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Calcined low-grade phosphate
rock fertilization enhances
nitrogen fixation, yield, and
grain quality in soybeans
Andressa Nakagawa and Papa Saliou Sarr*

Crop, Livestock and Environment Division, Japan International Research Center for Agricultural
Sciences, Tsukuba, Japan
The limited use of chemical fertilizers in developing countries has posed a significant

challenge to sustainable crop production. Beyond increasing yields, improving seed

nutritional quality is also crucial. This study evaluated the impact of phosphorus (P)

fertilization, using calcined low-grade phosphate rock, on soybean growth, yield,

and seed quality. Soybean cultivars, Fukuyutaka and Jenguma were grown under

three treatments: no P application (–P), triple superphosphate [+P(TSP)], and

calcined phosphate rock [+P(PR)]. Both P treatments significantly increased pod

number (e.g., 12 pods plant−¹ in (–P) vs. 25 pods plant−¹ in +P(TSP) for Fukuyutaka),

seeds number (23 vs. 48 seeds plant−¹), and seed yield (5.03 g vs. 14.51 g plant−¹)

compared to the control. However, P fertilization only increased the average

individual seed weight in Fukuyutaka. P application also enhanced root

nodulation–nodule numbers in Jenguma increased from 22 in (–P) to 102 in +P

(PR)–and boosted nitrogen (N) fixation in both cultivars. Shoot dry weight doubled

under P fertilization, accompanied significant increases in shoot N and P contents.

Seed composition responses varied by cultivar: in Fukuyutaka, P application reduced

protein content but increased lipid content, while in Jenguma, P fertilization

increased protein content and had little to no effect on lipid content. Overall, the

results demonstrate that calcined phosphate rock is an effective and affordable

alternative to triple superphosphate for improving soybean growth, nodulation,

nitrogen fixation, and seed quality. It offers a promising phosphorus source for

smallholder farmers in phosphorus-deficient soils of sub-Saharan Africa.
KEYWORDS
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1 Introduction

Soybean (Glycine max L. Merr.) is a globally important legume, valued for its high

protein content and edible oil, making it a key crop for the food and feed industries (Song

et al., 2023). In 2023, global soybean production reached 394.714 million metric tons

(USDA, 2024). However, with a growing global population, increasing soybean yield

remains a critical challenge, especially in sub-Saharan Africa (SSA). SSA faces significant

constraints, including land degradation and low soil fertility, to meet its increasing food
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demands. The region’s population is projected to increase from 1.3

billion in 2019 to 2.5 billion by 2050 (United Nations, 2019),

highlighting the urgent need for sustainable agricultural practices.

Biological Nitrogen fixation (BNF) plays a crucial role in legume

productivity by forming a symbiotic relationship between nitrogen-

fixing bacteria and plant roots, thereby enhancing plant growth and

increasing seed yield (Wang et al., 2018). BNF also improves soil

health by reducing the need for nitrogen fertilizers (Ladha et al., 2022;

Herridge and Rose, 2000; Freitas et al., 2022). However, beyond

nitrogen, other soil nutrients, particularly phosphorus (P), are

essential to support BNF and overall legume productivity and seed

protein content (Ciampitti et al., 2021). P is vital for nodule formation

and function (Bargaz et al., 2018; Rotaru and Sinclair, 2009) and is the

second most limiting macronutrient in soybean cultivation after

nitrogen (Faozi et al., 2019). P deficiency can severely limit soybean

growth by reducing plant biomass, nitrogen content, and nitrogen

metabolism activity (Davito and Sadras, 2014; Staniak et al., 2024; Sa

and Israel, 1995). The high P demand of nitrogenase activity in BNF

further exacerbates this challenge (Rycher and Randall, 2006; Wanke

et al., 1988; Qiu and Israel, 1994). Soybean nodules under P deficiency

have been reported to exhibit reduced carbohydrate (sucrose, hexose)

levels and energy status (Li et al., 2022a; Sa and Israel, 1991; Rychter

et al., 1992).

