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Despite the tremendous economic significance of grapes, the systematics of the

grape genus remains understudied. Based on recent fieldwork, phylogenomic

analyses using both nuclear and plastid genomes, as well as morphological

comparisons, we report a new grape subgenus, Rojovitis, endemic to Mexico.

The new subgenus constitutes a clade that diverged early in the evolutionary

history of Vitis, yet there is cytonuclear discordance in its position, suggesting

hybridization is a likely mechanism in its origin. Subgenus Rojovitis contains two

species, Vitis martineziana J. Wen from Chiapas and V. rubriflora J. Wen from

Jalisco, both new to science. In comparison to the two other subgenera of the

grape genus (subgenus Vitis and subgenusMuscadinia), Rojovitis is characterized

by its red flowers and stems with prominent lenticels. The discovery of the third

subgenus in Vitis, nearly a century after the recognition of the second subgenus,

Muscadinia, in 1927, represents a major milestone in the systematic research of

grapes and their wild relatives. We also use fieldwork and herbarium data to

provide distribution maps and conservation assessments of V. martineziana and

V. rubriflora based on IUCN criteria. Both species are assessed to be critically

endangered. These findings highlight Mexico as an important region for wild

grape resources. The study also demonstrates that biodiversity discovery is far

from complete today and that field exploration remains critical for biodiversity

science and conservation. These newly discovered resources may benefit

humanity, yet these species urgently need to be protected and properly

managed due to extensive habitat loss and alteration.
KEYWORDS

grapes, hybridization, IUCN, new subgenus, phylogenomics, resources, Vitaceae, Vitis
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1580648/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1580648/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1580648/full
https://orcid.org/0000-0001-6353-522X
https://orcid.org/0000-0003-1462-1978
https://orcid.org/0000-0003-0368-2388
https://orcid.org/0000-0002-1285-7891
https://orcid.org/0009-0000-6134-7276
https://orcid.org/0000-0001-7875-9285
https://orcid.org/0000-0002-1357-4826
https://orcid.org/0000-0001-8065-3981
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1580648&domain=pdf&date_stamp=2025-05-19
mailto:wenj@si.edu
mailto:niez@jsu.edu.cn
https://doi.org/10.3389/fpls.2025.1580648
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1580648
https://www.frontiersin.org/journals/plant-science


Wen et al. 10.3389/fpls.2025.1580648
1 Introduction

The grape genus Vitis is well known for being one of the earliest

domesticated woody crops, and grapes have been considered the

most economically important fruit crop in the world (Myles et al.,

2011; Gerrath et al., 2015; Zhou et al., 2017). The genus is estimated to

contain c. 80 species, with at least 45 species in eastern Asia to the

Himalayan region, one species in Europe and western Asia, and c. 35

species in North America to northern South America (including

approximately 15 species in Mexico). Two subgenera, Muscadinia

andVitis, have been traditionally recognized based on morphological,

anatomical, cytological, and molecular evidence for nearly a century

(Rehder, 1927; Moore, 1991; Ma et al., 2018; Wen et al., 2018b; Nie

et al., 2023). North America (including Mexico) and eastern Asia

represent two major centers of distribution of Vitis (Chen et al., 2007;

Moore andWen, 2016), while Europe contains only the economically

most important wine grape species, Vitis vinifera L., which extends to

western Asia (Wen, 2007).

Phylogenetic analyses on the grape genus have supported two

major clades within the genus, corresponding to the two subgenera,

subgenus Vitis and subgenus Muscadinia (Ma et al., 2018; Nie et al.,

2023). Phylogenetic studies onVitis have resolved subgenus Vitis into

two main clades corresponding geographically to Eurasia and the

New World, especially using chloroplast DNA (e.g., Tröndle et al.,

2010; Péros et al., 2011; Zecca et al., 2012; Wen et al., 2018a) and

sometimes based on nuclear data (Miller et al., 2013; Wan et al., 2013;

Ma et al., 2018). Recent studies employing nuclear phylogenomic

data have suggested paraphyly of the NewWorldVitis subgenusVitis,

with the Asian taxa nested within a New World grade, even though

the plastid genome data supported a major North American clade

sister to a Eurasian clade (Nie et al., 2023; Talavera et al., 2023). The

observed cytonuclear discordance was suggested to be caused by deep

hybridization events (Nie et al., 2023). Several studies have revealed

extensive hybridizations within subgenus Vitis (Aradhya et al., 2013;

Ma et al., 2023; Nie et al., 2023).

