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Introduction: To achieve fast detection of pear fruits in natural pear orchards and

optimize path planning for harvesting robots, this study proposes the AHG-YOLO

model for multi-category detection of pear fruit occlusion in complex

orchard environments.

Methods: Using the Red Delicious pear as the research object, the pears are

classified into three categories based on different occlusion statuses: non-

occluded fruits (NO), fruits occluded by leaves/branches (OBL), and fruits in

close contact with other fruits but not obstructed by leaves/branches (FCC). The

YOLOv11n model is used as the base model for a lightweight design. First, the

sampling method in the backbone and neck networks is replaced with ADown

downsampling to capture higher-level image features, reducing floating-point

operations and computational complexity. Next, shared weight parameters are

introduced in the head network, and group convolution is applied to achieve a

lightweight detection head. Finally, the boundary box loss function is changed to

Generalized Intersection over Union (GIoU), improving the model’s convergence

speed and further enhancing detection performance.

Results: Experimental results show that the AHG-YOLO model achieves 93.5%

(FCC), 95.3% (NO), and 93.4% (OBL) in AP, with an mAP@0.5 of 94.1% across all

categories. Compared to the base YOLOv11n network, precision, recall,

mAP@0.5, and mAP@0.5:0.95 are improved by 2.5%, 3.6%, 2.3%, and 2.6%,

respectively. The model size is only 5.1MB, with a 16.9% reduction in the

number of parameters.

Discussion: The improved model demonstrates enhanced suitability for

deployment on pear-harvesting embedded devices, providing technical

support for the path planning of fruit-picking robotic arms.
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YOLOv11, pear fruits, object detection, ADown, group convolution, GIoU
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1 Introduction

The pear is a nutrient-rich fruit with high economic and

nutritional value, widely cultivated around the world (Seo et al.,

2022). China has been the largest producer and consumer of fruits

globally, with orchard area and production continuously increasing

(Zhang et al., 2024). Fruit harvesting has become one of the most

time-consuming and labor-intensive processes in fruit production

(Vrochidou et al., 2022). In the complex orchard environment,

accurate fruit detection is essential for achieving orchard

automation and intelligent management (Bharad and Khanpara,

2024; Chen et al., 2024). Currently, pear harvesting mainly relies on

manual labor, which is inefficient. Additionally, with the aging

population and labor shortages, the cost of manual harvesting is

rising, making the automation of pear fruit harvesting an urgent

problem to address. In recent years, researchers have been focusing

on mechanized and intelligent fruit harvesting technologies (Parsa

et al., 2024). However, in the unstructured environment of

orchards, fruits are often occluded by branches and leaves, and

their growth orientations vary, which affects the accuracy of

detection and localization, posing significant challenges to

automated fruit harvesting (Tang et al., 2023).

Traditional image processing methods for detecting fruit targets

require manually designed features, such as color features, shape

features, and texture features (Liu and Liu, 2024). These methods

then combine machine learning algorithms with the manually

designed features to detect fruits, but detection accuracy can be

easily affected by subjective human factors, and detection efficiency

is low (Dhanya et al., 2022).

In recent years, with the development of image processors

(GPUs) and deep learning technologies, significant progress has

been made in the field of object detection. Algorithms such as Faster

R-CNN (Ren et al., 2016) and SSD (Liu et al., 2016) have

demonstrated excellent performance in general tasks. However,

these methods still face challenges in real-time processing or small

object detection. The YOLO series such as YOLOv5 (Horvat et al.,

2022), YOLOv6 (Li et al., 2022), YOLOv7 (Wang et al., 2023),

YOLOv8 (Sohan et al., 2024), YOLOv9 (Wang et al., 2024),

YOLOv10 (Alif and Hussain, 2024), YOLOv11 (Khanam and

Hussain, 2024) has shown improvements in both speed and

accuracy, leading many researchers to utilize YOLO algorithms for

fruit detection research. Liu et al. (2024) proposed a new lightweight

apple detection algorithm called Faster-YOLO-AP based on

YOLOv8. The results showed that Faster-YOLO-AP reduced its

parameters and FLOPs to 0.66 M and 2.29G, respectively, with an

mAP@0.5:0.95 of 84.12%. Zhu et al. (2024) introduced an improved

lightweight YOLO model (YOLO-LM) based on YOLOv7-tiny for

detecting the maturity of tea oil fruits. The precision, recall, mAP@

0.5, parameters, FLOPs, and model size were 93.96%, 93.32%,

93.18%, 10.17 million, 19.46 G, and 19.82 MB, respectively. Wei

et al. (2024) proposed a lightweight tomato maturity detection

model named GFS-YOLOv11, which improved precision, recall,

mAP@0.5, and mAP@0.5:0.95 by 5.8%, 4.9%, 6.2%, and 5.5%,

respectively. Tang et al., 2024 addressed the issue of low detection

accuracy and limited generalization capabilities for large non-green
Frontiers in Plant Science 02
mature citrus fruits under different ripeness levels and varieties,

