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The roles of movement and coat
proteins in the transport of
tobamoviruses between
plant cells
Yumin Kan* and Vitaly Citovsky

Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, United States
Tobamovirus is a large group of positive-sense, single-stranded RNA viruses that

cause diseases in a broad range of plant species, including many agronomically

important crops. The number of known Tobamovirus species has been on the

rise in recent years, and currently, this genus includes 47 viruses. Tobamoviruses

are transmitted mainly by mechanical contact, such as physical touching by

hands or agricultural tools; and some are also transmitted on seeds, or through

pollinator insects. The tobamoviral genome encodes proteins that have evolved

to fulfill the main conceptual task of the viral infection cycle - the spread of the

invading virus throughout the host plant cells, tissues, and organs. Here, we

discuss this aspect of the infection cycle of tobamoviruses, focusing on the

advances in our understanding of the local, i.e., cell-to-cell, and systemic, i.e.,

organ-to-organ, virus movement, and the viral and host plant determinants of

these processes. Specifically, we spotlight two viral proteins—the movement

protein (MP) and the coat protein (CP), which are directly involved in the local and

systemic spread of tobamoviruses—with respect to their phylogeny, activities

during viral movement, and interactions with the host determinants of the

movement process.
KEYWORDS

tobamovirus, phylogenic analysis, cell-to-cell movement, plasmodesmata,
systemic spread
Introduction

With climate change and a rapidly growing human population, the demand for global

food production will become a main challenge in the near future (Jones and Naidu, 2019;

Cassman and Grassini, 2020). Plant viruses comprise about 50% of pathogens that infect

plants worldwide, causing economic losses of more than US$30 billion annually (Jones and

Naidu, 2019). The number of known species of Tobamovirus, which belongs to the

Virgaviridae family of positive-strand RNA viruses, has been increasing, and currently,

this genus contains 47 species (10 of which are not yet recognized by the International

Committee on Taxonomy of Viruses, ICTV, as species; Table 1) (ICTV, 2024).
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1580554/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1580554/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1580554/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1580554/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1580554&domain=pdf&date_stamp=2025-04-17
mailto:yumin.kan@stonybrook.edu
https://doi.org/10.3389/fpls.2025.1580554
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1580554
https://www.frontiersin.org/journals/plant-science


TABLE 1 Tobamovirus species and the disease symptoms they cause on plants.

No. Host Sub No. Species Host Disease symptom Ref.

Necrotic local lesions; systemic
necrotic infection; mosaic or mottle

(Wetter
et al., 1987)

No obvious viral symptoms (Ilyas
et al., 2022)

Systemically; mild mottling;
vein necrosis

(Ilmberger
et al., 2007)

—— (Ontañón
et al., 2024)

Local necrotic lesions (Kalapos
et al., 2021)

Mosaic on leaves; mottle/circular
pitting on fruits

(Hamada
et al., 2003)

Leaves: deformed, mild chlorotic or
no foliar symptoms; mottled leaves;
vein thickening; Fruits: mosaic;
deformations; Stunting

(Kalapos et al.,
2021; Kumari
et al., 2023)

Mild mottle on upper leaves (Uehara-Ichiki
et al., 2022)

No obvious symptoms (Ilyas
et al., 2022)

iaceae, Chlorotic, mosaic or mottling,
distortion and surface reduction of
leaves; irregular shapes and colour of
fruits; Necroses on leaves and fruits

(Zhao
et al., 2021)

anaceae Mosaic on leaves (Scholthof,
2004, 2023)

Mosaic, deformation, and necrosis on
tomato leaves; puckering, yellow
mottling on pepper leaves, yellow to
brown rugose dots and necrosis on
fruits, stunting on pepper seedlings

(Zhang
et al., 2022)

Mosaic, curling, and distortion on
leaves; internal browning and uneven
ripening on fruits

(Ullah
et al., 2017)

(Li et al., 2017;
Sui et al., 2017)

(Continued)
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1 Solanaceae 17-1 Bell pepper mottle virus (BPeMV) Pepper crops

2 17-2 Brugmansia latent virus (BrLV) Brugmanisa plant

3 17-3 Brugmansia mild mottle virus (BMMV) Brugmansia sp.

4 17-4 Chili pepper mild mottle virus (CPMMV) Pepper

5 17-5 Obuda pepper virus (ObPV) Pepper

6 17-6 Paprika mild mottle virus (PaMMV) Pepper

7 17-7 Pepper mild mottle virus (PMMoV) Capsicum spp.

8 17-8 Scopolia mild mottle virus (SMMoV) Scopolia japonica

9 17-9 Tobacco latent virus (TLV) Tobacco

10 17-10 Tobacco mild green mosaic
virus (TMGMV)

Plants in Solanaceous, Apocynaceae, Chenopod
Balsaminaceae, Commelinaceae, Gesneriaceae,
Compositae and Umbelliferae family

11 17-11 Tobacco mosaic virus (TMV) Solanaceae and many species outside of the So

12 17-12 Tomato brown rugose fruit virus (ToBRFV) Tomato and pepper

13 17-13 Tomato mosaic virus (ToMV) Tomato

14 17-14 Tomato mottle mosaic virus (ToMMV) Tomato and pepper
l
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TABLE 1 Continued

No. Host Sub No. Species Host Disease symptom Ref.