Despite the long historical interest in Vitis (Planchon, 1887;

Munson, 1909), there are still taxonomic and phylogenetic gaps, with

Mexico and China remaining poorly explored (Ma et al., 2023; Nie

et al., 2023). We recently conducted extensive field and herbarium

work throughout Mexico, a region especially rich in early-diverged

lineages of Vitis as well as its close allies currently placed in

Ampelocissus. This study aims to assess the phylogenetic and

taxonomic positions of several morphologically unique collections

recently made in Mexico. We performed phylogenetic analyses of the

grape genus Vitis and its close allies in Ampelocissus, employing 1,013

nuclear genes targeted by a set of Vitaceae baits (Talavera et al., 2023)

and using plastid genomes (plastomes) (Wen et al., 2018a).
2 Materials and methods

2.1 Taxon sampling, DNA extraction,
sequencing, and data assembly

We sampled 60 accessions, including 51 Vitis samples

representing its taxonomic and geographic diversity (45 of the 80
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Vitis species, or 56.25% species coverage from all geographic

regions), eight accessions of the close relative Ampelocissus, and

one accession of Parthenocissus quinquefolius (outgroup)

(Supplementary Table S1). Most of the study samples were newly

generated, with only a few samples from published papers (Ma

et al., 2018, 2021; Talavera et al., 2023). Voucher specimens have

been deposited in the United States National Herbarium (US), the

Smithsonian Institution, Washington, DC, USA.

DNA extractions were done following a modified SDS method

(Johnson et al., 2023). DNAs were quantified with a Qubit 4.0

fluorometer (Thermo Fisher Scientific, Waltham, MA, United

States) using a high-sensitivity dsDNA kit and then sheared to a

target size of ca. 300–500 bp by sonication (QSonica Q800R3,

Newtown, CT, United States). DNA libraries were generated with

the KAPA DNA library preparation kit following the manufacturer’s

protocol. We pooled six indexed libraries in one reaction with

equimolar amounts of 100 ng. Solution-based hybridization and

enrichment were carried out using a custom-designed Vitaceae bait

set covering 1,013 genes (Talavera et al., 2023). About 40% of the

unenriched libraries were added into the target-enriched libraries to

recover the plastid genome sequences as by-products. Pooled libraries

were sequenced on an Illumina Nova-Seq 6000 platform at

Novogene, Sacramento, CA, USA, with paired-end 2 × 150 bp.

Raw reads were quality-filtered using Trimmomatic version

0.39 (Bolger et al., 2014) with a 4-bp-wide sliding window. We used

the HybPiper pipeline version 1.3.1 (Johnson et al., 2016) to extract

target sequences and remove paralog sequences. For the chloroplast

assemblies, we used the complete plastid genome of Vitis vinifera

(NC_007957) (Jansen et al., 2006) as a reference and assembled all

130 plastid genes using the HybPiper pipeline as described above for

the targeted nuclear genes.
2.2 Phylogenetic analyses

Target gene sequences were assembled and aligned using

MAFFT version 7.407 (Katoh and Standley, 2013). The gene

sequences were trimmed with trimAl (Capella-Gutiérrez et al.,

2009), removing bases present in less than 25% of the accessions.

Based on the complete dataset of 986 loci without paralogs, all

matrices were combined into a single supermatrix for phylogenetic

inference. Maximum likelihood (ML) analysis was performed in

RAxML version 8.2.12 (Stamatakis, 2014) using the GTR

substitution model with the CAT approximation of rate

heterogeneity during tree search, and the best‐scoring tree from

all searches was chosen. Branch support was estimated using a rapid

bootstrap algorithm, with the number of replicates determined by

the bootstopping criterion.