proposing a lightweight real-time detection model for unstructured

environments—YOLOC-tiny. Sun et al. (2023) focused on efficient

pear fruit detection in complex orchard environments and proposed

an effective YOLOv5-based model—YOLO-P—for fast and accurate

pear fruit detection. However, in complex, unstructured orchard

environments, factors such as varying lighting conditions,

occlusions, and fruit overlaps still affect recognition accuracy and

generalization capabilities. Additionally, existing models often suffer

from high computational complexity and excessive parameters,

making them difficult to deploy on resource-constrained mobile or

embedded devices. To address these challenges, researchers have

been committed to designing high-precision, fast detection models

that meet the requirements for real-time harvesting.

Current research on pear fruit detection has made some

progress. Ren et al. (2023) proposed the YOLO-GEW network

based on YOLOv8 for detecting “Yulu Xiang” pear fruits in

unstructured environments, achieving a 5.38% improvement in

AP. Zhao et al. (2024) developed a high-order deformation-aware

multi-object search network (HDMNet) based on YOLOv8 for pear

fruit detection, with a detection accuracy of 93.6% in mAP@0.5 and

70.2% in mAP@0.75. Lu et al. (2023) introduced the ODL Net

algorithm for detecting small green pear fruits, achieving detection

accuracies of 56.2% and 65.1% before and after fruit thinning,

respectively. Shi et al. (2024) proposed an improved model,

YOLOv9s-Pear, based on the lightweight YOLOv9s model,

enhancing the accuracy and efficiency of red-skinned young pear

recognition. The model achieved precision, recall, and AP rates of

97.1%, 97%, and 99.1%, respectively. The aforementioned studies

primarily focus on single pear fruit detection during maturity or

young fruit stages. However, in practical harvesting scenarios,

considerations such as robotic arm picking strategies and path

planning are also crucial (Wang et al., 2020). The picking strategy

and path planning of robotic arms are closely related to the fruit’s

growth position. Detailed classification of fruit location information

enables harvesting robots to adapt flexibly to varying environmental

conditions, dynamically adjusting path planning and grasping

strategies to ensure efficient and precise harvesting operations.

This enhances the system’s flexibility and robustness in complex

scenarios (Nan et al., 2023).

Based on the aforementioned background, this paper proposes a

lightweight intelligent pear orchard fruit detection method, AHG-

YOLO, using YOLOv11n as the base model. First, the traditional

sampling method in the YOLOv11n backbone and neck networks is

replaced with ADown to reduce computational complexity while

improving detection accuracy. Next, a new detection head structure is

developed using the “shared” concept and group convolution to

further lighten the model without compromising detection

performance. Finally, the CIoU loss function in YOLOv11n is

replaced with GIoU to enhance the model’s accuracy and fitting

capability. The improved model not only maintains high recognition

accuracy but also reduces the model size and computational cost,

making it easier to deploy on mobile devices. This provides technical

support for optimizing robotic picking paths and meets the demands

of intelligent harvesting in pear orchards.
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2 Material and methodology

2.1 Image collection

The Hongxiangsu pear, known as the “king of all fruits,” is a

hybrid descendant of the Korla fragrant pear and the goose pear,

and is a late-maturing, storage-resistant red-skinned pear variety.

The fruit is spindle-shaped, weighing an average of 220 grams, with

a maximum weight of 500 grams. The fruit surface is smooth and

clean, with a bright red color. The flesh is white, fine-grained, sweet,

and aromatic, with medicinal properties such as clearing heat,

moisturizing the lungs, relieving cough, quenching thirst, and

aiding in alcohol detoxification. It also has health benefits for

conditions such as hypertension, high cholesterol, and

arteriosclerosis. This study focuses on the Hongxiangsu pear, and

data was collected from the Modern Agricultural Industry

Technology System Demonstration Base of the Fruit Tree

Research Institute at Shanxi Agricultural University, located in

Taigu District, Jinzhong City, Shanxi Province (112°32’E, 37°

23’N). Considering that the harvesting robotic arm needs to adapt

to the complex environment of the orchard during the harvesting

process, pear images were captured from various angles, distances,

and time periods using a Vivo Z3i smartphone. A total of 1,000 pear

images were collected, and unusable images were filtered out,
Frontiers in Plant Science 03
leaving 734 usable images. The complex orchard environment

includes scenarios such as single fruit, multiple fruits, cloudy

weather, overlapping fruits, and branches and leaves obstructing

the view. Some sample images are shown in Figure 1.
2.2 Data augmentation

To improve the robustness and generalization ability of the pear

object detection model, image sample data needs to be augmented.

