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Projecting global shifts in the
invasive potential of Bidens
pilosa L. under climate change
using species distribution models
Linran Fan, Chunxiao Mi, Jialu Li, Yanjun Zhang,
Haifang Zhang, Guilong Zhang* and Hui Wang*

Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affair, Tianjin, China
Invasive species pose significant threats to ecosystems by reducing biodiversity,

introducing new diseases, and competing with native species for resources.

Bidens pilosa L., a globally invasive weed originating in tropical America, severely

impacts agricultural productivity by infesting 31 economically vital crops across

over 40 countries. This study examined the global distribution of Bidens pilosa L.,

under current and future climate scenarios. Using species distribution models

and occurrence data, we identified key factors influencing its spread, including

temperature, precipitation, and human influence. Our findings suggest a likely

decline of suitable habitats in tropical regions and an expansion into temperate

regions, with climate suitability decreasing under higher temperatures.

Additionally, historical reconstructions emphasize that the rapid spread of the

species was facilitated by maritime trade routes. Management strategies are

proposed that emphasize the need for enhanced control measures in high-risk

areas and conservation efforts in its native range in tropical America. Overall, this

research contributes to understanding the dynamics of B. pilosa distribution and

informs proactive management strategies to mitigate its ecological and

economic impacts.
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1 Introduction

Biological invasion is defined as the process during which a species acquires a

competitive advantage following the removal of natural barriers to its proliferation. This

advantage facilitates rapid dispersal and the colonization of new niches within recipient

ecosystems, ultimately leading to the establishment of dominance (Valéry et al., 2008).

They significantly contribute to global environmental change, posing significant threats to

biodiversity, ecosystem services, and human well-being (Strayer, 2012; Shackleton et al.,

2018; Bongaarts, 2019). As globalization facilitates the movement of species across borders,

the ongoing challenge of biological invasions on most continents is expected to continue to
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increase through 2050 (Pysek et al., 2010; Seebens et al., 2021).

Failure to comprehensively address this issue could have profound

and lasting consequences for the health and integrity of ecosystems

worldwide, emphasizing the critical need for concerted efforts in

research, policy, and public awareness initiatives. Therefore,

biological invasions will remain a significant global environmental

concern in 21st century. Previous studies have shown that among

the most worrisome invaders are invasive alien plants (IAPs), which

are having increasingly severe impacts on ecosystem dynamics,

economic systems, and public health (Subedi et al., 2014; Rai and

Singh, 2020; Seebens et al., 2021).

The 2021 Intergovernmental Panel on Climate Change (IPCC)

Sixth Assessment Report (AR6) stated that human activities,

primarily through emissions of greenhouse gases, have clearly

caused global warming, with global surface temperature reaching

1.1°C above 1850–1900 during 2011-2020. This warming trend has

impacted the distribution and spread dynamics of IAPs (Hellmann

et al., 2008; Flory et al., 2022). Studies have shown that IAPs

respond differently to climate change, with some species

experiencing range expansion (Osland et al., 2023), while others

show a trend toward contraction (Huang et al., 2023), and in some

cases, both phenomena occur simultaneously (Wang et al., 2022;

Nikkel et al., 2023; Evans et al., 2024). Therefore, it is crucial to

understand the complex relationship between climate change and

shifts in IAPs distribution. Furthermore, in addition to climatic

factors, human activities and soil conditions play an important role

in shaping the distribution patterns of IAPs. Human interventions

in ecosystems, particularly in the Anthropocene era, not only

facilitate invasions but also influence the underlying mechanisms

that drive these invasion (Kueffer, 2017). Variations in soil

properties such as pH, nutrient availability, and texture can

directly impact the establishment, growth, and competitive ability

of invasive plants. This highlights the importance of understanding

soil-plant interactions for effective management strategies.