Gene trees for each locus were also reconstructed separately using

RAxML version 8.2.12 with the GTRGAMMA model and 100 rapid

bootstraps. Species tree analyses were performed for all the gene trees

with the programASTRAL‐III 5.5.3 (Zhang et al., 2018). Low-supported

clades (< 10%) were collapsed for the gene trees. Local posterior

probabilities (LPPs) were estimated to provide support for clades, with

LPP > 0.95 considered strongly supported (Mirarab et al., 2016).
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The 130 plastid genes were trimmed with trimAl and then

aligned with MAFFT version 7.407 (Katoh and Standley, 2013). We

reconstructed a phylogenetic tree using RAxML version 8.2.12

based on the plastid data with the GTRGAMMA model and a

rapid bootstrap algorithm (Stamatakis, 2014), as those used for the

nuclear gene sequences.
2.3 Species network inference

The Species Networks applying Quartets (SNaQ) method

(Solıś-Lemus and Ané, 2016) was implemented in PhyloNetworks

to explore potential hybridization events in Vitis. A total of 20

accessions were selected to represent Vitis and Ampelocissus. The

RAxML gene trees for the 986 genes were used as an input and were

summarized by quartet concordance factors. The fit of the models

was tested, allowing a maximum of 0 to 8 reticulation events (h) and

25 independent runs, starting from the ASTRAL tree for the initial

network (h = 0). For the subsequent h, the best network predicted

by the previous h value was used as the next starting tree. The

optimal network for each h value was selected by considering the

highest log-likelihood value (Solıś-Lemus and Ané, 2016) and

evaluating the pseudolikelihood score profile of each h.
2.4 Herbarium morphological studies

We examined herbarium collections of BRIT, F, MEXU, and US

(abbreviations following Thiers, 2020), as well as images of type

specimens via JSTOR Global Plants (http://plants.jstor.org).
2.5 Conservation assessments

For any new species requiring conservation assessments, species

distributions were evaluated using the Geospatial Conservation

Assessment Tool GeoCAT (Bachman et al., 2011) to calculate the

extent of occurrence (EOO) and the area of occupancy (AOO) for

each species. ArcGIS maps of the World Database on Protected

Areas (WDPA) (UNEP-WCMC, 2025) were utilized to determine

in situ protection. Data from the distribution maps, EOO, AOO,

counts of localities, and knowledge of habitat protection and land

cover loss were combined to determine full conservation

assessments using IUCN Red List categories and criteria (IUCN,

2012, 2022) for each species.
3 Results

3.1 Phylogenomic relationships inferred
from nuclear data

The nuclear phylogenetic analyses were performed on 986 loci

after excluding paralog genes. The coalescent-based ASTRAL

species tree showed that the two morphologically unique new
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species, Vitis martineziana and V. rubriflora, form a clade sister

to the clade of Vitis subgenus Vitis + subgenus Muscadinia (LPP =

1.00; Figure 1). Vitis subgenus Vitis is composed of members from

Asia, Europe, and the NewWorld and was well supported as a clade,

which is sister to Vitis subgenus Muscadenia. The ML analysis

based on the concatenated 986‐loci nuclear dataset using RAxML

also resolved a well-supported phylogeny, with major nodes having

100% bootstrap support values (Supplementary Figure S1). All

inferred nuclear phylogenetic trees depicted similarity with

respect to the main clades (Figure 1; Supplementary Figure S1).

However, there were several incongruences between the maximum

likelihood and the coalescent trees within Vitis subgenus Vitis, such

as the placements of Vitis tiliifolia and the V. mustangensis-V.

shuttleworthii clade, which are not the focus of this paper (cf.,

Figure 1; Supplementary Figure S1).
3.2 Phylogenomic relationships based on
plastome data

The ML analysis from plastome data (Figure 2) supported the

Rojovitis clade sister to Vitis subgenus Vitis. Vitis subgenus

Muscadenia is sister to the clade of Vitis subgenus Vitis + the

Rojovitis clade. There are significant topological incongruences

between the nuclear and plastid inferences within Vitis subgenus

Vitis (cf. Figures 2, 3; Supplementary Figure S1).
3.3 Species networks applying quartets

The SNaQ analysis (Figure 3) supported h = 3 as the optimal

number of hybridization events inferred. The phylogenetic network

results suggested a hybrid origin of Vitis rubriflora from Jalisco, with

one parent being V. martineziana with the inheritance probability g =
0.72, i.e., 72% of the V. rubriflora genome from V. martineziana.