In this study, various augmentation techniques, including adding

salt-and-pepper noise, image sharpening, affine transformation, and

brightness adjustment, are randomly combined to enhance the

images. After data augmentation, the total number of pear

samples is 2936. The dataset is split into training set (2055

images), validation set (293 images), and test set (588 images)

with a ratio of 7:1:2. Some of the augmented data samples are shown

in Figure 2.
2.3 Dataset construction

In natural environments, pear fruits are often obstructed by

leaves or branches, and fruits can occlude each other, posing
FIGURE 1

Sample images. (A) Single fruit; (B) Single fruit + leaf obstruction; (C) Multiple fruits + branch and leaf obstruction; (D) Overlapping fruits; (E)
Backlight + dense fruits; (F) Cloudy weather + dense fruits.
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significant challenges for robotic harvesting. To improve

harvesting efficiency, the harvesting robot can adopt different

strategies when encountering pears in various scenarios during

the harvesting process. For example, for an unobstructed target,

path planning is relatively simple, and conventional path planning

and grabbing tasks can be directly applied. When the target is

partially occluded, path planning needs to consider how to

navigate around the obstruction or adjust the grabbing angle. In

environments with dense fruits, where occlusion and overlap of

multiple fruits are concerns, multi-object path planning

algorithms can be used to devise the optimal path (Gao, 2023;

Yang et al., 2022). Therefore, based on the growth loci

characteristics, the fruits are systematically categorized into

three distinct classes in this study. The schematic of the three

categories of pears is shown in Figure 3. The first class represents

fruits that are not obstructed (referred to as NO). The second class

represents fruits that are occluded by branches or leaves (referred

to as OBL). The third class represents fruits that are in close

contact with other fruits but are not occluded by branches or

leaves (referred to as FCC). This classification standard is based on
Frontiers in Plant Science 04
the classification criteria proposed by Nan et al. (2023) for

pitaya fruits.

The pear fruits in the images were annotated using rectangular

bounding boxes in Labeling (Tzutalin, 2015) software, categorized

into three classes (NO, OBL, and FCC) according to the predefined

classification criteria. The annotations were formatted in YOLO

style and ultimately saved as.txt files. Upon completion of the

annotation process, the distribution of different categories across

the final training set, validation set, and test set is shown in Table 1.
FIGURE 2

Image data augmentation examples. (A) Original image; (B) Brightness Adjustment + Rotation; (C) Image Sharpening + Rotation; (D) Salt-and-Pepper
Noise + Rotation.
FIGURE 3

Annotated Example of Pear Fruit Classification. (A) Fruits that are not obstructed (referred to as NO); (B) fruits that are occluded by branches or
leaves (referred to as OBL); (C) fruits that are close contact with other fruits but are not occluded by branches or leaves (referred to as FCC).
TABLE 1 Distribution of data in different categories.

Classes

Bounding
boxes
number
in train

Bounding
boxes

number in val

Bounding
boxes
number
in test

NO 3035 381 865

OBL 7731 1016 2256

FCC 3532 512 1039
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2.4 AHG-YOLO

The YOLOv11 network introduces two innovative modules,

C3k2 and C2PSA, as shown in Figure 4, which further enhance the

network’s accuracy and speed. However, in unstructured

environments such as orchards, when fruits are severely occluded,

overlapping, or when the fruit targets are small, the YOLOv11

network is prone to missing or misdetecting targets. To enhance the

accuracy and robustness of pear detection algorithms in
Frontiers in Plant Science 05
unstructured environments, this paper improves the YOLOv11n

model. The architecture of the improved model is shown in

Figure 5. First, in both the backbone and head networks, the

downsampling method is replaced with ADown (Wang et al.,

2024), enabling the model to capture image features at higher

levels, enhancing the feature extraction capability of the network

and reducing computational complexity. Then, a lightweight

detection head, Detect_Efficient, is designed, which further

reduces the computational load by sharing the detection head and
FIGURE 4

Module Structure. (A) C3k2; (B) C2PSA and PSABlock.
FIGURE 5

The AHG-YOLO network structure.
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incorporating group convolution, while improving the network’s

feature extraction capacity. Finally, the CIou loss function of

YOLOv11 is replaced with GIoU (Jiang et al., 2023), which

reduces the impact of low-quality samples and accelerating the
Frontiers in Plant Science 06
convergence of the network model. The proposed improvements