Species distribution models (SDMs) are widely utilized in

ecological research to explore species-environment relationships

(Guisan and Thuiller, 2005). These models have been extensively

applied to predict the potential distributions of various invasive

species, such as Phragmites australis, Pistia stratiotes, Artemisia

vulgaris, Quercus arkansana, Quercus acerifolia, and Eriocheir

sinensis, among others (Valéry et al., 2008; Uden et al., 2015;

Rodrıǵuez-Rey et al., 2019; Sofaer et al., 2019; Chandra et al.,

2023a, b; Zheng et al., 2024). Recognized for its superior

predictive ability and minimalist functionality, MaxEnt has been

favored over other methods (Phillips et al., 2006; Merow et al., 2013;

Radosavljevic and Anderson, 2014; Cobben et al., 2015; Wen et al.,

2024), demonstrating better performance compared to alternatives

such as BIOCLIM, DOMAIN, and infinite weighted logistic

regression (Wisz et al., 2008). Furthermore, MaxEnt can be

utilized to provide conservative yet highly accurate estimates of

the habitat suitability for invasive species in the landscape (West

et al., 2016).

Bidens pilosa L. is an annual broad-leaved herbaceous plant

belonging to the Asteraceae family. It is native to tropical America

and widely distributed in tropical, subtropical, and temperate
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regions worldwide at present (Pysek et al., 2004; Wu and Wang,

2005). B. pilosa is recognized as a troublesome invasive species in

over 40 countries worldwide, exerting significant adverse impacts

on agricultural productivity and ecosystem integrity. Its

pronounced ecological plasticity enables it to thrive across a

broad range of habitats, from anthropogenically disturbed sites

such as gardens and roadsides to intensively managed agricultural

landscapes. Of particular concern is its ability to establish aggressive

infestations within 31 crop systems across these countries, notably

affecting key staples such as corn, sugarcane, cotton, and rice—

crops that underpin global food security and economic resilience

(Sharma et al., 2023; Kato-Noguchi and Kurniadie, 2024). B. pilosa

exhibits numerous adaptive characteristics that enable it to thrive in

different environmental conditions, including high seed production,

efficient dispersal, wide germination range, and the ability to grow

in various soil types. Its rapid growth and resource consumption

enable it to compete effectively with associated species (Yue et al.,

2019). Besides, its allelopathic properties hinder the growth of other

plants (Batish et al., 2002), and make it a potential host for pests and

diseases detrimental to crops and native species (Panizzi and Lucini,

2022). The infestation of B. pilosa often results in decreased crop

production and quality (Blanco et al., 1996; Osland et al., 2023).

Enhanced monitoring and prevention efforts are crucial to mitigate

further losses caused by B. pilosa.

Despite the ecological and agricultural production implications of

B. pilosa, there remains limited understanding regarding its potential

distributional shifts under changing climate conditions. These gaps

highlight the necessity for comprehensive, globally focused studies

that consider the dynamic interplay between climate change and

species invasiveness. Considering future species distributions under

various climate change scenarios and management interventions is

essential for formulating effective long-term strategies (Richardson

et al., 2010). To address this knowledge gap, our study aims to build

historical intrusion path, analyze spatiotemporal trends, and identify

the key factors influencing the distribution of B. pilosa. By assessing

areas that will become suitable or unsuitable under future climate

scenarios, our research will aid in prioritizing management actions

and developing proactive strategies to minimize the impact of B.

pilosa on natural ecosystems and agriculture.
2 Materials and methods

2.1 Occurrence data

Most of the distribution records of B. pilosa were obtained

online, including 41,303 records from the Global Biodiversity

Information Facility (GBIF: https://www.gbif.org/occurrence/

download?taxon_key=5391845), and 1751 records from the

Chinese Virtual Herbarium (https://www.cvh.ac.cn/index.php).