SNaQ showed the minor hybrid edge of Vitis rubriflora to be V.

californica, now endemic to California and southern Oregon, with

28% genome contributions. The much smaller portion of the

inheritance from V. californica suggested introgression.
4 Discussion

4.1 Discovery of a new subgenus Rojovitis
of the grape genus

During our field studies in Mexico, we collected several

morphologically unique specimens from Chiapas and Jalisco.

These collections are highly distinctive in their lenticellate

nonshredding bark, large loose paniculate thyrse inflorescence,

and red flowers. Our phylogenetic analyses based on the nuclear

and plastid data placed these specimens into a clade, with the

nuclear species tree (Figure 1) showing the clade sister to the known

species of Vitis and the plastid phylogeny (Figure 2) supporting the

clade as sister to Vitis subgenus Vitis. We propose that the
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specimens of the clade from Chiapas and Jalisco represent a unique

new subgenus, Rojovitis, of Vitis.

Our morphological studies group these specimens of the

Rojovitis clade into two species based on the highly distinctive

leaf morphology, and we describe them as two species new to

science: Vitis martineziana J. Wen from Chiapas and V. rubriflora J.

Wen from Jalisco. For nearly a century, two subgenera (Vitis and

Muscadinia) have been recognized in Vitis (Rehder, 1927; Moore,

1991; Moore and Wen, 2016). The discovery of the third new

subgenus of the economically important Vitis with two new species

represents a major milestone of systematic research on grapes and

their wild relatives.

The cytonuclear discordance supports a likely hybrid origin of

Vitis subgenus Rojovitis, with an extinct lineage of Vitis subgenus

Vitis as the maternal parent (Figure 2) and an early lineage of Vitis
Frontiers in Plant Science 04
as the paternal parent (Figure 1). The results of the phylogenetic

network analyses (Figure 3) suggest that Vitis rubriflora may

represent an ancient hybrid species between V. martineziana and

V. californica. The hybridization events concerning the evolution

and diversification of Vitis subgenus Rojovitis will need to be further

studied, with hybridization being shown to be an important

mechanism in plant evolution and also in grape diversification

(Harrison and Larson, 2014; Morales-Cruz et al., 2021; Ma et al.,

2023; Nie et al., 2023).
4.2 Taxonomic treatment

Vitis subgenus Rojovitis J. Wen, subgen. nov.

Type species: Vitis martineziana J. Wen.
FIGURE 1

Astral tree of Vitis and its close relatives based on the nuclear data set. Branch support values (local posterior probabilities) are shown on nodes with
colored circles. The three different subgenera are indicated in different colors, Vitis (blue), Muscadinia (green), and Rojovitis (pink).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1580648
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wen et al. 10.3389/fpls.2025.1580648
Diagnosis: The new subgenus is highly distinctive from the

other subgenera of the grape genus Vitis in its lenticellate,

nonshredding bark; large, loose, paniculate thyrse inflorescences

with well-developed secondary branches; and red, mostly

bisexual flowers.

Description: High-climbing liana, andromonoecious; stem with

prominent lenticels, bark not peeling. Tendrils two-forked, unequal,

becoming stout. Leaves simple; blade ovate to broadly ovate, pubescent

with both short simple and cobwebby hairs on the abaxial surface; base

sagittate to V-shaped; margin serrate or serrulate. Inflorescence is a

large, loose, paniculate thyrse with well-developed secondary branches.
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Flowers are five-merous, mostly bisexual; petals red, coherent by

margins; floral disc sulcate. Fruits globose.