are named AHG-YOLO, derived from the first letters of the three

improvement methods: ADown, Head, and GIoU. The AHG-

YOLO model effectively improves pear detection performance
FIGURE 6

A down network structure.
FIGURE 7

YOLOv11 detection head.
FIGURE 8

Detect_efficient structure.
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and better adapts to the detection needs of small targets, occlusion,

and fruit overlap in the complex natural environment of

pear orchards.
2.4.1 ADown
The ADown module in YOLOv9 is a convolutional block for

downsampling in object detection tasks. As an innovative feature in

YOLOv9, it provides an effective downsampling solution for real-

time object detection models, combining lightweight design and

flexibility. In deep learning models, downsampling is a common

technique used to reduce the spatial dimensions of feature maps,

enabling the model to capture image features at higher levels while

reducing computational load. The ADown module is specifically

designed to perform this operation efficiently with minimal impact

on performance.

The main features of the ADown module are as follows: (1)

Lightweight design: The ADown module reduces the number of

parameters, which lowers the model’s complexity and enhances

operational efficiency, especially in resource-constrained

environments. (2) Information preservation: Although ADown

reduces the spatial resolution of feature maps, its design ensures that

as much image information as possible is retained, allowing the model

to perform more accurate object detection. (3) Learnable capabilities:

The ADown module is designed to be learnable, meaning it can be

adjusted according to different data scenarios to optimize

performance. (4) Improved accuracy: Some studies suggest that

using the ADown module not only reduces the model size but also

improves object detection accuracy. (5) Flexibility: The ADown

module can be integrated into both the backbone and head of

YOLOv9, offering various configuration options to suit different

enhancement strategies. (6) Combination with other techniques:

The ADown module can be combined with other enhancement

techniques, such as the HWD (Wavelet Downsampling) module, to

further boost performance. The ADown network structure is shown

in Figure 6.

By introducing the ADown module into YOLOv9, a significant

reduction in the number of parameters can be achieved, while

maintaining or even improving object detection accuracy.

Consequently, this study explores the integration of the ADown

module into the YOLOv11 network structure to further enhance

detection performance.
2.4.2 Detection head re-design
The detection decoupled head structure of YOLOv11n is shown

in Figure 7. The extracted feature map is passed through two

branches. One branch undergoes two 3×3 convolutions followed

by a 1×1 convolution, while the other branch undergoes two depth

wise separable convolutions (DWConv), two 3×3 convolutions, and

a 1×1 convolution. These branches are used to independently

predict the bounding box loss and the classification function.

In YOLOv11, there are three of the aforementioned decoupled

head structures, which perform detection on large, medium, and

small feature maps. However, 3×3 convolutions, while increasing

the channel depth, lead to a significant increase in the number of
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parameters and floating-point operations (Shafiq and Gu, 2022).

Therefore, this study aims to implement a lightweight design for

YOLOv11’s detection head while maintaining detection accuracy:

(1) Introducing Group Convolutions to Replace 3×3 Convolutions.

Group Convolution is a convolution technique used in deep

learning primarily to reduce computation and parameter quantities

while enhancing the model’s representational power. Group

convolution works by dividing the input feature map and

convolution kernels into several groups. Each group performs its

convolution operation independently, and the results are then

merged. This process reduces the computation and parameter

quantities while maintaining the same output size.

In traditional convolution operations, the convolution is

applied across every channel of the input feature map. Assuming

the input feature map has dimensions Cin �H�W (Cin is the

number of input channels, H is the feature map height, andW is the

feature map width), and the convolution kernel has dimensions

 Cout � Cin � k � k (Cout is the number of output channels and k×k
Frontiers in Plant Science 08
is the spatial dimension of the kernel), the computation for a single

convolution operation is:  Cout � Cin � k � k �H�W.

In group convolution, the input channels are divided into g

groups, and independent convolution operations are performed

within each group. In this case, for each group, the number of input

channels becomes Cin/g, and the computation becomes:  Cout �
Cin=g � k � k �H�W.

Group convolution can greatly reduce the number of

parameters, enhance the model’s representational power, and

avoid overfitting. Therefore, the 3×3 convolutions in the detection

head are replaced with group convolutions.

(2) Shared Convolution Parameters.

To further reduce the parameters and computation of the

detection head, the two branch inputs of the detection head share

two group convolutions, named Detect_Efficient, with the structure

shown in Figure 8. By sharing the same convolution kernel weights

during loss calculation, redundant computation of similar feature

maps is avoided, which further reduces the computation and
FIGURE 9

Comparison of detection accuracy between AHG-YOLO and YOLOv11n.
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FIGURE 10

Comparison of loss values between AHG-YOLO and YOLOv11n.
FIGURE 11

Heatmap of YOLOv11n and AHG-YOLO. (A) YOLOv11n; (B) AHG-YOLO.
Frontiers in Plant Science frontiersin.org09

https://doi.org/10.3389/fpls.2025.1580325
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ma et al. 10.3389/fpls.2025.1580325
effectively improves computational efficiency, accelerating the

entire model inference process.