Necrosis and chlorosis and
deformation on leaves; necrosis
on fruit

Foliar mosaic (Adkins
et al., 2007)

—— ——

Inter-veinal clearing, leaf and flower
deformation, with dark-green islands
on leaves

(Wylie
et al., 2014)

Severe mottling or mosaic on
cucumber fruits; fruit distortion; leaf
mosaic and necrotic lesions on fruit

(Antignus
et al., 2001)

Systemic green mottle mosaic
on foliage

(Mandal et al.,
2008;
Dombrovsky
et al., 2017)

Mild mottling on leaves; mosaic
symptoms on fruit and leaves

(Orita
et al., 2007)

Fruit distortion; mottle mosaic (Yoon
et al., 2001)

Mottling and mosaic symptoms (Chen
et al., 2022)

CGMMV-like symptoms; mottle,
mosaic and leaf crinkling

(Cheng et al.,
2019; Pitman
et al., 2019)

Foliar mottle and severe mosaic;
abnormal fruits

(Ryu et al., 2000)

Vein-clearing on turnips (Melcher, 2003)

Ringspots, vein-clearing (Macdonald
et al., 2021)

ceae,
obanchaceae,

Mosaic symptoms (Fuji et al., 2007;
Ju et al., 2019)

(Continued)
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15 17-15 Tropical soda apple mosaic virus (TSAMV) Solanaceae and Chenopodiaceae plants

16 17-16 Yellow pepper mild mottle virus ——

17 17-17 Yellow tailflower mild mottle
virus (YTMMV)

Plants in solanaceous species

18 Cucurbitaceae 7-1 Cucumber fruit mottle mosaic
virus (CFMMV)

Melon, cucumber, pumpkin

19 7-2 Cucumber green mottle mosaic
virus (CGMMV)

Cucurbit crops

20 7-3 Cucumber mottle virus (CuMoV) Several species of cucurbits

21 7-4 Kyuri green mottle mosaic virus (KGMMV) Cucurbitaceous vegetable crops

22 7-5 Trichosanthes mottle mosaic
virus (TrMMV)

Trichosanthes kirilowii

23 7-6 Watermelon green mottle mosaic
virus (WGMMV)

Cucurbit crops

24 7-7 Zucchini green mottle mosaic
virus (ZGMMV)

Zucchini squash plants

25 Brassicaceae 3-1 Turnip vein-clearing virus (TVCV) Crucifer family plants

26 3-2 Wasabi mottle virus (WMoV) Wasabi plants

27 3-3 Youcai mosaic virus (YoMV), also known
as TMV-Cg, Chinese rape mosaic virus
(CRMV), or Oilseed rape mosaic
virus (ORMV)

Alstroemeriaceae, Asteraceae, Balsamina
Brassicaceae, Gentianaceae, Liliaceae, O
and Solanaceae
r
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TABLE 1 Continued

No. Host Sub No. Species Host Disease symptom Ref.

Mosaic symptoms on leaves (Choliq et al.,
2017; Kumar
et al., 2022)

Chlorotic spots, ringspots, and
ring patterns

(Adkins
et al., 2018)

Necrotic foliar lesions (Ilyas
et al., 2021)

Mosaic symptoms on leaves (Kumar
et al., 2022)

Mild mottle on stem (Min
et al., 2006)

—— —

—— —

—— (Salgado-Ortıź
et al., 2020)

Necrosis symptoms (Kim
et al., 2012)

Local chlorotic lesions, systemic vein
clearing, mottling and mosaic of the
tip leaves

(Wei
et al., 2012)

Mosaic, puckering, blistering,
malformation on leaves;
plant stunting

(Varma, 1986)

Chlorotic spots and
chlorotic mottling

(Allen
et al., 2005)

Chlorotic spots and
chlorotic mottling

(Allen
et al., 2005)

Systemic mosaic on N. benthamiana,
and local lesions on N. tabacum, N.
glutinosa and Gomphrena globosa

(Song and
Ryu, 2011)

—— (Song and
Ryu, 2011)

Symptomless or
inconspicuous symptom

(Brunt
et al., 1982)

(Continued)
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28 Apocynaceae 4-1 Frangipani mosaic virus (FrMV) Frangipani plants

29 4-2 Hoya chlorotic spot virus (HoCSV) Hoya plants

30 4-3 Hoya necrotic spot virus Hoya plants

31 4-4 Plumeria mosaic virus (PluMV) Frangipani plants

32 Cactaceae 5-1 Cactus mild mottle virus (CMMoV) Cactus plants

33 5-2 Cactus tobamovirus 1 ——

34 5-3 Cactus tobamovirus 2 ——

35 5-4 Opuntia virus 2 (OV2) Prickly pear plant

36 5-5 Rattail cactus necrosis-associated
virus (RCNaV)

Cactus plants

37 Leguminosae 2-1 Clitoria yellow mottle virus (CYMV) Clitoria ternatea

38 2-2 Sunn-hemp mosaic virus (SHMV) Leguminous plants

39 Malvaceae 2-1 Hibiscus latent Fort Pierce virus (HLFPV) Hibiscus and related species

40 2-2 Hibiscus latent Singapore virus (HLSV) Hbiscus and related species

41 Passifloraceae 2-1 Maracuja mosaic virus (MarMV) Passion fruit

42 2-2 Passion fruit mosaic virus (PafMV) Passion fruit

43 Basellaceae 1-1 Ullucus mild mottle virus (UMMV) Ullucus tuberosus
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Tobamoviruses comprise several subgroups according to their host

plants, including Solanaceae, Cucurbitaceae, and Brassicaceae,

which are represented by tobacco mosaic virus (TMV), cucumber

green mottle mosaic virus (CGMMV), and turnip vein clearing

virus (TVCV), respectively (Lartey et al., 1997; Dombrovsky et al.,

2017; Li et al., 2017). Tobamoviruses are also known for their

pathogenic effects on crops; for example, tomato brown rugose fruit

virus (ToBRFV) and CGMMV cause diseases of agronomically

important crops with global and local significance (Tatineni and

Hein, 2023). It is important to note that the host range, although

serving as a convenient criterion for grouping tobamoviruses,

depends on many factors, from the genetic determinants of the

virus-host combinations to the environmental factors, and,

therefore, is usually relatively wide (Zamfir et al., 2023).