It contains two species: Vitis martineziana J. Wen, endemic to

Chiapas, and V. rubriflora J. Wen, from Jalisco—both new to

science.

Vitis martineziana J. Wen, sp. nov. (Figures 4, 5)

Type:Mexico: Chiapas, Municipio Tuxtla Gutiérrez, steep slope

along the road to El Sumidero de Tuxtla, 20 km north of Tuxtla

Gutiérrez, elev. 4,300 ft, 16 February 1965, fl, D.E. Breedlove 9050

(holotype: US!, 03373396, inflorescence; isotype: F!, 1624629).
FIGURE 2

Maximum likelihood tree of Vitis and its close relatives based on 130 plastid coding sequences (CDS) genes. Branch support values (Bootstrap) are
shown on nodes with colored circles. The three different subgenera are indicated in different colors, Vitis (blue), Muscadinia (green), and
Rojovitis (pink).
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Diagnosis: Compared to Vitis rubriflora, V. martineziana

possesses chartaceous mature leaves; its adaxial surface is sparsely

pubescent with cobwebby long hairs, while its abaxial surface is

tomentose with short and cobwebby long hairs. The leaf

margin serrulate.

Description: Liana, andromonoecious; stems cobwebby to

glabrescent, with lenticels; bark not peeling. Tendrils two-forked,

becoming woody and stout. Stipules 2–3 mm, triangular. Leaves

simple, chartaceous, petioles 3–5 cm; blade ovate to broadly ovate,

11–25 cm × 8–28 cm, adaxial surface sparsely pubescent with

cobwebby hairs, often with visible raphides, rarely with simple

short hairs; abaxial surface tomentose with cobwebby long hairs and

simple short hairs; base sagittate to cordate, sometimes overlapping;

margin serrate; apex acute to acuminate. Inflorescence is a thyrse

with long lateral branches, appearing before leaves; peduncles

densely cobwebby; pedicels 2–3 mm, glabrous. Flowers red; calyx

truncate, glabrous; petals 5, 2.5–3 mm × 0.8–1 mm, elliptic,

coherent by margins, caducous, glabrous; stamens 5, 2–2.5 mm,

anthers 0.5 mm long; disc adherent to the ovary, five-sulcate, ovary

apex red, glabrous; style obsolete; stigma punctate. Fruits globose,

10–11 mm in diameter.

Etymology: The new species is named in honor of Mr. Esteban

Manuel Martıńez Salas, a botanist in the Herbarium, Instituto de

Biologıá, Universidad Nacional Autónoma de México (MEXU) and

arguably the most prolific Mexican plant collector.

Distribution and ecology: Found in Chiapas, Mexico

(Figure 6); occurs in tropical montane deciduous or

semideciduous forests, in limestone habitats; at elevations of 470–

1,500 m.

Conservation: Vitis martineziana has an extent of occurrence

(EOO) of 10,287 km2 and an area of occupancy (AOO), measured

using a 2 × 2 km grid, of 40 km2. There are eight known localities.

While one locality exists within the Sumidero Canyon National

Park, the others are in landscapes experiencing habitat destruction

and degradation, mainly due to urban expansion, extensive

agriculture, and extensive livestock farming. Climate change is

predicted to have a high impact on this region (Esperon-
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Rodriguez et al., 2019) and may further threaten the survival of

this species. Vitis martineziana is extremely rare. During a 2022

survey, three or fewer mature individuals were recorded at each

locality, suggesting that fewer than 50 total mature individuals

remain (J. Wen, pers. obs.). The species is not found in cultivation

and is not known from any ex-situ collections. With fewer than 50

total mature individuals, Vitis martineziana is preliminarily

assessed as critically endangered (CR) under IUCN Red List

criterion D.

Additional specimens examined: Mexico. Chiapas: Avispero,

Comitán to Motozintla, 530 m, 15 April 1946, fruit with emerging

leaves, E. Hernańdez Xolocotzi X-1398 (MEXU). Municipio de

Berriozábal, 5 km east of Berriozábal along Mexican Highway

190, gentle slope with tropical deciduous forest, Bursera, Ceiba,

and Heliocarpus, elev. 800 m, 17 December 1972, flowers red, D.E.