In SSA, low soil P availability is a major constraint on crop

production (Verde andMatusso, 2014; Stewart et al., 2020). Although

phosphate rock (PR) is abundant in many African countries, its low

solubility often limits its effectiveness as a direct fertilizer (Sarr et al.,

2020). Recent research has focused on calcination of low-grade PR

with sodium carbonate (Na2CO3) to enhance P availability. For

instance, calcined PR from Burkina Faso, prepared by blending PR

with 30% Na2O sourced by Na2CO3 at 950°C, showed improved

solubility, with citric acid soluble P increasing from 31.1% to 97.5%

and water-soluble P increasing from 0.2% to 28.1% (Nakamura et al.,

2015). The calcined PR contains 19.72% P2O5 as reported by

Nakamura et al. (2015). This suggests that calcined PR could be a

viable, cost-effective alternative to chemical fertilizers like triple

superphosphate (TSP). Therefore, this study aimed to evaluate the

effectiveness of calcined PR compared with TSP in improving

soybean growth, nodulation, nitrogen fixation, and seed quality in

pot culture experiments using two soybean cultivars.
2 Materials and methods

2.1 Plant materials, fertilization, and
sampling

Soybean seeds of the Japanese cultivar ‘Fukuyutaka’ and the

Ghana cultivar ‘Jenguma’, provided by the Council for Scientific and

Industrial Research (CSIR)-Savanna Agriculture Research Institute

(SARI) in Ghana, were sown in 1/5000 Wagner pots filled with soil

collected from the Japan International Research Center for

Agricultural Sciences (JIRCAS) experimental field station in

Tsukuba, Japan (36°05’N, 140°08’E). The soil, classified as a humic

haplic Andosol, had not been fertilized with P for more than 15 years.
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It has a pH of 5.8 and with a high P-fixing capacity, resulting in a low

level of plant-available P (5 mg P kg-1 soil, Bray-II), as reported by

Ranaivo et al. (2022). The experiment was laid in a randomized

complete bloc design with two cultivars, three fertilization treatments,

and four replications each. Soil fertilization was performed according

to Nakagawa et al. (2020), with differential application of N, P, and K.

The ‘-P’ treatment consisted of N (8.8 kg ha-1) and K application (10

KCl kg ha-1), without P. In the ‘+P (TSP)’ treatment, the same rates of

N and K were applied, and P was supplied as triple superphosphate

(TSP), providing 22.9 kg P2O5 ha-1. This corresponded to an

application of 54.5 kg TSP ha-1 (42% P2O5). The ‘+P (PR)’

treatment, hereafter referred to as PR, also received the same

amounts of N, P, and K; however, P was supplied using PR,

applied at 127 g PR ha-1. Seeds were sown the following day after

fertilizer application, and the pots that contained one plant each, were

placed into an isolation greenhouse (26/23°C day/night) at JIRCAS

and regularly watered until sampling by an automatic watering

machine (SAFETY3 SAW-2, Fujihara Industrial Co., Ltd.) for 1

minute twice a day, which was subsequently increased to four

times a day from the R1 flowering stage. Shoot, root, and root

nodules per replicate were sampled at the seed filling stage, two weeks

after the plants reached the R5.5 phenological stage as described by

Fehr et al. (1971), and seeds were sampled at harvest during the R8

phenological stage. The plant phenotypes at the time of sampling are

shown in Supplementary Figure S1.
2.2 Soybean agronomic traits, and contents
of nitrogen and phosphorus

The plant samples collected were oven-dried at 80°C for two days

and ground using a high-speed vibration mill. The shoot and root dry

weights were recorded, and the number of nodules was counted at the

time of sampling. Seed number and weight were also recorded at

harvest. The total carbon and nitrogen contents in both the shoots and

roots were determined via the dry combustion method with an NC

analyzer (Sumigraph NC 220F, Sumika, Japan). For P content, ground

plant samples were dry ashed at 550°C in a muffle furnace and then

extracted with 0.5 M hydrochloric acid. The P concentration in the

extract was measured by the inductively coupled plasma atomic

emission spectrometry (ICPE-9820, Shimadzu, Japan).
2.3 Nitrogen fixation quantification and
estimation of seed lipid and protein
content in soybean