Tobamoviruses are mainly transmitted by mechanical contact,

and recent studies suggest that at least some tobamoviruses, such as

TMV, ToBRFV, and CGMMV, can also be transferred by insect

vectors (Okada et al., 2000; Darzi et al., 2018; Levitzky et al., 2019)

as well as through seeds (Dombrovsky and Smith, 2017). Disease

symptoms of the tobamoviral infection include leaf deformation or

mosaic, mottled fruit, systemic necrosis, or defoliation (Ilyas et al.,

2022; Spiegelman and Dinesh-Kumar, 2023), although infection of

some plant species may also cause no obvious symptoms (Ilyas

et al., 2022). Among all plant viruses, TMV was the first virus

identified and chemically purified more than one century ago

(Creager et al., 1999; Spiegelman and Dinesh-Kumar, 2023),

laying the foundation for the science of virology.

The Tobamovirus genus comprises a group of viruses with

positive-sense, single-stranded RNA (+ssRNA) genomes of

approximately 6.4 kb in length. The tobamoviral genome

usually contains four open reading frames (ORFs) that produce

four proteins: two replicase-associated proteins, 126-kDa and

183-kDa, which share the same start codon and can produce the

183-kDa protein when translated by the read-through of the

amber codon of the 126-kDa-encoding ORF; a cell-to-cell

movement protein (MP); and a coat (or capsid) protein (CP)

(Spiegelman and Dinesh-Kumar, 2023). Both MP and CP genes

are transcribed from their own subgenomic promoters

(Grdzelishvili et al. , 2000). During infection, the four

tobamoviral proteins are expressed differentially. Specifically,

among the viral replication complex (VRC) proteins, MP is

expressed and accumulates in VRCs mainly at the early

infection stage, whereas CP is expressed and becomes

associated with VRCs at the late infection stages (Asurmendi

et al., 2004). These observations are consistent with the previous

studies that ca. 12 hours after infection, the VRCs, containing the

replicase, viral RNA, and MP, were assembled at the cortical

endoplasmic reticulum. After 12-16 hours, these VRCs move

intracellularly until they reach PD, followed by translocation

through PD to the adjacent cells after 18-20 hours. In the

newly infected cells, this process is repeated about every 24

hours (Kawakami et al., 2004). Interestingly, MP expression

and VRC formation are positively regulated by CP later in the

infection, whereas premature expression of CP decreases cell-to-

cell movement and viral infection (Kawakami et al., 2004).
T
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Some Tobamovirus species also contain an additional small

ORF, designated ORF6 and coding for a 4.8-kDa protein, that

overlaps the MP ORF and CP ORF (Morozov et al., 1993; Ishibashi

and Ishikawa, 2016). There is also a 54-kDa protein, detected only

using in vitro translation, which contains the RNA-dependent RNA

polymerase domain (Palukaitis et al., 2024). However, the functions

of the 4.8-kDa or 54-kDa proteins remain unclear.

The Tobamovirus genome organization and the activities of its

encoded proteins have evolved to ensure the optimal spread of the

invading virions throughout the host plant cells, tissues, and organs.

This aspect of the infection cycle of tobamoviruses represents the

focus of our review which discusses the fundamentals and recent

advances in our understanding of the local, i.e., cell-to-cell, and

systemic, i.e., organ-to-organ, virus movement and the viral and

host plant determinants of these processes.
Viral determinants of local and
systemic movement

The movement of plant viruses within their host plants

comprises the local, i.e., cell-to-cell, transport and the long-

distance, i.e., systemic, transport. The local movement of the virus

begins following the initial infection, translation, and replication.

This cell-to-cell spread from the initially infected cells occurs

through the intercellular connections, the plasmodesmata (PD),

presumably in the form of subviral particles. When the moving

virus encounters the host vascular system, it enters the vasculature

and commences the systemic spread that delivers the virus to the

uninfected plant organs, in which it exits the vascular tissues and

spreads locally. That CP is needed for viral entry into the

vasculature (Solovyev and Savenkov, 2014) suggests that fully or

partially encapsidated virus particles are involved in this

transport process.
Cell-to-cell movement and movement
protein

Unlike some plant viruses that may not rely on MP for their

intercellular movement (Ying et al., 2024), tobamoviruses require

the participation of MP, the function of which was identified almost

four decades ago, for the cell-to-cell spread (Deom et al., 1987), but

the mechanism by which MP performs this function remains largely

unresolved to this day. Tobamoviral MP can bind single-strand

nucleic acids cooperatively and sequence-nonspecifically,

presumably facilitating the transport of the viral genomes through

PD (Citovsky et al., 1990). Virions of tobamoviruses, such as TMV,

are rigid 18×300 nm rod-shaped particles that normally do not

cross the PD channels, i.e., cytoplasmic sleeves through which most

of the soluble molecule movement occurs, that are ca. 10-nm wide

(Oparka et al., 1999; Tee and Faulkner, 2024). This process is

thought to be mediated by the viral MP, which associates with and

protects the genome cargo (Citovsky et al., 1992) and sorts to PD,

increasing their permeability (Wolf et al., 1989; Citovsky et al., 1992;
Frontiers in Plant Science 06
Waigmann et al., 1994) to allow the transport of the viral genomes

and their cognate proteins. MP increases the PD molecular size

exclusion limit (SEL) by targeting the host callose homeostasis at

PD to reduce callose deposits (Culver and Padmanabhan, 2007; De

Storme and Geelen, 2014), including those induced by dsRNA

signaling, an important defense response against virus infection

(Huang et al., 2023).