Breedlove & R.F. Thorne 30406 (BRIT). Municipio Bochil, along Rt.

195, 5 km N of Soyalo, 16° 54.27′N, 092° 55.54′W, 1,483 m, climber

on shrubby slope, 15 May 2006, J. Wen 8708 (MEXU, US); along Rt

195, 5 km N of Soyalo, N16° 54.322′, W92° 55.699′, 4,790 ft, in

tropical deciduous forest, slender climber, 19 August 2022, J. Wen

17900 (MEXU, US). Municipio Chiapa de Corzo, 9 km E of Chiapa

de Corzo, El Chorreadero, along Mexico Hwy. 190, roadside

disturbed area, 16° 44.903′N, 092° 50.094′W, 688 m, 15 May

2006, J. Wen 8704 (MEXU, US); El Chorreadero, 5.6 miles east of

Chiapa de Corzo along Mexican Highway 190, elev. 2,500 ft, 24

February 1966, fl, R.M. Laughlin 193 (MEXU); along old Rt. 190, 9

km E of Chiapa de Corzo, 16° 44′19″N, 92° 57′56″W, 471 m elev.,

tropical semideciduous forest, limestone area, 20 August 2022, J.

Wen 17904 (MEXU, US). Municipio Ocozocoautla, El Palmar,

along Rt. 190, between Km markers 103 and 104, near junction

with the road to San Jorge, 16° 43′8″N, 93° 1′4″W, 735 m elev., 18

August 2022, stem, tendril, and leaves only, J. Wen 17883 (MEXU,

US, two sheets). Municipio Ocozocoautla, El Yeso, near jct. of Rt.

190 and unpaved road to the gypsum mine, 16° 40.853′N, 093°
32.546′W, 620 m, in disturbed tropical dry forest, climber on fence,

15 May 2006, J. Wen 8697 (MEXU, US); Municipio Ocozocuautla,

km 18 Racho, along Rt. 190, between km markers 103 and 104, El
FIGURE 3

The optimal phylogenetic network inferred using the SNaQ/PhyloNetwork analysis with a representative sampling of Vitis and Ampelocissus (h = 3).
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Yeso, near jct. of Rt. 190 and unpaved road to the gypsum mine, 16°

43.132′N, 093° 31.075′W, in a disturbed area with limestone

bedrock, fruits reddish, J. Wen 8702 (MEXU, US); El Yeso, along

Rt. 190, near km marker 95–96, by Rancho de el Yeso, N16° 41′19″,
W93° 32′48″, 574 m, 18 August 2022, J. Wen 17879 (MEXU, US).
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Lombardi (2005) described Ampelocissus mesoamericana

(Supplementary Figure S2) from Central America and noted that

Ampelocissus mesoamericana is characterized by the presence of

lenticels on the stem and the obpyriform floral buds. Lombardi

(2005) designated the holotype specimen—J. M. Tucker 905 from El
FIGURE 4

Vegetative characters of Vitis martineziana J. Wen. (A) A branch showing vegetative stem, tendril, and leaf morphology (J. Wen 8704, US). (B) Stem
showing lenticels, an old tendril base on the right, and a branch on the left. (C) An old woody tendril on the right, a branch in the middle, and a
petiole subtending the branch on the left. (D) Leaf adaxial (upper) surface. (E) Leaf abaxial (lower) surface. (F) Leaf abaxial surface showing the simple
and cobwebby hairs. (B–F) Based on J. Wen 17884 (US).
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Salvador—preserved at the US National Herbarium (US) in

Washington, DC. However, the holotype appears to represent a

species closely related to, if not identical, Ampelocissus

erdvendbergianus, which lacks lenticels on the stem and has a

hirsute leaf margin and three-branched tendrils. The specimens

cited in Lombardi’s Ampelocissus mesoamericana belong to two
Frontiers in Plant Science 08
species, with the holotype likely representing Ampelocissus

erdvendbergianus.

Vitis rubriflora J. Wen, sp. nov. (Figure 7).