2.4.3 GIoU loss function
The boundary box loss function is an important component of the

object detection loss function. A well-defined boundary box loss

function can significantly improve the performance of object

detection models. In YOLOv11, CIoU is used as the regression box

loss function. Although CIoU improves upon GIoU by introducing

center distance and aspect ratio constraints, the additional constraints

introduced by CIoU might lead to overfitting or convergence

difficulties in orchard data collection, where there is a large variation
Frontiers in Plant Science 10
in target size (due to close and distant objects) and where the aspect

ratio differences of pear fruit bounding boxes are not significant.

Moreover, compared to GIoU, the calculation of the aspect ratio

parameter v in CIoU is relatively more complex (Zheng et al., 2020),

resulting in higher computational costs during training and slower

model convergence. Therefore, this study replaces CIoU with the

GIoU loss function. The GIoU loss function is used in object detection

to measure the difference between the predicted and ground truth

boxes, addressing the issue where traditional IoU fails to provide

effective gradient feedback when the predicted box and the ground

truth box do not overlap. This improves the model’s convergence and

accuracy. GIoU loss not only considers the overlapping region
FIGURE 12

(A) YOLOv11n detection results for long-distance images. (B) AHG-YOLO detection results for long-distance images. (C) YOLOv11n detection results
under low light conditions. (D) AHG-YOLO detection results under low light conditions. (E) YOLOv11n detection results in dense fruit scenarios. (F)
AHG-YOLO detection results in dense fruit scenarios.
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FIGURE 13

AP results of detecting different types of pear targets with different networks.
TABLE 3 Detection results of different types of pear targets by AHG-YOLO and YOLOv11n.

Model Categories P/% R/% mAP@0.5/% mAP@0.5:0.95/%

YOLOv11n

All 88.8 84.5 91.8 69.2

FCC 89.6 80.9 90.8 64.8

OBL 89.3 83.3 91.1 65.6

NO 87.5 89.2 93.4 77.2

AHG-YOLO

All 91.3 88.1 94.1 71.8

FCC 92.1 85.5 93.4 67.9

OBL 90.5 87.6 93.5 68.8

NO 91.3 91.2 95.3 78.7
F
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TABLE 4 Comparison of results from different object detection models.

Model P/% R/% mAP@0.5/% mAP@0.5:0.95/% Params (M) GFLOPs Model size (M)

Faster R-CNN 77.03 71.7 79.0 54.8 136.73 369.768 108

RTDETR 93.0 90.7 93.2 71.9 28.45 100.6 336

YOLOv3 87.8 84.6 91.7 71.7 98.48 262.6 752

YOLOv5n 89 82.1 90.2 66.5 2.18 5.8 4.6

YOLOv7 78.6 74.1 81.5 52 6.02 13.2 12.3

YOLOv8n 87.9 84.2 90.7 68.2 2.68 6.8 5.6

YOLOv9c 93.4 90.4 95.4 76.5 21.15 82.7 41.2

YOLOv10n 86.2 81.3 88.9 66.7 2.27 6.5 5.8

YOLOv11n 88.8 84.5 91.8 69.2 2.58 6.3 5.2

AHG-YOLO 91.3 88.1 94.1 71.8 2.54 4.7 5.1
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between boxes but also takes into account the spatial relationship

between the boxes by introducing the concept of the minimal

enclosing box. This allows the model to learn the shape and

position of the boxes more accurately, ultimately enhancing the

performance of object detection.
2.5 Experimental environment and
parameter settings

The experimental environment for this study runs on the

Windows 10 operating system, equipped with 32 GB of memory

and an NVIDIA GeForce RTX 4080 GPU, with an Intel(R) Core

(TM) i7-13700F @2.10GHz processor. The deep learning

framework used is PyTorch 2.0.1, with CUDA 11.8 and

CUDNN 8.8.0.