Within the tobamoviral MP molecule, several domains and

specific amino acid residues are important for the subcellular

localization and cell-to-cell movement function. For example, in

TMV MP, the N-terminal 50 amino acids, especially the valine at

the fourth position and the phenylalanine at position 14, are critical

for the plasmodesmal localization, and their deletion or

substitution, respectively, results in a loss of PD localization and

accumulation of the mutant MP in the cell cytoplasm and nucleus

(Yuan et al., 2016). Also, the C-terminal amino acid residues

between positions 126 and 224 are involved in the regulation of

the PD SEL (Waigmann et al., 1994), the amino acid residues

between positions 130 and 185 are involved in the TMV MP

interaction with the host pectin methylesterases and are required

to increase the PD SEL and sustain the cell-to-cell movement

(Waigmann et al., 1994; Chen et al., 2000), and the C-terminal

amino acid residues between positions 112-185, and between 185-

268 are required for binding of single-strand nucleic acids and cell-

to-cell movement (Waigmann et al., 1994). In addition, the serine

residue at position 37 of ToMV MP is essential for protein stability

and localization (Kawakami et al., 1999).

The amino acid sequence of MP varies among taxonomic

groups of plant viruses, and different MPs often exhibit different

types of cell-to-cell transport (Taliansky et al., 2008), e.g., TMV MP

likely transports the viral RNA through PD as a ribonucleoprotein

complex (Citovsky et al., 1990), whereas MP of the cauliflower

mosaic virus (CaMV) forms trans-PD tubules through which the

virions are translocated (Kasteel et al., 1996). In the CLANS analysis

of amino acid sequences of 389MPs from different virus families, 16

clusters were detected, and the tobamoviral MPs fell into the same

cluster (Butkovic et al., 2023). The genomes of all known species of

tobamoviruses encode a single MP belonging to the 30K protein

superfamily and ranging in size from 27.9 kDa (opuntia virus 2) to

38.9 kDa (cactus tobamovirus 2). Here, we examined a possible

phylogenetic relationship between tobamoviruses’ relatively diverse

MP sequences and their natural host plant preferences. We

randomly selected one strain from each of all tobamoviral species

with available genomic information and analyzed their phylogeny

using MP of an unrelated potato virus X as the out-group sequence.

Figure 1 shows that the MP amino acid sequences formed clades

according to their host plants. For example, 17 viruses that infect

Solanaceae, seven viruses that infect Cucurbitaceae, and three

viruses that infect Brassicaceae fall into three distinct groups,

according to the main host plant family (Figure 1, Table 1),

suggesting a role for tobamoviral MP sequences in the

determination of the viral host range. Potentially, the subcellular

localization of MPs may differ between tobamoviruses belonging to

different clades. For example, MP of TMV localizes almost

exclusively to PD in the host cell, whereas MP of TVCV sorts
frontiersin.org

https://doi.org/10.3389/fpls.2025.1580554
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kan and Citovsky 10.3389/fpls.2025.1580554
FIGURE 1

A phylogenetic analysis of amino acid sequences of movement proteins (MP) from 47 species of the Tobamovirus genus. Potato virus X MP was
used as the out-group sequence. MPs are shown relative to the families of the host plants. MPs marked with orange, light blue, and dark green are
encoded by the viruses that primarily infect host plants of Solanaceae, Brassicaceae, and Cucurbitaceae, respectively. MPs marked with red and dark
blue are encoded by the viruses that can also infect plants in additional families besides Solanaceae and Brassicaceae, respectively. The neighbor-
joining (NJ) method was adopted using MEGA software (version 10.1.8) with 1,000 bootstrap replicates. The trees are drawn to scale, with branch
lengths measured in the number of substitutions per site. Scale bars, 0.20 amino acid substitutions per site. The individual MP sequences are
identified by the name of the virus and the corresponding Protein ID.
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both to PD and the cell nucleus in Nicotiana benthamiana and

Arabidopsis thaliana (Levy et al., 2013). In addition, tobamoviral

MPs may determine interactions with different host genotypes, such

as the case where MP of ToBRFV, but not of TMV or ToMV, can

break the durable resistance of the tomato Tm-22 genotype (Hak

and Spiegelman, 2021; Yan et al., 2021).

Although MP is the main effector of cell-to-cell transport, the

126-kDa replicase-associated protein also plays a role in this

process. For example, TMV mutants in the helicase-like domain

of TMV replicase retain the replication ability yet no longer move

between cells (Hirashima and Watanabe, 2001); the role of the 126-

kDa replicase-associated protein in the local movement was

suggested to involve the non-conserved region of the protein

(Hirashima and Watanabe, 2003). Similarly, the 122-kDa

replicase of a crucifer-infecting TMV strain was shown to have a

silencing suppressor activity (Csorba et al., 2007). The role of viral

replicase in intercellular transport is lent additional support by the

observations that this movement involves the replication complexes

of the virus (Kawakami et al., 2004; Wu and Cheng, 2020); the

precise contribution of this co-replication to the overall viral cell-to-

cell transport remains to be elucidated. In addition, the

methyltransferase and helicase domains, as well as the non-

conserved region II (NONII), of the 126-kDa replicase-associated

protein, each functions as a suppressor of the RNA silencing (Wang

et al., 2012).
Systemic movement and coat protein

Tobamoviruses traffic long-distance through the host phloem in

the source-to-sink direction together with the photoassimilates

(Hipper et al., 2013). This systemic mode of viral movement

begins with the invasion of the minor veins (Ding et al., 1998),

which occurs once the virus has spread cell-to-cell from the

inoculated epidermis to the mesophyll, phloem parenchyma, and

companion cells and entered the phloem (Carrington et al., 1996).