Type: Mexico: Jalisco: Municipio La Huerta, Estación de

Investigación, Experimentación y Difusión Chamela, UNAM,
FIGURE 5

Reproductive characters of Vitis martineziana J. Wen. (A) Inflorescence morphology (D.E. Breedlove 9050, US). (B) Inflorescence unit. (C) Another
inflorescence unit, more umbellate. (D) Opening flower. (E) Opening flower with two petals removed to show stamens, stigma, and floral disc.
(F) An older flower with all petals removed. (B–F) Based on D.E. Breedlove 30406 (BRIT).
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Trail Tejón, c. 3,000 m away from its trail start, no elevation

indicated, selva baja caducifolia, bejuco, flor roja, 4 February

1983, fl, with leaves, J. Arturo S. Magallanes 3983 (Holotype:

MEXU; isotype: EBCH).

Diagnosis: In comparison with Vitis martineziana, V.

rubriflora has thin, papery mature leaves; its adaxial surface is

sparsely pilose with short hairs on veins and veinlets, and its abaxial

surface is sparsely pubescent with short and cobwebby long hairs;

the leaf margin is serrate.

Description: Liana, andromonoecious; stem with light reddish

wood; bark not shredding, lenticellate, with vertical grooves with

age, young branches slender, pubescent with whitish hairs. Tendrils

biforked. Leaves ovate, not lobed at maturity, three-lobed on

juvenile branches, lateral veins five to six on each side; margin

finely serrate; apex acuminate to acute; base V-shaped; adaxial

surface pilose with short hairs; abaxial surface with two types of

hairs—pilose with short hairs mostly on veins and veinlets, and

sparsely cobwebby with long hairs throughout; tomentose when

young at the shoot apex. Inflorescence a paniculate thyrse, 10–20

cm long, densely cobwebby-tomentose; pedicels 2.5–3.5 mm,

glabrous. Flowers red; calyx with 5-min teeth, glabrous; petals 5,

2–2.5 mm × 0.7–0.9 mm, elliptic, mid-vein conspicuous, coherent
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by margins, caducous on male flowers, glabrous; stamens 5, 2.2–2.6

mm, anthers 0.5 mm long, disc adherent to ovary, five-sulcate,

ovary glabrous, style obsolete, stigma punctate. Young fruits are

globose, based on residue petals and stamens, mature fruits are

not seen.

Distribution and ecology: The species is very rare and is only

known from the Chamela area in Municipio La Huerta, Jalisco,

Mexico (Figure 8). It occurs in tropical lowland deciduous forests

near the sea level.

Conservation: Vitis rubriflora has an EOO of 7.04 km2 and an

AOO, as measured with a 2 × 2 grid, of 12 km2. There are two known

localities, both situated within the Chamela-Cuixmala Biosphere

Reserve. Although the habitat is protected, its management—

including weed removal and trail maintenance—affects the species.

Furthermore, the species may be impacted by extreme weather events.

Research on bioclimatic variables in the Chamela-Cuixmala Biosphere

Reserve indicates increased vulnerability to climate change (Esperon-

Rodriguez et al., 2019), along with an annual rise in temperature and

greater precipitation during the wet season, associated with an increase

in the number of large storms (Takano-Rojas et al., 2023). These

changes put the species at risk from hurricane-force winds and flash

floods. Vitis rubriflora is also extremely rare. During a 2024 survey,
FIGURE 6

Distribution of Vitis martineziana J. Wen in Chiapas, Mexico.
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only two individuals were recorded, and it is estimated that fewer than

10 mature individuals remain in the wild (J. Wen, pers. obs.). It is not

found in cultivation, and it is not known from any ex-situ collections.