The network training parameters are set as follows: The image

input size is 640 × 640, and the batch size is set to 32; the maximum

number of iterations is 200. The optimizer is SGD, with the learning

rate dynamically adjusted using a cosine annealing strategy. The

initial learning rate is set to 0.01, the momentum factor is 0.937, and

the weight decay coefficient is 0.0005.
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2.6 Evaluation metrics

Object detection models should be evaluated using multiple

metrics to provide a comprehensive assessment of their

performance. To evaluate the performance of ADG-YOLO, seven

metrics are used: precision, recall, average precision (AP), mean

average precision (mAP), number of parameters, model size, and

GFLOPs. These metrics offer a well-rounded evaluation of ADG-

YOLO’s performance in the multi-category pear fruit detection task

within the complex environment of a pear orchard. They reflect the

model’s performance across various dimensions, including

accuracy, recall, speed, and efficiency. The formulas for

calculating the relevant performance metrics are provided, as

shown in Equations 1-4.

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

AP =
Z 1

0
P(R)dR (3)
FIGURE 14

Three example images with detection errors are shown, demonstrating the multi-class pear fruit detection using AHG-YOLO. (A) Manually annotated
image; (B) AHG-YOLO (a-c) numbered example images. Each position marked with a red circle indicates a detection error of the pear fruit, while
each position marked with a yellow square indicates a missed detection.
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mAP = o
C
i=1APi
C

(4)

Where TP represents the number of true positive samples that

the model correctly predicted as positive, FP represents the number

of false positive samples that the model incorrectly predicted as

positive, and FN represents the number of false negative samples

that the model incorrectly predicted as negative. AP refers to the

area under the Precision-Recall (P-R) curve, while mAP refers to the

mean value of the AP for each class.
3 Results

3.1 Ablation experiment

To evaluate the effectiveness and feasibility of the proposed

AHG-YOLO model in detecting pear fruits with no occlusion,

partial occlusion, and fruit overlap, an ablation experiment was

conducted based on the YOLOv11n model. Each improvement

method and the combination of two improvement methods were

added to the YOLOv11n model and compared with the AHG-YOLO

model. In the experiment, the hardware environment and parameter

settings used for training all models remained consistent. Table 2

shows the ablation experiment results of the improved YOLOv11n

model and the AHG-YOLO model on the test set. After introducing

the ADown downsampling module to enhance the feature extraction

capability of the YOLOv11 network, the model’s precision, recall, AP,

and mAP@0.5:0.95 increased by 2.2%, 2.6%, 1.8%, and 2.1%,

respectively. The model’s parameter count decreased by 18.6%,

GFLOPs decreased by 15.9%, and model size decreased by 17.3%.

This indicates that the ADown module can effectively improve the

pear object detection accuracy. After introducing the EfficientHead

detection head, although the model’s precision, recall, and AP

decreased slightly, mAP@0.5:0.95 increased by 0.1%, the model’s

parameter count reduced by 10.4%, GFLOPs reduced by 19.0%, and

model size decreased by 9.62%. This suggests that EfficientHead plays

a significant role in model lightweighting. As shown in Table 2, after

introducing the ADown module and GIoU, although the model’s

parameter count increased, precision, recall, mAP@0.5, and mAP@

0.5:0.95 increased by 1.5%, 1.7%, 0.4%, and 1.6%, respectively. After

introducing the ADown module and EfficientHead, precision, recall,

mAP@0.5, and mAP@0.5:0.95 increased by 2.3%, 2.2%, 1.7%, and

2.5%, and the model’s parameter count, GFLOPs, and model size all

decreased. Additionally, after introducing EfficientHead and GIoU,

recall, mAP@0.5, and mAP@0.5:0.95 all increased compared to their

individual introduction, without increasing the parameter count.

Finally, the proposed AHG-YOLO network model outperforms the

original YOLOv11 model, with precision, recall, mAP@0.5, and

mAP@0.5:0.95 improving by 2.5%, 3.6%, 2.3%, and 2.6%,

respectively. Meanwhile, GFLOPs are reduced to just 4.7, marking

a 25.4% decrease compared to the original YOLOv11n, the parameter

count decreased by 16.9%, and the model size is only 5.1MB.

According to the data in Table 2, the mAP@0.5 of YOLOv11-A

reached 93.6%, an improvement over the baseline model YOLOv11n.
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However, whenH or Gwere added individually, themAP@0.5 dropped

to 90.7% and 90.8%, respectively. When combined with the A module,

the mAP values increased again. The reasons for this can be analyzed as

follows: The ADown module significantly improves baseline

performance by preserving discriminative multi-scale features through

adaptive downsampling. The EfficientHead method reduces model

parameters and computational load compared to the baseline model,

but the simplified model structure leads to information loss and a

decrease in detection accuracy. GIoU performs poorly on bounding box

localization in raw feature maps, resulting in a drop in detection

accuracy. When combined with ADown, the ADown module

optimizes the features, providing better input for the subsequent

EfficientHead and GIoU, thus leveraging the complementary

advantages between the modules. The optimized features from

ADown reduce the spatial degradation caused by EfficientHead,

maintaining a mAP@0.5 of 93.5%, while reducing GFLOPs by 11.3%.