There are 326 records of our field survey(During the summer of

2022-2023, we conducted field surveys across nearly all provinces in

China where B. pilosa has been reported. In total, we collected over

20,000 geospatial data points. After comparing and filtering the data

from both years, we obtained the final dataset for analysis.). We
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obtained a total of 43,380 occurrence records of Bidens pilosa L.

from worldwide sources. After importing these datasets into ArcGIS

10.2, we filtered out unreliable data and removed points with

missing environmental information. In addition, only one

occurrence record was retained within each 10 × 10 km raster

cell. This process resulted in a final dataset of 12,803 occurrence

records globally (Figure 1). The longitude and latitude of

occurrence records for each continent are provided in

Supplementary Excel Files.
2.2 Predictor variables and climate change
scenarios

Drawing on existing research, we selected 56 predictor variables to

identify the main factors influencing the distribution pattern of B.

pilosa worldwide (Yang et al., 2022). These factors include climatic,

anthropogenic, and soil variables. Bioclimatic variables, including 19

derived from monthly temperature and precipitation records, along

with elevation data, were obtained from the WorldClim 2.1 database

(https://www.worldclim.org) at a 2.5-minute resolution. Soil

variables were sourced from the Harmonized World Soil

Database v1.2 of the United Nations Food and Agriculture

Organization (https://www.fao.org/soils-portal/data-hub/soil-

maps-and-databases/harmonized-world-soil-database-v12/en/)
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(Yang et al., 2022). Human footprint (HFP), population (POP), and

human influence index (HII) data were acquired from the Center

for International Earth Science Information Network (https://

sedac.ciesin.columbia.edu/). To address collinearity issues, a

Pearson correlation analysis was conducted among the 56 variables,

with a correlation coefficient greater than 0.8 being considered a

strong correlation (Dormann et al., 2013). Variables with lower

contribution to prediction probability were eliminated using the

Jackknife method, resulting in 18 predictor variables selected for B.

pilosa distribution modeling. The 18 predictor variables were classified

into three groups: climate variables, human variables, and

environmental variables, as presented in Table 1.

We utilized future climate projections from the Intergovernmental

Panel on Climate Change (IPCC) 6th Assessment Report, which are

based on Shared Socioeconomic Pathways (SSPs). The SSPs, intended

to span the range of plausible futures, are based on five narratives

describing broad socioeconomic trends that could shape future society

(Riahi et al., 2017). Taking into account Asia has the most serious

invasion of B. pilosa, we chose two timelines (2041–2060 and 2081–

2100) and four scenarios obtained under the BCC-CSM2-MR model

from the WorldClim 2.1 database: SSP126 (sustainability, the most

optimistic scenario reflecting RCP2.6 from 5th report), SSP245

(middle of the road, moderate scenario reflecting RCP4.5), SSP370

(regional rivalry, not used in 5th report) and SSP585 (fossil-fuel based

development or business-as-usual, reflecting RCP8.5).
FIGURE 1

Occurrence of B. pilosa across the world.
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2.3 Data analysis

The MaxEnt approach is widely used to model the spatial

distribution of different species. The basic concept of MaxEnt

modeling is to derive the probability distribution with maximum

entropy based on occurrence data within given constraints. In

contrast to parametric models, MaxEnt was specifically designed

to handle presence-only data (Phillips et al., 2006). Since the

available data only indicate the presence of the species, we

employed the MaxEnt algorithm to construct a species

distribution model for B. pilosa.

To optimize the model and prevent overfitting, it is crucial to

appropriately set relevant parameters. Two key parameters in model

calibration are the regularization multiplier (RM) and the

combination of features (FCs), both of which are essential for

achieving optimal model performance (Muscarella et al., 2014).

We used the R package ENMeval to select FC and RM values as

optimization parameters for subsequent predictions, with the

minimum corrected Akaike Information Criterion (DAICc) set to
0 (Warren and Seifert, 2011; Huang et al., 2023). Our results showed

that the optimal RM value for Bidens pilosa was 0.5, and the best

feature combinations were LQPTH. The distribution records and

predictor variables were imported separately into MaxEnt 3.4.1

software. For occurrence data, 10000 background points

were randomly selected as pseudo-absences, with 75% of the
TABLE 1 Variables used in the potential distribution modeling of
B. pilosa.