Importantly, whereas the cell-to-cell movement of tobamoviruses

absolutely depends on MP, their systemic movement requires the

viral CP (Solovyev and Savenkov, 2014). That may be due to the

critical role of CP in the viral assembly (Saito et al., 1990), although

MP also appears to participate in the long-distance movement by as

yet unknown mechanism, which is different from the MP activity

during the cell-to-cell movement (Fenczik et al., 1995). Because the

cell-to-cell movement activity of MP is a prerequisite for systemic

transport, the precise role of MP in the latter process is difficult to

elucidate. This role, however, is consistent with the recent isolation

of a spontaneous MP mutant that lacks the 16 C-terminal amino

acids and allows long-distance movement of a CP-deficient TMV

strain (Tran et al., 2022). Thus, tobamoviral MPs likely possess an

evolutionary potential to gain a new protein function that facilitates

long-distance movement of viral genomes in the absence of the

natural viral mediator, i.e., CP, of this movement. This is in

agreement with the hypothesis—based on the sequence homology

between the core structural domain of MPs and the jelly-roll

domain of CPs of small viruses with icosahedral capsids—that
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tobamoviral MPs have evolved from duplication of the single

jelly-roll CP gene (Butkovic et al., 2023).

Based on the requirement of CP and MP for the local and

systemic movement, plant viruses can be classified into three types:

in type I, CP is not required for cell-to-cell movement; in type II, CP

plays a similar role to MPs; and the type III viruses move as viral

particles, requiring CP for movement (Scholthof, 2005).

Tobamoviruses utilize the type I movement mechanism

(Scholthof, 2005). Indeed, CP deletion mutants of TMV lost the

systemic transport ability, although the virus could reach the bundle

sheath and parenchyma cells by cell-to-cell movement (Solovyev

and Savenkov, 2014). Interestingly, the ability of CP to promote

systemic movement may be species-specific among different

tobamoviruses. For example, CP of TMV cannot be substituted

by CP from another tobamovirus, odontoglossum ringspot virus

(ORSV), whereas the cell-to-cell movement of such chimeric viruses

was not affected (Hilf and Dawson, 1993). The molecular

mechanism by which CP facilitates viral movement is still

obscure, but recent evidence suggests that it extends beyond mere

viral assembly and may involve interactions with the host plant’s

innate immunity. Specifically, the role of CP in the systemic

movement of TMV was shown to involve the downregulation of

the salicylic acid (SA) pathway, and this regulation was proposed to

occur via the stabilization of the DELLA proteins by an as yet

unknown process (Venturuzzi et al., 2021).

The apparent correlation between the host range and phylogeny

of the tobamoviral MPs that confer on the virus its cell-to-cell

movement ability (see Figure 1) suggests that CPs that confer the

long-distance movement ability on the same viruses may also

correlate with the main host plant species of these viruses. Thus,

we analyzed the phylogeny of CPs of the representative members of

all tobamoviruses using the CP of potato virus X as the out-group

sequence. Figure 2 shows that, indeed, most of the CP amino acid

sequences clustered into clades corresponding to their host plant

species, i.e., 17 Solanaceae-infecting viruses and three Brassicaceae-

infecting viruses, etc. Thus, viral factors responsible for the local and

systemic movement of tobamoviruses may have evolved these

capabilities based on their host preferences. This notion is

supported by the reported differences in interactions of CPs of

different tobamovirus pathotypes with the resistance L proteins of

different pepper species (Tomita et al., 2011).
Host determinants of local and
systemic movement

Phytohormones

Viruses depend on the host cellular machinery throughout most

of their infection cycle, from replication to intercellular spread to

survival in the infected tissues. Viral survival largely depends on the

innate immune responses of the plant (Zheng et al., 2024).

Generally, plant-microbe interactions can be either compatible or

incompatible according to their outcomes. Hypersensitive response

(HR) is a host defense response in incompatible interactions,
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FIGURE 2

A phylogenetic analysis of amino acid sequences of coat proteins (CP) from 47 species of the Tobamovirus genus. Potato virus X CP was used as the
out-group sequence. CPs are shown relative to the families of the host plants. CPs marked with orange, light blue, and dark green are encoded by
the viruses that primarily infect host plants of Solanaceae, Brassicaceae, and Cucurbitaceae, respectively. CPs marked with red and dark blue are
encoded by the viruses that can also infect plants in additional families besides Solanaceae and Brassicaceae, respectively. The neighbor-joining (NJ)
method was adopted using MEGA software (version 10.1.8) with 1,000 bootstrap replicates. The trees are drawn to scale, with branch lengths
measured in the number of substitutions per site. Scale bars, 0.20 amino acid substitutions per site. The individual CP sequences are identified by the
name of the virus and the corresponding Protein ID.
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inducing rapid programmed cell death (PCD) at the infection site

and resulting in a clear boundary between the necrotic lesion tissue

and the healthy tissue (Lam et al., 2001; Soosaar et al., 2005),

effectively restricting the viral particles in the necrotic tissues and

the immediately surrounding cells outside the necrotic zone

(Appiano et al., 1977; Soosaar et al., 2005). After HR, systemic

acquired resistance (SAR) is activated, and it can last for several

weeks (Ryals et al., 1996; Sticher et al., 1997).