During plant growth (at the R5.5 phenological stage), xylem sap

samples were collected from 8:00 to 10:00 a.m. by cutting the stem

just above the first node and inserting a silicon tube into the xylem

to extract the sap frozen at -20°C until analysis. Nitrogen derived

from the atmosphere (Ndfa), representing nitrogen fixation, was

quantified using the ureide (N solute) method (Unkovich et al.,

2008). Briefly, the method involves boiling the samples in a water

bath twice. In the first boiling, 0.5 N NaOH was added to the
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samples, and 0.65 N HCl/phenyl hydrazine was added in the second

boiling. After the samples were cooled in an ice bath, HCl/KFeCN

was added. The abundance of the samples was then measured at 525

nm using a Bio-Rad SmartSpec 3000 UV/Vis spectrophotometer

(California, USA). At harvest, the seeds were oven-dried at 80°C for

two days and then ground in a mill for lipid and protein content

analysis. Lipid was extracted using hexane and analyzed following

the method described by Saldivar et al. (2011). The nitrogen content

was determined by the Kjeldahl method (Jackson, 1973), and the

protein content was calculated by multiplying the nitrogen content

by 6.25, with the average nitrogen content of proteins being

approximately 16% (1/0.16 = 6.25) (Mariotti et al., 2008). All the

seeds were harvested at maturity and oven-dried to measure the dry

weight, pod number per plant, and total seed yield.
2.4 Statistical analysis

Two-way analysis of variance (ANOVA) was conducted to

assess the main and interactive effects of P fertilization and

soybean cultivar on the measured variables. When significant

interactions were observed, one-way ANOVA was performed by

cultivar, followed by post-hocmultiple comparisons of means by the

Tukey’s honestly significant difference (HSD) test, with the

significance set at p < 0.05. These analyses were conducted using

XLSTAT® software (version 2022.4.1.1368; Addinsoft, New York).
3 Results

3.1 Effect of phosphorus application on
soybean growth

Two-way ANOVA revealed a significant interaction effect

between P fertilization and soybean cultivar, justifying the

presentation of the agronomic data by cultivar (Table 1). Pod

number, seed number, seed yield, and seed weight of both
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cultivars were significantly influenced by phosphorus fertilization.

The +P (TSP) and +P (PR) treatments showed significantly higher

values for all measured parameters compared to the –P treatment (p

< 0.05). No significant differences were observed between the +P

(TSP) and +P (PR) treatments for any parameter. However, the +P

(PR) treatment increased seed yields threefold in Fukuyutaka

(Table 1A) but only twofold in Jenguma (Table 1B). Fukuyutaka

produced slightly greater seed weight than Jenguma in all P

treatments. In contrast, Jenguma produced more pods and seeds

than Fukuyutaka, regardless of the P application level.
3.2 Shoot and root dry weights and their
nitrogen and phosphorus contents

Two-way ANOVA revealed a significant interaction effect between

P fertilization and cultivar on dry matter production and N and P

contents, so the data are reported separately for each cultivar.

Regardless of the P source, P fertilization significantly increased

shoot dry weight in both Fukuyutaka and Jenguma, with values at

least double those of the control. Both TSP and PR had similar effects

on shoot dry weight in both cultivars. The +P(TSP) and +P(PR)