Group Variable Description

Climate variables

bio1* Annual mean temperature

bio2 Mean monthly temperature range

bio3* Isothermality ( (BIO2/BIO7) × 100)

bio4*
Temperature seasonality (STD
× 100)

bio5 Max temperature of warmest month

bio6 Min temperature of coldest month

bio7 Temperature annual range (5–6)

bio8 Mean temperature of wettest quarter

bio9 Mean temperature of driest quarter

bio10*
Mean temperature of
warmest quarter

bio11 Mean temperature of coldest quarter

bio12 Annual precipitation

bio13 Precipitation of wettest month

bio14* Precipitation of driest month

bio15
Precipitation seasonality (CV -
coefficient of variation)

bio16 Precipitation of wettest quarter

bio17* Precipitation of driest quarter

bio18* Precipitation of warmest quarter

bio19* Precipitation of coldest quarter

Human variables

HFP* Human Footprint

HII* Human Influence Index

POP Population

Environmental
variables

T_GRAVEL Topsoil Graver Content

T_SAND Topsoil Sand Fraction

T_SILT Topsoil Silt Fraction

T_CLAY* Topsoil Clay Fraction

T_USDA_TEX Topsoil USDA Texture Classification

T_REF_BULK* Topsoil Reference Bulk Density

T_OC Topsoil Organic Carbon

T_PH_H2O* Topsoil pH (H2O)

T_CEC_CLAY Topsoil CEC (clay)

T_CEC_SOIL Topsoil CEC (soil)

T_BS Topsoil Base Saturation

T_TEB Topsoil TEB

T_CACO3 Topsoil Calcium Carbonate

T_CASO4 Topsoil Gypsum

(Continued)
TABLE 1 Continued

Group Variable Description

T_ESP Topsoil Sodicity

T_ECE Topsoil Salinity

S_GRAVEL Subsoil Graver Content

S_SAND Subsoil Sand Fraction

S_SILT* Subsoil Silt Fraction

S_CLAY* Subsoil Clay Fraction

S_USDA_TEX* Subsoil USDA Texture Classification

S_REF_BULK Subsoil Reference Bulk Density

S_OC Subsoil Organic Carbon

S_PH_H2O Subsoil pH (H2O)

S_CEC_CLAY Subsoil CEC (clay)

S_CEC_SOIL Subsoil CEC (soil)

S_BS Subsoil Base Saturation

S_TEB Subsoil TEB

S_CACO3 Subsoil Calcium Carbonate

S_CASO4 Subsoil Gypsum

S_ESP* Subsoil Sodicity

S_ECE Subsoil Salinity

Elev* Altitude
The variables selected for analysis are marked with an asterisk (*).
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occurrence records allocated for training and the remaining 25% for

testing purposes. The RM was set to 0.5, and the FC was set to

LQPTH. To minimize uncertainty, we conducted 10 replicated runs

of cross-validation while keeping other settings at their default

values. Finally, the average result was considered to represent the

potential distribution of B. pilosa.

The area under the receiver operating characteristic curve

(AUC) was used to assess the accuracy of the model (Baasch

et al., 2010). The AUC is calculated by plotting sensitivity against

“1-specificity” and ranges from 0 to 1, with values closer to 1

indicating higher prediction accuracy. Prediction ability is rated as

failing (0.5–0.6), poor (0.6–0.7), fair (0.7–0.8), good (0.8–0.9), or

excellent (0.9–1).

The results from MaxEnt were imported into ArcGIS 10.2 and

converted to raster. We reclassified data from various climatic

conditions to assess future shifts in suitable habitats under four

climate scenarios, compared to historical conditions, using the

raster calculator. The potential geographical distribution of B.

pilosa under current and future climates was classified into the

following four categories: unsuitable (P < 0.1), poor (0.1 ≤ P < 0.3),

moderate (0.3 ≤ P < 0.5), and high (0.5 ≤ P < 1). The raster-to-point

tool was then applied, and the mean distribution centroid was

calculated for each climate scenario.

We used ArcGIS 10.2 with the geographic coordinate system

GCS_WGS_1984 to map the historical expansion process of B.

pilosa over per 25-year period worldwide. The occurrences

cumulative along the Y-axis.
3 Results

3.1 Invasive historical reconstruction

Figure 2 illustrates the historical distribution of B. pilosa.