SAR generally relies on salicylic acid (SA), an important and

well-characterized plant hormone that induces resistance against

different pathogens, including viruses (Vlot et al., 2009; Kumar,

2014). During tobamoviral infection, SA is involved in the negative

regulation of both the MP-mediated cell-to-cell movement and the

CP-mediated long-distance movement (Murphy and Carr, 2002;

Venturuzzi et al., 2021). During bacterial infection, the PD closure

regulated by the SA-induced pathway is associated with the

expression levels of the PD-located protein 5 (PDLP5) in

Arabidopsis (Wang et al., 2013). In addition, plant mutants in

critical genes associated with the SA biosynthesis/signaling, such as

ENHANCED DISEASE RESISTANCE1 (EDS1), NONEXPRESSOR

OF PATHOGENESIS-RELATED GENES1 (NPR1) , and

ISOCHORISMATE SYNTHASE1 (ICS1), or mutants in the PDLP5

gene fail to induce deposition of callose (Lee et al., 2011; Wang et al.,

2013), the classical negative regulator of PD permeability (Radford

et al., 1998; Liu et al., 2020). Consistently, exogenous or endogenous

SA induces PDLP5 expression, resulting in callose deposition

(Wang et al., 2013). However, SA cannot directly regulate the PD

SEL during viral infection, and the molecular mechanisms of the SA

effects on tobamoviral movement remain elusive (Murphy

et al., 2020).

Besides SA, other phytohormones, including jasmonic acid (JA)

and abscisic acid (ABA), may affect the spread of tobamoviruses.

The methyl ester of JA (methyl jasmonate, MeJA) enhances the

local spread of TMV indirectly by inhibiting the N gene that confers

HR to TMV (Oka et al., 2013). ABA restricts the viral spread by

inducing the synthesis and deposition of callose by regulating its

biosynthetic pathway (Kumar and Dasgupta, 2024). Other

important phytohormones, such as ethylene and auxin, are

important for plant-virus interactions (Knoester et al., 1995;

Kalapos et al., 2021; Müllender et al., 2021), but their role in

regulating the tobamovirus spread is largely unknown.
Reactive oxygen species

ROS play a crucial role in response to various abiotic and biotic

stresses, especially in sensing and defending against pathogen

infection (Mittler et al., 2022). ROS mainly accumulates in

chloroplasts, peroxisomes, and mitochondria. However, it can

also be produced in the plasma membrane, the endoplasmic

reticulum, and the apoplast (Alazem and Burch Smith, 2024);

furthermore, the types of ROS may vary due to different stresses

(Mittler et al., 2022). Infection by tobamoviruses modulates the

ROS signaling pathway, affecting the host immune responses and

symptom severity. In addition, specifically for tobamoviruses, their
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CP can induce ROS accumulation in the infected tissues (Allan

et al., 2001; Conti et al., 2017).

ROS targets callose deposits, regulating PD permeability and,

therefore, interfering with the movement of tobamoviruses from

cell to cell (Alazem and Burch Smith, 2024). ROS controls PD

permeability through the interplay of two opposing activities,

callose deposition and callose degradation. This is achieved by

three pathways: (i) ROS acts as a stress signal and activates

callose synthases, e.g., CalS/GSLs, or callose degrading enzymes,

e.g., b‐1,3‐glucanases (Cui and Lee, 2016; Alazem and Burch Smith,

2024); (ii) ROS synergistically interacts with PD-associated

proteins, e.g., PDLP1 and possibly PDLP5, to change the PD

permeability (Fichman et al., 2021); and (iii) ROS functions as a

secondary messenger, eliciting an influx of calcium ions, thereby

altering the size-exclusion limit of the PD channel (Holdaway-

Clarke et al., 2000; Evans et al., 2016; Alazem and Burch Smith,

2024). Interestingly, although the interactions between the SA and

ROS signaling pathways are complex, employing both synergistic

and antagonistic mechanisms, they regulate the PD permeability

independently of each other (Cui and Lee, 2016).
Host cell cytoskeleton

Generally, plant RNA viruses, including tobamoviruses, are

thought to hijack the host cytoskeleton for replication and

movement (He et al., 2023). The requirement for intact

microfilaments varies between different tobamoviral species; for

example, the 125-kDa protein of TVCV forms numerous

cytoplasmic microfilament-associated inclusions while its 126-

kDa homolog encoded by TMV does not when tested using

latrunculin B as a microfilament inhibitor, indicating that

functional microfilaments are involved in the movement of TMV

but may not be required for the movement of TVCV (Harries et al.,

2009). Actin filaments act in association with their molecular

motors, myosins (Lee and Liu, 2004). Thus, myosins are also

involved in the TMV cell-to-cell movement. Specifically, in

Arabidopsis, three class VIII myosins and two class XI myosins

are required for PD localization and intercellular movement of

TMV, respectively (Amari et al., 2014).

TMV MP associates with the ER membrane yet does not

integrate into it (Peiró et al., 2014). Whereas targeting TMV MP

to PD requires the actin/ER network as indicated using latrunculin

and cytochalasin as inhibitors of the actin polymerization (Wright

et al., 2007), the PD targeting process likely does not involve the ER-

to-Golgi transport as it is not susceptible to brefeldin A (Tagami

and Watanabe, 2007; Wright et al., 2007). However, the ER-to-

Golgi secretory pathway is required for the intracellular trafficking

in several viruses of other genera, including melon necrotic spot

virus (MNSV) (Genovés et al., 2010), and Chinese wheat mosaic

virus (CWMV) (Andika et al., 2013), etc. This requirement may

reflect the need for these viral MPs to form ER-derived structures to

maintain their movement or PD targeting functions (Andika et al.,

2013). The involvement of microtubules in the tobamoviral MP

action, however, remains unresolved. Specifically, the interaction of
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microtubules with MP appears to regulate the cell-to-cell movement

of the viral RNA (Boyko et al., 2000a) and also fulfill an alternative

role of targeting MP to degradation (Gillespie et al., 2002).
Host proteins that interact with
tobamoviral MPs

During their cell-to-cell travel, the molecules of tobamoviral

MP interact with numerous cellular factors, many of which have

been identified, although their specific functions in the movement

process often remain to be elucidated. Here, we will summarize

tobamovirus MP interactors with known effects on cell-to-

cell movement.