treatments significantly increased the root dry weight of Fukuyutaka

compared with the -P treatment (Figures 1A, B). P fertilization also

influenced the nitrogen content of shoots. TSP significantly increased

the shoot total N of Fukuyutaka, whereas PR did not. However, both

TSP and PR increased the shoot N of Jenguma compared with that of

the control. Interestingly, the -P treatment resulted in a significantly

greater shoot N content than the TSP treatment, which resulted in the

highest shoot N content in Fukuyutaka. P fertilization did not affect the

root N content in Jenguma (Figures 1C, D). The shoot P content

followed a similar trend to that of shoot dry weight, with both TSP and

PR significantly increasing shoot P compared with the control in both

cultivars. Compared with the control, PR significantly increased the

root P content in Fukuyutaka, whereas TSP did not. No significant

effect of P fertilization was observed on the root P content in Jenguma

(Figures 1E, F).
TABLE 1 Yield components of the cultivars Fukuyutaka (A) and Jenguma (B) under different phosphorus treatments.

(A) cv. Fukuyutaka

Treatments Pod number (plant -1) Seed number (plant -1) Seed yield (g plant -1) Seed weight (g seed -1)

- P 12.25 ± 1.32 b 23 ± 2.34 b 5.03 ± 0.46 b 0.22 ± 0.01 b

+ P (TSP) 25.25 ± 2.53 a 48 ± 4.02 a 14.51 ± 0.98 a 0.31 ± 0.01 a

+ P (PR) 22.25 ± 4.42 a 42 ± 8.45 a 13.15 ± 2.44 a 0.31 ± 0.01 a
(B) cv. Jenguma

Treatments Pod number (plant -1) Seed number (plant -1) Seed yield (g plant -1) Seed weight (g seed -1)

- P 21.2 ± 2.65 b 36.2 ± 5.75 b 3.43 ± 0.66 b 0.10 ± 0.01

+ P (TSP) 41.5 ± 8.41 a 68.8 ± 16.7 a 8.87 ± 2.35 a 0.11 ± 0.02

+ P (PR) 41.0 ± 2.93 a 73.6 ± 7.87 a 7.13 ± 1.06 a 0.10 ± 0.01
Data are means ± standard error (n = 4). For each cultivar, means within each column followed by different letters are significantly different at p < 0.05 (ANOVA followed by Tukey’s HSD test). If
no letter differences are present, differences are not statistically significant. P, phosphorus; TSP, triple superphosphate; PR, calcined phosphate rock; Cv, cultivar.
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FIGURE 1

Dry weight, total phosphorus, and nitrogen contents of the shoots and roots of soybean. For each analyzed variable in the shoots and roots,
different letters indicate significant mean differences at p < 0.05 according to Tukey’s HSD test. (A) Effect of P treatments on the dry weight of
shoots and roots in the soybean cultivar Fukuyutaka. (B) Effect of P treatments on the dry weight of shoots and roots in the soybean cultivar
Jeguma. (C) Effect of P treatments on the nitrogen content of shoots and roots in the soybean cultivar Fukuyutaka. (D) Effect of P treatments on the
nitrogen content of shoots and roots in the soybean cultivar Jenguma. (E) Effect of P treatments on the phosphorus content of shoots and roots in
the soybean cultivar Fukuyutaka. (F) Effect of P treatments on the phosphorus content of shoots and roots in the soybean cultivar Jenguma. ns,
non-significant difference. P, phosphorus; TSP, triple superphosphate; PR, calcined phosphate rock; DW, dry weight; N, nitrogen; cv., cultivar.
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3.3 Root nodule number, nitrogen fixation,
and nitrogen derived from the atmosphere

P application significantly increased the root nodule number of

both cultivars, with a more pronounced effect in Jenguma. In

Jenguma, the number of nodules increased fourfold with TSP and

fivefold with PR compared with those in the control. The (-P)

treatment resulted in only 22 nodules for Jenguma, but TSP and PR

application increased this number to 94 and 102 nodules, respectively.

In contrast, Fukuyutaka had more nodules (80) than Jenguma (22)

under the no-P treatment, with significantly greater nitrogen fixation

in both cultivars under the TSP and PR treatments (Figures 2A, B).