Originating from the American continent, its first recorded

occurrence outside the Americas dates back to 1847, on the

southeastern islands of Africa. Within 50 years, it rapidly

expanded to numerous countries across Africa. The species then

rapidly expanded its range along coastal regions to Oceania, Asia,

and Europe in 1869, 1888, and 1908, respectively. The trends

associated with species occurrence from 1875 to 1975 are also

shown in Figure 2. The spread of B. pilosa across continents initially

occurred at a slow pace, followed by an explosive increase in

population expansion after the establishment of a certain number

of sites, reflecting a typical invasion process observed in invasive

species. Particularly noteworthy is the exceptionally rapid growth

rate observed after spreading to Asia.
3.2 Model accuracy evaluation and key
predictor variables

Our models demonstrated good predictive accuracy, as

indicated by an average AUC value of 0.82 across the 10
Frontiers in Plant Science 05
validation runs. The highest importance was attributed to bio1

(Annual mean temperature, 36.25%), as indicated by the percent

contributions of all variables in the model. This was followed by

bio18 (Precipitation of the warmest quarter, 22.57%), HFP (Human

Footprint, 24.67%), bio4 (Temperature seasonality, 5.94%), and

bio14 (Precipitation of the driest month, 2.81%) (Figure 3). The

contributions of different predictor groups exhibited significant

disparities, with the climate variables reaching 71.5%. The

contributions of Human variables and Environmental variables

are 25.87% and 2.6%, respectively.
3.3 Current potential distribution

Figure 4 shows the potential distribution of B. pilosa under

current climatic conditions. Coastal regions have the highest

invasion potential, with suitable areas decreasing with distance

from the sea. Furthermore, the potential geographic distribution

demonstrates a north-south gradient, with the most suitable areas

concentrated in the southern mainland. Particularly significant

potential distributions are observed in southeastern Asia, eastern

Oceania, eastern Africa, southern North America, and southeastern

South America. Although many current occurrences of B. pilosa,

particularly in Southeast Asia and eastern Oceania, are consistent

with suitable climates, our model identifies additional areas ripe for

invasion, particularly in central and southern Europe, western

Oceania, and southwest Africa. The proportion of all suitable

habitat areas is, in descending order, South America (58.26%),

Europe (52.91%), Oceania (48.89%), Africa (44.34%), North

America (23.58%), and Asia (22.04%) (Figure 5). Asia in

particular has the largest area of particularly suitable habitats

(761,000 km2).
3.4 Future potential distribution under
different time periods and climate change
scenarios

Compared to the current potential distribution, the primary

habitat area is projected to remain similar under future climatic

conditions (Figures 4, 6). Predictions for the 2041–2060 period in all

scenarios indicate range expansion in Argentina, Brazil, Congo,

Poland, Ukraine, the northeast of China, and the northwest of the

United States. In the period 2081–2100 under the SSP126 scenario,

the total expansion area reached 9.04% (Table 2), with the main

distribution becoming more continuous, primarily concentrated in

various European countries. Significant increases are also observed

in northern North America and northeastern Asia. Apart from the

SSP126 scenario, other predicted results show minor contractions

and migration towards colder regions. Overall, as climate change

intensifies and time progresses, the changes in distribution are

expected to become more pronounced.

The distribution center of B. pilosa was located within Sudan at

coordinates (28.160810°E, 10.550958°N) under the current climate.
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(Figure 7). Between 2041 to 2060, the distribution center is

projected to shift westward due to climate change. Migration

directions varied in different climate scenarios, with centroids

shifting towards the southwest under SSP126 and SSP245

scenarios, while showing a stronger shift to the north under

SSP370 and SSP585. During the period 2081–2100, the

distribution centers is supposed to move towards the northern

region. Under the SSP585 scenario, the distribution center of B.

pilosa is projected to shift more than 200 km north of its current

position. Under four climate scenarios, the distribution center of

Bidens pilosa is likely to shift northward during 2081–2100

compared to the period of 2041-2060. In future scenarios, the

distribution center of B. pilosa within Sudan is anticipated to shift

to higher latitudes or altitudes compared to the current climate.
Frontiers in Plant Science 06
4 Discussion

