SSP245 scenario, the core demonstration area

in Jiangxi was estimated to be 106.82 km2, mainly located in the

central hilly area, northern plain area (Poyang Lake Plain), and

southern mountainous area. The stable production and promotion

area (518.59 km2) was chiefly found in the central hilly area and

northern plain area, with the potential improvement area (813.13
FIGURE 7

Distribution of habitat suitability for Fructus Aurantii in Jiangxi Province under the current climate scenario.
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km2) emerging in the northern plain area and southern

mountainous area. Under the SSP585 scenario, the core

demonstration area was estimated to be 82.19 km2, mostly

distributed in the central hilly area. The stable production

promotion area (539.31 km2) was mainly observed in the central

hilly area and southern mountainous area, with the potential

improvement area (910.05 km2) located in the central hilly area

and southern mountainous area.
4 Discussion

4.1 Major environmental factors driving the
distribution of Fructus Aurantii

In China, the diverse and dynamic geo-ecological environment

fosters the development of various ecotype patterns for genuine

medicinal materials (Wu, 2004). Deciphering the interactions

between genuine medicinal materials and their ecological

environment is a popular topic in the field of traditional Chinese

medicine. The quality of genuine medicinal materials is determined

by multiple environmental factors that have complex coupling with

each other. While the key environmental factors include sunshine,

temperature, humidity, and soil properties, the major variables

affecting the geographical distribution of genuine medicinal

materials vary considerably across spatial scales. For example,

water and heat conditions are regarded as the key factors

dictating the distribution of genuine medicinal materials on a

global scale, whereas local environmental variables (e.g., elevation,

soil properties) emerge as the prominent drivers on a landscape or

smaller spatial scale (Shang et al., 2005).

Our MaxEnt simulation results show that a set of bioclimatic

variables (temperature: Bio5, Bio7; precipitation: Bio13, Bio15) play

an overarching role in affecting the geographical distribution of FA

in Jiangxi. The territory of Jiangxi spans multiple degrees of latitude,

resulting in a large temperature gradient. As the source plants of FA

are sensitive to cold damage, temperature emerges as the leading

driver of FA distribution (Zabihi et al., 2016). The suitable range of

Bio5 (maximum temperature of the warmest month) for FA is 32–

35°C. Beyond this temperature range, especially high temperature

before fruit harvest may lead to rapid pulp enlargement, peel

thinning, and even premature ripening as well as peel shrinkage.
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Heat stress could also interfere with plant secondary metabolism,

affecting the accumulation of effective components and resulting in

declined quality of FA (Yang et al., 2008). Bio7 (annual temperature

range) in the range of 30–34°C is suitable for FA. Generally, plant

growth cycle is disrupted upon intensified temperature variations.

FA is derived from perennial shrubs, whose shoots can be damaged

by low temperature (Tu, 2018), increasing the risk of pest invasion

and impeding root water uptake.

With regard to precipitation, Bio13 (precipitation of the wettest

month) in the range of 235–258 mm is suitable for FA. Excessive

precipitation is likely to cause root rot, as well as flower and fruit

drop (Wei, 2009). From the perspective of topography, FA is

suitable to be distributed in the ELE range of 25–150 m asl,

which facilitates drainage. The suitable ASP conditions include

the southeast, southwest, and northwest, providing sufficient

lighting. Despite relatively low importance of soil variables to the

distribution of FA, attention should be paid to plant preference for

slightly acidic to neutral loam or sandy loam.
4.2 Future distribution pattern of suitable
planting areas and regionalized strategies

Based on the MaxEnt prediction results, the suitable area for FA

covers 6.30 × 104 km2 of garden land under the current climate

conditions, mainly in the northern part of central Jiangxi.

Numerous studies have underscored the role of temperature as a

key environmental factor limiting species distribution on the

latitude gradient (Qian and Ricklefs, 2011). Global warming

exhibits a positive effect on the distribution and expansion of

thermophilous plants (Zheng and Cao, 2020). Temperature rise

can increase the accumulated temperature during plant growth

period, consequently promoting plant growth and increasing plant

biomass (Baldwin et al., 2014). Under different future scenarios of

global warming, there are notable changes in the major

environmental variables affecting the geographic distribution of

FA. Bio5 is expected to increase by ~5.5°C and 6.4°C under SSP245

and SSP585 scenarios, respectively, corresponding to ~2.9°C and

2.6°C increase in Bio7. As such, the future distribution range of FA

is predicted to expand twice its current size.