The amount of nitrogen-fixed followed the same trend as the nodule

number, with significantly greater values in both cultivars under the

TSP and PR treatments (Figures 2B, C). For Fukuyutaka, nitrogen

fixation increased sevenfold under TSP and fivefold under PR. In

Jenguma, the increase was two and a half fold under TSP and threefold

under PR (Figures 2C, D). The percentage of Ndfa showed a similar

trend. In Fukuyutaka, Ndfa increased from 30% to 70% with TSP and

50% with PR. In Jenguma, however, Ndfa decreased to approximately

40% with TSP and to 10% with PR a (Figures 2E, F).
3.4 Changes in the content of seed
protein, lipid, and phosphorus

P application had contrasting effects on the seed protein content

of the two soybean cultivars. In Fukuyutaka, TSP and PR applications

significantly decreased the protein percentage compared with that of

the -P treatment. In contrast, Jenguma presented a significant increase

in the seed protein percentage under both the TSP and PR treatments

compared with the -P treatment. Overall, Fukuyutaka contained more

protein (33–45%) than Jenguma (38–40%) (Figures 3A, B). The lipid

percentage of seeds exhibited the opposite trend to that of protein.

TSP and PR applications significantly increased the lipid percentage in

Fukuyutaka seeds, with both P treatments resulting in a 2% increase.

In contrast, TSP application decreased the lipid percentage in

Jenguma seeds by 2%, whereas PR maintained the lipid content at a

level similar to that of the –P (Figures 3C, D). The P contents in the

seeds increased under both P applications for both cultivars.
4 Discussion

4.1 Effects of P fertilization on the growth
and yield of soybean

P application, whether in the form of TSP or calcined PR,

significantly improved shoot growth, nutrient accumulation, seed

yield, and nitrogen, and phosphorus contents across both cultivars,

underscoring the crucial role of phosphorus in enhancing both

vegetative growth and reproductive success. While both cultivars

responded positively to P fertilization, with notable increases in

shoot biomass, the effects on root yield and nutrient content varied,

highlighting cultivar specific differences in P utilization. These
Frontiers in Plant Science 05
findings align with those of previous studies, such as those of Wang

et al. (2009), who reported increased plant dry weight following the

overexpression of the APase gene, a mechanism that enhances the

ability of plants to acquire or remobilize inorganic P from organic

sources. These findings indicate that improving P availability could

have similar beneficial effects in our study. However, the differential

response in terms of root yield highlights the need for further

investigation into cultivar specific P utilization mechanisms. Under

P deficient conditions, P application improved soybean shoot growth

(He et al., 2019), which, in turn, increased the plant area, increasing

light interception for photosynthesis. The increase in shoot dry weight

resulting from P fertilization in both cultivars likely contributed to the

observed higher seed yield, demonstrating how P availability enhances

both vegetative growth and reproductive success (Xu et al., 2024;

Kakiuchi, 2018). The similar positive effects of both applied P sources

indicate that calcined PR is an effective amendment for enhancing

soybean growth and seed yield. In this study, soybean cultivars from

Japanese (Asian) and African origins were used, and the positive

response observed in both suggests that PR can effectively increase

soybean yields across different origins. Previous studies have also

demonstrated that the direct application of non-calcined raw

phosphate rock can replace chemical phosphorus fertilizers, such as

TSP, to improve crop yields, including those of lowland rice

(Nakamura et al., 2013; 2016). Additionally, low grade raw

phosphate rock has been found to increase cowpea, groundnut, and

wheat yields, particularly when combined with plant growth-

promoting rhizobacteria (Saleem et al., 2013; Iseki et al., 2024). The

present study provides evidence that calcined PR is an additional

source of P that can improve the yield of leguminous crops, such

as soybeans.

In addition to its positive influence on soybean aboveground

biomass, P fertilization led to significant increases in both the N and

P contents in the shoots of Fukuyutaka and in the P content in

Jenguma, again highlighting cultivar specific responses to

fertilization. To produce high quality seeds, soybean plants

require substantial amounts of N and P. As leguminous crops,

most of the soybean N is obtained via N2 fixation in root nodules,

whereas P is sourced primarily from the soil (Faozi et al., 2019).