In Arabidopsis, synaptotagmin A (SYTA) interacts with

tobamoviral MPs, potentially binding to their PD-localization

sequences, suggesting a hypothesis that SYTA positively regulates

the TMV MP cell-to-cell movement via the process of endocytosis

or the endocytic recycling pathway (Lewis and Lazarowitz, 2010;

Uchiyama et al., 2014; Yuan et al., 2018; Jovanović et al., 2023). In

addition, SYTA is required for the ER-PM contacts, which are likely

remodeled during the SYTA-MP interaction to supply the

replication sites for the virus movement (Levy et al., 2015).

Ankyrin repeat-containing protein ANK also interacts with TMV

MP, and this interaction was suggested to downregulate callose

deposits at PD, increasing PD permeability and facilitating

movement (Ueki et al., 2010). Another MP-interacting protein is

WPRb, a member of the WEAK CHLOROPLAST MOVEMENT

UNDER BLUE LIGHT 1 (WEB1) and PLASTID MOVEMENT

IMPAIRED 2 (PMI2)-related protein family. WPRb is involved in

the viral cell-to-cell movement by regulating the permeability of PD

(Kodama et al., 2011; Cai et al., 2023) by an as yet unknown

mechanism. Pectin methylesterases, important plant cell wall

proteins, interact with MP and are required for both local and

systemic transport of tobamoviruses, and transgenic expression of

pectin methylesterase inhibitors restricts virus movement in plants

(Dorokhov et al., 1999; Chen et al., 2000; Chen and Citovsky, 2003;

Lionetti et al., 2014).

Calreticulin, a highly conserved Ca2+-binding protein located at

PD (Baluska et al., 1999; Chen et al., 2005; Jia et al., 2009), can

interact with TMVMP and influence its subcellular localization and

intercellular movement. In addition, overexpression of calreticulin

may lead to the mislocalization of MP to microtubules and largely

restrict the cell-to-cell movement of MP (Chen et al., 2005).

Capsicum annuum HEAT SHOCK PROTEIN26.5 (CaHsp26.5)

can induce plant resistance against RNA viruses through interaction

with a transcription factor NAC DOMAIN-CONTAINING PROTEIN

81 (ATAF2) (Foong and Paek, 2020). Paradoxically, the loss of function

of CaHsp26.5, although compromising the defense response, also

restricts the replication and spread of some tobamoviruses, such as

TMV and pepper mildmottle virus (PMMoV) (Foong and Paek, 2020).

Consistent with this effect, CaHsp26.5 can interact with the MPs of

these tobamoviruses in plant cells (Foong and Paek, 2020).

In tomato, a coiled-coil-nucleotide binding site-leucine-rich repeat

protein (CC-NLR) encoded by the Tobacco mosaic virus resistance-22
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(Tm-22) gene represents a durable resistance trait that has been

employed for tobamovirus control for many decades. This CC-NLR

associates with the tobamoviral MPs (Meshi et al., 1989; Hak and

Spiegelman, 2021), and mutations of two amino acids, C68F, and

E133K, in TMVMP enable the virus to overcome the Tm-22 resistance

(Meshi et al., 1989). Furthermore, ToBRFV can overcome all known

resistance genes in tomato plants, including Tm-22, thus emerging as a

global threat to tomato crops, and this resistance-breaking ability was

reported to associate with the ToBRFV MP, specifically with its 216

amino acid-long N-terminal domain (Hak and Spiegelman, 2021;

Salem et al., 2023). Interestingly, replacing ToMV MP with ToBRFV

MP enabled the resulting chimeric virus to break the Tm-22 resistance,

although the systemic infection of this viral chimera was limited most

likely due to the decrease in the cell-to-cell-movement (Hak and

Spiegelman, 2021).

Finally, tobamoviral MPs also interact with and are

phosphorylated by protein kinases (Citovsky et al., 1993;

Matsushita et al., 2000; Karpova et al., 2002; Matsushita et al.,

2003; Yoshioka et al., 2004; Lee, 2008). In the case of TMV MP,

phosphorylation has been proposed to regulate its function and

movement (Kawakami et al., 1999; Waigmann et al., 2000).

Furthermore, BAM1, a receptor-like kinase encoded by

Arabidopsis and N. benthamiana, interacts with MP at PD and

facilitates its cell-to-cell transport and the virus spread in the host

plants (Tran and Citovsky, 2021).
Innate immunity

Pathogen-Associated Molecular Pattern (PAMP)-triggered

immunity (PTI) and effector-triggered immunity (ETI) are the

two well-known layers of the innate immune system in plants

against various pathogens (Jones and Dangl, 2006; Boller and He,

2009), including tobamoviruses (Niehl et al., 2016; Zheng et al.,

2024). The main plant defense against invading tobamoviruses is

RNA silencing (Lopez-Gomollon and Baulcombe, 2022; Huang

et al., 2023). To combat this line of defense, plant viruses evolved

to encode proteins that act as RNA silencing suppressors (VSR). For

example, in tomato mosaic virus (ToMV) and oilseed rape mosaic

virus (ORMV), the 130-kDa and 125-kDa replicase-associated

protein, respectively, small replication subunit acts as a

suppressor of the post-transcriptional gene silencing (Kubota

et al., 2003; Csorba et al., 2007; Vogler et al., 2008; Kørner et al.,

2018). Conversely, in the absence of VSRs, siRNA molecules with

antivirus functions would move systemically ahead of the virus,

thus restricting the viral infection (Burgyán and Havelda, 2011).