Among the topographic factors, ELE has a profound impact on

the distribution of FA in the study area. Topography also
TABLE 3 Suitable area for Fructus Aurantii in Jiangxi under five different climate scenarios.

Climate scenario

Suitability level (104 km2)

Unsuitable area
Poorly suitable
area

Moderately suitable
area

Highly suitable
area

Total suitable
area

Current 10.39 3.79 1.44 1.07 6.30

SSP245 2050s 3.06 5.72 5.45 2.46 13.63

SSP245 2070s 2.68 6.91 4.78 2.32 14.01

SSP585 2050s 1.96 7.58 5.38 1.77 14.73

SSP585 2070s 3.27 8.76 4.01 0.64 13.42
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contributes greatly to spatial heterogeneity in regional climate

change, thus affecting the response of vegetation to climate

(Chang et al., 2015; Xiong et al., 2023). The terrain of Jiangxi

mainly encompasses mountains in the east, west, and south; there

are hills alternating with river valley plains in the central part,

whereas the Poyang Lake Plain lies in the north. Due to this high

south and low north pattern, FA populations are likely to migrate

southward to cooler areas at higher elevations, as driven by future

extreme heat. However, future temperatures will increase

substantially, leading to more frequent climate extremes (e.g.,

droughts, heat waves, rainstorms) and impairing the soil carbon

sink function (Melillo et al., 2017). Under these adverse

environmental changes, the potential suitable area for FA may
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diminish under the SSP585 climate scenario of extreme warming in

2080. Complex plant physiological and ecological responses to

climate change affect the potential distribution pattern of FA in

the future (Li et al., 2009). This study uncovers that future climate

warming will drive the expansion of potential suitable areas for FA

in Jiangxi; however, excessive warming may lead to the reduction of

highly suitable areas in the future, affecting the medicinal properties

and germplasm of FA. Therefore, more effort should be dedicated to

the preservation of seed sources and breeding for improved plant

varieties to cope with the risk of future extreme heat.

Taking into account the potential dynamic change of future

climate, we prospectively regionalize the suitable planting areas for

FA into three parts and propose tailored development strategies. i)
FIGURE 8

Distribution of habitat suitability for Fructus Aurantii in Jiangxi Province under different future climate scenarios.
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FIGURE 9

Planting regionalization of Fructus Aurantii in Jiangxi Province based on MaxEnt predictions of current and future distribution areas [(a) SSP245
scenario; (b) SSP585 scenario].
TABLE 4 Planting area of Fructus Aurantii in garden land of Jiangxi Province based on MaxEnt predictions under current climate conditions and two
future scenarios for 2040–2080 (unit: km2).

Administrative
region

Mountainous
area of
northeastern
Jiangxi

Mountainous
area of
northwestern
Jiangxi

Mountainous
area of
southern
Jiangxi

Hilly area
of
central
Jiangxi

Northern plain
area of central
Jiangxi (Poyang
Lake Plain)

Total garden
land area

SSP245

Core demonstration
area

4.18 5.85 20.84 38.21 37.74 106.82

Stable production and
promotion area

27.59 16.94 80.26 174.18 219.62 518.59

Potential improvement
area

42.68 106.50 258.06 151.84 254.05 813.13

Unsuitable planting
area

18.40 143.16 225.94 35.52 51.66 474.67

Total suitable planting area 74.45 129.29 359.16 364.23 511.41 1438.54

SSP585

Core demonstration
area

0.00 18.36 18.65 34.48 10.71 82.19

Stable production and
promotion area

4.30 114.89 160.64 225.60 33.88 539.31

Potential improvement
area

45.39 67.96 402.98 354.87 38.85 910.05

Unsuitable planting area 17.28 5.58 298.87 43.73 16.20 381.66

Total suitable planting area 49.68 201.21 582.26 614.96 83.44 1531.55
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In the core demonstration area, the conventional planting industry

of FA should be preserved and optimized. On this basis, it is

suggested to continuously introduce advanced cultivation

techniques and integrated pest control strategies, as well as

formulate strict quality control standards and operating

specifications. Moreover, it is crucial to actively breed for heat-

resistant plant varieties and establish an excellent germplasm

resource bank, which can ensure and improve the medicinal

quality of FA. ii) In the stable production and promotion area,

the existing management practices and the technical levels of

farmers should be improved to maintain the stable and high yield

of FA. iii) In the potential improvement area, it is recommended to

appropriately expand the planting areas for FA based on market

demand, and select the plant varieties with strong adaptability

taking into account regional microclimate characteristics.