Nodule formation and nitrogen fixation are energy intensive

processes, and P application plays a crucial role in providing the

energy needed for these processes while also increasing the uptake

of both N and P. Additionally, P and N are essential for

photosynthesis and overall plant development. Bindraban et al.

(2020) noted that low P concentrations reduce the maximum

photosynthetic rate and leaf N concentration. Photosynthesis

increases as the leaf P concentration increases, leading to

maximum biomass and grain yield when the soybean leaf P

concentration is between 0.2% and 0.3% by weight (Singh et al.,

2018). Based on these findings, we suggest that P fertilization

primarily improves shoot growth, likely through increased

nutrient uptake. The increase in shoot growth due to P

fertilization may suggest that P availability is critical in improving

soybean yield, especially in soils with limited phosphorus. The lack

of significant differences in root dry weight across treatments in

both cultivars may indicate that extensive root growth is not
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required under favorable soil conditions. The impact of P on root

growth may not only be limited to biomass but also influence

crucial processes such as nitrogen fixation. While P fertilization

primarily enhanced shoot growth, its effects on root development
Frontiers in Plant Science 06
were also significant, particularly in terms of supporting symbiotic

nitrogen fixation. This aligns with previous research indicating that

adequate P is critical for energy intensive processes such as nodule

formation and nitrogen fixation (Somado et al., 2006).
FIGURE 2

Nodule number, N fixation and Ndfa as affected by P application in soybean. For each analyzed variable, different letters indicate significant mean
differences at p < 0.05 according to Tukey’s HSD test. (A) Effect of P treatments on the nodule number of the soybean cultivar Fukuyutaka. (B) Effect
of P treatments on the nodule number of the soybean cultivar Jeguma. (C) Effect of P treatments on the percentage of nitrogen fixation in the
soybean cultivar Fukuyutaka. (D) Effect of P treatments on the percentage of nitrogen fixation in the soybean cultivar Jenguma. (E) Effect of P
treatments on the percentage of nitrogen-derived from atmosphere in the soybean cultivar Fukuyutaka. P, phosphorus; TSP, triple superphosphate;
PR, calcined phosphate rock; Ndfa, nitrogen derived from atmosphere; cv., cultivar; N2, atmospheric nitrogen.
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FIGURE 3

Seed composition of protein, lipid and phosphorus in soybean. For each analyzed variable, different letters indicate significant mean differences at
p < 0.05 according to Tukey’s HSD test. (A) Effect of P treatments on seed protein in the soybean cultivar Fukuyutaka. (B) Effect of P treatments on
seed protein in the soybean cultivar Jeguma. (C) Effect of P treatments on seed lipid in the soybean cultivar Fukuyutaka. (D) Effect of P treatments
on seed lipid in the soybean cultivar Jenguma. (E) Effect of P treatments on seed protein in the soybean cultivar Fukuyutaka. (F) Effect of P
treatments on seed phosphorus in the soybean cultivar Jenguma. (F) Effect of P treatments on the percentage of nitrogen-derived from atmosphere
in the soybean cultivar Jenguma. P, phosphorus; TSP, triple superphosphate; PR, calcined phosphate rock; DW, dry weight; cv., cultivar.
Frontiers in Plant Science frontiersin.org07
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4.2 Symbiotic nitrogen fixation improved
with increasing root nodule number

P fertilization, through both TSP and PR, stimulated root nodule

formation and nitrogen fixation, demonstrating that phosphorus

availability is vital for energy-intensive processes such as nodule

development, which supports improved N2 fixation in soybeans.

Similar findings were reported by Somado et al. (2006), where PR

and TSP applications equally increased the biomass and%Ndfa in the

legume Crotalaria micans, further highlighting the importance of P

amendments to support nitrogen fixation. The required P can be

supplied by PR instead of the expensive chemical fertilizer TSP. This

positive effect of the PR may stem from its enhanced solubility

following calcination (Nakamura et al., 2015). As Taliman et al.