ADown’s noise suppression allows GIoU to focus on key geometric

deviations, improving localization robustness. The synergy of all three

modules achieves the best accuracy-efficiency balance (94.1%mAP@0.5,

4.7 GFLOPs), where ADown filters low-level redundancies,

EfficientHead enhances discriminative feature aggregation, and GIoU

refines boundary precision. This analysis shows that H and G are not

standalone solutions, they require the preprocessing from ADown to

maximize their effectiveness.

Figures 9 and 10 show the performance of AHG-YOLO

compared to YOLOv11n during the training process. From

Figures 9, 10, it can be seen that during 200 training iterations,

the proposed AHG-YOLO achieves higher detection accuracy and

obtains lower loss values compared to YOLOv11n. This indicates

that the AHG-YOLO network model can effectively improve the

detection accuracy of pears in unstructured environments and

reduce the false detection rate.

The Grad-CAM (Selvaraju et al., 2016) method is used to

generate heatmaps to compare the feature extraction capabilities

of the YOLOv11n model and the AHG-YOLO model in complex

scenarios such as overlapping fruits, small target fruits, and fruit

occlusion, as shown in Figure 11. Figure 11 shows that the AHG-

YOLO model exhibits better performance in complex scenarios.

The specific quantitative results comparison can be found in

Section 3.3.

To further validate the detection performance, experiments were

conducted on the test dataset for both the YOLOv11n model and the

AHG-YOLO model. The detection results are shown in Figure 12,

where the red circles represent duplicate detections and the yellow

circles represent missed detections. By comparing Figures 12A, B, it

can be observed that YOLOv11n has one missed detections. By

comparing Figures 12C, D, it can be seen that YOLOv11n has one

duplicate detections. By comparing Figures 12E, F, it can be seen that

YOLOv11n has two duplicate detections and one missed detections.

This demonstrates that AHG-YOLO can accurately perform multi-

class small object detection and classification in complex

environments, exhibiting high accuracy and robustness, and

effectively solving the pear detection problem in various scenarios

within complex environments.
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3.2 Detection results of pear targets in
different classes

Figure 13 shows the AP results for multi-category detection for

occluded pear fruits in complex orchard scenes by different networks

on the test set. Table 3 presents the specific detection results of AHG-

YOLO and YOLOv11n for different categories of pear targets on the

test set. From Figure 13 and Table 3, it can be observed that the base

YOLOv11 network performs best in detecting NO fruit, with an AP

value of 93.4%, but performs relatively poorly when detecting FCC

and OBL fruits. The proposed AHG-YOLO model improves the AP

for detecting FCC fruits by 2.6%, reaching 93.4%, improves the AP for

detecting OBL fruits by 2.4%, reaching 93.5%, and improves the AP

for detecting NO fruits by 1.9%, reaching 95.3%. This indicates that

the proposed method is highly effective for fruit target detection in

complex environments, demonstrating both excellent accuracy

and robustness.
3.3 Comparison with mainstream object
detection models

AHG-YOLO was compared with other mainstream object

detection networks, and the detection results on the test set are

shown in Table 4. The experimental results of all models indicate

that YOLOv9c achieves the highest precision, mAP@0.5, and

mAP@0.5:0.95 among all models. However, the YOLOv9c model

has excessively large parameters, GFLOPs, and model size, making

it unsuitable for real-time detection in harvesting robots. AHG-

YOLO’s mAP@0.5 surpasses that of Faster R-CNN, RTDETR,

YOLOv3, YOLOv5n, YOLOv7, YOLOv8n, YOLOv10n, and

YOLOv11n by 15.1%, 0.9%, 2.4%, 3.9%, 12.6%, 3.4%, 5.2%, and

2.3%, respectively. In terms of precision, recall, mAP@0.5:0.95, and

GFLOPs, AHG-YOLO also shows advantages. Therefore, based on

a comprehensive comparison of all metrics, AHG-YOLO is better

suited for pear target detection tasks in complex environments.
4 Discussion

YOLO series detection algorithms are widely used in fruit

detection due to their high detection accuracy and fast detection

speed. These algorithms have been applied to various fruits, such as

tomatoes (Wu H, et al., 2024), kiwifruits (Yang et al., 2024), apples

(Wu M, et al., 2024), achieving notable results. Researchers have

always been focused on designing lightweight algorithms, and this is

also true for pear fruit target detection. Tang et al. (2024) proposed

a pear target detection method based on an improved YOLOv8n for

fragrant pears. Using their self-built fragrant pear dataset, they

improved the F0.5-score and mAP by 0.4 and 0.5 percentage points

compared to the original model, reaching 94.7% and 88.3%,

respectively. Li et al. (2022) introduced the advanced multi-scale

collaborative perception network YOLOv5sFP for pears detection,

achieving an AP of 96.12% and a model size of 50.01 MB.
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While these studies have achieved remarkable results, they did