4.1 Invasive historical reconstruction

Invasive species that establish populations in novel

environments typically undergo a five-stage process: introduction,

colonization, incubation, spread and outbreak (With, 2002; Aikio

et al., 2010; Blackburn et al., 2011). Our historical reconstruction of

B. pilosa invasion is consistent with this evolutionary process.

Specifically, the reconstruction revealed a gradual increase in

species occurrence over a period of 25 years after the invasion of

a new continent, followed by a massive population increase after

about 75 years. The lack of significant increases immediately after

population invasion could be attributed to a lag phase closely linked
FIGURE 2

(a) Historical reconstruction of the expansion process and increased species occurrence of B. pilosa from 1800 to 2000. (b) Changes in B. pilosa
occurrences data across different continents from 1875 to 1975. (c) Total occurrences data changes of B. pilosa from 1875 to 1975.
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FIGURE 4

Potential distribution of B. pilosa under current climate.
FIGURE 3

The contributions of different predictor groups and different variables in explaining distribution pattern of B. pilosa. (a) Permutation importance of all
variables calculated by the MaxEnt model. (b)Percent contributions of all variables calculated by the MaxEnt model. (c) Contributions of different
predictor groups calculated by the MaxEnt model.
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to an adaptation period, abrupt invasion mechanisms, and

surrounding environmental changes (Crooks and Soule, 1999).

Based on invasion history, B. pilosa spread to different continents

via maritime trade routes. It was initially observed in coastal or

island nations such as Madagascar, Vietnam, the United Kingdom,

the Netherlands, and New Zealand before gradually expanding its

range into the interior of the mainland. The exponential growth of

world trade since the late 15th century, evidenced by the increase in

shipping tonnage (Fayle, 2005), has led to a corresponding rise in

biotic invasions (Mack et al., 2000). In general, maritime trade was

an important factor in its spread.
4.2 Key predictor variables affecting the
distribution of B. pilosa

The present study represents an empirical investigation of the

invasion potential of B. pilosa under current and future climates.

Among the predictor variables examined, our findings suggest that

temperature, precipitation, and human footprint likely play an

important role in regulating the distribution of invasive B. pilosa.

These results align with recent studies suggesting temperature-

related factors as primary determinants of invasive species

distribution (Lozano, 2021; Anibaba et al., 2022; Dinh et al., 2022;

Yang et al., 2023). B. pilosa is an annual herbaceous plant that

typically germinates between April and May and flowers from

August to September, with a minimum germination temperature

requirement exceeding 15°C. Temperature exerts extensive effects

on plant growth by influencing metabolic processes such as

photosynthesis, respiration, transpiration, as well as synthesis and

transportation of organic matter (Qaderi and Reid, 2008; Yamori

et al., 2022). Additionally, both the percentage and rate of

germination have been observed to decrease (Qaderi and Reid,

2008). Therefore, the changes in annual mean temperature will have
Frontiers in Plant Science 08
a significant impact on the distribution of B. pilosa. Furthermore,

precipitation during the warmest quarter affects seedling survival

rates and nutrient accumulation, influencing reproductive capacity.

Previous reports suggest that the plant prefers warmer climates with

high precipitation, although it has been shown to be able to

withstand a wide range of environmental conditions, from

tropical to mild-temperate climates (Sharma et al., 2023). Our

results also demonstrate that human activities influence species

distribution alongside climatic factors alone (Yang et al., 2023).