Yet, the relationship between VSR and the viral movement is not

fully understood; e.g., in citrus leprosis virus C (CiLV-C), three

proteins, p29, p15, and p61 are involved in RNA silencing

suppression, and only p15 plays a role in the cell-to-cell viral

movement (Leastro et al., 2020).

RNA silencing, as well as PTI, are induced by dsRNA, which

represents the replication intermediate of many RNA viruses (Niehl

et al., 2016; Lopez-Gomollon and Baulcombe, 2022; Zheng et al.,

2024). dsRNA has been proposed to act as a PAMP and induce PTI
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that targets PD and reduces their permeability by inducing callose

deposition, which in turn inhibits the virus cell-to-cell movement

(Huang et al., 2023; Zheng et al., 2024). Interestingly, this dsRNA-

induced PTI response can be suppressed by MP, indicating that MP

may facilitate virus movement by suppressing antiviral defenses

(Huang et al., 2023).
Abiotic factors

Environmental abiotic factors, including temperature, water

conditions, and heavy metals, may also affect the spread of
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tobamoviruses (Boyko et al., 2000b; Prasch and Sonnewald, 2013;

Rahman et al., 2021). For example, high temperature increases the

association of MP with microtubules, disables the plant defense

responses to TMV, and facilitates viral spread (Boyko et al., 2000b;

Zhu et al., 2010). Also, non-toxic levels of cadmium ions, one of the

major environmental heavy metal pollutants, restrict TVCV systemic

spread and block viral disease; interestingly, this loss of systemic

transmission was not observed in the presence of high cadmium

concentrations (Ghoshroy et al., 1998). The effects of low cadmium

concentrations on tobamoviral systemic movement may involve a

glycine-rich protein, cdiGRP—the expression of which is induced by

low concentrations but not by high concentrations of cadmium ions—
FIGURE 3

Cell-to-cell and systemic movement of tobamoviruses and the viral and host determinants of these processes. The solid arrows below the genome
diagram indicate the classical cell-to-cell and systemic movement pathways facilitated by MP (yellow) and CP (purple), and the dotted arrows point
to the involvement of the indicated viral proteins in both types of movement. For descriptions of the specific depicted events, see text. The diagram
was constructed from images created using BioRender.com.
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that enhances the deposition of callose in the plant vasculature, thus

blocking the systemic movement of TVCV (Ueki and Citovsky, 2002).
Concluding remarks and prospects for
future research

Historically, tobamoviruses represent the genus, of which, TMV,

was the first virus discovered, laying the foundation for the science of

virology. Tobamoviruses, therefore, are one of the most studied groups

of plant viruses. Yet our knowledge about one of their critical biological

activities, the ability to move between cells and organs of the host plant,

remains incomplete. Recent experimentation has provided new

insights into these fascinating aspects of the plant-pathogen

interaction. Here, we summarized this new information in the

context of the fundamental facts that underlie our understanding of

the local, cell-to-cell, and systemic, organ-to-organ, movement of

tobamoviruses (Figure 3). Specifically, we focused on the viral

effectors that mediate these transport pathways, MP and CP,

respectively. Our phylogenetic analysis of all known amino acid

sequences of tobamoviral MPs and CPs revealed that they cluster

into distinct clades according to the main host plant family that these

viruses naturally infect. Potentially, these phylogenetic differences

between MPs and CPs of different tobamoviruses may contribute to

their recently recognized broad host range (Zamfir et al., 2023). The

cell-to-cell and systemic tobamoviral transport and its MP and CP

effectors are described with regard to the MP and CP activities and

interactions with different host cell proteins involved in the transport

pathway. The roles of the global host cell systems, such as the

cytoskeleton, hormonal and ROS responses, and RNA silencing, on

theMP- and CP-mediated transport are discussed. Finally, the effects of

abiotic factors, such as temperature and heavy metal cadmium, are

described, suggesting that anthropogenic climate changes and

environmental pollution might alter the ability of tobamoviruses, and

most likely other plant viruses, to move within the infected plants.

What are the important challenges in the field of tobamoviral

transport for the near future? One such endeavor would be

assembling a jigsaw puzzle of numerous MP and CP interactors

identified to date into a meaningful and comprehensive model of

the transport pathway(s) with a clear function for each interactor in

the positive and negative control of the movement process. A more

long-term challenge could lie in uncovering potential mechanistic

connections between the MP and CP sequences and the host plant

preference of the virus. Without a doubt, the research toward these

goals will be substantially facilitated by emerging technologies, such

as AI-based protein modeling trained on large datasets of sequences

already available for plants to unravel protein interaction models,

cryo-electron tomography to enhance 3D imaging of PD structure,

3D images of frozen biological samples, using the proximity-based

bioluminescence techniques to detect interactions between viral and
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host proteins interactions in real-time, etc. We believe that data

from these lines of research will provide novel and exciting insights

into plant virology, continuing the reputation of tobamoviruses,

specifically TMV, as viruses of “many firsts” (Creager et al., 1999;

Spiegelman and Dinesh-Kumar, 2023).
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