not address the practical needs of robotic harvesting, as they focused

solely on detecting a single class of pear fruits. This study takes into

account the detection requirements for robotic harvesting,

categorizing pear fruits in orchards into three groups (ON, OBL,

FCC) to enable the harvesting robot to develop different harvesting

strategies based on conditions of no occlusion, branch and leaf

occlusion, and fruit overlap, thus improving harvesting efficiency.

Compared to commonly used detection models, the AHG-YOLO

proposed in this study achieves the highest detection accuracy in

complex orchard environments, with an mAP of 94.1%.

Figure 14 shows three examples of detection errors when using

AHG-YOLO for multi-category detection of occluded pear fruits. The

potential causes of these errors are as follows: (1) In cloudy, dim lighting

conditions, when fruits are tightly clustered and located at a distance,

the fruit targets appear small, making feature extraction challenging.

This leads to repeated detection of FCC fruits, as seen in the lower right

red circle of Figure 14A. Additionally, the dim lighting causes the

occluded pear’s features to resemble those of the leaves, resulting in the

model mistakenly detecting leaves as OBL fruits, as shown in the upper

left red circle of Figure 14A. (2) When the target is severely occluded,

the model struggles with feature extraction, which may lead to either

missed detections or repeated detection, as shown in Figure 14B. The

yellow bounding box indicates a missed detection, and the red circle

indicates a repeated detection. (3) Detecting FCC fruits is particularly

challenging because the fruits are often clustered together, making it

difficult to distinguish between them. Furthermore, the fruit bags

sometimes interfere with the detection process, causing errors, as seen

in Figure 14C, where the bag is incorrectly detected as an FCC fruit.

To enhance the accuracy of AHG-YOLO in detecting multi-

category detection for occluded pear fruits, the following measures

can be taken: (1) Increase the number of samples that are prone to

detection errors, such as FCC and OBL class samples, to diversify

the dataset and improve the model’s detection capability in complex

environments. (2) Further refine the model’s feature extraction

capability, particularly for detecting small targets.

Although the AHG-YOLO model has some limitations in

detecting multi-category detection for occluded pear fruits, it

achieves an overall detection mAP of 94.1%, which meets the

fruit detection accuracy requirements for orchard automation in

harvesting. This provides crucial technical support for robotic pear

harvesting in orchards. The AHG-YOLO model will be applied to

the visual detection system of pear fruit-picking robots to validate

its reliability.
5 Conclusion

This paper proposes the AHG-YOLO network model for multi-

category detection of occluded pear fruits in complex orchard

scenes. Using YOLOv11n as the base model, the ADown

downsampling method, lightweight detection head, and GIoU loss

function are integrated to enhance the network’s feature extraction

capability and reduce the model’s complexity, making it suitable for

real-time harvesting applications. The conclusions are as follows:
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(1) Experimental results in complex pear orchard environments

demonstrate that the mAP of AHG-YOLO for multi-category

detection for occluded pear fruits is 94.1%, with the AP for FCC,

OBL, and NO fruits being 93.4%, 93.5%, and 95.3%, respectively.

Compared to the base YOLOv11n network, precision, recall, mAP@

0.5, and mAP@0.5:0.95 improved by 2.5%, 3.6%, 2.3%, and 2.6%,

respectively. Additionally, GFLOPs are reduced to 4.7, representing

a 25.4% decrease compared to the original YOLOv11n, while the

number of parameters is reduced by 16.9%, and the model size is

just 5.1MB.

(2) Compared with eight other commonly used object detection

methods, AHG-YOLO achieves the highest detection accuracy

while maintaining a lightweight design. The mAP@0.5 is 15.1%,

0.9%, 2.4%, 3.9%, 12.6%, 3.4%, 5.2%, and 2.3% higher than Faster R-

CNN, RTDETR, YOLOv3, YOLOv5n, YOLOv7, YOLOv8n,

YOLOv10n, and YOLOv11n, respectively, thereby meeting the

real-time harvesting requirements of orchards.

In summary, the AHG-YOLO model proposed in this paper

provides a solid methodological foundation for real-time pear target

detection in orchard environments and supports the development

of pear-picking robots. Future work will focus on further validating

the effectiveness of the method in pear orchard harvesting robots,

with ongoing optimization efforts.
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