Bidens pilosa produces abundant heteromorphic (central and

peripheral) achenes with specialized shapes that can adhere to

human clothing and animal fur, making human activities another

significant factor in the distribution of these invasive plants. As

human influence intensifies, this may accelerate the spread and

expansion of IAPs, consistent with previous research (Fang et al.,

2021; Yang et al., 2023). This discovery confirms the conclusion

from the reconstruction of invasion history, which indicates the

spread of B. pilosa through human-mediated transportation via sea

and land routes in the context of commercial activities.
4.3 Differences in distribution changes of
B. pilosa under future climates

Our study revealed that coastal and riverine regions exhibit a

high incidence of B. pilosa invasion, a notable observation given the

origin from the tropical Americas (Sharma et al., 2023). This

species, which favors sunlight and moisture and proliferates

rapidly, thrives in habitats with favorable hydrothermal

conditions (Wang et al., 2020). Consequently, the warm and

humid climate prevalent in middle-low latitude coastal areas

makes them especially conducive to its survival. Additionally, the

impact of trade flows from coastal ports could contribute to this

phenomenon (Seebens et al., 2015).
FIGURE 5

Different types of suitable areas for B. pilosa across six continents under the current climate.
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With the exception of the SSP126 scenario, our models of the

potential current range of B. pilosa and its future distribution during

2041–2060 and 2081–2100 deviate from the most widely held

assumption that climate change will drive range expansion of

IAPs (Chauhan et al., 2019; Paz-Dyderska et al., 2021; Yang et al.,

2023). In other words, the distribution of invasive plants is

changing, but is trending downwards with climate change. Many

studies support our results (Anibaba et al., 2022; Mengistu et al.,

2023), which indicate variations in dispersal modes, growth habits,

and expansion extents between invasive plant species.
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While our study predicted a likely decline in climate suitability

of B. pilosa under future climate scenarios, it also suggests an

expansion of suitable climate conditions in colder regions. Several

factors contribute to this result: 1) An increase in the average annual

temperature reduces the potential distribution area of B. Pilosa

(Gamar and Qaderi, 2019). The germination rate of B. pilosa seeds

reached more than 80% under the constant temperature of 15-30°C,

but the temperature increases significantly inhibited germination

(Hong et al., 2004; Chauhan et al., 2019). In addition, low

temperatures can favor the competitive ability of B. Pilosa (Yue
FIGURE 6

Potential distribution of B. pilosa under future climate.
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et al., 2021). Consequently, the increase in annual mean

temperature has an adverse effect on the growth and development

of B. pilosa in tropical regions, while it shows an opposite response

in high latitudes. 2) In the future, high carbon dioxide emissions

and the frequency of extreme weather events (such as increases in

extreme high temperatures, decreases in extreme low temperatures,

and increases in intense precipitation events) are expected to

decrease the habitable area for B. pilosa (Easterling et al., 2000;

Bellard et al., 2013). 3) As a C3 plant, B. pilosa has a high

transpiration coefficient; however, the anticipated climate

warming will increase transpiration and soil water losses, which

will consequently lead to lower survival rates in tropical regions

(Chauhan et al., 2019; Poorter et al., 2022). 4) The expansion of

suitable areas has reached saturation, resulting in small fluctuations

or contractions. 5) Prediction for the 2081–2100 SSP126 scenario

revealed that the suitable area will be expanded. In this scenario

consumption is oriented toward low material growth and lower

resource and energy intensity. That is, the SSP126 scenario is the

only one of the four scenarios in which climate change is in a

positive direction. In this scenario, the amount of carbon dioxide

emitted from human activities will be reduced, and the rate of global

warming will slow down. The downward trend in global warming

is conducive to the spread of B. pilosa. This conclusion also supports

the above reasons from a different angle. Despite these future

climate conditions, B. pilosa is expected to expand towards colder,

higher latitudes.
4.4 Future considerations and
management of B. pilosa in the invaded
and native ranges

Our model predicts a likely decline in climatically suitable

habitats for B. pilosa across most climate scenarios, which is

encouraging news for eradication efforts in invaded areas.