(2019) reported, appropriate P fertilization can regulate the growth

and development of soybean nodules, thereby increasing N2 fixation

and improving plant growth and yield. Although the specific

mechanisms through which P affects nodule nitrogen fixation in

soybeans remain unclear (Li et al., 2022b), previous studies have

shown that low P concentrations in soil reduce the energy costs for

nodule formation, function, and nitrogen fixation in legumes

(Vardien et al., 2016). The importance of phosphorus (P) for

nodulation and nitrogen fixation has been highlighted in previous

studies, which have shown that functional nodules typically contain

two to three times more P than other plant organs (Sa and Israel,

1991; Qin et al., 2012; Vauclare et al., 2013). Furthermore, Zhong

et al. (2023) reported that leguminous plants grown under high P

conditions produced significantly more nodules than those grown

under low-P conditions, suggesting that increased P availability

promotes nodule formation and, in turn, enhances nitrogen

fixation capacity. Therefore, the observed improvement in nitrogen

fixation in this study may be attributed to the increase in root nodule

number, which was stimulated by the application of both P fertilizers.

Although the nodule mass was not recorded in this study, the parallel

increase in nodule number and N2 fixation suggested that the formed

nodules were mature and large enough to initiate nitrogenase activity.

The overall positive effect of P application on nitrogen fixation and

growth improvements set the stage for changes at the seed level, as

seen in the alterations in seed composition.
4.3 Variations in seed composition by
component, P source, and cultivar

P fertilization influenced seed composition, resulting in small

but significant changes, such as increased protein content in

Jenguma and increased lipid content in Fukuyutaka, due to N

and P increments in shoot, indicating that genotype-specific

responses may affect both agricultural productivity and food

quality. This inverse relationship between protein and lipid

concentrations is consistent with findings from previous research

(Allen and Young, 2013; Kambhampati et al., 2020). P fertilization

was found to impact seed composition, although the changes are

often moderate and inconsistent (Yin et al., 2016). The quality of

soybean seeds is influenced by genetic and environmental factors,
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such as genotype, cultivar maturity, temperature, drought, and soil

nutrients (Bellaloui et al., 2011). Bellaloui et al. (2015) reported that

later planting during the season results in higher protein but lower

oil concentrations. Environmental factors, such as soil moisture and

temperature, in addition to differences in nutrient accumulation in

seeds and leaves, could help explain these variations in protein and

oil concentrations. Given that this study was conducted in a

greenhouse with controlled growth conditions, it is possible that

the two soybean varieties responded differently to the set

temperature. This could have influenced the soil moisture content

in distinct ways due to variations in growth patterns, potentially

accounting for differences observed in the seed protein and lipid

contents following P fertilization. On the other hand, the increase in

the seed P content of both Fukuyutaka and Jenguma due to P

fertilization may improve soybean seed quality nutritionally, as

phytate, the primary form of P in seeds, offers health benefits to

humans, including anticarcinogenic properties, potent antioxidant

activity, and inhibition of kidney stone formation (Gemede, 2014;

Bindraban et al., 2020).
5 Conclusion

This study highlights the crucial role of phosphorus

fertilization in enhancing soybean growth, yield, and seed

quality in phosphorus-deficient soils, such as those common in

sub-Saharan Africa. Both triple superphosphate (TSP) and

calcined phosphate rock (PR) significantly improved these

parameters, with calcined PR offering a cost-effective alternative

to TSP. The positive effects of phosphorus on nitrogen fixation

further support its role in sustainable soybean cultivation. While

this study focused on two cultivars, future research should include

a wider range of soybean genotypes to better understand the

interactions between genotype and phosphorus fertilizer source.

Overall, calcined PR represents a promising solution to improve

soil fertility and crop yields for smallholder farmers in sub-

Saharan Africa.
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