Furthermore, the investment in infrastructure construction needs

to be increased and the irrigation, drainage, and transportation

conditions should be improved in order to reduce the harm of

natural hazards and ensure the quality of FA.
4.3 Applicability and limitations of
maximum entropy model

As Chinese medicinal materials are characterized by unique

geographical distribution patterns, it is unrealistic to analyze their

ecological space requirements by physiological measurements. The

MaxEnt model uses multiple environmental variables of known

species distribution points to simulate species distribution and then

project it into another geographical space. Zeng et al. (2021)

identified the key environmental variables affecting the cultivation

of Pogostemon cablin Benth and predicted its future potential

planting areas using the MaxEnt model combined with ArcGIS

10.2. Yan et al. (2024) conducted meta-analysis and MaxEnt

modeling to uncover the impacts of global climate change on the

quality and distribution of Panax. Li et al. (2024) predicted the

spatial distribution of three Ephedra species under climate change

based on the MaxEnt model. Given its high accuracy and practical

application performance, MaxEnt is advantageous over other

ecological niche models for predicting the potential distribution

of Chinese medicinal materials (Zhu et al., 2013).

In this study, mean annual data were used to evaluate the

impacts of climate on FA distribution, making it difficult to

accurately reflect the similarity in variable response curves during

the plant growth cycle of genuine medicinal materials. There were

also limitations in describing the similarity among samples, as the

data were unable to fully capture complex ecological characteristics.

More advanced measurement methods should be explored to

enable accurate assessment of ecological similarity across regions.

Additionally, the BCC-CSM2-MR model was used in MaxEnt-

based prediction under future climate scenarios. The ability of

this climate model to simulate land surface variables needs to be

improved. Furthermore, the potential distribution areas usually

represent environmental settings similar to the actual distribution

areas, rather than the real distribution boundaries. MaxEnt
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modeling establishes a statistical relationship between habitat

distribution and environmental variables. It assumes that species

distribution relates to environmental variables only, without

considering the phenotypic plasticity and diffusion dynamics of

species. Therefore, it is necessary to assess potential species

distribution and extinction risk by integrating the life history and

distribution history of species, as well as the scenarios of future

climate and land use change.

For the planting regionalization of FA, this study did not take

into account environmental pollution (e.g., man-made pollution

sources) or socio-economic factors (e.g., urban expansion), which

could have potential impacts on genuine medicinal materials.

Additionally, attention should be paid to economic and technical

factors in actual cultivation. On the basis of field investigation,

small-scale planting trials can be carried out first in accordance with

local economic levels, cultivation techniques, and seed and seedling

quality. Agricultural facilities (e.g., greenhouses, sheds) and

practices (irrigation, soil amelioration, and plastic mulching) are

useful to reasonably regulate local eco-environmental conditions

before large-scale introduction and planting of FA.
5 Conclusion

This study predicted the potential suitable areas for Fructus

Aurantii (FA) in Jiangxi Province under future climate change

based on the maximum entropy model with high accuracy. The

potential suitable areas for FA were mainly distributed in the central

hilly area, northern plain area, and southern mountainous area of

Jiangxi. Climate played an overarching role in shaping the

geographical distribution of FA, followed by topography and soil

factors. Model prediction indicated that the total suitable area

would expand twice its current size and shift southward in 2040–

2080. The medium greenhouse gas emission scenario (SSP245) was

more favorable for FA than the high greenhouse gas emission

scenario (SSP585). The protection of FA is a long-term process,

where planting regionalization should take into account the impact

of future climate change. This study presents empirical data for

rational selection of planting sites for FA and provides a modeling

tool for accurate prediction of suitable distribution areas for other

Chinese medicinal materials.
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