However, it should be noted that the predicted contraction range

is relatively small, and a significant portion of the invasion areas are
Frontiers in Plant Science 10
still under substantial invasion pressure. Therefore, there is an

urgent need to enhance management and control measures in

high-risk regions. Biological control is emerging as one of the

most important approaches to combat invasive plants. Several

natural enemies of B. pilosa have been documented in its

native range, including Ralstonia solanacearum Smith, Sonchus

yellow net virus, Cercospora bidentis Tharp, Bidens mosaic virus,

and Sclerotinia sclerotiorum (Lib.) de Baary. Nevertheless, current

management strategies primarily rely on chemical and physical

treatments (Guatimosim et al., 2015; Kato-Noguchi and Kurniadie,

2024). These methods include mechanical mowing as well as

herbicide application using glyphosate atrazine 2-4-D glyphosate

imazethapyr metribuzin paraquat (Chauhan et al., 2019). The

extensive use of glyphosate not only destroys the ecosystem, but

also accumulates in animals through bioaccumulation and spreads

along the food chain, producing toxic effects on non - target

organisms. Therefore, it is important to intensify research efforts

to find further sustainable and effective solutions, such as biological

control, to contain the spread of B. pilosa.

For highly suitable habitats, a combination of physical and

chemical methods should be used to control and prevent the spread.

For moderately and poorly suitable habitats, we should actively

promote scientific knowledge about B. pilosa and establish public

awareness regarding invasive species prevention and control. As our

model predicts expansion of B. pilosa into colder regions, early

detection systems should be established in Argentina, Brazil, Congo,

Poland, Ukraine, northeast China, and northwest United States. We

recommend establishing priority management areas at open ports

in these regions.

In our model, we predicted the persistence of B. pilosa in its

native range, tropical America. It has no advantages in its native

habitats and our projections show that only a small proportion of

suitable acreage across the Americas (Figure 2). Therefore,

conservation efforts should prioritize managing and preserving

B. pilosa within its native range in the tropical Americas to

safeguard native biodiversity, despite the challenges posed by its

invasive nature.
TABLE 2 Size of projected range contraction and expansion (related to the predicted current range) of B. pilosa for all climate change scenarios and
studied timelines.

Timeline SSP
Total suitable habitat

area/km2
Range

contraction (%)
Range

expansion (%)
Total change
area/km2

Current 1.69×107

2041-2060

126 1.68×107 8.74 6.59 2.59×106

245 1.69×107 8.97 7.87 2.84×106

370 1.68×107 9.31 8.24 2.96×106

585 1.65×107 11.05 7.95 3.21×106

2081-2100

126 1.73×107 6.81 9.04 2.67×106

245 1.66×107 12.13 7.71 3.35×106

370 1.68×107 12.75 11.13 4.03×106

585 1.67×107 14.14 11.27 4.29×106
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4.5 Study limitations

Our study focused exclusively on environmental variables and

human influence. Although both anthropogenic and environmental

factors jointly shape invasion dynamics, the distinct climatic signal

identified in our results (Figure 3) necessitates treating these

variables separately to better isolate the impacts of global

warming from local habitat modulators. However, it is important

to note that plant invasions are also influenced by biotic

interactions. For instance, the stiff awns of Bidens pilosa can
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adhere to the bodies of animals—including birds and mammals—

facilitating long-distance dispersal. This animal-mediated seed

dispersal may significantly contribute to the invasion process, a

factor not explicitly incorporated into our models. Future research

should integrate these biotic interactions, particularly the role of

birds and other animals in seed dispersal, to further refine

predictions of invasion dynamics and improve our understanding

of species range expansion (Wang and Wan, 2021).

Furthermore, while species distribution models (SDMs) offer

valuable insights into areas with potentially suitable climatic
FIGURE 7

Distribution center shifts of B. pilosa under the current and future climate scenarios.
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conditions, they do not necessarily indicate successful

establishment. Successful invasions depend on a range of

ecological processes beyond climate, and overestimation of

potential distributions remains a recognized challenge in SDM-

based studies.

Lastly, our analysis may be affected by sampling bias. Historical

invasion reconstructions are often compromised by incomplete

survey techniques and inconsistent monitoring efforts (Delisle

et al., 2003). The increasing awareness and documentation of

invasive alien plants (IAPs) over time may lead to a progressive

rise in recorded occurrences, which might not accurately reflect true

expansion dynamics. Future studies should consider employing

standardized long-term monitoring and species-specific detection

protocols to mitigate these biases.
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