With fewer than 10 total mature individuals, Vitis rubriflora is

preliminarily assessed as CR under IUCN Red List criterion D.
Frontiers in Plant Science 10
Additional specimens examined: Mexico. Jalisco: Municipio

La Huerta, Chamela Bay region, Rancho Cuixmala, “Cumbres de

Cuixmala”, 19° 29′N, 104° 58′W, tropical deciduous forest, vine,

inflorescence red, stamens white, young fruits reddish green, 19

April 1991, fl, without leaves,M. G. Ayala 91-55 (BRIT); Municipio
FIGURE 7

Vitis rubriflora J. Wen. (A) The holotype specimen showing leaves, inflorescence, and stem morphology. (B) A branch of a juvenile specimen, Wen
18435 (US). (C) Cobwebby pubescence on the tendril branches, Wen 18437 (US). (D) Adaxial (upper) leaf surface showing short hairs, Wen 18435
(US). (E) Abaxial (lower) leaf surface showing both short and cobwebby hairs, Wen 18435 (US). (F) Flower after falling off of the petals (J. Arburo S.
Magallanes 3983, MEXU).
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La Huerta, Chamela, UNAM Estación de Biologıá.19° 30′ 47.8″N,
105° 02′ 14.8″W, elevation at 25 m, J. Wen et al., 18435 (US,

MEXU); same location, J. Wen et al., 18437 (US, MEXU).

Taxonomic key to species of Vitis subgenus Rojovitis:
Fron
1. Mature leaves chartaceous; adaxial surface sparsely

pubescent with cobwebby long hairs; abaxial surface

tomentose with short and cobwebby long hairs; leaf

margin serrulate............................................Vitis martineziana

1. Mature leaves thin and papery; adaxial surface sparsely

pilose with short hairs on veins and veinlets; abaxial

surface sparsely pubescent with short and cobwebby long

hairs; leaf margin serrate...................................Vitis rubriflora
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Taxonomic key to the three subgenera of Vitis:
1. Flowers are mostly bisexual, petals red; inflorescences

loosely paniculate thyrses; in tropical dry deciduous

forests.............................................................Subgenus Rojovitis

1. Flowers mostly unisexual; petals greenish white;

inflorescences compact thyrses; in temperate to tropical

mesic forests..................................................................................2

2. Tendrils simple; bark adherent with prominent lenticels;

pith continuous through nodes...........Subgenus Muscadinia

2. Tendrils bifid to trifid, rarely simple; bark shedding, the

lenticels inconspicuous; pith interrupted by diaphragms at

nodes......................................................................Subgenus Vitis
FIGURE 8

Distribution of Vitis rubriflora J. Wen in Chamela, Jalisco, Mexico.
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This discovery of a new subgenus with two new species in the

economically important grape genus showcases that biodiversity

discovery is far from complete today. The biodiversity community

needs to emphasize field exploration, especially in poorly collected

regions, in the new age of discovery (Wen et al., 2023). The grape

industry has heavily emphasized the utilization of Vitis vinifera from

Eurasia; however, the adaptability of the industry to climate change

and pests depends on further exploration of resources within the

grape genus Vitis. As the early-diverged taxa in Vitis may also have

involved hybridizations (Figure 1), these newly discovered

germplasm resources could benefit humanity and potentially serve

as important models for studying adaptation and character evolution.

These species, however, urgently need to be protected and properly

managed due to extensive habitat loss and alteration.
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SUPPLEMENTARY FIGURE 1

Maximum likelihood tree of Vitis based on 986 concatenated nuclear genes.

Branch support values (Bootstrap) on nodes are displayed with colored

circles. The three different subgenera are indicated in different colors, Vitis
(blue), Muscadinia (green) and Rojovitis (pink).

SUPPLEMENTARY FIGURE 2

Holotype of Ampelocissus mesoamericana.
References
Aradhya, M., Wang, Y., Walker, M. A., Prins, B. H., Koehmstedt, A. M., Velasco, D.,
et al. (2013). Genetic diversity, structure, and patterns of differentiation in the genus
Vitis. Plant Syst. Evol. 299, 317–330. doi: 10.1007/s00606-012-0723-4

Bachman, S., Moat, J., Hill, A., de la Torre, J., and Scott, B. (2011). Supporting Red
List threat assessments with GeoCAT: geospatial conservation assessment tool.
ZooKeys. 150, 117–126. doi: 10.3897/zookeys.150.2109
Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10.1093/bioinformatics/
btu170
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